

000 001 002 003 004 005 SURROGATE MODELING OF 3D RAYLEIGH-BÉNARD 006 CONVECTION WITH EQUIVARIANT AUTOENCODERS 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

011 The use of machine learning for modeling, understanding, and controlling large-
012 scale physics systems is quickly gaining in popularity, with examples ranging
013 from electromagnetism over nuclear fusion reactors and magneto-hydrodynamics
014 to fluid mechanics and climate modeling. These systems—governed by partial
015 differential equations—present unique challenges regarding the large number of
016 degrees of freedom and the complex dynamics over many scales both in space and
017 time, and additional measures to improve accuracy and sample efficiency are highly
018 desirable. We present an end-to-end equivariant surrogate model consisting of an
019 equivariant convolutional autoencoder and an equivariant convolutional LSTM
020 using G -steerable kernels. As a case study, we consider the three-dimensional
021 Rayleigh-Bénard convection, which describes the buoyancy-driven fluid flow be-
022 tween a heated bottom and a cooled top plate. While the system is $E(2)$ -equivariant
023 in the horizontal plane, the boundary conditions break the translational equivariance
024 in the vertical direction. Our architecture leverages vertically stacked layers of
025 D_4 -steerable kernels, with additional partial kernel sharing in the vertical direction
026 for further efficiency improvement. We demonstrate significant gains in sample
027 and parameter efficiency, as well as a better scaling to more complex dynamics.
028

029 1 INTRODUCTION 030

031 The ability to perform fast and efficient simulations of large-scale physics systems governed by partial
032 differential equations (PDEs) is of vital importance in many areas of science and engineering. As in
033 almost any other area, machine learning plays an increasingly important role, where scenarios of great
034 interest are real-time prediction, uncertainty quantification, optimization, and control. Application
035 areas include weather forecasting (Kurth et al., 2023) and climate modeling (Vlachas et al., 2018),
036 aerodynamics and fluid mechanics (Brunton et al., 2020), combustion (Ihme et al., 2022), or the
037 plasma in nuclear fusion reactors (Kates-Harbeck et al., 2019). PDE-governed systems often exhibit
038 complex or chaotic behavior over a vast range of scales in both space and time. Along with the
039 very large number of degrees of freedom (after discretization using, e.g., finite elements), this
040 renders the resulting time series particularly challenging for surrogate modeling, especially in multi-
041 query contexts such as prediction and control (Bieker et al., 2020). Fortunately, many dynamical
042 systems evolve on a low-dimensional manifold (e.g., an attractor), which allows for dimensionality
043 reduction techniques and surrogate modeling. As linear approximation techniques such as proper
044 orthogonal decomposition (POD) (Sirovich, 1987) tend to break down once the dynamics become
045 more complex—as is the case for turbulent flows—nonlinear variants such as autoencoders have
046 recently become more and more important in the physics modeling community (Nikolopoulos et al.,
047 2022; Francés-Belda et al., 2024). However, the resulting reduced spaces are less interpretable, and
048 the training is much more data-hungry and sensitive to hyperparameter tuning. The goal of this
049 paper is to include known symmetries in the surrogate modeling process of complicated 3D physics
050 simulations via autoencoders. Studying a prototypical convection or climate system described as
Rayleigh-Bénard convection, our contributions are the following (cf. Fig. 1 for a sketch):
051

- 052 • Whereas most papers are concerned with 2D in space, we develop an end-to-end equivariant
053 architecture for the much more challenging prediction of 3D time-dependent PDEs, consisting of
an autoencoder and an LSTM for time series prediction in latent space. To preserve the symmetry,
we omit latent space flattening but preserve the original 3D structure of the problem.

Figure 1: **Architecture overview.** An initial snapshot s_t is encoded via our $E(2)$ equivariant 3D autoencoder to the latent representation z_t ; z_t is evolved forward in time to \tilde{z}_{t+1} via our equivariant LSTM; \tilde{z}_{t+1} is decoded via our $E(2)$ equivariant 3D decoder to yield a predicted next snapshot \tilde{s}_{t+1} .

- The system is equivariant under rotations, reflections, and translations (i.e., the symmetry group $E(n)$), but only in the horizontal plane due to the buoyancy. We introduce an efficient G -steerable autoencoder architecture that respects the symmetry group $\mathbb{Z}^2 \rtimes D_4$ in the horizontal plane (the subgroup of $E(2)$ with shifts on a grid, reflections, and discrete 90-degree rotations).
- Additional local kernel sharing in the vertical direction further improves the parameter efficiency.
- We demonstrate that for large-scale systems, a separate training of encoding and time stepping can be computationally much more efficient than end-to-end training.
- We demonstrate high accuracy at a compression rate $> 98\%$, while saving one order of magnitude in both trainable parameters and training data compared to non-symmetric architectures.

2 RELATED WORK

Rayleigh-Bénard convection (Pandey et al., 2018) models the dynamics of a compressible fluid between two flat plates, where the bottom plate is heated while the top plate is cooled. This induces buoyancy forces, which in turn result in fluid motion. At moderate Rayleigh numbers Ra (a dimensionless parameter quantifying the driving force induced by the temperature difference), one observes well-characterized convection rolls. With increasing Ra , the fluid becomes turbulent which results in a large number of vortices on varying time and spatial scales, rendering the fluid hard to predict and characterize (Vieweg et al., 2021).

In recent years, a large number of works have appeared on **surrogate modeling** of PDE systems. Many approaches rely on the identification of a low-dimensional latent space, for instance, via POD (Soucasse et al., 2019) or *autoencoders* (Pandey et al., 2022; Akbari et al., 2022; de Sousa Almeida et al., 2023). Alternatively, the direct prediction of the full state can be accelerated using linear methods such as the *Koopman operator* framework (Klus et al., 2020; Markmann et al., 2024; Azencot et al., 2020; Nayak et al., 2025) or physics-informed machine learning (Karniadakis et al., 2021; Clark Di Leoni et al., 2023; Hammoud et al., 2023). In that latter category, *neural operators* (Li et al., 2021; Lu et al., 2021; Kovachki et al., 2023; Goswami et al., 2023; Straat et al., 2025) are very prominent, and have been demonstrated to show great performance on a large number of systems. Finally, there have been great advances in the deep learning area as well, most prominently using *U-Nets* (Gupta & Brandstetter, 2023; Lei & Li, 2025), *transformer* architectures (Gao et al., 2024; Holzschuh et al., 2025b), and generative frameworks such as *GANs* (Chen et al., 2020) or *diffusion models* (Holzschuh et al., 2025a; Bastek et al., 2025; Li et al., 2025; Oommen et al., 2025).

The **exploitation of symmetries** has recently become increasingly popular, and it is now often referred to under the umbrella term geometric deep learning (Bronstein et al., 2021). Most of the literature in this area is until now related to classical learning tasks such as image classification (Cohen & Welling, 2016; Esteves et al., 2018a;b; Weiler & Cesa, 2019; Bronstein et al., 2021; Weiler et al., 2025). However, equivariant architectures have been developed for various other tasks, such as the analysis of graph-structured data (e.g., molecules (Wu et al., 2021)), or for the prediction of PDEs (Jenner & Weiler, 2022; Zhdanov et al., 2024; Harder et al., 2024b). Equivariant autoencoder architectures for dimensionality reduction were proposed in, e.g., Kuzminykh et al. (2018); Guo et al. (2019); Huang et al. (2022), see also Hao et al. (2023); Yasuda & Onishi (2023) for applications to fluid flows. Further examples of equivariant learning of PDEs were presented in various contexts, such as Koopman operator theory and Dynamic Mode Decomposition (Salova et al., 2019; Baddoo et al., 2023; Harder et al., 2024a; Peitz et al., 2025), as well as reinforcement learning (Vignon et al., 2023; Vasanth et al., 2024; Peitz et al., 2024; Jeon et al., 2024).

108 **3 PRELIMINARIES**

110 Partial differential equations (PDEs) describe dynamical systems whose state s is a function of
 111 multiple variables such as space $x \in \Omega \subset \mathbb{R}^n$ and time $t \in \mathbb{R}^{\geq 0}$. The equations of motion are
 112 described by (nonlinear) partial differential operators,

$$114 \quad \frac{\partial s}{\partial t} = \mathcal{F}(s, \nabla s, \Delta s, \dots) \quad \text{for } x \in \Omega, t \in \mathbb{R}^{\geq 0},$$

116 accompanied by appropriate boundary conditions on $\Gamma = \partial\Omega$ and initial conditions. In many cases, s
 117 is *equivariant* with respect to certain symmetry transformations such as translations or rotations.

119 **3.1 SYMMETRIES**

121 We here give a very brief overview of symmetry groups and group actions; more detailed introductions
 122 can be found in, e.g., Weiler et al. (2021); Bronstein et al. (2021). A group is a tuple (G, \circ) , where G
 123 is a set and $\circ : G \times G \rightarrow G, (g, h) \mapsto gh$ an operation which is associative, has an identity element
 124 e and inverses (denoted by g^{-1} for $g \in G$). The group operation describes the effect of chaining
 125 symmetry transformations. However, to employ group theory in practice, one needs an additional
 126 *object* that the group can *act on*. A *group action* is a function $G \times X \rightarrow X, (g, x) \mapsto g \cdot x$, where
 127 X is the underlying set of objects that are transformed. As for the group operation, one assumes
 128 associativity in the sense that $g \cdot (h \cdot x) = (gh) \cdot x$ together with invariance under the identity element.

129 A linear representation of G on a vector space V is a tuple (ρ, V) , where $\rho : G \rightarrow GL(V)$ is a group
 130 homomorphism from G to the general linear group $GL(V)$ of invertible linear maps of the vector
 131 space V , see (Weiler et al., 2021, Appendix B.5) for details. In case $V = \mathbb{R}^n$, the group action is
 132 defined as matrix multiplication by $\rho(g)$, i.e., $\rho(g) = A \in \mathbb{R}^{n \times n}, (g, x) \mapsto Ax$.

133 If a group action is defined on X , one can obtain an action on the space of functions of the form
 134 $\phi : X \rightarrow \mathbb{R}^m$ by introducing $(\rho(g)\phi)(x) := \phi(g^{-1} \cdot x)$. Here, we have already denoted the action as
 135 a representation, see (Cohen & Welling, 2017), as it is linear.

136 **Example 1.** The 2D Euclidean group $E(2)$ is the group of planar translations, rotations, and
 137 reflections. It can be expressed as the semidirect product of translations $(\mathbb{R}^2, +)$ and orthogonal
 138 transformations, i.e., $E(2) = (\mathbb{R}^2, +) \rtimes O(2)$. A linear representation of $E(2)$ can be expressed as

$$140 \quad E(2) = \left\{ \begin{pmatrix} A & \tau \\ 0 & 1 \end{pmatrix} \middle| A \in O(2), \tau \in \mathbb{R}^2 \right\}, \quad \text{with } O(2) = \{A \in \mathbb{R}^{2 \times 2} \mid A^\top A = Id\}.$$

142 An element $h \in E(2)$ can be decomposed into $h = \tau g$, where τ is a pure translation and g is a
 143 transformation that leaves the origin invariant.

145 In a straightforward manner, we can consider subgroups $H \leq E(2)$ when replacing $O(2)$ by a
 146 subgroup $G \leq O(2)$ and defining $H = (\mathbb{R}^2, +) \rtimes G$. When working with data on structured grids, as
 147 we do here, discrete translations and rotations can be implemented in a particularly efficient manner.
 148 This results in the dihedral group D_4 , which allows for flips and 90-degree rotations. In combination
 149 with quantized translations on the grid nodes, we obtain $H = (\mathbb{Z}^2, +) \rtimes D_4 < E(2)$.

