Under review as a conference paper at ICLR 2022

COLLABORATE TO DEFEND AGAINST ADVERSARIAL
ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarially robust learning methods require invariant predictions to a small
neighborhood of its natural inputs, thus often encountering insufficient model ca-
pacity. Learning multiple sub-models in an ensemble can mitigate this insufficiency,
further improving both generalization and robustness. However, an ensemble still
wastes the limited capacity of multiple models. To optimally utilize the limited
capacity, this paper proposes to learn a collaboration among multiple sub-models.
Compared with the ensemble, the collaboration enables the possibility of correct
predictions even if there exists a single correct sub-model. Besides, learning a
collaboration could enable every sub-model to fit its vulnerability area and reserve
the rest of the sub-models to fit other vulnerability areas. To implement the idea,
we propose a collaboration framework—CDA? the abbreviation for Collaborate
to Defend against Adversarial Attacks. CDA? could effectively minimize the vul-
nerability overlap of all sub-models and then choose a representative sub-model to
make correct predictions. Empirical experiments verify that CDA? outperforms
various ensemble methods against black-box and white-box adversarial attacks.

1 INTRODUCTION

Safety-critical applications (such as in medicine and finance) require the adversarial robustness of
deep models (Goodfellow et al., 2015; Szegedy et al., 2014). An adversarially robust learning method
requires invariant predictions to a small neighborhood of its natural inputs, thus often encountering
insufficient model capacity (Zhang et al., 2021; Yu et al., 2021a). This limits the further improvement
of robustness and has the undesirable degradation of generalization (Madry et al., 2018).

Learning multiple sub-models in an ensemble (Breiman, 1996; Freund et al., 1996) can mitigate
this insufficiency (Pang et al., 2019; Kariyappa & Qureshi, 2019; Yang et al., 2020a). Remarkably,
Pang et al. (2019), Kariyappa & Qureshi (2019) and Yang et al. (2020a) minimized the vulnerability
overlaps between each pair of sub-models and improved both robustness and generalization over a
single model.

However, an ensemble wastes the limited capacity of multiple models. In the example of three
sub-models (see Figure 1(b)), the adversarial input that lies in the black areas can fool the ensemble
successfully, i.e., more than half of sub-models must correctly classify the adversarial input. Therefore,
the ensemble’s voting-based strategy excludes the possibility that true predictions remain with the
minority. Besides, learning an ensemble requires more than half of the sub-models to fit the same
vulnerability areas, which leaves the following question unanswered whether we could only leverage
a single sub-model to fit a vulnerability area and reserve the rest of the sub-models to fit other
vulnerability areas.

To optimally utilize the limited capacity, this paper proposes to learn a collaboration among multiple
sub-models. As shown in Figure 1(c), the adversarial input that lies in the vulnerability overlaps of
all sub-models can undoubtedly fool the collaboration. Compared with the ensemble in Figure 1(b)),
collaboration enables the possibility of correct predictions even if there exists a single correct sub-
model merely. Besides, learning a collaboration could enable every sub-model to fit its vulnerability
area, which could collectively fix broader vulnerability areas than the ensemble does. Then, sub-
models could collaboratively choose trustworthy ones to make the final predictions.
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Figure 1: [llustrations of the vulnerability area of (a) Single model (b) Ensemble, and (c) Collaboration.
The black area represents the vulnerability area in which the model is undoubtedly fooled.

To realize the idea, we propose a collaboration framework—Collaborate to Defend against Adversarial
Attacks (CDA?) (Algorithms 1 and 2). In CDAZ2, each sub-model has dual heads: one outputs a
vector of predicted probability fy(:); another outputs a scalar that measures posterior probability
density (PPD) of the prediction. In the training phase, given a natural or adversarial input z, each
sub-model chooses an easy one(s) to feed itself. The PPD head is meanwhile updated by comparing
the predicted probability on the true label—f;(-) (a scalar). In the inference phase, given an input,
CDAZ chooses a sub-model with the largest PPD value as the representative to output the prediction.

We highlight our key contributions as follows.

* We provide a new perspective on learning multiple sub-models for defending against
adversarial attacks. We theoretically show the collaboration makes better decisions than the
ensemble, which implies collaboration may fix broader vulnerability areas.

