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Abstract

In this paper, we investigate a selection of
methodologies for fine-tuning transformer-
based classifiers for fine-grained irony (like-
lihood) detection in English Tweets. These
methodologies include approaching irony de-
tection as an ordinal classification task and
as a regression task for varying label granu-
larity (3, 5 and 7 labels). Our experiments
show that training irony detection models us-
ing fine-grained likelihood labels is not only
possible but also advantageous, as the models
reach higher F1-scores for binary classification
than models that are specifically trained for this
task. In addition, we explore how well the pre-
dictions by each of the model setups can be
interpreted through Layer Integrated Gradients.
The results show that, although performance
for irony detection is consistent, the selection
of important words for well-performing models
does not consistently align with human trigger
word annotation.

1 Motivation & Related Work

The detection of irony and sarcasm relies on iden-
tifying whether an utterance should be interpreted
literally or if the opposite meaning should be as-
sumed. Traditionally (Filatova, 2012; Van Hee
et al., 2018; Oprea and Magdy, 2020) and recently
still (Misra and Arora, 2023; Rahma et al., 2023),
this task is approached as a binary classification
problem. To some extent, that is a sensible deci-
sion, since this type of figurative language inverts
the literal meaning of an utterance and something
is either ironic or not. However, humans need
to rely on extra-textual background information
to evaluate whether a statement should be inter-
preted literally. While such extra-textual knowl-
edge is mostly shared, it never completely overlaps
as it can include (specific) objective knowledge as
well as subjective opinions and assumptions. As
a result, humans have to rely on the assumption

of shared knowledge with some degree of confi-
dence. This confidence about shared knowledge
directly transfers to the confidence of the irony
prediction. For this reason, confidence has been
included in a few annotation schemes for irony
detection (Van Hee et al., 2018; Wallace et al.,
2014). Although they suggest weighting irony esti-
mation with the confidence about the shared back-
ground knowledge (Wallace, 2015), the merits of
this suggestion have not been fully explored. To
our knowledge, the only related development in
recent work is the annotation of irony likelihood
labels, which merge confidence with binary classi-
fication labels (Maladry et al., 2024). In this novel
scheme, the 7 labels describe samples as “Defi-
nitely Not Ironic”, “Probably Not Ironic”, “Rather
Not Ironic”, “Not sure”, “Rather Ironic”, “Probably
Ironic” and “Definitely Ironic”. The authors also
showed that the fine-grained annotation scheme
notably does not harm inter-rater agreement and
provides more nuanced labels. As a result, the
incorporation of these nuanced labels becomes a
promising research avenue for irony detection.

2 Methodology

We evaluate our approaches by fine-tuning two pre-
trained models with the original data distribution
of 3451 train, 383 development and 958 test sam-
ples from the irony data set released by Van Hee
et al. (2018). The first model, BERTweet (Nguyen
et al., 2020) is trained on social media data. The
second model, DeBERTa v3 (He et al., 2023),
is more recent and reaches promising scores for
a wide variety of tasks, but it is not necessarily
adapted for social media data. Both models have
shown to perform well for irony detection (Farha
et al., 2022).

For the baselines, we fine-tuned the pre-trained
models for binary irony classification. This means
merging variants of “Not [ronic” labels and the



Num. 7 5 3 2
7 Iron. Iron. Iron. Iron.
6 Prob. Iron. Iron. Iron. Iron.
5 Rath. Iron. | Rath. Iron. Iron. Iron.
4 Not Sure Not Sure Not Sure | “Iron.
3 Rath."Tron. | Rath.”Iron. “Iron. “Iron.
2 Prob."Tron. “Iron. “Iron. “Tron.
1 “Tron. “Tron. “Tron. “Tron.

Table 1: Original label numbers and their corresponding
classes after merging to coarse-grained granularity. “Not
Ironic” labels are indicated as “Tronic.

