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Abstract

In this paper, we investigate a selection of001
methodologies for fine-tuning transformer-002
based classifiers for fine-grained irony (like-003
lihood) detection in English Tweets. These004
methodologies include approaching irony de-005
tection as an ordinal classification task and006
as a regression task for varying label granu-007
larity (3, 5 and 7 labels). Our experiments008
show that training irony detection models us-009
ing fine-grained likelihood labels is not only010
possible but also advantageous, as the models011
reach higher F1-scores for binary classification012
than models that are specifically trained for this013
task. In addition, we explore how well the pre-014
dictions by each of the model setups can be015
interpreted through Layer Integrated Gradients.016
The results show that, although performance017
for irony detection is consistent, the selection018
of important words for well-performing models019
does not consistently align with human trigger020
word annotation.021

1 Motivation & Related Work022

The detection of irony and sarcasm relies on iden-023

tifying whether an utterance should be interpreted024

literally or if the opposite meaning should be as-025

sumed. Traditionally (Filatova, 2012; Van Hee026

et al., 2018; Oprea and Magdy, 2020) and recently027

still (Misra and Arora, 2023; Rahma et al., 2023),028

this task is approached as a binary classification029

problem. To some extent, that is a sensible deci-030

sion, since this type of figurative language inverts031

the literal meaning of an utterance and something032

is either ironic or not. However, humans need033

to rely on extra-textual background information034

to evaluate whether a statement should be inter-035

preted literally. While such extra-textual knowl-036

edge is mostly shared, it never completely overlaps037

as it can include (specific) objective knowledge as038

well as subjective opinions and assumptions. As039

a result, humans have to rely on the assumption040

of shared knowledge with some degree of confi- 041

dence. This confidence about shared knowledge 042

directly transfers to the confidence of the irony 043

prediction. For this reason, confidence has been 044

included in a few annotation schemes for irony 045

detection (Van Hee et al., 2018; Wallace et al., 046

2014). Although they suggest weighting irony esti- 047

mation with the confidence about the shared back- 048

ground knowledge (Wallace, 2015), the merits of 049

this suggestion have not been fully explored. To 050

our knowledge, the only related development in 051

recent work is the annotation of irony likelihood 052

labels, which merge confidence with binary classi- 053

fication labels (Maladry et al., 2024). In this novel 054

scheme, the 7 labels describe samples as “Defi- 055

nitely Not Ironic”, “Probably Not Ironic”, “Rather 056

Not Ironic”, “Not sure”, “Rather Ironic”, “Probably 057

Ironic” and “Definitely Ironic”. The authors also 058

showed that the fine-grained annotation scheme 059

notably does not harm inter-rater agreement and 060

provides more nuanced labels. As a result, the 061

incorporation of these nuanced labels becomes a 062

promising research avenue for irony detection. 063

2 Methodology 064

We evaluate our approaches by fine-tuning two pre- 065

trained models with the original data distribution 066

of 3451 train, 383 development and 958 test sam- 067

ples from the irony data set released by Van Hee 068

et al. (2018). The first model, BERTweet (Nguyen 069

et al., 2020) is trained on social media data. The 070

second model, DeBERTa v3 (He et al., 2023), 071

is more recent and reaches promising scores for 072

a wide variety of tasks, but it is not necessarily 073

adapted for social media data. Both models have 074

shown to perform well for irony detection (Farha 075

et al., 2022). 076

For the baselines, we fine-tuned the pre-trained 077

models for binary irony classification. This means 078

merging variants of “Not Ironic” labels and the 079
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Num. 7 5 3 2

7 Iron. Iron. Iron. Iron.

6 Prob. Iron. Iron. Iron. Iron.

5 Rath. Iron. Rath. Iron. Iron. Iron.

4 Not Sure Not Sure Not Sure ˜Iron.

3 Rath.˜Iron. Rath.˜Iron. ˜Iron. ˜Iron.

2 Prob.˜Iron. ˜Iron. ˜Iron. ˜Iron.

1 ˜Iron. ˜Iron. ˜Iron. ˜Iron.