« We propose a novel collaboration framework—CDA? (see Section 3.2). In the training
phase, CDA2could effectively minimize the vulnerability overlap of all sub-models; In the
inference phase, CDA? could effectively choose a representative sub-model to make correct
predictions. We also provide a comprehensive analysis illustrating the rationale of CDAZ2.

 Empirical experiments verify that CDA? outperforms various ensemble methods against
black-box and white-box adversarial attacks.

2 RELATED WORKS

Adversarial attack Adversarial attacks aim to craft the human-imperceptible adversarial input to
fool the deep models. Adversarial attacks could be roughly divided into white-box attacks in which
the adversary is fully aware of the model’s structures (Goodfellow et al., 2015; Moosavi-Dezfooli
et al., 2016; Carlini & Wagner, 2017b; Chen et al., 2018; Athalye et al., 2018; Xiao et al., 2018;
Zheng et al., 2019; Wong et al., 2019; Mopuri et al., 2019; Alaifari et al., 2019; Sriramanan et al.,
2020; Wu et al., 2020b; Croce & Hein, 2020; Yu et al., 2021b) and black-box attacks in which the
deep models are treated as black boxes to the adversary (Cheng et al., 2019; 2020; Wu et al., 2020a;
Chen et al., 2020a; Li et al., 2020a; Rahmati et al., 2020; Yan et al., 2021b; Hendrycks et al., 2021;
Dong et al., 2018; Xie et al., 2019). This paper focuses on building effective defense and select both
white-box and black-box attack methods as our robustness evaluation metrics.

Adversarial defense Defending adversarial attacks is a challenging task and researchers have
proposed various solutions. Certified defense tries to learn provably robust deep models against
norm-bounded (e.g., ¢2 and {,) perturbations (Wong & Kolter, 2018; Tsuzuku et al., 2018; Weng
et al., 2018; Mirman et al., 2018; Hein & Andriushchenko, 2017; Lécuyer et al., 2019; Xiao et al.,
2019; Cohen et al., 2019; Balunovic & Vechev, 2020a; Zhang et al., 2020a; Singla & Feizi, 2020;
Balunovic & Vechev, 2020b; Zou et al., 2021). Empirical defense leverages adversarial data to
build effective defense such as adversary detection (Metzen et al., 2017; Li & Li, 2017; Carlini &
Wagner, 2017a; Tian et al., 2018; Ma et al., 2018b; Lee et al., 2018; Pang et al., 2018; Smith &
Gal, 2018; Roth et al., 2019; Liu et al., 2019; Yin & Rohde, 2020; Sperl et al., 2020; Cohen et al.,
2020; Sheikholeslami et al., 2021; Chen et al., 2021a; Yang et al., 2020b; Qin et al., 2020; Tian et al.,
2021; Wu et al., 2021) and adversarial training (AT), in which AT stands out as the most effective
defense. Researchers have investigated various aspects of AT, such as improving AT’s robustness or
generalization (Madry et al., 2018; Yan et al., 2018; Wu et al., 2018; Cai et al., 2018; Najafi et al.,
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2019; Alayrac et al., 2019; Carmon et al., 2019; Farnia et al., 2019; Song et al., 2019; Zhang et al.,
2019b; Wang et al., 2019; Tramer & Boneh, 2019; Zhang & Wang, 2019; Stutz et al., 2020; Pang
et al., 2020; Gan et al., 2020; Dong et al., 2020; Zhang et al., 2020b; Chen et al., 2020b; Song et al.,
2020; Ding et al., 2020; Wang et al., 2020b; Zhang et al., 2021), fixing AT’s undesirable robust
overfitting (Rice et al., 2020; Chen et al., 2021b), improving AT’s training efficiency (Zhang et al.,
2019a; Shafahi et al., 2019; Zheng et al., 2020; B.S. & Babu, 2020; Andriushchenko & Flammarion,
2020; Wong et al., 2020), understanding/interpreting AT’s unique traits (Nakkiran, 2019; Yin et al.,
2019; Gao et al., 2019; Cranko et al., 2019; Zhang et al., 2019c; Liu et al., 2020; Roth et al., 2020;
Wang et al., 2020a; Zhang et al., 2020c; Li et al., 2020b; Zou et al., 2021; Mehrabi et al., 2021; Xu
et al., 2021), etc. Besides, researchers have alao actively investigated robust-structured models (Cisse
et al., 2017; Xie et al., 2020; Moosavi-Dezfooli et al., 2019; Xie & Yuille, 2020; Yan et al., 2021a;
Du et al., 2021; Pang et al., 2021). Nevertheless, the above research thoroughly investigated a single
model; this paper focuses on the collaboration among multiple models for adversarial defense.