“Not Sure” label into a single negative class. All
other labels are then considered ironic. Each model
is fine-tuned for up to 10 epochs with a learning
rate of 5e-6, weight decay of 0.01 and a batch size
of 16. Training parameters (including 200 warm-up
steps) are updated every 100 steps. Early stopping
is implemented based on development loss to pre-
vent overfitting. To ensure that these results can be
generalized and reproduced, we maintain the same
parameters for all models and start from 6 specific
seeds, for which the results are averaged.! As the
goal of this paper is to make use of the fine-grained
annotations during training, we propose redefining
irony detection as two new tasks: ordinal classifica-
tion and regression. For each task, we explore the
different strategies to merge the 7 labels into 5, 3
or 2 coarse-grained labels (see Table 1).

2.1 Ordinal Classification

For ordinal classification, we use each of the labels
as a separate class. Since the fine-grained labels
are ordered, the distance between two labels should
be taken into account. The distance between “1:
Definitely Not Ironic” and “6: Probably Ironic”,
for example, should be greater than the distance
between “3: Rather Not Ironic” and “5: Rather
Ironic”. To incorporate this into the training proce-
dure, we make use of a weight matrix and calculate
the log ordinal loss (Equation 1), which has shown
to be effective for ordinal classification (Castagnos
et al., 2022).

Lorr—a(Py) =Y log(l —p)d(y,i)* (1)

'The best-performing models and the corresponding code
will be made publicly available on HuggingFace and GitHub.

2.2 Regression

One of the major downsides of this ordinal clas-
sification model, is that it considers the labels as
separate classes rather than the continuum that it
is supposed to reflect. Therefore, we also propose
the use of a regression model, which treats the task
as single continuous value instead of log proba-
bilities for each individual label. Whereas mean
squared error loss is the default implemented for
transformer models, exploratory testing revealed
that employing Huber loss (Equation 2, with § as a
hyper-parameter for Hinge loss), tends to result in
better scores.

l o ~ 2 . _ A
s — 5(y — 1) if [(y—9)<é @
otherwise

3 Results

3.1 Fine-grained Labels

As shown in Table 2, models fine-tuned for regres-
sion consistently obtain a lower mean squared error
(MSE) for both pre-trained models across all 3,
5 and 7-label granularity compared to the ordinal
classification models. As the regression models are
not restricted to predicting the exact classes, the
free-range predictions allow them to attain more
accurate scores for predicting the fine-grained like-
lihood labels.

Investigation of the different pre-trained base
models does not reveal that any model is con-
sistently superior to the other. Still, there are
some slight differences. For regression models,
BERTweet has lower MSE scores for 3-label and
7-label granularity, but higher loss for the 5-label
granularity. For ordinal classification models, De-
BERTa has lower loss for 5 and 7-label granularity
but higher loss for 3-label granularity.

3.2 Binary Classification

Whereas the evaluation through MSE indicates how
well our models are able to project their predictions
on the irony + confidence spectrum, it remains
important to also evaluate for binary classifica-
tion, where the boundary between “ironic" or “not
ironic" is more absolute. The F1-scores in Table 3
reveal that the regression models (and binary clas-
sification models) function better with BERTweet,
whilst DeBERTa reaches higher scores for ordinal
classification models. Furthermore, both regression



Task Gran. | BaseModel | MSE
regression 3 BERTweet | 0.676
regression 3 DeBERTa | 0.681

ordinal 3 BERTweet | 0.787
ordinal 3 DeBERTa | 0.787
regression 5 BERTweet | 2.721
regression 5 DeBERTa | 2.691
ordinal 5 BERTweet | 3.115
ordinal 5 DeBERTa | 2.846
regression 7 BERTweet | 5.308
regression 7 DeBERTa | 5.385
ordinal 7 BERTweet | 6.138
ordinal 7 DeBERTa | 5.477

Table 2: MSE scores for ordinal and regression for
varying label granularity.

and ordinal models outperform binary classification
models in their optimal setup (best base model) and
either a 5-point or 7-point granularity. Regarding
the label granularity, we conclude that the 5-point
granularity is generally more performative than the
full 7-point granularity.

