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ABSTRACT

The use of machine learning for modeling, understanding, and controlling large-
scale physics systems is quickly gaining in popularity, with examples ranging
from electromagnetism over nuclear fusion reactors and magneto-hydrodynamics
to fluid mechanics and climate modeling. These systems—governed by partial
differential equations—present unique challenges regarding the large number of
degrees of freedom and the complex dynamics over many scales both in space and
time, and additional measures to improve accuracy and sample efficiency are highly
desirable. We present an end-to-end equivariant surrogate model consisting of an
equivariant convolutional autoencoder and an equivariant convolutional LSTM
using G-steerable kernels. As a case study, we consider the three-dimensional
Rayleigh-Bénard convection, which describes the buoyancy-driven fluid flow be-
tween a heated bottom and a cooled top plate. While the system is E(2)-equivariant
in the horizontal plane, the boundary conditions break the translational equivariance
in the vertical direction. Our architecture leverages vertically stacked layers of
D4-steerable kernels, with additional partial kernel sharing in the vertical direction
for further efficiency improvement. We demonstrate significant gains in sample
and parameter efficiency, as well as a better scaling to more complex dynamics.

1 INTRODUCTION

The ability to perform fast and efficient simulations of large-scale physics systems governed by partial
differential equations (PDEs) is of vital importance in many areas of science and engineering. As in
almost any other area, machine learning plays an increasingly important role, where scenarios of great
interest are real-time prediction, uncertainty quantification, optimization, and control. Application
areas include weather forecasting (Kurth et al., 2023) and climate modeling (Vlachas et al., 2018),
aerodynamics and fluid mechanics (Brunton et al., 2020), combustion (Ihme et al., 2022), or the
plasma in nuclear fusion reactors (Kates-Harbeck et al., 2019). PDE-governed systems often exhibit
complex or chaotic behavior over a vast range of scales in both space and time. Along with the
very large number of degrees of freedom (after discretization using, e.g., finite elements), this
renders the resulting time series particularly challenging for surrogate modeling, especially in multi-
query contexts such as prediction and control (Bieker et al., 2020). Fortunately, many dynamical
systems evolve on a low-dimensional manifold (e.g., an attractor), which allows for dimensionality
reduction techniques and surrogate modeling. As linear approximation techniques such as proper
orthogonal decomposition (POD) (Sirovich, 1987) tend to break down once the dynamics become
more complex—as is the case for turbulent flows—nonlinear variants such as autoencoders have
recently become more and more important in the physics modeling community (Nikolopoulos et al.,
2022; Francés-Belda et al., 2024). However, the resulting reduced spaces are less interpretable, and
the training is much more data-hungry and sensitive to hyperparameter tuning. The goal of this
paper is to include known symmetries in the surrogate modeling process of complicated 3D physics
simulations via autoencoders. Studying a prototypical convection or climate system described as
Rayleigh-Bénard convection, our contributions are the following (cf. Fig. 1 for a sketch):

• Whereas most papers are concerned with 2D in space, we develop an end-to-end equivariant
architecture for the much more challenging prediction of 3D time-dependent PDEs, consisting of
an autoencoder and an LSTM for time series prediction in latent space. To preserve the symmetry,
we omit latent space flattening but preserve the original 3D structure of the problem.
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Figure 1: Architecture overview. An initial snapshot st is encoded via our E(2) equivariant 3D
autoencoder to the latent representation zt; zt is evolved forward in time to z̃t+1 via our equivariant
LSTM; z̃t+1 is decoded via our E(2) equivariant 3D decoder to yield a predicted next snapshot s̃t+1.

• The system is equivariant under rotations, reflections, and translations (i.e., the symmetry group
E(n)), but only in the horizontal plane due to the buoyancy. We introduce an efficient G-steerable
autoencoder architecture that respects the symmetry group Z2 ⋊D4 in the horizontal plane (the
subgroup of E(2) with shifts on a grid, reflections, and discrete 90-degree rotations).

• Additional local kernel sharing in the vertical direction further improves the parameter efficiency.
• We demonstrate that for large-scale systems, a separate training of encoding and time stepping

can be computationally much more efficient than end-to-end training.
• We demonstrate high accuracy at a compression rate > 98%, while saving one order of magnitude

in both trainable parameters and training data compared to non-symmetric architectures.

2 RELATED WORK

Rayleigh-Bénard convection (Pandey et al., 2018) models the dynamics of a compressible fluid
between two flat plates, where the bottom plate is heated while the top plate is cooled. This
induces buoyancy forces, which in turn result in fluid motion. At moderate Rayleigh numbers Ra (a
dimensionless parameter quantifying the driving force induced by the temperature difference), one
observes well-characterized convection rolls. With increasing Ra, the fluid becomes turbulent which
results in a large number of vortices on varying time and spatial scales, rendering the fluid hard to
predict and characterize (Vieweg et al., 2021).

In recent years, a large number of works have appeared on surrogate modeling of PDE systems.
Many approaches rely on the identification of a low-dimensional latent space, for instance, via POD
(Soucasse et al., 2019) or autoencoders (Pandey et al., 2022; Akbari et al., 2022; de Sousa Almeida
et al., 2023). Alternatively, the direct prediction of the full state can be accelerated using linear
methods such as the Koopman operator framework (Klus et al., 2020; Markmann et al., 2024; Azencot
et al., 2020; Nayak et al., 2025) or physics-informed machine learning (Karniadakis et al., 2021;
Clark Di Leoni et al., 2023; Hammoud et al., 2023). In that latter category, neural operators (Li
et al., 2021; Lu et al., 2021; Kovachki et al., 2023; Goswami et al., 2023; Straat et al., 2025) are very
prominent, and have been demonstrated to show great performance on a large number of systems.
Finally, there have been great advances in the deep learning area as well, most prominently using
U-Nets (Gupta & Brandstetter, 2023; Lei & Li, 2025), transformer architectures (Gao et al., 2024;
Holzschuh et al., 2025b), and generative frameworks such as GANs (Chen et al., 2020) or diffusion
models (Holzschuh et al., 2025a; Bastek et al., 2025; Li et al., 2025; Oommen et al., 2025).