Ensemble methods for adversarial robustness The most relevant studies are the ensemble meth-
ods. Ensemble methods such as bagging (Breiman, 1996) and boosting (Freund et al., 1996) have
been investigated for significantly improving the model’s generalization. Motivated by the benefits of
ensemble methods in improving generalization, researchers introduced an ensemble to improve the
model robustness (Yang et al., 2020a; Kariyappa & Qureshi, 2019; Pang et al., 2019; Tramer et al.,
2018). Tramer et al. (2018) proposed to reduce the adversarial transferability by training a single
model with adversarial examples from multiple pretrained sub-models. Pang et al. (2019) introduce
a regularization method—ADP—to encourage high diversity in the non-maximal predictions of
sub-models. Kariyappa & Qureshi (2019) improved the ensemble diversity by maximizing the
introduced cosine distance between the gradients of sub-models with respect to the input. Yang et al.
(2020a) proposed to distill non-robust features in the input and diversify the adversarial vulnerability.
These methods reduced overlaps of vulnerability areas between sub-models (Yang et al., 2020a).

To further improve the ensembles, mixture-of-experts (MOE) assume that the problem space can be
divided into multiple sub-problems through a gate module; the gate module specifies each sub-model
on a specific sub-problem (Jacobs et al., 1991; Ma et al., 2018a).

Nevertheless, to the best of our knowledge, MOE-based methods have been not applied to help
adversarial robustness. Inspired by MOE, we propose the collaboration framework to defend against
adversary attacks.

3 COLLABORATION TO DEFEND AGAINST ADVERSARIAL ATTACK

3.1 SUPERIORITY OF COLLABORATION

This section shows a collaboration, in theory, could make better decisions than an ensemble.

Ensemble Suppose that there are M learned sub-models { fy,, fo., ---, fo,, }» given an input z, M
sub-models make predictions { fo, (x), fo,(2), ..., fo, (x) }- The ensemble outputs a final prediction
ensemble(z, fo,, ..., fo,,) by the voting-based strategy:

M
ensemble(z, fo, , ..., fo,,) = arg maXyeq1, | K} (Z 1y:f9i ($)> , (D
i=1

where 1 is the indicator function. Note that the ensemble outputs the predicted label y that agrees
with the majority predictions of the sub-models.

Definition 1 (best-performing sub-model). Given an input x and its label y, the best-performing
sub-model achieves the lowest objective loss on the data (x,y) among all M sub-models:

Jope (@) = min  £(fo,(2), ). )
fo, G{fel ,-7feM}

Note that the best-performing sub-model is w.r.t. the input data (x,y), i.e., different input data
correspond to different best-performing sub-models.
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Collaboration Suppose that there are M learned sub-models { fy,, fo,, ---, fo,, }- Given an input x,
sub-models make predictions { fy, (), fo,(2), ..., fo,; () }- The collaboration tries to output a final
prediction collaboration(z, fy,, ..., fo,,) by the best-performing sub-model:

collaboration(z, fo,, ..., for,) = foues (T)- 3)

Proposition 1. Given M learned sub-models, the predicted accuracy of the collaboration is upper-
bounded that of the ensemble, i.e.,

E(m,y)ED [1collaboration(w,f91 N ):y] > E(Ly)ED [1ensemble(m,f91 e fong ):U] : “4)

Proof. Given an (x,y) € D, if the ensemble’s prediction is correct, at least one sub-model makes
correct prediction, i.e., 1 fopo, (2)=y holds; therefore, the collaboration’ prediction is correct. If
the collaboration’s prediction is correct, there exists a case that the majority of sub-models make
consistent but wrong predictions, while a single sub-model’s prediction is correct; then, ensemble’s
prediction is wrong. Therefore, Proposition 1 holds. O

From Proposition 1, a collaboration can theoretically achieve an equal or higher performance than an
ensemble. Next, we will introduce a realization of our collaboration framework.

3.2 REALIZATION OF COLLABORATION FOR DEFENDING AGAINST ADVERSARIAL ATTACK

This section realizes the framework of Collaboration for Defending against Adversarial Attack
(CDA?).