150 In general, for two sets X and Y , a function $\phi : X \rightarrow Y$ is called equivariant if there is a group
 151 acting both on X and Y such that $\phi(g \cdot x) = g \cdot \phi(x)$, or, equivalently, $\phi(x) = g^{-1} \cdot \phi(g \cdot x)$, for all
 152 $x \in X$ and $g \in G$. Intuitively, this means that one can obtain the result of $\phi(x)$ by first evaluating ϕ
 153 at the transformed object $g \cdot x$ and then applying the inverse transformation g^{-1} afterwards, cf. Fig. 2
 154 for an illustration using the Rayleigh-Bénard system described in Section 3.2.

155 **Convolutions.** Conventional convolutions convolve a feature map $f_{\text{in}} : \mathbb{R}^n \rightarrow \mathbb{R}^{C_{\text{in}}}$ with a kernel
 156 $\psi : \mathbb{R}^n \rightarrow \mathbb{R}^{C_{\text{out}} \times C_{\text{in}}}$ as follows in order to produce a feature map $f_{\text{out}} : \mathbb{R}^n \rightarrow \mathbb{R}^{C_{\text{out}}}$:

$$158 \quad f_{\text{out}}(x) = [f_{\text{in}} * \psi](x) = \int_{\mathbb{R}^n} \psi(x - y) f_{\text{in}}(y) dy$$

160 This is an example of a translation equivariant operation, as $[\rho(\tau)f_{\text{in}}] * \psi = \rho(\tau)[f_{\text{in}} * \psi]$ for $\tau \in \mathbb{R}^n$
 161 (Cohen & Welling, 2016).

162 **Steerable convolutions.** In steerable CNNs,
 163 we define feature spaces in such a manner that
 164 the respective feature fields $f : \mathbb{R}^n \rightarrow \mathbb{R}^C$
 165 are *steerable* (Cohen & Welling, 2017; Weiler
 166 & Cesa, 2019). This means that for each n -
 167 dimensional input $x \in \mathbb{R}^n$, each C -dimensional
 168 feature $f(x) \in \mathbb{R}^C$ transforms under the group
 169 action of a given group G (e.g., $O(n)$)—the
 170 translational equivariance is automatically satis-
 171 fied when the parameters of the learnable kernel
 172 ψ are position-independent (Weiler et al., 2021).
 173 In particular, this ensures that the transforma-
 174 tion of vector-valued features transforms their
 175 orientation according to the group action. As
 176 a consequence, all CNN architectures that are
 177 constructed using G -steerable kernels are equivariant with respect to the group $H = (\mathbb{R}^n, +) \rtimes G$.
 178 In Weiler & Cesa (2019), it was shown that for this property to hold, a kernel $\psi : \mathbb{R}^2 \rightarrow \mathbb{R}^{C_{\text{out}} \times C_{\text{in}}}$
 179 has to satisfy the steerability constraint

$$\psi(g \cdot x) = \rho_{\text{out}}(g)\psi(x)\rho_{\text{in}}(g^{-1}) \quad \forall g \in G, x \in \mathbb{R}^2. \quad (1)$$

Figure 2: **Equivariance of time evolution and rotation.** The equivariance of the time evolution of the temperature field under a 90-degree rotation g is illustrated by the commutativity diagram.

182 For a network to be equivariant, the kernel constraint (1) has to hold for all combinations of ρ_{in} and
 183 ρ_{out} . Instead, it is shown in Weiler & Cesa (2019) that a much simpler approach is to introduce
 184 a change of basis Q , by which any ρ can be decomposed into the direct sum of its irreducible
 185 representations (irreps), i.e., $\rho = Q^{-1} [\oplus_{i \in I} \psi_i] Q$. One can thus replace (1) by individual constraints
 186 on the irreps. Since we have $G \leq O(2)$, G is norm preserving, such that the kernel constraint can
 187 further be reformulated in terms of a Fourier series expansion of the kernel, ultimately resulting in
 188 a set of constraints on the Fourier coefficients, cf. Weiler & Cesa (2019); Weiler et al. (2021) for
 189 detailed derivations and discussions. We will make heavy use of this approach in our architecture,
 190 both in terms of the autoencoder and the LSTM for time series prediction.

3.2 RAYLEIGH-BÉNARD CONVECTION

194 Rayleigh-Bénard convection describes the flow between two flat plates. The bottom plate is heated,
 195 while the top plate is cooled, which induces buoyancy forces that cause the fluid to move in convection
 196 rolls, cf. Figs. 1 or 2 for illustrations. Depending on the driving force—the temperature difference,
 197 encoded by the dimensionless Rayleigh number Ra —the system is deterministic at first, then becomes
 198 increasingly complex and turbulent for larger Ra (Pandey et al., 2018). More details about the specific
 199 PDE and the numerical simulations can be found in Appendix A.1. A more detailed discussion on
 200 the system’s symmetries—including a proof—can be found in Appendix A.2. Moreover, a list of
 201 other systems with broken symmetries can be found in Appendix A.3.

202 In the following, we will summarize the quantities of interest—temperature $T(x, t)$ and velocity
 203 $u(x, t)$, but not the pressure—in the state vector $s(x, t) \in \mathbb{R}^{C_{\text{in}}}$, where $C_{\text{in}} = 4$ is the number of
 204 input channels. Due to the discretization in space, the state function becomes a large tensor of
 205 dimension $N = N_1 \times N_2 \times N_3$. Moreover, we will consider snapshots at discrete times $t \in \mathbb{N}$, that
 206 is, $s_t = (u_t, T_t) \in \mathbb{R}^{N_1 \times N_2 \times N_3 \times C_{\text{in}}}$.

4 METHODS

211 Our framework comprises two main components: a convolutional autoencoder and a convolutional
 212 LSTM, trained independently. As illustrated in Fig. 1, the autoencoder first encodes a snapshot s_t into
 213 a latent representation z_t . The LSTM then sequentially forecasts subsequent latent representations
 214 $\tilde{z}_{t+1}, \tilde{z}_{t+2}, \dots$, which are subsequently decoded to full-state snapshots, $\tilde{s}_{t+1}, \tilde{s}_{t+2}, \dots$. Both the
 215 autoencoder and LSTM are designed in an equivariant fashion. As a consequence, the entire
 framework is end-to-end equivariant.

216 4.1 3D STEERABLE CONVOLUTION ON $E(2)$
217218 As discussed in Appendix A.2, the 3D Rayleigh-Bénard convection is $E(2)$ -equivariant in the
219 horizontal plane, which we enforce by steerable convolutions, while introducing height-dependent
220 kernels that adapt to the varying dynamics at different heights.221 4.1.1 STEERABLE CONVOLUTION
222223 The system state s consists of both scalar temperature and vector-valued velocity fields. Under
224 transformation of these fields by $\tau g \in E(2)$, the temperature field $T : \mathbb{R}^3 \rightarrow \mathbb{R}$ transforms as
225 $T(x) \mapsto 1 \cdot T(g^{-1}(x - \tau))$, whereas the velocity-field $u : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ transforms as $u(x) \mapsto$
226 $g \cdot u(g^{-1}(x - \tau))$. Note that the velocity vectors are themselves transformed via g to preserve their
227 orientation as the field is transformed (Cohen & Welling, 2017; Weiler & Cesa, 2019).228 To ensure equivariant mappings between three-dimensional feature fields $f_{\text{in}} : \mathbb{R}^3 \rightarrow \mathbb{R}^{C_{\text{in}}}$ and
229 $f_{\text{out}} : \mathbb{R}^3 \rightarrow \mathbb{R}^{C_{\text{out}}}$, with corresponding transformations ρ_{in} and ρ_{out} , we constrain the kernels
230 $\psi : \mathbb{R}^3 \rightarrow \mathbb{R}^{C_{\text{out}} \times C_{\text{in}}}$ to be $O(2)$ -steerable. Since the equivariance is restricted to the horizontal plane
231 (i.e., x_1 and x_2) the group $O(2)$ acts on points x via the block-diagonal representation $\rho(g) = A \oplus 1$.
232 The constraint can thus be decomposed into independent constraints for every fixed height \hat{x}_3 :

233
$$\psi \left(g \cdot \begin{pmatrix} x_1 \\ x_2 \\ \hat{x}_3 \end{pmatrix} \right) = \rho_{\text{out}}(g) \psi \left(\begin{pmatrix} x_1 \\ x_2 \\ \hat{x}_3 \end{pmatrix} \right) \rho_{\text{in}}(g^{-1}) \quad \forall g \in O(2), \begin{pmatrix} x_1 \\ x_2 \\ \hat{x}_3 \end{pmatrix} \in \mathbb{R}^3. \quad (2)$$

234 Thus, a three-dimensional $O(2)$ -steerable kernel can be constructed as a stack of 2D $O(2)$ -steerable
235 kernels. For these, Weiler & Cesa (2019) have solved the steerability constraint as well as for
236 important subgroups such as C_4 and D_4 . This result has been applied in our implementation
237 to efficiently design height-dependent kernels utilizing the PyTorch-based library `escnn`.¹ For
238 computational reasons, we restrict our implementation to the subgroup $H = (\mathbb{Z}^2, +) \rtimes D_4 < E(2)$,
239 as this optimally corresponds to our data on a rectangular grid. Thus, we will from now on consider
240 discretized kernels and feature fields on \mathbb{Z}^3 . The case of continuous rotations according to $O(2)$
241 would require interpolation between grid points (see, e.g., Esteves et al. (2018a)). In our experiments,
242 this resulted in inferior performance compared to the grid-consistent 90-degree rotations and flips.243 Within our framework, we use various types of feature fields. Both the input to the AE-encoder and
244 the output of the decoder are composed of the scalar field T and the vector field u . All intermediate
245 representations, however, make use of regular feature fields, which transform under the regular
246 representation by permuting the channels. Steerable convolutions between regular feature fields are
247 equivalent to regular group convolutions (Cohen & Welling, 2016), which apply the same kernel in
248 every orientation $g \in G$, resulting in the $|G|$ -dimensional regular feature fields.252 4.1.2 3D CONVOLUTIONS WITH HEIGHT-DEPENDENT KERNELS
253254 Height-dependent features—such as temperature or velocity patterns—play a critical role in modeling
255 the system. As a result, applying the same kernel across all heights—as would be the case for a
256 regular 3D CNN—is insufficient to capture the system’s vertical dynamics. To address this limitation,
257 we modify the conventional 3D convolutions by learning height-dependent steerable kernels. While
258 this ensures horizontal parameter sharing, we allow the convolution operation to adapt to the distinct
259 features at each height, ensuring that the vertical structure is captured effectively. For computing the
260 output feature map’s value at position $x = (x_1, x_2, x_3) \in \mathbb{Z}^3$, the input $f : \mathbb{Z}^3 \rightarrow \mathbb{R}^{C_{\text{in}}}$ is convolved
261 with the height-dependent kernel $\psi_{x_3} : \mathbb{Z}^3 \rightarrow \mathbb{R}^{C_{\text{out}} \times C_{\text{in}}}$ via $[f * \psi](x) = \sum_{y \in \mathbb{Z}^3} \psi_{x_3}(x - y) f(y)$.262 **Local vertical parameter sharing.** Although the Rayleigh-Bénard system does not exhibit global
263 vertical translation equivariance, it approximately maintains this property within a local neighborhood
264 (see Appendix A.2). This suggests that features at a given height x_3 are locally correlated with features
265 at vertical positions within a $2k + 1$ -sized neighborhood $\mathcal{N}(x_3) = \{x_3 - k, \dots, x_3 + k\}$. This
266 approximate local equivariance in the vertical direction can be exploited by choosing a smaller number
267 of channels in each layer, but then applying these learned kernels across the local neighborhood
268 \mathcal{N} , thereby again increasing the number of output channels, cf. Fig. 3 for a sketch. This parameter
269 reduction leads to a more efficient and scalable model, rendering it suitable for simulating larger-scale1 $\text{https://github.com/QUVA-Lab/escnn}$

Figure 3: **Local vertical kernel sharing.** Kernels of different heights $\hat{x}_3 = q - 2, q - 1, q, \dots$ are applied to the neighboring $k = 1$ heights, resulting in a total of 3 kernels being applied each.

systems. As described in Appendix B.2, 3D convolutions with height-dependent kernels and local vertical parameter sharing can be efficiently implemented by wrapping 2D (steerable) convolutions.