The exploitation of symmetries has recently become increasingly popular, and it is now often
referred to under the umbrella term geometric deep learning (Bronstein et al., 2021). Most of the
literature in this area is until now related to classical learning tasks such as image classification
(Cohen & Welling, 2016; Esteves et al., 2018a;b; Weiler & Cesa, 2019; Bronstein et al., 2021;
Weiler et al., 2025). However, equivariant architectures have been developed for various other
tasks, such as the analysis of graph-structured data (e.g., molecules (Wu et al., 2021)), or for the
prediction of PDEs (Jenner & Weiler, 2022; Zhdanov et al., 2024; Harder et al., 2024b). Equiv-
ariant autoencoder architectures for dimensionality reduction were proposed in, e.g., Kuzminykh
et al. (2018); Guo et al. (2019); Huang et al. (2022), see also Hao et al. (2023); Yasuda & On-
ishi (2023) for applications to fluid flows. Further examples of equivariant learning of PDEs were
presented in various contexts, such as Koopman operator theory and Dynamic Mode Decomposi-
tion (Salova et al., 2019; Baddoo et al., 2023; Harder et al., 2024a; Peitz et al., 2025), as well as re-
inforcement learning (Vignon et al., 2023; Vasanth et al., 2024; Peitz et al., 2024; Jeon et al., 2024).
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3 PRELIMINARIES

Partial differential equations (PDEs) describe dynamical systems whose state s is a function of
multiple variables such as space x ∈ Ω ⊂ Rn and time t ∈ R≥0. The equations of motion are
described by (nonlinear) partial differential operators,

∂s

∂t
= F(s,∇s,∆s, . . .) for x ∈ Ω, t ∈ R≥0,

accompanied by appropriate boundary conditions on Γ = ∂Ω and initial conditions. In many cases, s
is equivariant with respect to certain symmetry transformations such as translations or rotations.

3.1 SYMMETRIES

We here give a very brief overview of symmetry groups and group actions; more detailed introductions
can be found in, e.g., Weiler et al. (2021); Bronstein et al. (2021). A group is a tuple (G, ◦), where G
is a set and ◦ : G×G→ G, (g, h) 7→ gh an operation which is associative, has an identity element
e and inverses (denoted by g−1 for g ∈ G). The group operation describes the effect of chaining
symmetry transformations. However, to employ group theory in practice, one needs an additional
object that the group can act on. A group action is a function G×X → X, (g, x) 7→ g · x, where
X is the underlying set of objects that are transformed. As for the group operation, one assumes
associativity in the sense that g · (h ·x) = (gh) ·x together with invariance under the identity element.

A linear representation of G on a vector space V is a tuple (ρ, V ), where ρ : G→ GL(V ) is a group
homomorphism from G to the general linear group GL(V ) of invertible linear maps of the vector
space V , see (Weiler et al., 2021, Appendix B.5) for details. In case V = Rn, the group action is
defined as matrix multiplication by ρ(g), i.e., ρ(g) = A ∈ Rn×n, (g, x) 7→ Ax.

If a group action is defined on X , one can obtain an action on the space of functions of the form
ϕ : X → Rm by introducing (ρ(g)ϕ)(x) := ϕ(g−1 · x). Here, we have already denoted the action as
a representation, see (Cohen & Welling, 2017), as it is linear.

Example 1. The 2D Euclidean group E(2) is the group of planar translations, rotations, and
reflections. It can be expressed as the semidirect product of translations (R2,+) and orthogonal
transformations, i.e., E(2) = (R2,+)⋊O(2). A linear representation of E(2) can be expressed as

E(2) =

{(
A τ
0 1

)∣∣∣∣A ∈ O(2), τ ∈ R2

}
, with O(2) =

{
A ∈ R2×2

∣∣A⊤A = Id
}
.

An element h ∈ E(2) can be decomposed into h = τg, where τ is a pure translation and g is a
transformation that leaves the origin invariant.

In a straightforward manner, we can consider subgroups H ≤ E(2) when replacing O(2) by a
subgroup G ≤ O(2) and defining H = (R2,+)⋊G. When working with data on structured grids, as
we do here, discrete translations and rotations can be implemented in a particularly efficient manner.
This results in the dihedral group D4, which allows for flips and 90-degree rotations. In combination
with quantized translations on the grid nodes, we obtain H = (Z2,+)⋊D4 < E(2).

In general, for two sets X and Y , a function ϕ : X → Y is called equivariant if there is a group
acting both on X and Y such that ϕ(g · x) = g · ϕ(x), or, equivalently, ϕ(x) = g−1 · ϕ(g · x), for all
x ∈ X and g ∈ G. Intuitively, this means that one can obtain the result of ϕ(x) by first evaluating ϕ
at the transformed object g · x and then applying the inverse transformation g−1 afterwards, cf. Fig. 2
for an illustration using the Rayleigh-Bénard system described in Section 3.2.

Convolutions. Conventional convolutions convolve a feature map fin : Rn → RCin with a kernel
ψ : Rn → RCout×Cin as follows in order to produce a feature map fout : Rn → RCout :

fout(x) = [fin ∗ ψ](x) =
∫
Rn

ψ(x− y)fin(y) dy

This is an example of a translation equivariant operation, as [ρ(τ)fin] ∗ ψ = ρ(τ)[fin ∗ ψ] for τ ∈ Rn

(Cohen & Welling, 2016).
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𝑡 → 𝑡 + 1

𝑡 → 𝑡 + 1

𝑔𝑔

Figure 2: Equivariance of time evolution and
rotation. The equivariance of the time evolution
of the temperature field under a 90-degree rotation
g is illustrated by the commutativity diagram.

Steerable convolutions. In steerable CNNs,
we define feature spaces in such a manner that
the respective feature fields f : Rn → RC

are steerable (Cohen & Welling, 2017; Weiler
& Cesa, 2019). This means that for each n-
dimensional input x ∈ Rn, each C-dimensional
feature f(x) ∈ RC transforms under the group
action of a given group G (e.g., O(n))—the
translational equivariance is automatically satis-
fied when the parameters of the learnable kernel
ψ are position-independent (Weiler et al., 2021).
In particular, this ensures that the transforma-
tion of vector-valued features transforms their
orientation according to the group action. As
a consequence, all CNN architectures that are
constructed using G-steerable kernels are equivariant with respect to the group H = (Rn,+)⋊G.
In Weiler & Cesa (2019), it was shown that for this property to hold, a kernel ψ : R2 → RCout×Cin

has to satisfy the steerability constraint

ψ(g · x) = ρout(g)ψ(x)ρin(g
−1) ∀g ∈ G, x ∈ R2. (1)

For a network to be equivariant, the kernel constraint (1) has to hold for all combinations of ρin and
ρout. Instead, it is shown in Weiler & Cesa (2019) that a much simpler approach is to introduce
a change of basis Q, by which any ρ can be decomposed into the direct sum of its irreducible
representations (irreps), i.e., ρ = Q−1 [⊕i∈Iψi]Q. One can thus replace (1) by individual constraints
on the irreps. Since we have G ≤ O(2), G is norm preserving, such that the kernel constraint can
further be reformulated in terms of a Fourier series expansion of the kernel, ultimately resulting in
a set of constraints on the Fourier coefficients, cf. Weiler & Cesa (2019); Weiler et al. (2021) for
detailed derivations and discussions. We will make heavy use of this approach in our architecture,
both in terms of the autoencoder and the LSTM for time series prediction.