Closer evaluation of the scores, shown in Fig-
ure 1a, reveals that all models perform better on the
“not ironic” labels (1, 2, 3, 4) than on the “ironic”
labels (5, 6, 7). Likely, this is connected to the dis-
tribution of the dataset, which has 64% not-ironic
samples and 36% ironic samples. Whilst all mod-
els exhibit this performance difference, the discrep-
ancy is most prevalent for the regression models,
smaller for ordinal models and the smallest for the
binary classification model. Within the non-ironic
and ironic categories, the scores are the best for the
highest-confidence labels 1 and 7, while they are
lower on the in-between labels (2, 3) and (5, 6), as
illustrated in Figure 1b.

3.3 Interpretability

Finally, we investigate whether the more nuanced
labels make the reasoning of fine-tuned models
more human-like. To approximate system reason-
ing, we employ Layer Integrated Gradients (Sun-
dararajan et al., 2017) to generate post-hoc numeri-
cal importances for all sub-tokens, which are then
mapped to the word level based on space splitting.
To evaluate how closely these metrics resemble
human reasoning, we make use of Accumulated
Precise Importance (Maladry et al., 2024). This is
a sentence-level metric that sums up the (normal-

Task Gran. | BaseModel F1
regression 5 BERTweet | 0.765
regression 7 BERTweet | 0.764

ordinal 5 DeBERTa | 0.758
ordinal 7 DeBERTa | 0.756
ordinal 5 BERTweet | 0.755
binary 2 BERTweet | 0.755
ordinal 7 BERTweet | 0.754
regression 3 BERTweet | 0.752
regression 5 DeBERTa | 0.749
binary 2 DeBERTa | 0.743
ordinal 3 BERTweet | 0.741
regression 7 DeBERTa | 0.734
regression 3 DeBERTa | 0.725
ordinal 3 DeBERTa | 0.549

Table 3: F1-score ranking for all models averaged across
random seeds. Baseline models are indicated in gray.

ized) numerical importances for each trigger word
token (based on human annotations). To illustrate,
the API score for Example 1 equals 95% (33 + 18
+ 19 + 25), with only 5% of the total importances
being attributed to a non-trigger word.

Example 1

love getting my papers rejected :’)
HUM. 1 0 0 1 1 1
IMP. .33 0 .05 .18 A9 25

As the explanations for irony only matter for ironic
tweets (non-ironic tweets do not contain specific
markers), we only calculate the API scores for cor-
rectly predicted ironic tweets and average them.

As shown in Figure 2a, the models that attained
the highest F1-scores for binary classification do
not consistently achieve the highest API scores.
Although some models, such as the Ordinal De-
BERTa model with 5-label granularity (O_S5_DEB),
perform well on API-scores and F1-score, the high
standard deviation (black line) indicates that the
interpretability of the specific model is highly vari-
able. In this case, the only difference between
the same-type models is the random seed they
are trained with (detailed results in Table 4 Ap-
pendix A). However, there is a large discrepancy
with the lowest score achieved by the same model
trained with a different random seed (33.4%). Fur-
thermore, the best average API scores are attained
by a binary classification model trained with De-
BERTa (see Figure 2b).
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Figure 1: Accuracy scores on specific labels (averaged across both models and all random seeds).
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Figure 2: F1 and API scores for best-performing fine-grained + binary classification models (see top of Table 3).

3.4 Discussion

Our experiments indicate that our models trained
using likelihood labels do not only provide more nu-
anced outputs, but once those outputs are merged to
binary labels, they can also perform better at binary
irony classification compared to models that are
trained specifically for binary classification. The
additional information encoded in the labels, in
particular for the 5-label and 7-label granularity,
proves to be valuable during training.

Whilst F1-scores achieved by the models seems
to be consistent across random seeds, the API-
scores vary significantly. This means that the very
same model can develop different “reasoning” pat-
terns depending on random initialization. This may
be important to keep in mind for applications where
the systems should be human-interpretable and ex-
hibit intuitive trigger word patterns. Still, even if a
model has developed different reasoning patterns,

this does not necessarily mean that the patterns are
invalid, if they help the model to arrive at the same
conclusion.