4.2 EQUIVARIANT AUTOENCODER

The convolutional autoencoder (CAE) is designed to respect the horizontal $E(2)$ symmetry by incorporating equivariant convolutions into both the encoder and decoder. In the encoder, an input snapshot s_t of shape $N_1 \times N_2 \times N_3 \times C_{\text{in}}$ is mapped to a lower-dimensional latent representation z_t of shape $M_1 \times M_2 \times M_3 \times C_{\text{latent}}$, through a sequence of convolutional layers progressively extracting higher-level features. Each layer is followed by activation functions and max-pooling. Notably—instead of the common flattening—the latent space maintains the systems original spatial structure to preserve spatial correlations in the data, although we have $M \ll N$. The number of channels C_{latent} is used to control the size and expressiveness of the latent representation.

The decoder applies a series of convolutions, followed by activation functions. Pooling operations are replaced by upsampling. To preserve continuity while upsampling, we employ trilinear interpolation. Throughout the entire framework (CAE + LSTM), padding is applied to the convolutional layers to ensure that the spatial dimensions of the data are only altered by pooling and upsampling operations. For the horizontal dimensions, circular padding is used to match the periodic boundary conditions of the Rayleigh-Bénard system, while vertical dimensions use zero padding. Note that without padding, the decoder would require transposed convolutions (Dumoulin & Visin, 2018) to reverse the dimensional changes induced by convolutions without padding.

4.3 EQUIVARIANT LSTM

Long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) extend conventional recurrent neural networks (RNNs) for processing sequential data by an additional cell state c_t . While the hidden state h_t stores currently relevant information for predicting the next time step, the cell state c_t captures long-term information over long sequences. The content of c_t is regulated by the input gate i_t , which controls which information is added, and the forget gate f_t , which controls how much information is discarded. The output gate o_t determines which information is passed from c_t to h_t . To preserve the spatial structure of the latent space z , we use convolutional LSTMs (Shi et al., 2015) that replace the fully connected layers of standard LSTMs with, in our case, equivariant convolutions and also introduce equivariant convolutions in peephole connections, see B.1 for details as well as a proof that the architecture is equivariant.

5 EXPERIMENTS

We evaluate the performance of our end-to-end equivariant framework against a baseline model using standard, non-steerable 3D convolutions, with a particular focus on the autoencoder. In addition, we assess the long-term forecasting capabilities of our approach in comparison to 3D Fourier Neural Operators (FNOs) (Li et al., 2021) and 3D U-Nets (Ronneberger et al., 2015; Çiçek et al., 2016) with the same number of parameters, cf. Appendix B.3 for details.

Datasets. We generated a dataset of 100 randomly initialized 3D Rayleigh-Bénard convection simulations with $Ra = 2500$ and $Pr = 0.7$, standardized to zero mean and unit standard deviation. The dataset was split into 60 training, 20 validation, and 20 test simulations, each with 400 snapshots in the time interval $t \in [100, 300]$ at a step size of 0.5 and a spatial resolution of $N = 48 \times 48 \times 32$.

Similar datasets were also created for different values of Ra to analyze the effects of data complexity. For long-term forecasting evaluation, we also created an additional dataset of 20 simulations, each containing 1800 snapshots over $t \in [100, 1000]$.

Architecture. The CAE encoder and decoder each consist of six convolutional layers with a kernel size of three for the last encoder and first decoder layer, and five for the other layers, applying ELU nonlinearities pointwise.² Pooling and upsampling are applied after the encoder and decoder’s first, third, and fifth layers, respectively. The latent space has dimensions $M = 6 \times 6 \times 4$ and $C_{\text{latent}} = 32$ channels, resulting in a compression to 1.56% of the original size. Channels roughly double after each pooling operation in the encoder, with the decoder reversing this. Over our experiments, we vary the channel sizes. For a fair comparison, our main models (both standard and equivariant) have approximately the same number of 3.6M parameters. The decoder-only LSTM with one layer of convolutional LSTM cells and an additional convolutional layer for output prediction uses a kernel size of 3. The number of channels is chosen such that the LSTM has approximately 3.7M parameters.

Training. CAE training is performed in the standard self-supervised manner on a set of snapshots, where the desired decoder output is the original input. The LSTM was then trained on the latent representations to predict the 50 latent states following the provided sequence of 25 states, with the loss being computed on the latent space. This two-step training approach effectively separates encoding and forecasting, avoiding significant performance drops and speeding up forecasting training by a factor of 20. See Appendix C.1 for training details, and Appendix C.2 for an in-depth discussion of the two-step training approach and the limitations of end-to-end training.

5.1 RESULTS

We begin with a detailed evaluation of the CAE performance, followed by an analysis of the long-term forecasting capability of our end-to-end equivariant model.

Figure 4: **CAE performances.** Results are shown with varying numbers of parameters, amounts of training samples, compression ratios, and Rayleigh numbers Ra . Each plot shows a variation over one of the parameters while keeping the others fixed. The main model has 3.6 million parameters (3rd point), 24,000 training samples (4th point), 1.56% latent size (3rd point) and $Ra = 2500$ (1st point).

Autoencoder. Fig. 4 gives an overview of our experiments to compare the equivariant and non-equivariant autoencoders with respect to parameter efficiency, data efficiency, compression capabilities, and scalability to more complex dynamics, i.e., larger Ra . Equivariance leads to a significant improvement in reconstruction accuracy, with the RMSE decreasing by 42%, from 0.069 ± 0.00072 to 0.04 ± 0.00093 , where the mean and standard deviation were computed across three models with randomly initialized weights. A comparison to C_4 -equivariant convolutions shows an RMSE of 0.046 ± 0.00164 , showing that both rotations and reflections are relevant for the improved performance.

When studying the four subfigures separately, we observe several significant advantages of incorporating equivariance:

- (i) **Parameter efficiency:** The equivariant model with only 900,000 parameters outperformed the non-equivariant model with 10.8 million parameters, meaning that we obtain an improvement by more than one order of magnitude.

²All hidden layers in our model transform under the regular representation, which preserves equivariance since it commutes with pointwise nonlinearities (Weiler & Cesa, 2019).

378 **(ii) Sample efficiency:** The D_4 model achieved the same performance as the non-equivariant
 379 model when trained on just one-eighth of the training samples, representing a significant
 380 reduction in the amount of data required for effective learning, making it particularly valuable
 381 in data-limited scenarios or when simulations/experiments are expensive.
 382 **(iii) Compression capabilities:** Even when increasing the compression ratio by a factor of eight,
 383 the equivariant model has significantly superior accuracy. This is particularly important
 384 when dealing with large-scale systems, as well as for consecutive learning tasks such as
 385 training the LSTM.
 386 **(iv) Scaling to complex dynamics:** When increasing the Rayleigh number Ra from 2,500 up
 387 to 20,000 and retraining the model, we observe that the gap in accuracy even increases
 388 further, which indicates that the equivariant model is better equipped to handle more complex
 389 dynamics. This suggests that incorporating equivariance into the architecture allows the
 390 model to better capture and represent complex fluid flow dynamics inherent in the Rayleigh-
 391 Bénard convection system, in particular as the patterns grow more complex.
 392

393 The results discussed so far have been obtained without local parameter sharing in the vertical
 394 direction. Our experiments with local vertical sharing show only minor improvements (cf. Appendix
 395 D.7). However, we have considered a fairly moderate number of $N_3 = 32$ vertical layers for now.
 396 The results thus merely show that vertical parameter sharing is viable, and we believe that it will
 397 become significantly more relevant when considering setups with even larger state spaces. In these
 398 situations, learning entirely separate features for each height will become computationally infeasible.
 399 A detailed assessment for much larger state spaces will be the focus of future work.

400 **Long-term forecasting.** We next focus on the evaluation of the long-term forecasting capabilities
 401 of our end-to-end equivariant architecture. The model is provided with an input sequence of 50
 402 snapshots and then predicts the subsequent 500 future states in an autoregressive manner, i.e., using
 403 its own predictions as input for the next time step.

404 Fig. 5 shows the median RMSE over
 405 time for both our equivariant and non-
 406 equivariant models, which was averaged
 407 over three separately trained models. The
 408 equivariant model consistently outperforms
 409 the non-equivariant model by a near-
 410 constant margin of approximately 0.05
 411 RMSE across the entire forecast horizon.
 412 This indicates that most of the performance
 413 gains stem from improved latent representa-
 414 tion learned by the equivariant autoencoder,
 415 which provides a more stable and informa-
 416 tive basis for prediction.

417 Our method consistently outperforms both
 418 FNO and U-Net baselines across all horizons.
 419 With equal training horizons (5
 420 steps), it already matches or exceeds their
 421 short-term accuracy. The decisive advan-
 422 tage, however, lies in the ability to effi-
 423 ciently train with much longer horizons:
 424 while extending FNOs and U-Nets beyond
 425 5 autoregressive steps during training be-
 426 comes prohibitively expensive (see Table 1 in Appendix C.1), our latent-space approach scales to
 427 50 steps without difficulty, since forecasting is performed directly in the lower dimensional latent
 428 space. This leads to substantially improved long-term forecasts. For completeness, we also report
 429 the performance of our model trained with only 5 steps, which still surpasses both baselines at short
 430 horizons, although the FNO slightly outperforms our approach at longer horizons.

431 These results highlight a central advantage of our two-step training strategy: it enables efficient train-
 432 ing with long autoregressive horizons in latent space, achieving both superior long-term performance
 433 and significantly lower computational cost compared to those baselines.

Figure 5: **Forecasting RMSE** averaged across three runs at $Ra = 2500$. FNO and U-Net baselines were restricted to 5 steps due to computational cost, while our model scales efficiently to 50 steps. For reference, we also include the D_4 -steerable model trained with 5 steps.

Figure 6: **Representative autoregressive forecast.** The top row displays the ground truth temperature field T at selected time steps t . The middle row shows the predictions by the equivariant surrogate model (at $t = 0$, we show CAE reconstruction (encoding + decoding) of the ground truth). The bottom row represents the difference between the predicted and ground truth temperature fields.

Qualitative examples in Fig. 6 further highlight the performance of our surrogate model. The equivariant model is able to preserve the fine-scale structures and large-scale convective patterns over extended time periods. Only minor spatial displacements of the convective plumes are observed, even after hundreds of time steps.

A comprehensive set of supplementary experiments can be found in Appendix D. Finally, we note that the advantages of our surrogate extend beyond comparisons with neural baselines. Appendix C.3 provides a detailed discussion of its benefits over classical PDE solvers.

6 CONCLUSION

Our equivariant CAE plus LSTM architecture for efficient surrogate modeling of 3D Rayleigh-Bénard convection consists of horizontally $E(2)$ -equivariant kernels that are vertically stacked. Additional local sharing in the vertical direction allows us to increase the number of channels without requiring additional parameters, which further adds to the computational efficiency. We have demonstrated significant advantages in terms of the accuracy and both data and parameter efficiency.