3.2 RAYLEIGH-BÉNARD CONVECTION

Rayleigh-Bénard convection describes the flow between two flat plates. The bottom plate is heated,
while the top plate is cooled, which induces buoyancy forces that cause the fluid to move in convection
rolls, cf. Figs. 1 or 2 for illustrations. Depending on the driving force—the temperature difference,
encoded by the dimensionless Rayleigh numberRa—the system is deterministic at first, then becomes
increasingly complex and turbulent for largerRa (Pandey et al., 2018). More details about the specific
PDE and the numerical simulations can be found in Appendix A.1. A more detailed discussion on
the system’s symmetries—including a proof—can be found in Appendix A.2. Moreover, a list of
other systems with broken symmetries can be found in Appendix A.3.

In the following, we will summarize the quantities of interest—temperature T (x, t) and velocity
u(x, t), but not the pressure—in the state vector s(x, t) ∈ RCin , where Cin = 4 is the number of
input channels. Due to the discretization in space, the state function becomes a large tensor of
dimension N = N1 ×N2 ×N3. Moreover, we will consider snapshots at discrete times t ∈ N, that
is, st = (ut, Tt) ∈ RN1×N2×N3×Cin .

4 METHODS

Our framework comprises two main components: a convolutional autoencoder and a convolutional
LSTM, trained independently. As illustrated in Fig. 1, the autoencoder first encodes a snapshot st into
a latent representation zt. The LSTM then sequentially forecasts subsequent latent representations
z̃t+1, z̃t+2, . . ., which are subsequently decoded to full-state snapshots, s̃t+1, s̃t+2, . . .. Both the
autoencoder and LSTM are designed in an equivariant fashion. As a consequence, the entire
framework is end-to-end equivariant.
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4.1 3D STEERABLE CONVOLUTION ON E(2)

As discussed in Appendix A.2, the 3D Rayleigh-Bénard convection is E(2)-equivariant in the
horizontal plane, which we enforce by steerable convolutions, while introducing height-dependent
kernels that adapt to the varying dynamics at different heights.

4.1.1 STEERABLE CONVOLUTION

The system state s consists of both scalar temperature and vector-valued velocity fields. Under
transformation of these fields by τg ∈ E(2), the temperature field T : R3 → R transforms as
T (x) 7→ 1 · T (g−1(x − τ)), whereas the velocity-field u : R3 → R3 transforms as u(x) 7→
g · u(g−1(x− τ)). Note that the velocity vectors are themselves transformed via g to preserve their
orientation as the field is transformed (Cohen & Welling, 2017; Weiler & Cesa, 2019).

To ensure equivariant mappings between three-dimensional feature fields fin : R3 → RCin and
fout : R3 → RCout , with corresponding transformations ρin and ρout, we constrain the kernels
ψ : R3 → RCout×Cin to be O(2)-steerable. Since the equivariance is restricted to the horizontal plane
(i.e., x1 and x2) the group O(2) acts on points x via the block-diagonal representation ρ(g) = A⊕ 1.
The constraint can thus be decomposed into independent constraints for every fixed height x̂3:

ψ

(
g ·

(
x1
x2
x̂3

))
= ρout(g)ψ

((
x1
x2
x̂3

))
ρin(g

−1) ∀g ∈ O(2),

(
x1
x2

)
∈ R2. (2)

Thus, a three-dimensional O(2)-steerable kernel can be constructed as a stack of 2D O(2)-steerable
kernels. For these, Weiler & Cesa (2019) have solved the steerability constraint as well as for
important subgroups such as C4 and D4. This result has been applied in our implementation
to efficiently design height-dependent kernels utilizing the PyTorch-based library escnn.1 For
computational reasons, we restrict our implementation to the subgroup H = (Z2,+)⋊D4 < E(2),
as this optimally corresponds to our data on a rectangular grid. Thus, we will from now on consider
discretized kernels and feature fields on Z3. The case of continuous rotations according to O(2)
would require interpolation between grid points (see, e.g., Esteves et al. (2018a)). In our experiments,
this resulted in inferior performance compared to the grid-consistent 90-degree rotations and flips.

Within our framework, we use various types of feature fields. Both the input to the AE-encoder and
the output of the decoder are composed of the scalar field T and the vector field u. All intermediate
representations, however, make use of regular feature fields, which transform under the regular
representation by permuting the channels. Steerable convolutions between regular feature fields are
equivalent to regular group convolutions (Cohen & Welling, 2016), which apply the same kernel in
every orientation g ∈ G, resulting in the |G|-dimensional regular feature fields.

4.1.2 3D CONVOLUTIONS WITH HEIGHT-DEPENDENT KERNELS

Height-dependent features—such as temperature or velocity patterns—play a critical role in modeling
the system. As a result, applying the same kernel across all heights—as would be the case for a
regular 3D CNN—is insufficient to capture the system’s vertical dynamics. To address this limitation,
we modify the conventional 3D convolutions by learning height-dependent steerable kernels. While
this ensures horizontal parameter sharing, we allow the convolution operation to adapt to the distinct
features at each height, ensuring that the vertical structure is captured effectively. For computing the
output feature map’s value at position x = (x1, x2, x3) ∈ Z3, the input f : Z3 → RCin is convolved
with the height-dependent kernel ψx3

: Z3 → RCout×Cin via [f ∗ ψ](x) =
∑

y∈Z3 ψx3
(x− y)f(y).

Local vertical parameter sharing. Although the Rayleigh-Bénard system does not exhibit global
vertical translation equivariance, it approximately maintains this property within a local neighborhood
(see Appendix A.2). This suggests that features at a given height x3 are locally correlated with features
at vertical positions within a 2k + 1-sized neighborhood N (x3) = {x3 − k, . . . , x3 + k}. This
approximate local equivariance in the vertical direction can be exploited by choosing a smaller number
of channels in each layer, but then applying these learned kernels across the local neighborhood
N , thereby again increasing the number of output channels, cf. Fig. 3 for a sketch. This parameter
reduction leads to a more efficient and scalable model, rendering it suitable for simulating larger-scale

1https://github.com/QUVA-Lab/escnn
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Figure 3: Local vertical kernel sharing. Kernels of different heights x̂3 = q − 2, q − 1, q, . . . are
applied to the neighboring k = 1 heights, resulting in a total of 3 kernels being applied each.

systems. As described in Appendix B.2, 3D convolutions with height-dependent kernels and local
vertical parameter sharing can be efficiently implemented by wrapping 2D (steerable) convolutions.