Notation We firstly introduce the needed notations. Suppose X and ) denote input space and
output space, where ) = {1, ..., K'} for a K-class classification problem. There are N samples
in the dataset D = {(z,y)}, where x € X and y € Y. Let dint(x, 2') = ||z — 2’| denotes the
infinity distance metric, and B.[z] = {2’ € X' | dint (2, 2") < €} is the closed ball of of radius € > 0
centered at x. To search for adversarial data within norm ball B,[z], Madry et al. (2018) proposed a
projected gradient descent (PGD) method that iteratively searches for adversarial data = ( refers to
natural data). fp(x) outputs a K-dimensional predicted probability, i.e., p(x) = [p1(x), ..., Pr()].
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Figure 2: (a) The blue and pink lines denote two sub-models. Each sub-model makes negative
predictions (—) on its left and makes positive predictions on its right (+). The given data will be
assigned to the sub-model that has the lowest objective loss. The arrows represent the data assignment.
(b) Each sub-model has two heads—Iabel head that outputs the predicted probability (vector) and
PPD head that approximates the value of posterior probability density (scalar) of the predicted
probability.

Goal of collaboration 1) ensure the correct prediction of the best-performing sub-model for a
given input, and 2) select the best-performing sub-model among all sub-models to make prediction.

First, intuitively, every sub-model in a collaboration should maximize its expertise to fit its areas and
leave the remaining areas fitted by others. As a result, the collaboration can minimize the vulnerability
overlaps of all sub-models. Section 4 shows “minimizing the vulnerability overlap of all sub-models”
is “minimizing the objective loss of the best-performing sub-models”. Therefore, during the training
phase, the given data should always be allocated to the sub-model that has the lowest objective loss.
In other words, the sub-models always choose the easiest data to learn. In the example of Figure 2(a),
1) Data@®) is misclassified by both sub-models. The blue sub-model is near Data@3) and has the lowest
objective loss. We assign the blue sub-model to fit Data@). i7) Data@) is correctly classified by the
pink model but wrongly classified by the blue model; for ease of effort, we assign the pink model to
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Figure 3: Optimization process of the M sub-models in a collaboration

fit Data(2), because the collaboration can correctly be classified Data@) through selecting the pink
model as the representative. ii¢) Data(D) is correctly classified by both models. The blue model is far
from Data(l) and takes the lowest effort on fitting it; therefore, we assign the blue model to fit Data(D).

Second, to select the best-performing sub-model, we construct dual-head structured sub-models. As
shown in Figure 2(b), our sub-model has dual heads: 1) fy contains the feature extractor module and
the label head and predicts the label probability fy(x) = p(z) = [p1(z), ..., Pr (x)] (a vector); 2) the
PPD head g4 approximates the posterior probability density (PPD) (a scalar) of each prediction p(x).

Note that the PPD is the likelihood that a given prediction p(x) equals the true label distribution
p(x). Thus, the PPD value measures the quality of the sub-model’s predictions. In other words,
the best-performing sub-models can be decided by the PPD values because the largest PPD value
corresponds to the lowest objective loss, and vice versa (see theoretical proof in Proposition 2).

Collaborate to defend against adversarial attack To defend against adversarial attack, the col-
laboration needs to learn from adversarial data. Algorithm 1 along with Figure 3 articulates how to
learn such the collaboration, inculding the natural data training and the adversarial data training of
the collaboration. Algorithm 2 articulates how to use the collaboration to make predictions. For the
natural data training of the collaboration, as shown in Figure 3(a), given natural training data = and
its label y, we use the PGD method to obtain M adversarial variants {#% }£, of M sub-models as
existing baselines do. For each adversarial variant %, we assign the best-performing sub-model
to learn and update its feature extractor and label head. This process corresponds to Lines 2—5 and
Lines 9-10 in Algorithm 1. Note that in Line 8, we use a surrogate loss to approximate the sub-model
assignment process (reasons see Eq. 6 and 7). As shown in Figure 3(b), given an adversarial variant
2%, we propose to use the binary-cross-entropy (BCE) loss between the predicted label probability
on the true label (i.e., p, (7)) and the approximated PPD (i.e., g, (Z%)) to update each sub-model’s
PPD head. This process corresponds to Lines 6—7 in Algorithm 1.