6.1 LIMITATIONS AND OUTLOOK

Some points we have not yet discussed or addressed, but believe to be promising for future research:

- We have used idealized simulations without noise or other symmetry-breaking disturbances; this will be essential for studying the robustness in real-world settings.
- In principle, end-to-end training could be superior, as the latent representation is tailored to the dynamics. Since this proved to be challenging and computationally expensive for LSTMs, we believe that a consecutive finetuning phase is more promising. Instead, one could consider linear latent dynamics based on the Koopman operator (Harder et al., 2024a; Azencot et al., 2020).
- In the control setting, equivariant models are very helpful to improve the efficiency, for instance, of world models in the context of reinforcement learning; surrogate modeling for RL of PDEs was studied in, e.g., Werner & Peitz (2024), but a combination with equivariant RL as proposed in van der Pol et al. (2020) has not been investigated.
- For climate applications, equivariant models on spheres would be very interesting to study (cf., e.g., Gastine et al. (2015) for a spherical Rayleigh-Bénard case); besides additional challenges in terms of the numerical implementation, the rotation of the earth would also result in fewer symmetries, such that the usefulness of equivariant models has yet to be determined.
- Incorporating kernels that explicitly depend on control parameters (e.g., Rayleigh number) may improve adaptability and generalization across different flow regimes, including those with qualitative changes such as bifurcations.

486
487

REPRODUCIBILITY STATEMENT

488
489
490
491
492
493
494
495
496
497
498

We have taken several measures to ensure the reproducibility of our results. A public repository containing the full implementation of our architecture, including training and evaluation scripts, data generation and preprocessing code, as well as detailed instructions for reproducing all experiments, has been released.³ A complete list of hyperparameter values for each evaluated model will be provided in the repository. The theoretical foundations of our approach are rigorously documented: the symmetries of the 3D Rayleigh–Bénard system are formally proven in Appendix A.2, while the equivariance of the convolutional LSTM is established in Appendix B.1, with the end-to-end equivariance argument given in Section 4.3. Details on data, model architecture, and implementation are presented in Sections 4 and 5, and further elaborated in Appendices B.2 and C.1. Comprehensive descriptions of the training and evaluation procedures, including Rayleigh–Bénard simulation parameters, preprocessing steps, model and training hyperparameters, and evaluation metrics, are provided in Section 5 and Appendix C.1.

499

500
501

REFERENCES

502
503
504

Saeed Akbari, Suraj Pawar, and Omer San and. Numerical assessment of a nonintrusive surrogate model based on recurrent neural networks and proper orthogonal decomposition: Rayleigh–Bénard convection. *International Journal of Computational Fluid Dynamics*, 36(7):599–617, 2022.

505
506
507
508

Omri Azencot, N. Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential data using consistent Koopman autoencoders. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 475–485. PMLR, 13–18 Jul 2020.

509
510
511
512

Peter J. Baddoo, Benjamin Herrmann, Beverley J. McKeon, J. Nathan Kutz, and Steven L. Brunton. Physics-informed dynamic mode decomposition. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 479(2271):20220576, 2023.

513
514

Jan-Hendrik Bastek, WaiChing Sun, and Dennis Kochmann. Physics-informed diffusion models. In *The Thirteenth International Conference on Learning Representations*, 2025.

515
516
517

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, September 2015.

518
519
520

Katharina Bieker, Sebastian Peitz, Steven L. Brunton, J. Nathan Kutz, and Michael Dellnitz. Deep model predictive flow control with limited sensor data and online learning. *Theoretical and Computational Fluid Dynamics*, 34:577–591, 2020.

521
522
523

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. *arXiv:2104.13478*, 4 2021.

524
525
526

Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics. *Annual Review of Fluid Mechanics*, 52:477–508, 2020. doi: <https://doi.org/10.1146/annurev-fluid-010719-060214>.

527
528
529

D. Chen, X. Gao, C. Xu, S. Chen, J. Fang, Z. Wang, and Z. Wang. FlowGAN: A conditional generative adversarial network for flow prediction in various conditions. *32nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI)*, pp. 315–322, 2020.

530
531
532
533

Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u-net: Learning dense volumetric segmentation from sparse annotation. *CoRR*, abs/1606.06650, 2016. URL <http://arxiv.org/abs/1606.06650>.

534
535
536
537
538

Patricia Clark Di Leoni, Lokahith Agasthya, Michele Buzzicotti, and Luca Biferale. Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using physics-informed neural networks. *The European Physical Journal E*, 46(3), March 2023. ISSN 1292-895X. doi: 10.1140/epje/s10189-023-00276-9. URL <http://dx.doi.org/10.1140/epje/s10189-023-00276-9>.

539

³<https://anonymous.4open.science/r/surrogate-modeling-of-3D-rayleigh-benard-convection-with-equivariant-autoencoders>

540 Taco S Cohen and Max Welling. Group equivariant convolutional networks. In *International*
 541 *Conference on Machine Learning*, 2016.

542

543 Taco S. Cohen and Max Welling. Steerable CNNs. In *Proceedings of the International Conference*
 544 *on Learning Representations*, 2017.

545 Marissa Connor and Christopher Rozell. Representing closed transformation paths in encoded
 546 network latent space. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(04):
 547 3666–3675, Apr. 2020. doi: 10.1609/aaai.v34i04.5775. URL <https://ojs.aaai.org/index.php/AAAI/article/view/5775>.

549

550 João Lucas de Sousa Almeida, Pedro Roberto Barbosa Rocha, Allan Moreira de Carvalho, and
 551 Alberto Costa Nogueira Jr. A coupled variational encoder-decoder - deepONet surrogate model for
 552 the Rayleigh-Bénard convection problem. In *When Machine Learning meets Dynamical Systems: Theory and Applications*, 2023.

553

554 Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning, January
 555 2018.

556 Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning SO(3)
 557 equivariant representations with spherical CNNs. In *European Conference on Computer Vision*,
 558 2018a.

559

560 Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, and Kostas Daniilidis. Polar transformer
 561 networks. In *International Conference on Learning Representations*, 2018b.

562 Víctor Francés-Belda, Alberto Solera-Rico, Javier Nieto-Centenero, Esther Andrés, Carlos San-
 563 miguel Vila, and Rodrigo Castellanos. Toward aerodynamic surrogate modeling based on β -
 564 variational autoencoders. *Physics of Fluids*, 36(11), November 2024. ISSN 1089-7666. doi:
 565 10.1063/5.0232644. URL <http://dx.doi.org/10.1063/5.0232644>.

566

567 Aleksandra Franz and Nils Thuerey. PICT: Adaptive GPU accelerated differentiable fluid simulation
 568 for machine learning. In *ICML 2024 Workshop on Differentiable Almost Everything: Differentiable*
 569 *Relaxations, Algorithms, Operators, and Simulators*, 2024. URL <https://openreview.net/forum?id=qmo0xJ4c4U>.

570

571 Han Gao, Sebastian Kaltenbach, and Petros Koumoutsakos. Generative learning for forecasting the
 572 dynamics of high-dimensional complex systems. *Nature Communications*, 15(1):8904, 2024.

573

574 Thomas Gastine, Johannes Wicht, and Jonathan M. Aurnou. Turbulent rayleigh–bénard convection
 575 in spherical shells. *Journal of Fluid Mechanics*, 778:721–764, 2015.

576

577 Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. *Physics-Informed Deep*
 578 *Neural Operator Networks*, pp. 219–254. Springer International Publishing, Cham, 2023.

579

580 Xifeng Guo, En Zhu, Xinwang Liu, and Jianping Yin. Affine equivariant autoencoder. In *Proceedings*
 581 *of the 28th International Joint Conference on Artificial Intelligence (IJCAI-19)*, pp. 2413–2419.
 582 International Joint Conferences on Artificial Intelligence Organization, 2019.

583

584 Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized PDE
 585 modeling. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=dPSTDbGtBY>.

586

587 Mohamad Abed El Rahman Hammoud, Humam Alwassel, Bernard Ghanem, Omar Knio, and Ibrahim
 588 Hoteit. Physics-informed deep neural network for backward-in-time prediction: Application to
 589 Rayleigh–Bénard convection. *Artificial Intelligence for the Earth Systems*, 2(1), January 2023.
 ISSN 2769-7525. doi: 10.1175/aiies-d-22-0076.1. URL <http://dx.doi.org/10.1175/AIES-D-22-0076.1>.

590

591 Zichun Hao, Raghav Kansal, Javier Duarte, and Nadezda Chernyavskaya. Lorentz group equivariant
 592 autoencoders. *The European Physical Journal C*, 83(6):485, 2023.

593

Hans Harder, Sebastian Peitz, Feliks Nüske, Friedrich Philipp, Manuel Schaller, and Karl Worthmann.
 Group convolutional extended dynamic mode decomposition. *arXiv:2411.00905*, 2024a.

594 Hans Harder, Jean Rabault, Ricardo Vinuesa, Mikael Mortensen, and Sebastian Peitz. Solving partial
 595 differential equations with equivariant extreme learning machines. *arXiv:2404.18530*, 2024b.
 596

597 Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. *Neural Computation*, 9(8):
 598 1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

599 Philipp Holl and Nils Thuerey. Φ -Flow: Differentiable simulations for PyTorch, TensorFlow
 600 and Jax. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=4oD0tRrUOX>.
 601

602 Benjamin Holzschuh, Georg Kohl, Florian Redinger, and Nils Thuerey. P3D: Scalable neural
 603 surrogates for high-resolution 3D physics simulations with global context. *arXiv:2509.10186*,
 604 2025a.

605 Benjamin Holzschuh, Qiang Liu, Georg Kohl, and Nils Thuerey. PDE-Transformer: Efficient and
 606 versatile transformers for physics simulations. *arXiv:2505.24717*, 2025b.

607 Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. 3DLinker: An E(3) equivariant
 608 variational autoencoder for molecular linker design. *arXiv:2205.07309*, 2022.

609 Matthias Ihme, Wai Tong Chung, and Aashwin Ananda Mishra. Combustion machine learning:
 610 Principles, progress and prospects. *Progress in Energy and Combustion Science*, 91:101010,
 611 2022. ISSN 0360-1285. doi: <https://doi.org/10.1016/j.pecs.2022.101010>. URL <https://www.sciencedirect.com/science/article/pii/S0360128522000193>.
 612

613 Erik Jenner and Maurice Weiler. Steerable partial differential operators for equivariant neural
 614 networks. In *International Conference on Learning Representations (ICLR)*, 2022.

615 Joongoo Jeon, Jean Rabault, Joel Vasanth, Francisco Alcántara-Ávila, Shilaj Baral, and Ricardo
 616 Vinuesa. Advanced deep-reinforcement-learning methods for flow control: group-invariant and
 617 positional-encoding networks improve learning speed and quality. *arXiv:2407.17822*, 2024. URL
 618 <https://arxiv.org/abs/2407.17822>.
 619

620 George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 621 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

622 Julian Kates-Harbeck, Alexey Svyatkovskiy, and William Tang. Predicting disruptive instabilities
 623 in controlled fusion plasmas through deep learning. *Nature*, 568(7753):526–531, April 2019.
 624 ISSN 1476-4687. doi: 10.1038/s41586-019-1116-4. URL <http://dx.doi.org/10.1038/s41586-019-1116-4>.
 625

626 Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

627 Stefan Klus, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi, and Christof
 628 Schütte. Data-driven approximation of the Koopman generator: Model reduction, system identifi-
 629 cation, and control. *Physica D: Nonlinear Phenomena*, 406:132416, 2020.

630 Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Robert Joseph George,
 631 Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, and Anima Anandkumar. A library for
 632 learning neural operators, 2024.