4.2 EQUIVARIANT AUTOENCODER

The convolutional autoencoder (CAE) is designed to respect the horizontal E(2) symmetry by
incorporating equivariant convolutions into both the encoder and decoder. In the encoder, an input
snapshot st of shape N1 ×N2 ×N3 × Cin is mapped to a lower-dimensional latent representation
zt of shape M1 ×M2 ×M3 × Clatent, through a sequence of convolutional layers progressively
extracting higher-level features. Each layer is followed by activation functions and max-pooling.
Notably—instead of the common flattenting—the latent space maintains the systems original spatial
structure to preserve spatial correlations in the data, although we have M ≪ N . The number of
channels Clatent is used to control the size and expressiveness of the latent representation.

The decoder applies a series of convolutions, followed by activation functions. Pooling operations are
replaced by upsampling. To preserve continuity while upsampling, we employ trilinear interpolation.
Throughout the entire framework (CAE + LSTM), padding is applied to the convolutional layers to
ensure that the spatial dimensions of the data are only altered by pooling and upsampling operations.
For the horizontal dimensions, circular padding is used to match the periodic boundary conditions
of the Rayleigh-Bénard system, while vertical dimensions use zero padding. Note that without
padding, the decoder would require transposed convolutions (Dumoulin & Visin, 2018) to reverse the
dimensional changes induced by convolutions without padding.

4.3 EQUIVARIANT LSTM

Long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) extend conventional
recurrent neural networks (RNNs) for processing sequential data by an additional cell state ct. While
the hidden state ht stores currently relevant information for predicting the next time step, the cell
state ct captures long-term information over long sequences. The content of ct is regulated by the
input gate it, which controls which information is added, and the forget gate ft, which controls how
much information is discarded. The output gate ot determines which information is passed from
ct to ht. To preserve the spatial structure of the latent space z, we use convolutional LSTMs (Shi
et al., 2015) that replace the fully connected layers of standard LSTMs with, in our case, equivariant
convolutions and also introduce equivariant convolutions in peephole connections, see B.1 for details
as well as a proof that the architecture is equivariant.

5 EXPERIMENTS

We evaluate the performance of our end-to-end equivariant framework against a baseline model using
standard, non-steerable 3D convolutions, with a particular focus on the autoencoder. In addition, we
assess the long-term forecasting capabilities of our approach in comparison to 3D Fourier Neural
Operators (FNOs) (Li et al., 2021) and 3D U-Nets (Ronneberger et al., 2015; Çiçek et al., 2016) with
the same number of parameters, cf. Appendix B.3 for details.

Datasets. We generated a dataset of 100 randomly initialized 3D Rayleigh-Bénard convection
simulations with Ra = 2500 and Pr = 0.7, standardized to zero mean and unit standard deviation.
The dataset was split into 60 training, 20 validation, and 20 test simulations, each with 400 snapshots
in the time interval t ∈ [100, 300] at a step size of 0.5 and a spatial resolution of N = 48× 48× 32.
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For long-term forecasting evaluation, we also created an additional dataset of 20 simulations, each
containing 1800 snapshots over t ∈ [100, 1000].

Architecture. The CAE encoder and decoder each consist of six convolutional layers with a kernel
size of three for the last encoder and first decoder layer, and five for the other layers, applying ELU
nonlinearities pointwise.2 Pooling and upsampling are applied after the encoder and decoder’s first,
third, and fifth layers, respectively. The latent space has dimensions M = 6× 6× 4 and Clatent = 32
channels, resulting in a compression to 1.56% of the original size. Channels roughly double after
each pooling operation in the encoder, with the decoder reversing this. Over our experiments, we
vary the channel sizes. For a fair comparison, our main models (both standard and equivariant) have
approximately the same number of 3.6M parameters. The decoder-only LSTM with one layer of
convolutional LSTM cells and an additional convolutional layer for output prediction uses a kernel
size of 3. The number of channels is chosen such that the LSTM has approximately 3.7M parameters.

Training. CAE training is performed in the standard self-supervised manner on a set of snapshots,
where the desired decoder output is the original input. The LSTM was then trained on the latent
representations to predict the 50 latent states following the provided sequence of 25 states, with
the loss being computed on the latent space. This two-step training approach effectively separates
encoding and forecasting, avoiding significant performance drops and speeding up forecasting training
by a factor of 20. See Appendix C.1 for training details, and Appendix C.2 for an in-depth discussion
of the two-step training approach and the limitations of end-to-end training.

5.1 RESULTS

We begin with a detailed evaluation of the CAE performance, followed by an analysis of the long-term
forecasting capability of our end-to-end equivariant model.
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Figure 4: CAE performances. Results are shown with varying numbers of parameters, amounts of
training samples, compression ratios, and Rayleigh numbers Ra. Each plot shows a variation over
one of the parameters while keeping the others fixed. The main model has 3.6 million parameters (3rd
point), 24,000 training samples (4th point), 1.56% latent size (3rd point) and Ra = 2500 (1st point).

Autoencoder. Fig. 4 gives an overview of our experiments to compare the equivariant and non-
equivariant autoencoders with respect to parameter efficiency, data efficiency, compression capabili-
ties, and scalability to more complex dynamics, i.e., larger Ra. Equivariance leads to a significant
improvement in reconstruction accuracy, with the RMSE decreasing by 42%, from 0.069 ± 0.00072
to 0.04 ± 0.00093, where the mean and standard deviation were computed across three models with
randomly initialized weights. A comparison to C4-equivariant convolutions shows an RMSE of 0.046
± 0.00164, showing that both rotations and reflections are relevant for the improved performance.

When studying the four subfigures separately, we observe several significant advantages of incorpo-
rating equivariance:

(i) Parameter efficiency: The equivariant model with only 900,000 parameters outperformed
the non-equivariant model with 10.8 million parameters, meaning that we obtain an improve-
ment by more than one order of magnitude.

2All hidden layers in our model transform under the regular representation, which preserves equivariance
since it commutes with pointwise nonlinearities (Weiler & Cesa, 2019).
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(ii) Sample efficiency: The D4 model achieved the same performance as the non-equivariant
model when trained on just one-eighth of the training samples, representing a significant
reduction in the amount of data required for effective learning, making it particularly valuable
in data-limited scenarios or when simulations/experiments are expensive.

(iii) Compression capabilities: Even when increasing the compression ratio by a factor of eight,
the equivariant model has significantly superior accuracy. This is particularly important
when dealing with large-scale systems, as well as for consecutive learning tasks such as
training the LSTM.

(iv) Scaling to complex dynamics: When increasing the Rayleigh number Ra from 2, 500 up
to 20, 000, we observe that the gap in accuracy even increases further, which indicates that
the equivariant model is better equipped to handle more complex dynamics. This suggests
that incorporating equivariance into the architecture allows the model to better capture and
represent complex fluid flow dynamics inherent in the Rayleigh-Bénard convection system,
in particular as the patterns grow more complex.