The natural data training of the collaboration using the most adversarial data of each sub-model may
converge without a full exploration of the adversarial samples. For the adversarial data training of
the collaboration, we propose to generate the adversarial samples that can worsen the outputs of
the collaboration. In particular, for each data sample z, we output the prediction p(x) whose PPD
value g, () is the highest. We perturb z to Z to worsen the prediction using PGD method. Then we
minimize a surrogated loss to fit this adversarial data x. This process corresponds to Lines 11-18.
In our implementation, the natural data training of the collaboration is not necessary. Because the
adversarial data training of the collaboration also captures the most adversarial samples of sub-models
and can provide more other adversarial samples for the collaboration.

During the inference phase shown in Algorithm 2, once M sub-models are properly learned,
CDA? chooses a representative sub-model whose PPD value is highest among all sub-models,
and then outputs this sub-model’s prediction.

3.3 ANALYSES OF CDA?

Optimizing the best-performing sub-models We firstly show that minimizing the vulnerability
overlap of all sub-models is equal to minimizing the objective loss of the best-performing sub-models.
For ease of optimization of the best-performing sub-model, we provide a surrogate loss.
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Algorithm 1 Collaboration for Defending against Adversarial Attack (CDA?) (training phase)

Input: sub-models with duel heads { fo, }fvil and {g¢i}£1, where fy, outputs the label prediction

and g, outputs the approximated PPD, training dataset D, hyperparameter o;
1: the natural data training of the collaboration
2: for each data (z,y) € D do
3: for each sub-model fy,,i =1,2,..., M do

4: Obtain the adversarial data 7% of the sub-model fy, using PGD method;
5: for each sub-model fy,,j =1,2,..., M do
6: Calculate the approximated PPD, i.e., g4, (aﬁei);
7: Minimize BCE loss £, = BCE(gy, (2%),p,(2")) to update module g,
8: Collect sub-model i’s cross entropy (CE) loss on data 2%: ¢ (fy, (%) ,y);
0,
9: Calculate surrogate loss on data 0 ém =—cln Zjvil exp (W) ;
10: Update { fo, }f\il by minimizing O, 1/ choose the best-performing sub-model to fit 7%
11: the adversarial data training of the collaboration
12: for each data (x,y) € D do
13: for each sub-model fy,,7 =1,2,..., M do
14: Calculate the approximated PPD, i.e., gy, (z);
15: Calculate the prediction i.e., fy, (z);
16: Output the prediction p’(x) with the highest PPD value;
17: Obtain Z by perturbing x to worsen the prediction; // generate the adversarial samples of the
collaboration

18: Minimize BCE loss £, (%) to update the module g, of all sub-models;
19: Update { fo, }ﬁl to fit Z by minimizing the surrogate loss /., (Z);
20: return the learned sub-models { fo, }f\il with {g@.}i\il.

The vulnerability overlap of all sub-models refers to the set of adversarial data (Z,y) that are
misclassified by all sub-models, i.e., all sub-models’ objective loss is higher than a certain degree 9:

min  4(fo,(Z,y)) >0, wherei; € D, 5
peqnin o (@) i (5)
where D denotes the vulnerability overlap of all sub-models.

To reduce the vulnerability overlap of all sub-models, we only need to reduce objective loss of a
single model, which is equal to minimizing the loss of the best-performing sub-model, i.e.,

¢ (fo, (2%), y)) , (6)

{0, GIQHIHQM} E(Ly)ED <E9¢€{‘91,92,~'79M}

where 7% is the adversarial data generated by the sub-model fj,.

min
0;€{01,02,....00 }

While directly performing the outer minimization in Eq.(6) may cause a trivial solution (e.g., there is
only one optimized sub-model), for ease of the optimization of Eq.(6) (Corresponding to Lines 8-9
in Algorithm 1), we provide a surrogate objective as follows.

min (g, 9,,....00} E(e,y)eD (E‘%6{91,92,...,0M}ém(jai7y)) ; )

~ — #9i
where /,,(2%,7) = —oIn ij:l exp (M) and o > 0 is a pre-defined hyper-parameter.

In Eq.(7), we approximate the objective ming, (g, 0,,....0,,} ¢ ( fo; (&%), y) using a smooth surro-
gated maximum function due to

. ~0, 50, . ~0,
(%), y) — 6 - In(M) < .y) < (7). y) .
eje{ef%l?..,oM}é(f@J(x ),y) — 0 -In(M) < b, (& ),y)_eje{elrgg{_weM}ﬁ(feJ(x ),y) . (8)

The proof of Eq.(8) is in Appendix.
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Algorithm 2 Collaboration for Defending against Adversarial Attack (CDA?) (inference phase)

Input: the learned sub-models { fgi}?il with {gd,i}i]\il, test input .