633 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 634 Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
 635 with applications to PDEs. *Journal of Machine Learning Research*, 24(89):1–97, 2023. URL
 636 <http://jmlr.org/papers/v24/21-1524.html>.
 637

638 Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak, Morteza Mardani, David
 639 Hall, Andrea Miele, Karthik Kashinath, and Anima Anandkumar. Fourcastnet: Accelerating global
 640 high-resolution weather forecasting using adaptive Fourier neural operators. In *Proceedings of the*
 641 *Platform for Advanced Scientific Computing Conference*, PASC ’23, New York, NY, USA, 2023.
 642 Association for Computing Machinery. ISBN 9798400701900. doi: 10.1145/3592979.3593412.
 643 URL <https://doi.org/10.1145/3592979.3593412>.
 644

648 Denis Kuzminykh, Daniil Polykovskiy, and Alexander Zhebrak. Extracting invariant features from
 649 images using an equivariant autoencoder. In Jun Zhu and Ichiro Takeuchi (eds.), *Proceedings of*
 650 *The 10th Asian Conference on Machine Learning*, volume 95 of *Proceedings of Machine Learning*
 651 *Research*, pp. 438–453. PMLR, 14–16 Nov 2018.

652 Wei-Min Lei and Hou-Biao Li. U-wno: U-net enhanced wavelet neural operator for solving parametric
 653 partial differential equationsimage 1. *Computers & Mathematics with Applications*, 194:272–
 654 287, 2025. ISSN 0898-1221. doi: <https://doi.org/10.1016/j.camwa.2025.06.024>. URL <https://www.sciencedirect.com/science/article/pii/S089812212500269X>.

655 Zijie Li, Anthony Zhou, and Amir Barati Farimani. Generative latent neural pde solver using flow
 656 matching. *arXiv:2503.22600*, 2025.

657 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
 658 tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
 659 differential equations. In *International Conference on Learning Representations*, 2021.

660 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 661 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 662 *Nature Machine Intelligence*, 3(3):218–229, 2021.

663 Thorben Markmann, Michiel Straat, and Barbara Hammer. Koopman-based surrogate modelling of
 664 turbulent Rayleigh-Bénard convection. In *2024 International Joint Conference on Neural Networks*
 665 (*IJCNN*), pp. 1–8, 2024.

666 Indranil Nayak, Ananda Chakrabarti, Mrinal Kumar, Fernando L. Teixeira, and Debdipta Goswami.
 667 Temporally-consistent koopman autoencoders for forecasting dynamical systems. *Scientific Re-
 668 ports*, 15(1):22127, 2025.

669 Stefanos Nikolopoulos, Ioannis Kalogeris, and Vissarion Papadopoulos. Non-intrusive surrogate
 670 modeling for parametrized time-dependent partial differential equations using convolutional au-
 671 toencoders. *Engineering Applications of Artificial Intelligence*, 109:104652, March 2022. ISSN
 672 0952-1976. doi: [10.1016/j.engappai.2021.104652](https://doi.org/10.1016/j.engappai.2021.104652). URL <http://dx.doi.org/10.1016/j.engappai.2021.104652>.

673 Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez,
 674 Marsha Berger, Blakesly Burkhardt, Stuart Dalziel, Drummond Fielding, et al. The well: a
 675 large-scale collection of diverse physics simulations for machine learning. *Advances in Neural
 676 Information Processing Systems*, 37:44989–45037, 2024.

677 Peter J. Olver. *Applications of Lie Groups to Differential Equations*. Springer New York, 1993.

678 Vivek Oommen, Siavash Khodakarami, Aniruddha Bora, Zhicheng Wang, and George Em Karni-
 679 adakis. Learning turbulent flows with generative models: Super-resolution, forecasting, and sparse
 680 flow reconstruction. *arXiv:2509.08752*, 2025.

681 Ambrish Pandey, Janet D. Scheel, and Jörg Schumacher. Turbulent superstructures in Rayleigh-
 682 Bénard convection. *Nature Communications*, 9(1):2118, 2018.

683 Sandeep Pandey, Philipp Teutsch, Patrick Mäder, and Jörg Schumacher. Direct data-driven forecast
 684 of local turbulent heat flux in Rayleigh–Bénard convection. *Physics of Fluids*, 34(4):045106, 2022.

685 Sebastian Peitz, Jan Stenner, Vikas Chidananda, Oliver Wallscheid, Steven L. Brunton, and Kunihiko
 686 Taira. Distributed control of partial differential equations using convolutional reinforcement
 687 learning. *Physica D: Nonlinear Phenomena*, 461:134096, 2024.

688 Sebastian Peitz, Hans Harder, Feliks Nüske, Friedrich M. Philipp, Manuel Schaller, and Karl Worth-
 689 mann. Equivariance and partial observations in Koopman operator theory for partial differential
 690 equations. *Journal of Computational Dynamics*, 12:305–324, 2025.

691 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 692 image segmentation. *CoRR*, abs/1505.04597, 2015. URL <http://arxiv.org/abs/1505.04597>.

702 Anastasiya Salova, Jeffrey Emenheiser, Adam Rupe, James P. Crutchfield, and Raissa M. D'Souza.
 703 Koopman operator and its approximations for systems with symmetries. *Chaos: An Interdisci-*
 704 *plinary Journal of Nonlinear Science*, 29:093128, 9 2019.

705 Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun WOO.
 706 Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In
 707 *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc., 2015.

708 L. Sirovich. Turbulence and the dynamics of coherent structures part I: coherent structures. *Quarterly*
 709 *of Applied Mathematics*, XLV(3):561–571, 1987.

710 Laurent Soucasse, Bérengère Podvin, Philippe Rivière, and Anouar Soufiani. Proper orthogonal
 711 decomposition analysis and modelling of large-scale flow reorientations in a cubic Rayleigh–Bénard
 712 cell. *Journal of Fluid Mechanics*, 881:23–50, 2019. doi: 10.1017/jfm.2019.746.

713 Michiel Straat, Thorben Markmann, and Barbara Hammer. Solving turbulent Rayleigh–Bénard
 714 convection using Fourier neural operators. In *European Symposium on Artificial Neural Networks,
 Computational Intelligence and Machine Learning (ESANN)*, pp. 681–686, 2025.

715 Elise van der Pol, Daniel E Worrall, Herke van Hoof, Frans A Oliehoek, and Max Welling. MDP
 716 homomorphic networks: Group symmetries in reinforcement learning. In *34th Conference on
 717 Neural Information Processing Systems*, 2020.

718 Joel Vasanth, Jean Rabault, Francisco Alcántara-Ávila, Mikael Mortensen, and Ricardo Vinuesa.
 719 Multi-agent reinforcement learning for the control of three-dimensional Rayleigh–Bénard convec-
 720 tion. *Flow, Turbulence and Combustion*, 2024.

721 Philipp P. Vieweg, Christiane Schneide, Kathrin Padberg-Gehle, and Jörg Schumacher. Lagrangian
 722 heat transport in turbulent three-dimensional convection. *Phys. Rev. Fluids*, 6:L041501, Apr 2021.

723 Colin Vignon, Jean Rabault, Joel Vasanth, Francisco Alcántara-Ávila, Mikael Mortensen, and Ricardo
 724 Vinuesa. Effective control of two-dimensional Rayleigh–Bénard convection: Invariant multi-agent
 725 reinforcement learning is all you need. *Physics of Fluids*, 35(6):065146, 2023.

726 P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos. Data-driven forecasting
 727 of high-dimensional chaotic systems with long short-term memory networks. *Proceedings of the
 728 Royal Society A: Mathematical, Physical and Engineering Sciences*, 474, 2018. ISSN 14712946.
 729 doi: 10.1098/rspa.2017.0844.

730 G. L. Wagner, S. Silvestri, N. C. Constantinou, A. Ramadhan, J.-M. Campin, C. Hill, T. Chor,
 731 J. Strong-Wright, X. K. Lee, F. Poulin, A. Souza, K. J. Burns, J. Marshall, and R. Ferrari. High-
 732 level, high-resolution ocean modeling at all scales with Oceananigans. *arXiv:2502.14148*, 2025.

733 Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
 734 improved generalization. In *International Conference on Learning Representations*, 2021.

735 Maurice Weiler and Gabriele Cesa. General E(2)-equivariant steerable CNNs. In H. Wallach,
 736 H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural
 737 Information Processing Systems*, volume 32, 2019.

738 Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate independent con-
 739 volutional networks: Isometry and gauge equivariant convolutions on riemannian manifolds.
 740 *arXiv:2106.06020*, 2021.

741 Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. *Equivariant and Coordinate*
 742 *Independent Convolutional Networks*. Progress in Data Science: Volume 1. World Scientific, 2025.
 743 doi: 10.1142/14143.

744 Stefan Werner and Sebastian Peitz. Numerical evidence for sample efficiency of model-based over
 745 model-free reinforcement learning control of partial differential equations. In *European Control
 746 Conference (ECC)*, pp. 2958–2964. IEEE, 2024.

747 Rene Winchenbach and Nils Thuerey. diffSPH: Differentiable smoothed particle hydrodynamics for
 748 adjoint optimization and machine learning. *arXiv:2507.21684*, 2025.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and Learning Systems*, 32(1):4–24, 2021.

Yuki Yasuda and Ryo Onishi. Rotationally equivariant super-resolution of velocity fields in two-dimensional flows using convolutional neural networks. *APL Machine Learning*, 1(2):026107, 2023.

Maksim Zhdanov, David Ruhe, Maurice Weiler, Ana Lucic, Johannes Brandstetter, and Patrick Forré. Clifford-steerable convolutional neural networks. In *Forty-first International Conference on Machine Learning*, 2024.

A ADDITIONAL DETAILS ON THE RAYLEIGH–BÉNARD SYSTEM AND ITS SYMMETRIES

A.1 BOUSSINESQ APPROXIMATION AND NUMERICAL SOLUTION

For our simulation, we solve the so-called Boussinesq approximation of the compressible Navier-Stokes equations, where the fluid evolves according to the incompressible Navier-Stokes equations (continuity (3) and momentum (4)), even though the system is ultimately driven by an inhomogeneous density. Instead, the buoyancy force is modeled by a one-directional coupling with the energy conservation equation (5). In summary, we solve the following system of coupled PDEs in a rectangular domain $\Omega = (0, 2\pi) \times (0, 2\pi) \times (-1, 1)$ with periodic boundary conditions in the horizontal (i.e., first and second) directions and standard fixed walls boundary conditions with constant temperatures at the bottom and the top.

$$\nabla \cdot u = 0, \quad (3)$$

$$\frac{\partial u}{\partial t} + (u \cdot \nabla) u = \nabla p + \sqrt{\frac{Pr}{Ra}} \Delta u + T e_3, \quad (4)$$

$$\frac{\partial T}{\partial t} + u \cdot \nabla T = \frac{1}{\sqrt{RaPr}} \Delta T. \quad (5)$$

Here, $u(x, t) \in \mathbb{R}^3$ is the three-dimensional velocity (depending on space $x \in \Omega \subset \mathbb{R}^3$ and time $t \in \mathbb{R}^{\geq 0}$) and the scalar fields $p(x, t)$ and $T(x, t)$ denote the pressure and temperature, respectively. The canonical unit vector in the vertical direction is denoted as e_3 . The dimensionless numbers Ra and Pr are the Rayleigh and Prandtl numbers, respectively, cf. Pandey et al. (2018) for a more detailed description. The Prandtl number is a constant depending on the fluid properties (kinematic viscosity divided by thermal diffusivity), and we use the common value $Pr = 0.7$. We will study different values of Ra , which is the main influence factor in terms of the system complexity. For the numerical simulations to generate our training data, we have used the Julia code `oceananigans.jl` (Wagner et al., 2025), which introduces a finite volume discretization in the form of a grid with $N = N_1 \times N_2 \times N_3 = 48 \times 48 \times 32$ elements in space. These are equidistantly placed in all three directions so that we have a grid size of $\delta_1 = \delta_2 = 2\pi/48$ and $\delta_3 = 2/32$.