The results discussed so far have been obtained without local parameter sharing in the vertical
direction. Our experiments with local vertical sharing show only minor improvements over the results
in Fig. 4. However, we have considered a fairly moderate number of N3 = 32 vertical layers for now.
The results thus merely show that vertical parameter sharing is viable, and we believe that it will
become significantly more relevant when considering setups with even larger state spaces. In these
situations, learning entirely separate features for each height will become computationally infeasible.
A detailed assessment for much larger state spaces will be the focus of future work.

Long-term forecasting. We next focus on the evaluation of the long-term forecasting capabilities
of our end-to-end equivariant architecture. The model is provided with an input sequence of 50
snapshots and then predicts the subsequent 500 future states in an autoregressive manner, i.e., using
its own predictions as input for the next time step.
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Figure 5: Forecasting RMSE averaged across three
runs. FNO and U-Net baselines were restricted to 5
steps due to computational cost, while our model scales
efficiently to 50 steps. For reference, we also include
the D4-steerable model trained with 5 steps.

Fig. 5 shows the median RMSE over
time for both our equivariant and non-
equivariant models, which was averaged
over three separately trained models. The
equivariant model consistently outperforms
the non-equivariant model by a near-
constant margin of approximately 0.05
RMSE across the entire forecast horizon.
This indicates that most of the performance
gains stem from improved latent representa-
tion learned by the equivariant autoencoder,
which provides a more stable and informa-
tive basis for prediction.

Our method consistently outperforms both
FNO and U-Net baselines across all hori-
zons. With equal training horizons (5
steps), it already matches or exceeds their
short-term accuracy. The decisive advan-
tage, however, lies in the ability to effi-
ciently train with much longer horizons:
while extending FNOs and U-Nets beyond
5 autoregressive steps during training be-
comes prohibitively expensive (see Table 1 in Appendix C.1), our latent-space approach scales to
50 steps without difficulty, since forecasting is performed directly in the lower dimensional latent
space. This leads to substantially improved long-term forecasts. For completeness, we also report
the performance of our model trained with only 5 steps, which still surpasses both baselines at short
horizons, although the FNO slightly outperforms our approach at longer horizons.

These results highlight a central advantage of our two-step training strategy: it enables efficient train-
ing with long autoregressive horizons in latent space, achieving both superior long-term performance
and significantly lower computational cost compared to those baselines.
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Figure 6: Representative autoregressive forecast. The top row displays the ground truth tem-
perature field T at selected time steps t. The middle row shows the predictions by the equivariant
surrogate model (at t = 0, we show CAE reconstruction (encoding + decoding) of the ground truth).
The bottom row represents the difference between the predicted and ground truth temperature fields.

Qualitative examples in Fig. 6 further highlight the performance of our surrogate model. The
equivariant model is able to preserve the fine-scale structures and large-scale convective patterns over
extended time periods. Only minor spatial displacements of the convective plumes are observed, even
after hundreds of time steps.

Finally, we note that the advantages of our surrogate extend beyond comparisons with neural baselines.
Appendix C.3 provides a detailed discussion of its benefits over classical PDE solvers, in particular
inference speed, scalability to multi-query settings, and end-to-end differentiability.

6 CONCLUSION

Our equivariant CAE plus LSTM architecture for efficient surrogate modeling of 3D Rayleigh-Bénard
convection consists of horizontally E(2)-equivariant kernels that are vertically stacked. Additional
local sharing in the vertical direction allows us to increase the number of channels without requiring
additional parameters, which further adds to the computational efficiency. We have demonstrated
significant advantages in terms of the accuracy and both data and parameter efficiency.

6.1 LIMITATIONS AND OUTLOOK

Some points we have not yet discussed or addressed, but believe to be promising for future research:

• We have used idealized simulations without noise or other symmetry-breaking disturbances; this
will be essential for studying the robustness in real-world settings.

• In principle, end-to-end training could be superior, as the latent representation is tailored to the
dynamics. Since this proved to be challenging and computationally expensive for LSTMs, we
believe that a consecutive finetuning phase is more promising. Instead, one could consider linear
latent dynamics based on the Koopman operator (Harder et al., 2024a; Azencot et al., 2020).

• In the control setting, equivariant models are very helpful to improve the efficiency, for instance,
of world models in the context of reinforcement learning; surrogate modeling for RL of PDEs
was studied in, e.g., Werner & Peitz (2024), but a combination with equivariant RL as proposed
in van der Pol et al. (2020) has not been investigated.

• For climate applications, equivariant models on spheres would be very interesting to study (cf.,
e.g., Gastine et al. (2015) for a spherical Rayleigh-Bénard case); besides additional challenges
in terms of the numerical implementation, the rotation of the earth would also result in fewer
symmetries, such that the usefulness of equivariant models has yet to be determined.

• Incorporating kernels that explicitly depend on control parameters (e.g., Rayleigh number) may
improve adaptability and generalization across different flow regimes, including those with
qualitative changes such as bifurcations.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. Upon acceptance, we will
release a public repository containing the full implementation of our architecture, including training
and evaluation scripts, data generation and preprocessing code, as well as detailed instructions for
reproducing all experiments. A complete list of hyperparameter values for each evaluated model will
be provided in the repository. The theoretical foundations of our approach are rigorously documented:
the symmetries of the 3D Rayleigh–Bénard system are formally proven in Appendix A.2, while
the equivariance of the convolutional LSTM is established in Appendix B.1, with the end-to-end
equivariance argument given in Section 4.3. Details on data, model architecture, and implementation
are presented in Sections 4 and 5, and further elaborated in Appendices B.2 and C.1. Comprehensive
descriptions of the training and evaluation procedures, including Rayleigh–Bénard simulation param-
eters, preprocessing steps, model and training hyperparameters, and evaluation metrics, are provided
in Section 5 and Appendix C.1.
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A ADDITIONAL DETAILS ON THE RAYLEIGH–BÉNARD SYSTEM AND ITS
SYMMETRIES

A.1 BOUSSINESQ APPROXIMATION AND NUMERICAL SOLUTION

For our simulation, we solve the so-called Boussinesq approximation of the compressible Navier-
Stokes equations, where the fluid evolves according to the incompressible Navier-Stokes equations
(continuity (3) and momentum (4)), even though the system is ultimately driven by an inhomogeneous
density. Instead, the buoyancy force is modeled by a one-directional coupling with the energy
conservation equation (5). In summary, we solve the following system of coupled PDEs in a
rectangular domain Ω = (0, 2π) × (0, 2π) × (−1, 1) with periodic boundary conditions in the
horizontal (i.e., first and second) directions and standard fixed walls boundary conditions with
constant temperatures at the bottom and the top.