Table 1: Original label numbers and their corresponding
classes after merging to coarse-grained granularity. “Not
Ironic” labels are indicated as ˜Ironic.

“Not Sure” label into a single negative class. All080

other labels are then considered ironic. Each model081

is fine-tuned for up to 10 epochs with a learning082

rate of 5e-6, weight decay of 0.01 and a batch size083

of 16. Training parameters (including 200 warm-up084

steps) are updated every 100 steps. Early stopping085

is implemented based on development loss to pre-086

vent overfitting. To ensure that these results can be087

generalized and reproduced, we maintain the same088

parameters for all models and start from 6 specific089

seeds, for which the results are averaged.1 As the090

goal of this paper is to make use of the fine-grained091

annotations during training, we propose redefining092

irony detection as two new tasks: ordinal classifica-093

tion and regression. For each task, we explore the094

different strategies to merge the 7 labels into 5, 3095

or 2 coarse-grained labels (see Table 1).096

2.1 Ordinal Classification097

For ordinal classification, we use each of the labels098

as a separate class. Since the fine-grained labels099

are ordered, the distance between two labels should100

be taken into account. The distance between “1:101

Definitely Not Ironic” and “6: Probably Ironic”,102

for example, should be greater than the distance103

between “3: Rather Not Ironic” and “5: Rather104

Ironic”. To incorporate this into the training proce-105

dure, we make use of a weight matrix and calculate106

the log ordinal loss (Equation 1), which has shown107

to be effective for ordinal classification (Castagnos108

et al., 2022).109

LOLL−α(P, y) =
∑

log(1− pi)d(y, i)
α (1)110

1The best-performing models and the corresponding code
will be made publicly available on HuggingFace and GitHub.

2.2 Regression 111

One of the major downsides of this ordinal clas- 112

sification model, is that it considers the labels as 113

separate classes rather than the continuum that it 114

is supposed to reflect. Therefore, we also propose 115

the use of a regression model, which treats the task 116

as single continuous value instead of log proba- 117

bilities for each individual label. Whereas mean 118

squared error loss is the default implemented for 119

transformer models, exploratory testing revealed 120

that employing Huber loss (Equation 2, with δ as a 121

hyper-parameter for Hinge loss), tends to result in 122

better scores. 123

Lδ =

 1
2(y − ŷ)2 if |(y − ŷ)| < δ

δ((y − ŷ)− 1
2δ) otherwise

(2) 124

3 Results 125

3.1 Fine-grained Labels 126

As shown in Table 2, models fine-tuned for regres- 127

sion consistently obtain a lower mean squared error 128

(MSE) for both pre-trained models across all 3, 129

5 and 7-label granularity compared to the ordinal 130

classification models. As the regression models are 131

not restricted to predicting the exact classes, the 132

free-range predictions allow them to attain more 133

accurate scores for predicting the fine-grained like- 134

lihood labels. 135

Investigation of the different pre-trained base 136

models does not reveal that any model is con- 137

sistently superior to the other. Still, there are 138

some slight differences. For regression models, 139

BERTweet has lower MSE scores for 3-label and 140

7-label granularity, but higher loss for the 5-label 141

granularity. For ordinal classification models, De- 142

BERTa has lower loss for 5 and 7-label granularity 143

but higher loss for 3-label granularity. 144

3.2 Binary Classification 145

Whereas the evaluation through MSE indicates how 146

well our models are able to project their predictions 147

on the irony + confidence spectrum, it remains 148

important to also evaluate for binary classifica- 149

tion, where the boundary between “ironic" or “not 150

ironic" is more absolute. The F1-scores in Table 3 151

reveal that the regression models (and binary clas- 152

sification models) function better with BERTweet, 153

whilst DeBERTa reaches higher scores for ordinal 154

classification models. Furthermore, both regression 155
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Task Gran. BaseModel MSE

regression 3 BERTweet 0.676

regression 3 DeBERTa 0.681

ordinal 3 BERTweet 0.787

ordinal 3 DeBERTa 0.787

regression 5 BERTweet 2.721

regression 5 DeBERTa 2.691

ordinal 5 BERTweet 3.115

ordinal 5 DeBERTa 2.846

regression 7 BERTweet 5.308

regression 7 DeBERTa 5.385

ordinal 7 BERTweet 6.138

ordinal 7 DeBERTa 5.477

Table 2: MSE scores for ordinal and regression for
varying label granularity.