A.2 SYMMETRIES IN THE RAYLEIGH–BÉNARD SYSTEM

The PDE we consider is a modification of the Navier-Stokes equations (NSE) with an additional temperature-dependent buoyancy term in the vertical direction. It is well-known that the 3D NSE are equivariant under actions of the symmetry group $E(3)$ (Olver, 1993; Wang et al., 2021). Consequently, our system inherits the translational equivariance and $O(2)$ equivariance in the two horizontal directions, as only the vertical component of the momentum equation is altered. In addition, the translational symmetry in the vertical direction is broken by the fixed-temperature boundary conditions at the bottom and top. Locally, however, and sufficiently far away from the walls, equivariance should approximately hold, which we will exploit in our architecture.

The symmetries can be formalized as equivariance with respect to three-dimensional rigid transformations $R(x) = Ax + b$, where A leaves the vertical direction invariant, i.e., it has a 2×2 orthogonal block in the top-left corner and acts like the identity in the third (= the vertical) dimension. Together

810 with function composition as the operation, the set of these rigid transformations yields a group
 811 (G, \circ) .
 812

813 An action of G on scalar fields is simply defined via function composition, that is, by rotating or
 814 translating the underlying coordinate domain. This action is extended to vector- or tensor-fields, but
 815 here we have to transform their components too:

- 816 • For a scalar field $s : \mathbb{R}^3 \rightarrow \mathbb{R}$, a group action is defined by $R \cdot s = s \circ R$.
 817
- 818 • For a vector field $v : \mathbb{R}^3 \rightarrow \mathbb{R}^3$, a group action is defined by $R \cdot v = A^\top v \circ R$.
 819
- 820 • For a tensor field $M : \mathbb{R}^3 \rightarrow \mathbb{R}^{3 \times 3}$, a group action is defined by $R \cdot M = A^\top M A \circ R$.
 821

822 From these definitions, equivariance of the Rayleigh-Bénard convection holds in the following sense:
 823 Writing equations (4) and (5) as $u_t = f(u, T, p)$ and $T_t = g(u, T, p)$, it holds that
 824

$$825 u_t = R^{-1} \cdot f(R \cdot u, R \cdot T, R \cdot p) \quad \text{and} \quad T_t = R^{-1} \cdot g(R \cdot u, R \cdot T, R \cdot p). \quad (6)$$

826 *Proof.* We have

$$827 u_t = f(u, T, p) = -(\nabla u)^\top u + \nabla p + \sqrt{\frac{Pr}{Ra}} \Delta u + T e_3, \\ 828 T_t = g(u, T, p) = -(\nabla T)^\top u + \frac{1}{\sqrt{RaPr}} \Delta T.$$

831 To treat vector fields consistently in column format, we have written $u \cdot \nabla u$ in (4) and $u \cdot \nabla T$ in (5)
 832 as $(\nabla u)^\top u$ and $(\nabla T)^\top u$, respectively.

833 We state the following vector calculus identities without proof, but note that they follow from
 834 straightforward calculations:

$$835 \nabla(R \cdot w) = R \cdot \nabla w, \quad \text{(for } w \text{ a scalar or vector field)} \quad (7)$$

$$836 \nabla \cdot (R \cdot w) = R \cdot (\nabla \cdot w), \quad \text{(for } w \text{ a vector or tensor field)} \quad (8)$$

$$837 (R \cdot w)^\top (R \cdot v) = R \cdot (w^\top v), \quad \text{(for } w, v \text{ vector or tensor fields)} \quad (9)$$

840 Both f and g can be decomposed as linear combinations of

$$841 (\nabla v)^\top u, \quad \Delta v, \quad \nabla p, \quad \text{and} \quad T e_3, \quad (10)$$

843 where $v \in \{T, u\}$. Since R 's action is linear, it suffices to show equivariance for these terms
 844 individually, i.e.,

$$845 (\nabla(R \cdot v))^\top (R \cdot u) = R \cdot (\nabla v)^\top u, \quad (11)$$

$$846 \Delta(R \cdot v) = R \cdot \Delta v, \quad (12)$$

$$847 \nabla(R \cdot p) = R \cdot \nabla p, \quad \text{and} \quad (13)$$

$$848 (R \cdot T) e_3 = R \cdot (T e_3). \quad (14)$$

850 For (11), we apply first (7) and then (9). For (12), note that $\Delta v = \nabla \cdot \nabla v$, and one can thus use first
 851 (7) and then (8). Equation (13) follows from (7). Finally, we have for (9),
 852

$$853 (R \cdot T) e_3 = (T \circ R) e_3 = T e_3 \circ R = A^\top T e_3 \circ R = R \cdot (T e_3), \quad (15)$$

854 since A leaves e_3 invariant. Therefore, we have
 855

$$856 f(R \cdot u, R \cdot T, R \cdot p) = R \cdot f(u, T, p) \quad \text{and} \quad g(R \cdot u, R \cdot T, R \cdot p) = R \cdot g(u, T, p).$$

857 Equation (6) then follows. □

859 A.3 ADDITIONAL SYSTEMS WITH BROKEN E(3) SYMMETRY

861 Even though the paper is concerned with Rayleigh Bénard convection only, there exists a multitude
 862 of systems where our architecture can be of use. Examples include, but are not limited to:
 863

- 864 • systems with directed forces, such as

864 – buoyancy forces in the Rayleigh-Taylor instability (see Ohana et al. (2024) and
 865 the related website https://polymathic-ai.org/the_well/datasets/rayleigh_taylor_instability for an exemplary video).
 866 – magnetic fields in magneto-hydrodynamics.
 867 • systems with symmetry-breaking flow structures such as
 868 – the flow through pipelines, where the symmetry is broken along the flow direction,
 869 leading to $O(2)$ symmetry in the radial direction and a shift equivariance along the
 870 transport direction.
 871 – jet flows such as the exhaust gas coming out of a jet engine, where the symmetry is
 872 broken along the jet direction. As the jet increases in diameter in the downstream
 873 direction, the remaining symmetry would be $O(2)$ around the jet center axis.
 874

876 **B ARCHITECTURAL AND IMPLEMENTATION DETAILS OF THE SURROGATE
 877 AND BASELINES**

880 **B.1 LSTM EQUATIONS AND EQUIVARIANCE**

882 Our convolutional LSTM architecture is defined as follows:

$$\begin{aligned} i_t &= \sigma(z_t * \psi^{zi} + h_{t-1} * \psi^{hi} + c_{t-1} * \psi^{ci} + b^i) \\ f_t &= \sigma(z_t * \psi^{zf} + h_{t-1} * \psi^{hf} + c_{t-1} * \psi^{cf} + b^f) \\ c_t &= f_t \odot c_{t-1} + i_t \odot \tanh(z_t * \psi^{zc} + h_{t-1} * \psi^{hc} + b^c) \\ o_t &= \sigma(z_t * \psi^{zo} + h_{t-1} * \psi^{ho} + c_t * \psi^{co} + b^o) \\ h_t &= o_t \odot \tanh(c_t) \end{aligned}$$

890 Here, we use peephole connections, where the cell state is included in the gates to control the
 891 information entering and leaving the cell state more accurately. Replacing the Hadamard products
 892 of traditional peephole connections with convolutions ensures that the LSTM remains equivariant,
 893 as shown below. Notably, this approach also resolves the issue of exploding gradients we initially
 894 observed in our experiments when using a standard 3D convolutional LSTM without convolutional
 895 peephole connections.

896 The new latent representation z_{t+1} is predicted based on the current hidden state via

$$z_{t+1} = z_t + h_t * \psi + b.$$

897 The output z_{t+1} of the current time step is then used as the input for the next time step, allowing the
 898 model to autoregressively forecast future states.

901 **Equivariance of the LSTM system dynamics.** The LSTM can be seen as modeling a dynamical
 902 system of the form

$$(z_t, c_{t-1}, h_{t-1}) \mapsto (z_{t+1}, c_t, h_t), \quad (16)$$

904 where the remaining variables i_t , f_t and o_t can be computed solely from z_t , c_{t-1} , h_{t-1} . Equivariance
 905 in this context means that a transformed input yields a transformed output, i.e.,

$$(\rho(g)z_t, \rho(g)c_{t-1}, \rho(g)h_{t-1}) \mapsto (\rho(g)z_{t+1}, \rho(g)c_t, \rho(g)h_t). \quad (17)$$

907 It follows from three facts, all due to Weiler & Cesa (2019): Firstly, convolutions are equivariant
 908 in the sense that $\rho(g)\ell * \psi = \rho(g)(\ell * \psi)$ for an arbitrary feature map ℓ . Secondly, the action is
 909 linear, i.e., $\rho(g)\ell + \rho(g)\ell' = \rho(g)(\ell + \ell')$. And thirdly, it satisfies $\sigma(\rho(g)\ell) = \rho(g)\sigma(\ell)$ whenever
 910 σ is a pointwise function. Since all feature maps are transformed jointly, the Hadamard product is
 911 equivariant too, i.e., $\rho(g)\ell \odot \rho(g)\ell' = \rho(g)(\ell \odot \ell')$.

913 **B.2 IMPLEMENTATION DETAILS**

915 The implementation of 3D convolutions with height-dependent kernels and local vertical parameter
 916 sharing, as introduced in Section 4.1.2, can be efficiently realized by wrapping 2D convolution
 917 operations, avoiding the need for custom CUDA kernels and ensuring compatibility with existing
 918 deep learning frameworks like PyTorch or TensorFlow.

918 We consider feature maps $f : \mathbb{R}^3 \rightarrow \mathbb{R}^C$ represented as 5D tensors of shape $B \times C \times N_1 \times N_2 \times N_3$,
 919 where B is the batch size and $N = N_1 \times N_2 \times N_3$ defines the spatial resolution.
 920

921 **3D convolutions with height-dependent kernels.** To apply separate kernels for each of the H_{out}
 922 vertical positions in the output feature map, we extract vertical receptive fields of size h from the
 923 input tensor. Each field has shape $B \times C_{\text{in}} \times N_1 \times N_2 \times h$. These are sliced per target output height
 924 and rearranged by merging the input channels and vertical dimensions, resulting in a tensor of shape
 925 $B \times (h \cdot C_{\text{in}}) \times N_1 \times N_2$. We then apply a 2D convolution with $h \cdot C_{\text{in}}$ input channels and C_{out}
 926 output channels to compute a single output slice at one height.
 927

927 To parallelize this across all H_{out} heights, we stack the receptive fields along the channel dimension,
 928 producing a tensor of shape $B \times (H_{\text{out}} \cdot h \cdot C_{\text{in}}) \times N_1 \times N_2$, and then apply a grouped 2D convolution,
 929 dividing the channels into H_{out} groups, each corresponding to a separate height (not to be confused
 930 with group-equivariant convolutions (Cohen & Welling, 2016)). After processing, the output tensor is
 931 reshaped back to $B \times C_{\text{out}} \times N'_1 \times N'_2 \times H_{\text{out}}$.
 932

932 **Local vertical parameter sharing.** To share kernels across neighboring vertical positions, we define
 933 a vertical neighborhood of size k , such that each kernel is applied across heights $\{x_3 - k, \dots, x_3 + k\}$,
 934 yielding a total of $n = 2k + 1$ receptive fields, cf. Fig. 3 for a sketch. For each output height, we
 935 collect all n local receptive fields and apply the same kernel across them.
 936

936 To handle boundary effects, we learn an additional set of k kernels both for the top and bottom of the
 937 domain, ensuring that each vertical position—regardless of its location—receives the same number
 938 of kernel applications.
 939