∇ · u = 0, (3)

∂u

∂t
+ (u · ∇)u = ∇p+

√
Pr

Ra
∆u+ Te3, (4)

∂T

∂t
+ u · ∇T =

1√
RaPr

∆T. (5)

Here, u(x, t) ∈ R3 is the three-dimensional velocity (depending on space x ∈ Ω ⊂ R3 and time
t ∈ R≥0) and the scalar fields p(x, t) and T (x, t) denote the pressure and temperature, respectively.
The canonical unit vector in the vertical direction is denoted as e3. The dimensionless numbers
Ra and Pr are the Rayleigh and Prandtl numbers, respectively, cf. Pandey et al. (2018) for a
more detailed description. The Prandtl number is a constant depending on the fluid properties
(kinematic viscosity divided by thermal diffusivity), and we use the common value Pr = 0.7.
We will study different values of Ra, which is the main influence factor in terms of the system
complexity. For the numerical simulations to generate our training data, we have used the Julia code
oceananigans.jl (Wagner et al., 2025), which introduces a finite volume discretization in the
form of a grid with N = N1 ×N2 ×N3 = 48× 48× 32 elements in space. These are equidistantly
placed in all three directions so that we have a grid size of δ1 = δ2 = 2π/48 and δ3 = 2/32.

A.2 SYMMETRIES IN THE RAYLEIGH-BÉNARD SYSTEM

The PDE we consider is a modification of the Navier-Stokes equations (NSE) with an additional
temperature-dependent buoyancy term in the vertical direction. It is well-known that the 3D NSE are
equivariant under actions of the symmetry group E(3) (Olver, 1993; Wang et al., 2021). Consequently,
our system inherits the translational equivariance and O(2) equivariance in the two horizontal
directions, as only the vertical component of the momentum equation is altered. In addition, the
translational symmetry in the vertical direction is broken by the fixed-temperature boundary conditions
at the bottom and top. Locally, however, and sufficiently far away from the walls, equivariance should
approximately hold, which we will exploit in our architecture.

The symmetries can be formalized as equivariance with respect to three-dimensional rigid transforma-
tions R(x) = Ax+ b, where A leaves the vertical direction invariant, i.e., it has a 2× 2 orthogonal
block in the top-left corner and acts like the identity in the third (= the vertical) dimension. Together
with function composition as the operation, the set of these rigid transformations yields a group
(G, ◦).
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An action of G on scalar fields is simply defined via function composition, that is, by rotating or
translating the underlying coordinate domain. This action is extended to vector- or tensor-fields, but
here we have to transform their components too:

• For a scalar field s : R3 → R, a group action is defined by R · s = s ◦R.
• For a vector field v : R3 → R3, a group action is defined by R · v = A⊤v ◦R.
• For a tensor field M : R3 → R3×3, a group action is defined by R ·M = A⊤MA ◦R.

From these definitions, equivariance of the Rayleigh-Bénard convection holds in the following sense:
Writing equations (4) and (5) as ut = f(u, T, p) and Tt = g(u, T, p), it holds that

ut = R−1 · f(R · u,R · T,R · p) and Tt = R−1 · g(R · u,R · T,R · p). (6)

Proof. We have

ut = f(u, T, p) = −(∇u)⊤u+∇p+
√
Pr

Ra
∆u+ Te3,

Tt = g(u, T, p) = −(∇T )⊤u+
1√
RaPr

∆T.

To treat vector fields consistently in column format, we have written u · ∇u in (4) and u · ∇T in (5)
as (∇u)⊤u and (∇T )⊤u, respectively.

We state the following vector calculus identities without proof, but note that they follow from
straightforward calculations:

∇(R · w) = R · ∇w, (for w a scalar or vector field) (7)
∇ · (R · w) = R · (∇ · w), (for w a vector or tensor field) (8)

(R · w)⊤(R · v) = R · (w⊤v), (for w, v vector or tensor fields) (9)

Both f and g can be decomposed as linear combinations of

(∇v)⊤u, ∆v, ∇p, and Te3, (10)

where v ∈ {T, u}. Since R’s action is linear, it suffices to show equivariance for these terms
individually, i.e.,

(∇(R · v))⊤(R · u) = R · (∇v)⊤u, (11)
∆(R · v) = R ·∆v, (12)
∇(R · p) = R · ∇p, and (13)
(R · T )e3 = R · (Te3). (14)

For (11), we apply first (7) and then (9). For (12), note that ∆v = ∇ · ∇v, and one can thus use first
(7) and then (8). Equation (13) follows from (7). Finally, we have for (9),

(R · T )e3 = (T ◦R)e3 = Te3 ◦R = A⊤Te3 ◦R = R · (Te3), (15)

since A leaves e3 invariant. Therefore, we have

f(R · u,R · T,R · p) = R · f(u, T, p) and g(R · u,R · T,R · p) = R · g(u, T, p).
Equation (6) then follows.

A.3 ADDITIONAL SYSTEMS WITH BROKEN E(3) SYMMETRY

Even though the paper is concerned with Rayleigh Bénard convection only, there exists a multitude
of systems where our architecture can be of use. Examples include, but are not limited to:

• systems with directed forces, such as
– buoyancy forces in the Rayleigh-Taylor instability (see Ohana et al. (2024) and

the related website https://polymathic-ai.org/the_well/datasets/
rayleigh_taylor_instability for an exemplary video).
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– magnetic fields in magneto-hydrodynamics.
• systems with symmetry-breaking flow structures such as

– the flow through pipelines, where the symmetry is broken along the flow direction,
leading to O(2) symmetry in the radial direction and a shift equivariance along the
transport direction.

– jet flows such as the exhaust gas coming out of a jet engine, where the symmetry is
broken along the jet direction. As the jet increases in diameter in the downstream
direction, the remaining symmetry would be O(2) around the jet center axis.

B ARCHITECTURAL AND IMPLEMENTATION DETAILS OF THE SURROGATE
AND BASELINES

B.1 LSTM EQUATIONS AND EQUIVARIANCE

Our convolutional LSTM architecture is defined as follows:

it = σ
(
zt ∗ ψzi + ht−1 ∗ ψhi + ct−1 ∗ ψci + bi

)
ft = σ

(
zt ∗ ψzf + ht−1 ∗ ψhf + ct−1 ∗ ψcf + bf

)
ct = ft ⊙ ct−1 + it ⊙ tanh

(
zt ∗ ψzc + ht−1 ∗ ψhc + bc

)
ot = σ

(
zt ∗ ψzo + ht−1 ∗ ψho + ct ∗ ψco + bo

)
ht = ot ⊙ tanh (ct)

Here, we use peephole connections, where the cell state is included in the gates to control the
information entering and leaving the cell state more accurately. Replacing the Hadamard products
of traditional peephole connections with convolutions ensures that the LSTM remains equivariant,
as shown below. Notably, this approach also resolves the issue of exploding gradients we initially
observed in our experiments when using a standard 3D convolutional LSTM without convolutional
peephole connections.