1: for all sub-models fy,,i = 1, ..., M (in parallel) do

2: make label predictions p(z) = fp, (x) and output approximated PPD value g4, (x);
3: return prediction p(z) whose PPD value g4() is the highest among M sub-models.

The best-performing sub-model has the highest PPD. We show that a sub-model with the highest
PPD achieves the minimum of the objective loss among all sub-models, i.e., the best-performing
sub-model.

According to Bayesian theory, for a given input = in a K-class classification problem, the true
probability of the corresponding label p(x) = [p1(z), ..., px ()] is agnostic. Usually we assume
p(z) comes from a prior probability distribution, e.g., p(z) ~ Dir(a), where Dir(c) is the Dirichlet
distribution with the pre-defined parameter vector & = [avq, va, ..., i |. The prior probability density
function of Dir(a) is

a0 = S [T where B = L2al@) o Sh

p(z), ) = —— | | pi(z)™ where o) =""""———" o= o,
B(a) L1 T (ao) 2

where I'(-) denotes the Gamma function. According to the Bayesian views, when we learn the model

in a supervised manner, the label y happens n times after n observations given the data (z,y) € D.

Therefore, the posterior probability distribution is Dir(a’) where o’ = [a1, ...,y + 7, ..., x|, and

the posterior probability density (PPD) function is

1 5 _ _
PPD(p(z),a) = Bla) H p(x)* ™t py ()@, (10)
i=1,ity

where PPD corresponds to the likelihood of a given p(z) being the probability of the true label p(x).
In other words, the predictions p(z) from the sub-model fy, with a higher PPD is more likely to be
the true label probability. Therefore, we propose to use PPD to measure the quality of predictions.
In Eq.(10), when n (i.e., the number of posterior observations) is sufficiently large, p, (z)®v "1
becomes a dominant part; therefore, the value of PPD monotonically increases w.r.t. the value of
py(x). Consequently, we have the following proposition.

Proposition 2. Given an input x, the sub-model that has the highest PPD corresponds to the
best-performing sub-model, i.e.,

argmax PPD(fy,(z),a’) = argmin £((fg,(z),y). (11)

je{1,2,...,M} je{1,2,...M}

From Proposition 2, the PPD value can decide the best-performing sub-model. Given an input to the
collaboration, our dual-head structured sub-models can collaboratively decide the best-performing
sub-model by just comparing the values of the PPD head (corresponds to Algorithm 2). To learn
the PPD head, we could simply compare its output with the predicted probability on the true label
(i.e.,py(x)), then update the PPD head by gradient descent (corresponds to Lines 67 in Algorithm 1).

Note that the PPD head may be susceptible to adversarial attacks in the white-box setting. In our
implementation, we use a simple linear structure to regress the PPD value.

4 EXPERIMENTS

In this section, we provide a synthetic experiment to illustrate the behavior of our method compared
with prior ensemble methods. Then, we provide a series of experiments on a benchmark dataset to
verify the effectiveness of our method in defending against adversarial attacks.

4.1 EXPERIMENTAL SETUP

Following the work in (Yang et al., 2020a), we compare our method with various related methods,
including ADP (Pang et al., 2019), GAL (Kariyappa & Qureshi, 2019), DVERGE (Yang et al., 2020a).
We use ResNet-20 (He et al., 2016) as sub-models in all methods for fair comparisons, and we use
CIFARI10 as the data set, a classical image dataset (Krizhevsky et al., 2009) that has 50,000 training
images and 10,000 test images.
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4.2 SYNTHETIC DATA EXPERIMENTS

To demonstrate the behavior of collaboration, we apply our collaboration framework on the well-
known XOR problem as an example.

In XOR problem, there is a binary training set D = {z;,y;)},_,, where y; € {£1}. For the
samples with the label y; = 1, the input feature z is independently sampled from the two Gaussian

distributions € NM(p = [1,1],0 = 0.1 - Iz) and x € N(p = [-1,-1],0 = 0.1 - I5), where
N(p =[1,1],6 = 0.1 - I,) denotes 2-d Gaussian distribution with the mean vector p = [1, 1] and
covariance matrix o = 0.1 - I. For the samples with the label y; = —1, we sample the input feature

independently z; € N'(pp = [-1,1],0 =0.1- I) and z; € N (u = [1,-1],6 = 0.1 - I,).