940 After convolution, the features from all kernels applied to a vertical position are concatenated along
 941 the channel dimension, resulting in $C_{\text{out}} = n \cdot C$ output channels, where C is the number of kernels
 942 learned per height. All of this can be parallelized by stacking all vertical neighborhoods along the
 943 batch dimension and applying a single grouped 2D convolution as described above.
 944

944 B.3 BASELINE ARCHITECTURES

945 In addition to our proposed equivariant surrogate, we implemented two widely used baseline archi-
 946 tectures, 3D U-Nets and 3D Fourier Neural Operators (FNOs). Their configurations are detailed
 947 below.
 948

949 **3D U-Net.** We implement a 3D U-Net with four downsampling and four upsampling stages and
 950 skip connections between the encoder and decoder. Each block uses two 3D convolutions with
 951 a kernel size of three and ReLU nonlinearities. Downsampling is performed via max pooling;
 952 upsampling uses trilinear interpolation. The final layer is a $1 \times 1 \times 1$ convolution to the target channels.
 953 We set the base width to $C_0 = 28$ hidden channels, with channels being doubled/halved after each
 954 downsampling/upsampling step, respectively, yielding 7.7M parameters.
 955

956 **3D Fourier Neural Operator (FNO).** We use the `neuralop` (Kovachki et al., 2023; Kossaifi
 957 et al., 2024) 3D FNO implementation with 16 Fourier modes, 4 spectral layers, 20 hidden channels,
 958 GELU nonlinearities, and 7.4M parameters. Each FNO layer applies a spectral convolution in Fourier
 959 space (truncating to the specified modes) plus a pointwise linear transform in physical space. We do
 960 not use dropout and apply an L_2 weight decay of 1×10^{-4} during training.
 961

962 C TRAINING AND METHODOLOGICAL CONSIDERATIONS

963 C.1 TRAINING DETAILS AND COMPUTING RESOURCES

964 Both models were trained using the Adam optimizer (Kingma & Ba, 2017) with an MSE loss, a
 965 batch size of 64, a learning rate of 1×10^{-3} , and learning rate decay. Training was stopped after
 966 convergence of the validation loss. Dropout, D_4 data augmentation, and batch normalization (which
 967 was applied only to the autoencoder) were used. The LSTM was trained using backpropagation
 968 through time and scheduled sampling (Bengio et al., 2015) for gradual transition from teacher forcing⁴
 969 to autoregressive predictions.
 970

971 ⁴Teacher forcing uses the ground truth as the LSTM input during training, instead of its previous output.

972 Training used a total of 3400 GPU hours on NVIDIA A100 GPUs, with 1200 GPU hours dedicated
 973 to the models for final evaluation. Hyperparameters were manually tuned due to the long training
 974 times. Training the non-equivariant and equivariant autoencoders took approximately 8.2 and 13.7
 975 hours, respectively, averaged over three runs. Notably, the equivariant autoencoder reached the
 976 non-equivariant model’s final validation loss after only 1.3 hours. The corresponding LSTM models
 977 required 33.9 hours for the non-equivariant and 36.4 hours for the equivariant one. At inference time,
 978 the equivariant model has a 22% overhead compared to the non-equivariant one.

979 **Training times at different autoregressive training horizons.** To quantify the efficiency gap
 980 between our approach and the baselines, we also report average training times per epoch for the
 981 D_4 -steerable LSTM, FNO, and U-Net. As shown in Table 1, the computational cost of FNOs and U-
 982 Nets grows dramatically with longer training horizons, whereas our model remains efficient because
 983 forecasting is performed entirely within the latent space. This motivates training our models with 50
 984 autoregressive steps, while FNO and U-Net baselines were restricted to 5 steps (see Section 5).

985
 986 **Table 1: Training times per epoch (in seconds) for different architectures.** Compared to FNOs
 987 and U-Nets, our latent-space D_4 -steerable model trains an order of magnitude faster when using
 988 longer autoregressive horizons, since forecasting is performed directly in latent space. This highlights
 989 its scalability for efficient long-term forecasting.

990 Training steps	991 <i>D_4-steerable LSTM (ours) [s]</i>	992 <i>FNO [s]</i>	993 <i>U-Net [s]</i>
994 5	995 582	996 916	997 1091
998 50	999 1310	1000 8876	1001 12 939

995 C.2 DISCUSSION ON TWO-STEP TRAINING APPROACH

996
 997 In this work, we adopted a two-step training strategy in which the autoencoder (CAE) and the LSTM
 998 are trained separately. While end-to-end training may appear more natural, our experiments showed
 999 that this approach offers several important advantages. Below, we provide a detailed discussion of
 1000 this design choice, including the challenges we observed with end-to-end training and possible future
 1001 improvements.

1002 Challenges of end-to-end training

1003

- 1004 • **Mixing of compression and forecasting.** When trained jointly, the LSTM can attempt to
 1005 correct errors made by the CAE. This leads to unstable behavior in long-horizon autoregres-
 1006 sive forecasts, as forecasting and reconstruction tasks interfere with each other.
- 1007 • **High computational cost.** End-to-end training requires backpropagation through the
 1008 encoder, LSTM, and decoder over time, making it both computationally expensive and
 1009 memory-intensive.

1010 One possible mitigation is to decode the LSTM’s prediction, re-encode it, and feed it back into the
 1011 LSTM for each autoregressive step. However, this introduces extreme inefficiency. On the other hand,
 1012 separate training has multiple advantages.

1013 Advantages of separate training

1014

- 1015 • **Clear separation of tasks.** In end-to-end training, the model tends to integrate forecasting
 1016 logic into the autoencoder, which is especially harmful for autoregressive forecasting in
 1017 latent space over long horizons. By contrast, training the CAE and LSTM separately
 1018 ensures that the CAE focuses purely on compression and reconstruction, while the LSTM is
 1019 specialized for temporal dynamics.
- 1020 • **Efficiency.** Training the LSTM on pre-computed latent representations allows the forecasting
 1021 loss to be computed directly in latent space, without backpropagating through the decoder
 1022 and encoder. This reduced training time per epoch by approximately a factor of 20 (0.36
 1023 hours vs. 7.52 hours per epoch in our experiments), while also significantly lowering memory
 1024 requirements.
- 1025 • **Dynamical systems perspective.** From a modeling point of view, the two-step approach
 1026 aligns with the idea of first learning a low-dimensional manifold that represents the system

1026 dynamics (Connor & Rozell, 2020), and then training a forecasting model restricted to that
 1027 manifold.
 1028

1029 We believe that separate training could be enhanced by a careful end-to-end fine-tuning step. This
 1030 would allow the latent representation to adapt to the forecasting task while retaining the benefits of
 1031 efficient pre-training. Such an approach, however, requires a careful balancing of reconstruction and
 1032 forecasting losses, as well as extensive hyperparameter tuning.
 1033

1034 **C.3 ADVANTAGES OVER CLASSICAL PDE SOLVERS**

1035 A key motivation for surrogate modeling is to overcome the large computational cost of classical PDE
 1036 solvers, particularly for high-dimensional turbulent systems such as Rayleigh–Bénard convection.
 1037 In this appendix, we provide additional measurements and discuss the advantages of our approach
 1038 compared to numerical solvers.
 1039

1040 **Multi-query capability.** Classical solvers must integrate each trajectory individually, which becomes
 1041 prohibitively expensive in scenarios such as uncertainty quantification, optimization, or control. By
 1042 contrast, the surrogate model can efficiently predict large batches in parallel, enabling applications
 1043 that are infeasible with traditional PDE solvers.
 1044

1045 **Inference speed.** We benchmarked our surrogate model against the highly optimized solver
 1046 `oceananigans.jl`. For the Rayleigh number considered in this work, the surrogate already
 1047 shows a modest speedup while maintaining high accuracy. More importantly, the computational
 1048 cost of classical solvers grows rapidly with increasing complexity, such that scaling towards more
 1049 turbulent regimes will strongly favor machine learning approaches.
 1050

1051 **Table 2: Average inference times** (500-step forecast) of our surrogate model (D_4 -steerable
 1052 CAE+LSTM) compared to the PDE solver `oceananigans.jl`. Reported times include only
 1053 the forecasting computation (no memory or SSD I/O for saving the output). While single-trajectory
 1054 runtimes are comparable, the surrogate provides dramatic speedups in multi-query settings, where
 1055 large batches can be simulated in parallel.
 1056

1057 Scenario	1058 Ours [s]	1059 Solver [s]	1060 Speedup
1058 Single trajectory, full sequence output	18.38	28.34	1.5×
1059 Single trajectory, only final state output	12.06	25.31	2.1×
1060 256 trajectories, full sequence output	257.12 (≈ 1.00 / sim.)	—	28.3×
1061 256 trajectories, only final state output	47.05 (≈ 0.18 / sim.)	—	140.6×

1063 Table 2 summarizes the average speedup factors for computation (CAE+LSTM vs.
 1064 `oceananigans.jl`). The results highlight the clear advantage of surrogate models in multi-
 1065 query settings, where large ensembles of trajectories can be simulated efficiently in parallel. In
 1066 addition, our approach provides a substantial computational benefit when only the final state is
 1067 required, since forecasting can be performed entirely in latent space and only the last state needs to
 1068 be decoded.
 1069

1070 **Differentiability.** Another strength of neural surrogates is their differentiability. Unlike most classical
 1071 numerical solvers, which are either not differentiable (in particular high-performance solvers for very
 1072 large simulations and commercial codes) or require the tedious implementation of adjoint equations,⁵
 1073 our model can be directly differentiated end-to-end. This enables gradient-based optimization, data
 1074 assimilation, control, and parameter identification. We believe that the combination of scalability,
 1075 efficiency, and differentiability makes surrogate models particularly attractive for downstream tasks
 1076 in scientific machine learning.
 1077

1078 ⁵It should be noted that there have been various attempts in the recent past to design fully differentiable
 1079 solvers, in particular using the backpropagation functionalities included in modern ML packages such as PyTorch;
 cf., e.g., Holl & Thuerey (2024); Franz & Thuerey (2024); Winchenbach & Thuerey (2025).

Figure 7: **Representative sensitivity patterns** of the temperature field (horizontal slices) associated with individual latent entries of the D_4 -steerable autoencoder.

D ADDITIONAL EXPERIMENTS

D.1 RAYLEIGH-TAYLOR INSTABILITY

Additional experiments are currently in progress, where we study the Rayleigh-Taylor instability. This is a system with two fluid layers of different densities stacked on top of each other, with the lower-density fluid at the bottom. Due to buoyancy, the layers start mixing, giving rise to highly complex patterns. The dataset consists of multiple trajectories with $128 \times 128 \times 128$ snapshots of the density field and three-dimensional velocity vector field. It is provided by the popular benchmark library “The Well” Ohana et al. (2024).

Due to the larger dataset size, the experiments are time consuming and thus, currently still ongoing with promising intermediate results. We will provide a detailed documentation and discussion in the final document, once the experiments are finished.

D.2 LATENT SPACE STRUCTURE & VISUALIZATION

To further investigate the structure of the learned latent space, we analyzed the sensitivity of individual latent entries with respect to the input fields. For a given latent variable i , we computed

$$\frac{\partial z_i}{\partial s}$$

via backpropagation, and then averaged this quantity over a large set of snapshots. This yields a representative spatial pattern indicating which input-space structures most strongly activate each latent variable.

Figure 7 displays these patterns for the equivariant D_4 -steerable autoencoder. Each panel shows the horizontal slice of maximal norm within the 3D pattern of the temperature field represented by one latent entry. The patterns exhibit localized oscillatory structures with distinct orientation and spatial frequency, closely resembling classical Gabor filters.