The new latent representation zt+1 is predicted based on the current hidden state via

zt+1 = zt + ht ∗ ψ + b.

The output zt+1 of the current time step is then used as the input for the next time step, allowing the
model to autoregressively forecast future states.

Equivariance of the LSTM system dynamics. The LSTM can be seen as modeling a dynamical
system of the form

(zt, ct−1, ht−1) 7→ (zt+1, ct, ht), (16)
where the remaining variables it, ft and ot can be computed solely from zt, ct−1, ht−1. Equivariance
in this context means that a transformed input yields a transformed output, i.e.,

(ρ(g)zt, ρ(g)ct−1, ρ(g)ht−1) 7→ (ρ(g)zt+1, ρ(g)ct, ρ(g)ht). (17)

It follows from three facts, all due to Weiler & Cesa (2019): Firstly, convolutions are equivariant
in the sense that ρ(g)ℓ ∗ ψ = ρ(g)(ℓ ∗ ψ) for an arbitrary feature map ℓ. Secondly, the action is
linear, i.e., ρ(g)ℓ+ ρ(g)ℓ′ = ρ(g)(ℓ+ ℓ′). And thirdly, it satisfies σ(ρ(g)ℓ) = ρ(g)σ(ℓ) whenever
σ is a pointwise function. Since all feature maps are transformed jointly, the Hadamard product is
equivariant too, i.e., ρ(g)ℓ⊙ ρ(g)ℓ′ = ρ(g)(ℓ⊙ ℓ′).

B.2 IMPLEMENTATION DETAILS

The implementation of 3D convolutions with height-dependent kernels and local vertical parameter
sharing, as introduced in Section 4.1.2, can be efficiently realized by wrapping 2D convolution
operations, avoiding the need for custom CUDA kernels and ensuring compatibility with existing
deep learning frameworks like PyTorch or TensorFlow.

We consider feature maps f : R3 → RC represented as 5D tensors of shape B×C ×N1 ×N2 ×N3,
where B is the batch size and N = N1 ×N2 ×N3 defines the spatial resolution.
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3D convolutions with height-dependent kernels. To apply separate kernels for each of the Hout

vertical positions in the output feature map, we extract vertical receptive fields of size h from the
input tensor. Each field has shape B × Cin ×N1 ×N2 × h. These are sliced per target output height
and rearranged by merging the input channels and vertical dimensions, resulting in a tensor of shape
B × (h · Cin) × N1 × N2. We then apply a 2D convolution with h · Cin input channels and Cout

output channels to compute a single output slice at one height.

To parallelize this across all Hout heights, we stack the receptive fields along the channel dimension,
producing a tensor of shape B× (Hout ·h ·Cin)×N1×N2, and then apply a grouped 2D convolution,
dividing the channels into Hout groups, each corresponding to a separate height (not to be confused
with group-equivariant convolutions (Cohen & Welling, 2016)). After processing, the output tensor is
reshaped back to B × Cout ×N ′

1 ×N ′
2 ×Hout.

Local vertical parameter sharing. To share kernels across neighboring vertical positions, we define
a vertical neighborhood of size k, such that each kernel is applied across heights {x3−k, . . . , x3+k},
yielding a total of n = 2k + 1 receptive fields, cf. Fig. 3 for a sketch. For each output height, we
collect all n local receptive fields and apply the same kernel across them.

To handle boundary effects, we learn an additional set of k kernels both for the top and bottom of the
domain, ensuring that each vertical position—regardless of its location—receives the same number
of kernel applications.

After convolution, the features from all kernels applied to a vertical position are concatenated along
the channel dimension, resulting in Cout = n · C output channels, where C is the number of kernels
learned per height. All of this can be parallelized by stacking all vertical neighborhoods along the
batch dimension and applying a single grouped 2D convolution as described above.

B.3 BASELINE ARCHITECTURES

In addition to our proposed equivariant surrogate, we implemented two widely used baseline archi-
tectures, 3D U-Nets and 3D Fourier Neural Operators (FNOs). Their configurations are detailed
below.

3D U-Net. We implement a 3D U-Net with four downsampling and four upsampling stages and
skip connections between the encoder and decoder. Each block uses two 3D convolutions with
a kernel size of three and ReLU nonlinearities. Downsampling is performed via max pooling;
upsampling uses trilinear interpolation. The final layer is a 1×1×1 convolution to the target channels.
We set the base width to C0=28 hidden channels, with channels being doubled/halved after each
downsampling/upsampling step, respectively, yielding 7.7M parameters.

3D Fourier Neural Operator (FNO). We use the neuralop (Kovachki et al., 2023; Kossaifi
et al., 2024) 3D FNO implementation with 16 Fourier modes, 4 spectral layers, 20 hidden channels,
GELU nonlinearities, and 7.4M parameters. Each FNO layer applies a spectral convolution in Fourier
space (truncating to the specified modes) plus a pointwise linear transform in physical space. We do
not use dropout and apply an L2 weight decay of 1×10−4 during training.

C TRAINING AND METHODOLOGICAL CONSIDERATIONS

C.1 TRAINING DETAILS AND COMPUTING RESOURCES

Both models were trained using the Adam optimizer (Kingma & Ba, 2017) with an MSE loss, a
batch size of 64, a learning rate of 1 × 10−3, and learning rate decay. Training was stopped after
convergence of the validation loss. Dropout, D4 data augmentation, and batch normalization (which
was applied only to the autoencoder) were used. The LSTM was trained using backpropagation
through time and scheduled sampling (Bengio et al., 2015) for gradual transition from teacher forcing3

to autoregressive predictions.

Training used a total of 3400 GPU hours on NVIDIA A100 GPUs, with 1200 GPU hours dedicated
to the models for final evaluation. Hyperparameters were manually tuned due to the long training

3Teacher forcing uses the ground truth as the LSTM input during training, instead of its previous output.
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times. Training the non-equivariant and equivariant autoencoders took approximately 8.2 and 13.7
hours, respectively, averaged over three runs. Notably, the equivariant autoencoder reached the
non-equivariant model’s final validation loss after only 1.3 hours. The corresponding LSTM models
required 33.9 hours for the non-equivariant and 36.4 hours for the equivariant one. At inference time,
the equivariant model has a 22% overhead compared to the non-equivariant one.