4 Conclusion

With this research, we have successfully trained
systems for irony likelihood prediction and irony
detection based on a novel irony likelihood dataset.
Moreover, we found that regression models trained
with 5 and 7-label granularity even outperform bi-
nary classifiers on binary irony detection. Our in-
terpretability experiments demonstrate that model
performance and interpretability do not always
align. Using current approaches, training a model
for (irony) prediction without explanation does not
guarantee reliable interpretability. For this reason,
we suggest incorporating interpretability in the fine-
tuning process for classification tasks in future re-
search.



Limitations

In this paper, we investigated how fine-grained la-
bels for irony detection can be leveraged during
transformer fine-tuning. The primary limitation of
our research lies in the dataset itself, which relies
on the annotations of a single individual. As shown
by related work, the perception of irony can be
highly subjective and can also be dependent on the
linguistic and communicative skills of the writer
of a text. This means that the labels for the trigger
words and irony labels are open to interpretation
and should not be considered 100% correct or in-
correct. A secondary limitation of our research is
that we do not investigate the latest large generative
LMs, which have become the state-of-the-art for
many tasks.
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Appendix
A Detailed Results

Table 4: Results for each individual regression, ordinal and binary classification model for different random seeds
and label granularity.

Task | Gran. | BaseModel | Seed | MSE | Fl1 API
ord. 5 DeBERTa | 666 | 2.82 | 0.76 | 0.78
bin. 2 DeBERTa 666 0.74 | 0.67
regr. 5 DeBERTa 666 | 2.80 | 0.75 | 0.66
bin. 2 DeBERTa 69 0.74 | 0.65
ord. 5 BERTweet | 666 | 3.30 | 0.74 | 0.63
ord. 5 DeBERTa 13 276 | 0.77 | 0.62
regr. 7 DeBERTa 42 544 | 0.71 | 0.61
regr. 3 DeBERTa 42 0.69 | 0.71 | 0.60
regr. 7 DeBERTa 666 | 5.51 | 0.75 | 0.60
regr. 7 BERTweet 69 520 | 0.77 | 0.59
regr. 3 BERTweet 7 0.69 | 0.74 | 0.59
regr. 7 BERTweet 13 5.14 | 0.76 | 0.58
ord. 3 BERTweet | 666 | 0.79 | 0.74 | 0.58
ord. 7 BERTweet | 420 | 590 | 0.76 | 0.58
regr. 5 BERTweet | 666 | 2.68 | 0.77 | 0.58
regr. 5 BERTweet 7 278 | 0.76 | 0.57
bin. 2 DeBERTa 13 0.75 | 0.57
regr. 5 DeBERTa 7 273 | 0.75 | 0.57
regr. 5 BERTweet | 420 278 | 0.77 | 0.57
regr. 3 BERTweet | 420 | 0.71 | 0.75 | 0.56
ord. 3 BERTweet | 420 | 0.79 | 0.74 | 0.56
regr. 3 DeBERTa 420 | 0.67 | 0.74 | 0.55
bin. 2 DeBERTa 42 0.75 | 0.55
ord. 3 DeBERTa 7 0.77 | 0.69 | 0.55
ord. 3 BERTweet 13 0.76 | 0.74 | 0.54
ord. 5 DeBERTa | 420 | 2.86 | 0.77 | 0.54
ord. 3 BERTweet 42 0.80 | 0.73 | 0.53
regr. 3 BERTweet 42 0.60 | 0.72 | 0.53
bin. 2 BERTweet | 666 0.75 | 0.53
ord. 5 BERTweet 69 3.00 | 0.76 | 0.53
bin. 2 DeBERTa 7 0.74 | 0.53
ord. 3 DeBERTa 13 0.80 | 0.74 | 0.53
ord. 7 BERTweet | 666 | 6.08 | 0.75 | 0.53
regr. 3 DeBERTa 666 | 0.66 | 0.75 | 0.52
bin. 2 BERTweet 42 0.76 | 0.52
ord. 7 BERTweet 13 6.13 | 0.76 | 0.52
regr. 3 DeBERTa 7 0.73 | 0.75 | 0.51
regr. 5 BERTweet 69 274 | 0.76 | 0.51
regr. 7 DeBERTa 7 529 | 0.73 | 0.51
ord. 7 BERTweet 42 6.16 | 0.76 | 0.51
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