and ordinal models outperform binary classification156

models in their optimal setup (best base model) and157

either a 5-point or 7-point granularity. Regarding158

the label granularity, we conclude that the 5-point159

granularity is generally more performative than the160

full 7-point granularity.161

Closer evaluation of the scores, shown in Fig-162

ure 1a, reveals that all models perform better on the163

“not ironic” labels (1, 2, 3, 4) than on the “ironic”164

labels (5, 6, 7). Likely, this is connected to the dis-165

tribution of the dataset, which has 64% not-ironic166

samples and 36% ironic samples. Whilst all mod-167

els exhibit this performance difference, the discrep-168

ancy is most prevalent for the regression models,169

smaller for ordinal models and the smallest for the170

binary classification model. Within the non-ironic171

and ironic categories, the scores are the best for the172

highest-confidence labels 1 and 7, while they are173

lower on the in-between labels (2, 3) and (5, 6), as174

illustrated in Figure 1b.175

3.3 Interpretability176

Finally, we investigate whether the more nuanced177

labels make the reasoning of fine-tuned models178

more human-like. To approximate system reason-179

ing, we employ Layer Integrated Gradients (Sun-180

dararajan et al., 2017) to generate post-hoc numeri-181

cal importances for all sub-tokens, which are then182

mapped to the word level based on space splitting.183

To evaluate how closely these metrics resemble184

human reasoning, we make use of Accumulated185

Precise Importance (Maladry et al., 2024). This is186

a sentence-level metric that sums up the (normal-187

Task Gran. BaseModel F1

regression 5 BERTweet 0.765

regression 7 BERTweet 0.764

ordinal 5 DeBERTa 0.758

ordinal 7 DeBERTa 0.756

ordinal 5 BERTweet 0.755

binary 2 BERTweet 0.755

ordinal 7 BERTweet 0.754

regression 3 BERTweet 0.752

regression 5 DeBERTa 0.749

binary 2 DeBERTa 0.743

ordinal 3 BERTweet 0.741

regression 7 DeBERTa 0.734

regression 3 DeBERTa 0.725

ordinal 3 DeBERTa 0.549

Table 3: F1-score ranking for all models averaged across
random seeds. Baseline models are indicated in gray.

ized) numerical importances for each trigger word 188

token (based on human annotations). To illustrate, 189

the API score for Example 1 equals 95% (33 + 18 190

+ 19 + 25), with only 5% of the total importances 191

being attributed to a non-trigger word. 192

Example 1 193

love getting my papers rejected :’)
HUM. 1 0 0 1 1 1
IMP. .33 0 .05 .18 .19 .25

194

As the explanations for irony only matter for ironic 195

tweets (non-ironic tweets do not contain specific 196

markers), we only calculate the API scores for cor- 197

rectly predicted ironic tweets and average them. 198

As shown in Figure 2a, the models that attained 199

the highest F1-scores for binary classification do 200

not consistently achieve the highest API scores. 201

Although some models, such as the Ordinal De- 202

BERTa model with 5-label granularity (O_5_DEB), 203

perform well on API-scores and F1-score, the high 204

standard deviation (black line) indicates that the 205

interpretability of the specific model is highly vari- 206

able. In this case, the only difference between 207

the same-type models is the random seed they 208

are trained with (detailed results in Table 4 Ap- 209

pendix A). However, there is a large discrepancy 210

with the lowest score achieved by the same model 211

trained with a different random seed (33.4%). Fur- 212

thermore, the best average API scores are attained 213

by a binary classification model trained with De- 214

BERTa (see Figure 2b). 215
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(a) Ironic vs Not Ironic (b) Complete 7-label granularity

Figure 1: Accuracy scores on specific labels (averaged across both models and all random seeds).