Furthermore, Figure 8 highlights a striking property of the equivariant model: for a single latent feature, all eight elements of the D_4 group— $\{e, r, r^2, r^3, \kappa, r\kappa, r^2\kappa, r^3\kappa\}$ —appear explicitly in the learned representation. These rotated and reflected variants form an orbit under the D_4 action, confirming that the latent variables correctly respect and encode the underlying symmetry structure of the Rayleigh–Bénard system.

For completeness, we also performed the same analysis for the non-equivariant 3D autoencoder. We did not observe qualitative differences in the types of primitive spatial features learned, apart from the absence of the explicit D_4 -structured organization. Thus, the primary distinction between the models is not the nature of the local filters themselves, but the equivariant model’s structured arrangement of these filters into symmetry-consistent orbits.

Figure 8: **Orbit of latent sensitivity patterns** under the D_4 group action. Each panel corresponds to a transformation in $\{e, r, r^2, r^3, \kappa, r\kappa, r^2\kappa, r^3\kappa\}$, composed out of rotations r and reflections κ .

Figure 9: **Interpolation error (RMSE)** as a function of the interpolation coefficient $\alpha \in [0, 1]$ for several temporal gaps Δt . For small gaps ($\Delta t = 2, 4$), interpolation quality remains close to the underlying autoencoder reconstruction error, while larger gaps ($\Delta t = 6, 8, 10, 16$) lead to gradually increasing—but still smooth and non-catastrophic—errors. The symmetric error curves reflect the linear interpolation path between the endpoints.

D.3 INTERPOLATION IN LATENT SPACE

To assess whether the latent space learned by our equivariant autoencoder admits meaningful interpolations between states, we conducted a series of experiments in which two snapshots s_{t_0} and s_{t_1} were encoded into latent representations z_{t_0} and z_{t_1} , followed by linear interpolation in latent space,

$$z(\alpha) = (1 - \alpha) z_{t_0} + \alpha z_{t_1}, \quad \alpha \in [0, 1],$$

and subsequent decoding into physical space. For a given interpolation range $\Delta t = t_1 - t_0$, we compared the decoded interpolants at intermediate α against the corresponding ground-truth snapshots.

Figure 9 summarizes the reconstruction errors obtained for several choices of Δt . Importantly, these errors *exclude* the intrinsic autoencoder reconstruction error of approximately 0.039, which must be added to obtain the full error. As can be seen from the figure, interpolations over small temporal gaps exhibit errors essentially indistinguishable from the base reconstruction error, while larger gaps degrade gracefully. For example, for $\Delta t = 6$, the additional RMSE takes the values 0.01, 0.022, 0.026, 0.025, and 0.014 for the five interpolated states. For a temporal gap of $\Delta t = 4$, the RMSE reduces to 0.003, 0.007, and 0.005. When interpolating only a single intermediate step, the interpolation error becomes negligible.

Representative qualitative results for an interpolation range of $\Delta t = 10$ are shown in Figure 10. Across all cases, the interpolated snapshots remain physically plausible and match the overall plume and roll structures of the ground truth. Deviations are primarily small spatial displacements or mild damping of fine-scale features, consistent with the measured RMSE values.

Figure 10: **Qualitative interpolation results** for a temporal gap of $\Delta t = 10$. Top row: ground-truth snapshots at times $t = 0$ through $t = 10$. Middle row: decoded latent interpolants at intermediate positions $\alpha = \frac{1}{10}, \dots, \frac{9}{10}$. Bottom row: corresponding reconstruction differences. The interpolated states remain physically plausible and reproduce the large-scale flow structures of the reference snapshots, with discrepancies dominated by mild spatial misalignment and attenuation of fine-scale features, consistent with the measured interpolation RMSE.

Figure 11: **Median RMSE over very long autoregressive rollouts** (0–1400 steps) for the D_4 -steerable CAE+LSTM. The error grows approximately linearly up to ~ 1200 steps and then saturates, forming a plateau around $\text{RMSE} \approx 0.85$.

These results demonstrate that (i) the latent space learned by the equivariant D_4 -steerable autoencoder retains an approximately linear structure over short temporal horizons, and (ii) the model allows interpolation of snapshots in a physically meaningful manner. In particular, measurements of the latent-space distance $\|z_t - z_{t+k}\|$ reveal an approximately linear increase of about 3.2 per time step for small k , further supporting this observation. Consequently, the model can be used to increase temporal resolution in sparsely sampled data by decoding latent interpolants.

D.4 STABILITY UNDER VERY LONG AUTOREGRESSIVE ROLLOUTS

To evaluate the stability of our surrogate model over extended horizons, we perform autoregressive rollouts of up to 1400 steps using the D_4 -steerable CAE+LSTM. The median RMSE increases approximately linearly during the first ~ 1200 steps and subsequently saturates, forming a plateau at $\text{RMSE} \approx 0.85$ (Fig. 11). This behavior reflects the gradual accumulation of prediction inaccuracies over time, while the model continues to generate coherent and physically plausible temperature fields. Even at $t = 1400$, the large-scale convective patterns remain well preserved; the main differences compared to the reference solution arise from mild spatial misalignment between the predicted and true plume locations (Fig. 12).

Figure 12: **Representative qualitative forecast up to $t = 1400$.** Top row: ground-truth temperature field T . Middle row: predictions of the D_4 -steerable surrogate model. Bottom row: difference fields. Across all horizons, the model preserves the overall convective structure. At longer horizons, discrepancies consist primarily of slight spatial misalignment between predicted and true plume locations, rather than a breakdown of the underlying flow patterns, consistent with the saturated median RMSE of approximately 0.85.

D.5 NOISE ROBUSTNESS OF THE D_4 -EQUIVARIANT AUTOENCODER

In addition to the high-fidelity evaluation presented in the main paper, we investigate the robustness of our D_4 -equivariant autoencoder when subjected to noisy input fields. Since practical data acquisition processes may introduce measurement noise, it is important to understand how reconstruction quality degrades under controlled perturbations and how this robustness can be improved within our framework.

Setup. We evaluate the trained D_4 -equivariant autoencoder on temperature-velocity snapshots corrupted by additive Gaussian noise, $s_{\text{noisy}} = s + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \sigma^2)$. Noise levels range from $\sigma = 0.01$ to $\sigma = 0.2$ (in standardized units). We report the reconstruction RMSE between the decoder output on the noisy input and the clean reference snapshot.

To improve robustness, we additionally train a variant of the autoencoder using a *noise-consistency* regularizer, which encourages the encoder to map clean and noisy versions of the same snapshot to similar latent representations:

$$\mathcal{L}_{\text{cons}} = \|\text{Enc}(s) - \text{Enc}(s + \epsilon)\|_F^2, \quad \epsilon \sim \mathcal{N}(0, \sigma^2), \quad \sigma \sim U(0, 0.2).$$

This term is added to the reconstruction loss during training, using the same architecture and hyperparameters as the baseline D_4 model.

Results. Figure 13 shows the reconstruction RMSE as a function of noise level. The baseline model exhibits smooth, non-catastrophic degradation as noise increases, preserving reasonable reconstruction quality even at higher noise levels. Incorporating the noise-consistency regularizer substantially improves robustness: for $\sigma \leq 0.05$, reconstruction errors remain close to the clean-input baseline, and even for $\sigma = 0.1$ – 0.2 , the consistency-regularized model achieves lower errors than the non-regularized variant. *These results are preliminary, and we expect that additional tuning of the regularization weight and training procedure will further improve the reconstruction RMSE of the consistency-regularized model.*

D.6 SENSITIVITY OF HEIGHT-DEPENDENT KERNELS

To assess the robustness of the height-dependent convolutional design introduced in Section 4.1.2, we evaluate the D_4 -steerable autoencoder under several architectural and spatial configurations. Specifically, we vary (i) the vertical kernel size and (ii) the vertical spatial resolution N_3 . All experiments use the same total number of trainable parameters to ensure a fair comparison. Reconstruction quality is measured in terms of RMSE on the clean test set.

Figure 13: **Reconstruction RMSE under additive Gaussian noise** for the D_4 -equivariant autoencoder and its noise-consistency variant. The consistency regularizer improves robustness across all tested noise levels, with particularly strong gains for $\sigma \leq 0.05$. The results are preliminary, and we expect further improvements with additional tuning.

Varying vertical kernel size. Table 3 summarizes the effect of changing the vertical kernel size while keeping the horizontal kernel size fixed at $(5, 5)$ with $N_3 = 32$. Performance remains stable across all tested configurations, with only marginal variation in RMSE.

Table 3: **Sensitivity to vertical kernel size** for the D_4 -steerable autoencoder ($N_3 = 32$). The reconstruction error varies only slightly across the tested kernel depths.

Kernel size	RMSE
$(5, 5, 3)$	0.0395
$(5, 5, 5)$	0.0391
$(5, 5, 7)$	0.0416

Varying vertical spatial resolution. Finally, we assess sensitivity to the vertical grid resolution. Increasing the resolution from $N_3 = 32$ to $N_3 = 48$ while keeping the number of parameters fixed leads to a small increase in RMSE (Table 4), which is expected given the increased input dimensionality with the same number of parameters.

Table 4: **Sensitivity to vertical spatial resolution** for the D_4 -steerable autoencoder with fixed parameter count. Higher vertical resolution slightly increases reconstruction error due to the larger input size.

Vertical resolution N_3	RMSE
32	0.0391
48	0.0430

Summary. Across all experiments, reconstruction errors remain within a narrow range, demonstrating that the height-dependent kernel design is robust to the choice of vertical kernel size and the vertical spatial resolution.

D.7 EFFECTS OF LOCAL VERTICAL PARAMETER SHARING

To complement the experiments, we evaluate how different degrees of vertical parameter sharing affect reconstruction accuracy in the D_4 -steerable autoencoder. Vertical sharing restricts subsets of kernels to be reused across neighboring heights, reducing the number of independent vertical

1350 parameters while preserving the height-dependent structure of the convolutions. All configurations
 1351 below use the same total number of trainable parameters; only the vertical sharing pattern is varied.
 1352

1353 **Experimental setup.** We consider four variants: no sharing, and three increasingly shared config-
 1354 urations (small, medium, large). The encoder specifications below denote the size of the vertical
 1355 neighborhood over which kernels are shared at each layer; the decoder mirrors this pattern. All results
 1356 are reported at vertical resolution $N_3 = 32$.
 1357

1358 **Table 5: Reconstruction accuracy under different levels of vertical parameter sharing** at $N_3 = 32$.
 1359 All models use the same parameter budget. Performance varies only slightly across configurations,
 1360 with medium and large sharing achieving the lowest errors.

Vertical parameter sharing (encoder)	RMSE
None (1, 1, 1, 1, 1)	0.0391
Small sharing (5, 3, 3, 1, 1)	0.0408
Medium sharing (7, 5, 5, 3, 3)	0.0377
Large sharing (9, 7, 7, 5, 5)	0.0373

1361 **Effect of vertical sharing.** Across all configurations, reconstruction accuracy remains within a
 1362 narrow range (cf. Table 5), indicating that the model is robust to the specific choice of sharing
 1363 pattern. Notably, medium and large sharing yield slightly lower errors than both the no-sharing and
 1364 small-sharing variants. These improvements, although modest, suggest that moderate vertical kernel
 1365 reuse can be beneficial without degrading the model’s ability to represent height-dependent structure.
 1366

1367 **Higher vertical resolution.** We additionally investigate the effect of vertical parameter sharing at
 1368 increased resolution ($N_3 = 48$). These experiments are ongoing, but preliminary results indicate
 1369 that vertical sharing becomes more effective as resolution increases; early runs show substantially
 1370 improved accuracy relative to the non-shared baseline at the same parameter count. This trend aligns
 1371 with the intuition that higher-resolution height dimensions provide more opportunities for efficient
 1372 reuse of vertically local kernels. More complete results will be provided as experiments are finished.
 1373

1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403