Training times at different autoregressive training horizons. To quantify the efficiency gap
between our approach and the baselines, we also report average training times per epoch for the
D4-steerable LSTM, FNO, and U-Net. As shown in Table 1, the computational cost of FNOs and U-
Nets grows dramatically with longer training horizons, whereas our model remains efficient because
forecasting is performed entirely within the latent space. This motivates training our models with 50
autoregressive steps, while FNO and U-Net baselines were restricted to 5 steps (see Section 5).

Table 1: Training times per epoch (in seconds) for different architectures. Compared to FNOs
and U-Nets, our latent-space D4-steerable model trains an order of magnitude faster when using
longer autoregressive horizons, since forecasting is performed directly in latent space. This highlights
its scalability for efficient long-term forecasting.

Training steps D4-steerable LSTM (ours) [s] FNO [s] U-Net [s]

5 582 916 1091
50 1310 8876 12 939

C.2 DISCUSSION ON TWO-STEP TRAINING APPROACH

In this work, we adopted a two-step training strategy in which the autoencoder (CAE) and the LSTM
are trained separately. While end-to-end training may appear more natural, our experiments showed
that this approach offers several important advantages. Below, we provide a detailed discussion of
this design choice, including the challenges we observed with end-to-end training and possible future
improvements.

Challenges of end-to-end training

• Mixing of compression and forecasting. When trained jointly, the LSTM can attempt to
correct errors made by the CAE. This leads to unstable behavior in long-horizon autoregres-
sive forecasts, as forecasting and reconstruction tasks interfere with each other.

• High computational cost. End-to-end training requires backpropagation through the
encoder, LSTM, and decoder over time, making it both computationally expensive and
memory-intensive.

One possible mitigation is to decode the LSTM’s prediction, re-encode it, and feed it back into the
LSTM for each autoregressive step. However, this introduces extreme inefficiency. On the other hand,
separate training has multiple advantages.

Advantages of separate training

• Clear separation of tasks. In end-to-end training, the model tends to integrate forecasting
logic into the autoencoder, which is especially harmful for autoregressive forecasting in
latent space over long horizons. By contrast, training the CAE and LSTM separately
ensures that the CAE focuses purely on compression and reconstruction, while the LSTM is
specialized for temporal dynamics.

• Efficiency. Training the LSTM on pre-computed latent representations allows the forecasting
loss to be computed directly in latent space, without backpropagating through the decoder
and encoder. This reduced training time per epoch by approximately a factor of 20 (0.36
hours vs. 7.52 hours per epoch in our experiments), while also significantly lowering memory
requirements.

• Dynamical systems perspective. From a modeling point of view, the two-step approach
aligns with the idea of first learning a low-dimensional manifold that represents the system
dynamics (Connor & Rozell, 2020), and then training a forecasting model restricted to that
manifold.
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We believe that separate training could be enhanced by a careful end-to-end fine-tuning step. This
would allow the latent representation to adapt to the forecasting task while retaining the benefits of
efficient pre-training. Such an approach, however, requires a careful balancing of reconstruction and
forecasting losses, as well as extensive hyperparameter tuning.

C.3 ADVANTAGES OVER CLASSICAL PDE SOLVERS

A key motivation for surrogate modeling is to overcome the large computational cost of classical PDE
solvers, particularly for high-dimensional turbulent systems such as Rayleigh–Bénard convection.
In this appendix, we provide additional measurements and discuss the advantages of our approach
compared to numerical solvers.

Multi-query capability. Classical solvers must integrate each trajectory individually, which becomes
prohibitively expensive in scenarios such as uncertainty quantification, optimization, or control. By
contrast, the surrogate model can efficiently predict large batches in parallel, enabling applications
that are infeasible with traditional PDE solvers.

Inference speed. We benchmarked our surrogate model against the highly optimized solver
oceananigans.jl. For the Rayleigh number considered in this work, the surrogate already
shows a modest speedup while maintaining high accuracy. More importantly, the computational
cost of classical solvers grows rapidly with increasing complexity, such that scaling towards more
turbulent regimes will strongly favor machine learning approaches.

Table 2: Average inference times (500-step forecast) of our surrogate model (D4-steerable
CAE+LSTM) compared to the PDE solver oceananigans.jl. Reported times include only
the forecasting computation (no memory or SSD I/O for saving the output). While single-trajectory
runtimes are comparable, the surrogate provides dramatic speedups in multi-query settings, where
large batches can be simulated in parallel.

Scenario Ours [s] Solver [s] Speedup
Single trajectory, full sequence output 18.38 28.34 1.5×
Single trajectory, only final state output 12.06 25.31 2.1×
256 trajectories, full sequence output 257.12 (≈1.00 / sim.) — 28.3×
256 trajectories, only final state output 47.05 (≈0.18 / sim.) — 140.6×

Table 2 summarizes the average speedup factors for computation (CAE+LSTM vs.
oceananigans.jl). The results highlight the clear advantage of surrogate models in multi-
query settings, where large ensembles of trajectories can be simulated efficiently in parallel. In
addition, our approach provides a substantial computational benefit when only the final state is
required, since forecasting can be performed entirely in latent space and only the last state needs to
be decoded.

Differentiability. Another strength of neural surrogates is their differentiability. Unlike most classical
numerical solvers, which are either not differentiable (in particular high-performance solvers for very
large simulations and commercial codes) or require the tedious implementation of adjoint equations,4
our model can be directly differentiated end-to-end. This enables gradient-based optimization, data
assimilation, control, and parameter identification. We believe that the combination of scalability,
efficiency, and differentiability makes surrogate models particularly attractive for downstream tasks
in scientific machine learning.

4It should be noted that there have been various attempts in the recent past to design fully differentiable
solvers, in particular using the backpropagation functionalities included in modern ML packages such as PyTorch;
cf., e.g., Holl & Thuerey (2024); Franz & Thuerey (2024); Winchenbach & Thuerey (2025).

20


	Introduction
	Related work
	Preliminaries
	Symmetries
	Rayleigh-Bénard convection

	Methods
	3D steerable convolution on E(2)
	Steerable convolution
	3D convolutions with height-dependent kernels

	Equivariant autoencoder
	Equivariant LSTM

	Experiments
	Results

	Conclusion
	Limitations and outlook

	Additional details on the Rayleigh–Bénard system and its symmetries
	Boussinesq approximation and numerical solution
	Symmetries in the Rayleigh-Bénard system
	Additional systems with broken E(3) symmetry

	Architectural and implementation details of the surrogate and baselines
	LSTM equations and equivariance
	Implementation details
	Baseline architectures

	Training and methodological considerations
	Training details and computing resources
	Discussion on two-step training approach
	Advantages over classical PDE solvers