Suppose there are two linear sub-models f1(z) = a; -« + by and f2(x) = as - 4 be. Ensemble
methods output a prediction p(x) by a voting-based strategy e.g., averaging the predictions as the

output, i.e., p(x) = = - M fo. ().

Collaboration aims to 1). minimize the mean square error (MSE) of the best-performing sub-models;
2). optimize the module g; and g5 to measure the quality of the multiple predictions during inference.
From Figure 4(a), learning multiple linear sub-models and averaging the predictions (ensemble)

averaging linear sub-models collaboration
> s oy=1 - y=0 = sub-model f; + y=1
- . + = sub-model f, y=0
1 TR T e 2
- + * * +
o~ + o~
x 0 x
N - - 0
-1 TP VN - -
W "
PO -
-2 -2
-2 -1 0 1 2 -2
X1
(a) ensemble (b) collaboration

Figure 4: Illustration of the behavior of the ensemble and the collaboration.

is still a linear model, so it cannot tackle XOR problem. Collaboration can address XOR which
classifies each sample by learning to specify the sub-tasks to different sub-models. From Figure 4(b),
the samples are assigned to two sub-models, in which the blue samples are assigned to f; and the
red samples are assigned to f. Finally, it output the prediction by identifying the best-performing
sub-models.

4.3 PERFORMANCE ON WHITE-BOX ATTACK

As there are mainly two threat modes in the adversarial attack setting: white-box attack and black-box
attack. White-box attack refers to that attackers know all the information about the models, including
training data, model architectures, and parameters, while black-box attackers have no access to the
information about the model’s structures and parameters and rely on surrogate models to generate
transferable adversarial examples.

We compare our method with baselines (GAL (Kariyappa & Qureshi, 2019), DVERGE (Yang et al.,
2020a) and ADP (Pang et al., 2019)) on defending white-box attacks using a subset of CIFAR10.
Following in the setting in Yang et al. (2020a), we use 50-step PGD with five random starts and
the step size of ¢/5 to attack all methods. In particular, we randomly select 1000 samples under
different e. For the PGD attack, we select the cross-entropy loss to update the perturbations to search
for adversarial samples. In addition to the accuracy under different €, we also report the performance
of all methods on clean data with the adversarial training in which € = 0.03.

Table 1: Robustness results (%) under white-box attack.

Mclean 0.01 0.02 0.03 0.04 0.05 0.06 0.07

GAL 81.2 495 314 254 227 184 134 90
DVERGE 79.7 673 523 41.1 299 225 142 100
ADP 854 677 529 408 30.8 258 234 203
CDA? 802 72.0 575 478 38.7 304 243 24.0
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From Table 1, CDA2 achieves a better robustness performance under white-box attack. The results
verify that collaboration significantly improves the utilization of the limited model capacity. Therefore,
CDA? can fit more adversarial data and has a relatively smaller vulnerable area.

4.4 PERFORMANCE ON BLACK-BOX ATTACK

Due to the transferability of adversarial examples, transfer adversaries can craft adversarial examples
based on surrogate models and perform an attack on the target model. In our experiments, we
follow the transfer attack setting in (Yang et al., 2020a) and select 1000 test samples randomly.
We select 1000 test samples randomly and use hold-out baseline ensembles with three ResNet-20
sub-models as the surrogate models to generate adversarial samples. In particular, we use three attack
methodologies: PGD with momentum (Dong et al., 2018), SGM (Wu et al., 2020a) which adds
weight to the gradient through the skip connections of the model, and M-FGSM (Xie et al., 2019)
which randomly augments the input images in each step. For each sample, three adversarial variants
are using the three attack methods. Only when the model can classify all kinds of adversarial variants
can the model successfully defend against adversarial attacks. We show the results of all methods
in Table 2. In our experiments, GAL is hard to optimize in adversarial training. From Table 2,

Table 2: Robustness results (%) under transfer attack.

\dsio.m 0.02 0.03 004 005 0.06 0.07
metho

GAL 65.1 499 49.7 473 534 51.1 422
ADP 85.6 830 793 790 696 604 574
DVERGE 834 80.1 773 724 719 688 662
CDA? 854 834 793 770 742 723 70.2

we show the transfer attack robustness of ensemble methods across a wide range of attack radius
0.01 < € < 0.07. When 0.01 < € < 0.04, CDA? achieves a comparable performance compared
with the SOTA method. With the increase of ¢, the volume of e-ball increases exponentially, the
performances of all methods get worse significantly because of insufficient model capacity. Since
CDA? addresses more adversarial data using a collaboration mechanism, it achieves a relatively
better robustness performance as 0.05 < e < 0.07.