(a) Best models based on F1 scores (b) Best models based on API scores

Figure 2: F1 and API scores for best-performing fine-grained + binary classification models (see top of Table 3).

3.4 Discussion216

Our experiments indicate that our models trained217

using likelihood labels do not only provide more nu-218

anced outputs, but once those outputs are merged to219

binary labels, they can also perform better at binary220

irony classification compared to models that are221

trained specifically for binary classification. The222

additional information encoded in the labels, in223

particular for the 5-label and 7-label granularity,224

proves to be valuable during training.225

Whilst F1-scores achieved by the models seems226

to be consistent across random seeds, the API-227

scores vary significantly. This means that the very228

same model can develop different “reasoning” pat-229

terns depending on random initialization. This may230

be important to keep in mind for applications where231

the systems should be human-interpretable and ex-232

hibit intuitive trigger word patterns. Still, even if a233

model has developed different reasoning patterns,234

this does not necessarily mean that the patterns are 235

invalid, if they help the model to arrive at the same 236

conclusion. 237

4 Conclusion 238

With this research, we have successfully trained 239

systems for irony likelihood prediction and irony 240

detection based on a novel irony likelihood dataset. 241

Moreover, we found that regression models trained 242

with 5 and 7-label granularity even outperform bi- 243

nary classifiers on binary irony detection. Our in- 244

terpretability experiments demonstrate that model 245

performance and interpretability do not always 246

align. Using current approaches, training a model 247

for (irony) prediction without explanation does not 248

guarantee reliable interpretability. For this reason, 249

we suggest incorporating interpretability in the fine- 250

tuning process for classification tasks in future re- 251

search. 252
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Limitations253

In this paper, we investigated how fine-grained la-254

bels for irony detection can be leveraged during255

transformer fine-tuning. The primary limitation of256

our research lies in the dataset itself, which relies257

on the annotations of a single individual. As shown258

by related work, the perception of irony can be259

highly subjective and can also be dependent on the260

linguistic and communicative skills of the writer261

of a text. This means that the labels for the trigger262

words and irony labels are open to interpretation263

and should not be considered 100% correct or in-264

correct. A secondary limitation of our research is265

that we do not investigate the latest large generative266

LMs, which have become the state-of-the-art for267

many tasks.268
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Appendix335

A Detailed Results336

Table 4: Results for each individual regression, ordinal and binary classification model for different random seeds
and label granularity.

Task Gran. BaseModel Seed MSE F1 API

ord. 5 DeBERTa 666 2.82 0.76 0.78

bin. 2 DeBERTa 666 0.74 0.67

regr. 5 DeBERTa 666 2.80 0.75 0.66

bin. 2 DeBERTa 69 0.74 0.65

ord. 5 BERTweet 666 3.30 0.74 0.63

ord. 5 DeBERTa 13 2.76 0.77 0.62

regr. 7 DeBERTa 42 5.44 0.71 0.61

regr. 3 DeBERTa 42 0.69 0.71 0.60

regr. 7 DeBERTa 666 5.51 0.75 0.60

regr. 7 BERTweet 69 5.20 0.77 0.59

regr. 3 BERTweet 7 0.69 0.74 0.59

regr. 7 BERTweet 13 5.14 0.76 0.58

ord. 3 BERTweet 666 0.79 0.74 0.58

ord. 7 BERTweet 420 5.90 0.76 0.58

regr. 5 BERTweet 666 2.68 0.77 0.58

regr. 5 BERTweet 7 2.78 0.76 0.57

bin. 2 DeBERTa 13 0.75 0.57

regr. 5 DeBERTa 7 2.73 0.75 0.57

regr. 5 BERTweet 420 2.78 0.77 0.57

regr. 3 BERTweet 420 0.71 0.75 0.56

ord. 3 BERTweet 420 0.79 0.74 0.56

regr. 3 DeBERTa 420 0.67 0.74 0.55

bin. 2 DeBERTa 42 0.75 0.55

ord. 3 DeBERTa 7 0.77 0.69 0.55

ord. 3 BERTweet 13 0.76 0.74 0.54

ord. 5 DeBERTa 420 2.86 0.77 0.54

ord. 3 BERTweet 42 0.80 0.73 0.53

regr. 3 BERTweet 42 0.60 0.72 0.53

bin. 2 BERTweet 666 0.75 0.53

ord. 5 BERTweet 69 3.00 0.76 0.53

bin. 2 DeBERTa 7 0.74 0.53

ord. 3 DeBERTa 13 0.80 0.74 0.53

ord. 7 BERTweet 666 6.08 0.75 0.53

regr. 3 DeBERTa 666 0.66 0.75 0.52

bin. 2 BERTweet 42 0.76 0.52

ord. 7 BERTweet 13 6.13 0.76 0.52

regr. 3 DeBERTa 7 0.73 0.75 0.51

regr. 5 BERTweet 69 2.74 0.76 0.51

regr. 7 DeBERTa 7 5.29 0.73 0.51

ord. 7 BERTweet 42 6.16 0.76 0.51
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regr. 5 BERTweet 42 2.62 0.77 0.51

regr. 3 BERTweet 666 0.68 0.76 0.50

regr. 5 DeBERTa 13 2.67 0.75 0.50

bin. 2 BERTweet 7 0.76 0.50

ord. 5 DeBERTa 69 2.82 0.76 0.50

ord. 3 BERTweet 69 0.78 0.75 0.50

regr. 3 BERTweet 13 0.69 0.76 0.50

regr. 7 BERTweet 666 5.10 0.77 0.49

regr. 7 BERTweet 7 5.41 0.77 0.49

ord. 5 BERTweet 420 3.06 0.76 0.49

ord. 7 DeBERTa 666 5.33 0.76 0.49

bin. 2 BERTweet 420 0.76 0.48

regr. 7 DeBERTa 13 5.30 0.77 0.48

ord. 7 DeBERTa 7 5.62 0.75 0.48

bin. 2 BERTweet 13 0.75 0.48

ord. 7 BERTweet 69 6.33 0.74 0.48

bin. 2 DeBERTa 420 0.74 0.47

ord. 5 BERTweet 42 3.20 0.75 0.46

regr. 5 BERTweet 13 2.72 0.76 0.46

regr. 5 DeBERTa 420 2.67 0.76 0.46

regr. 7 DeBERTa 69 5.58 0.68 0.45

regr. 3 BERTweet 69 0.69 0.77 0.45

regr. 7 DeBERTa 420 5.18 0.77 0.45

ord. 7 DeBERTa 420 5.43 0.75 0.44

ord. 7 DeBERTa 13 5.55 0.76 0.44

regr. 3 DeBERTa 13 0.66 0.71 0.44

ord. 7 BERTweet 7 6.24 0.75 0.44

ord. 5 BERTweet 13 2.95 0.76 0.43

ord. 5 DeBERTa 42 2.83 0.75 0.43

ord. 3 DeBERTa 420 0.78 0.73 0.42

ord. 3 BERTweet 7 0.80 0.74 0.41

ord. 5 BERTweet 7 3.19 0.75 0.41

ord. 5 DeBERTa 7 2.98 0.75 0.39

regr. 5 DeBERTa 42 2.75 0.72 0.39

bin. 2 BERTweet 69 0.75 0.38

regr. 7 BERTweet 42 5.33 0.77 0.37

regr. 7 BERTweet 420 5.66 0.76 0.36

ord. 7 DeBERTa 69 5.26 0.77 0.36

ord. 7 DeBERTa 42 5.68 0.74 0.33

regr. 3 DeBERTa 69 0.68 0.69 0.22

regr. 5 DeBERTa 69 2.52 0.76 0.14

ord. 3 DeBERTa 42 0.77 0.38 0.00

ord. 3 DeBERTa 69 0.80 0.38 0.00

ord. 3 DeBERTa 666 0.80 0.38 0.00
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