In addition to transfer attack, query attack can also craft adversarial samples based on the predicted
scores of the model. To evaluate the robustness of of CDA? under query attack, we use Square
Attack method (Andriushchenko et al., 2020) to attack all method. Square Attack selects localized
square-shaped updates at random positions in each step (Andriushchenko et al., 2020). In particular,
we set € = 0.03 and learn the models for each method with adversarial training. Then we evaluate
the robustness of each method under Square Attack with 5000 iterations and the results are presented
in Table 3. From Table 3, CDA? outperforms the baselines under query attack. CDA? optimizes the
Table 3: Robustness results (%) under Square Attack.
method GAL ADP DVERGE CDA?
Acc(%) 25.0 472 48.5 53.0

utilization of the model capacity by specifying each sub-models to handle the "specific" adversarial
attacks, which defends against query attacks more efficiently.

5 CONCLUSION

In this paper, we study an essential question in the field of adversarial attacks that when we should
collaborate. (¢) If a single model can handle everything, there is no need for multiple models. (i)
If a single model can only handle a part of the whole, collaboration among multiple models makes
sense. Adversarial defense is a typical task that falls into the circumstance (i) because a single
model hardly fits adversarial data. We provided a collaboration framework—CDAZ—as the defense
strategy over ensemble methods, and empirical experiments indeed verified the efficacy of CDAZ2.
Future work includes applying our collaboration framework to other areas such as kernel methods,
fairness, and global federated model, etc.
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ETHICS STATEMENT

In this work, we investigate the robustness issue in deep neural networks (DNNs). We propose a
collaboration mechanism for reducing the vulnerability of existing DNNs to enhance their trustwor-
thiness. Having reading the codes of ethics, we make sure that our work conforms to them. In our
experiments, we use a public data set which complies with requirements.

REPRODUCIBILITY STATEMENT

Our instructions and experimental settings are illustrated in the maintext. For the theoretical results,
we provide rigorous analysis and detailed proofs in maintext and the appendix. For more experimental
results and the discussions about CDA? , please refer to the Appendix. The source code of our method
is attached in Appendix.

REFERENCES

Rima Alaifari, Giovanni S. Alberti, and Tandri Gauksson. Adef: an iterative algorithm to construct
adversarial deformations. In /CLR, 2019.

Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stanforth, and
Pushmeet Kohli. Are labels required for improving adversarial robustness? In NeurIPS, 2019.

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial
training. In NeurIPS, 2020.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack:
a query-efficient black-box adversarial attack via random search. In European Conference on
Computer Vision, pp. 484-501. Springer, 2020.

Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In ICML, 2018.

Mislav Balunovic and Martin Vechev. Adversarial training and provable defenses: Bridging the gap.
In ICLR, 2020a.

Mislav Balunovic and Martin T. Vechev. Adversarial training and provable defenses: Bridging the
gap. In ICLR, 2020b.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996.

Vivek B.S. and R. Venkatesh Babu. Single-step adversarial training with dropout scheduling. In
CVPR, 2020.

Qi-Zhi Cai, Chang Liu, and Dawn Song. Curriculum adversarial training. In IJCAI, 2018.

Nicholas Carlini and David A. Wagner. Adversarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, AlISec@CCS, 2017a.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. In
IEEE Symposium on Security and Privacy, SP, 2017b.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C. Duchi. Unlabeled data
improves adversarial robustness. In NeurIPS, 2019.

Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. Hopskipjumpattack: A query-efficient
decision-based attack. In IEEE Symposium on Security and Privacy, SP 2020, 2020a.

Kejiang Chen, Yuefeng Chen, Hang Zhou, Chuan Qin, Xiaofeng Mao, Weiming Zhang, and Nenghai
Yu. Adversarial examples detection beyond image space. In IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP, 2021a.

10



Under review as a conference paper at ICLR 2022

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. EAD: elastic-net attacks to
deep neural networks via adversarial examples. In AAAZ, 2018.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial
robustness: From self-supervised pre-training to fine-tuning. In CVPR, 2020b.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting
may be mitigated by properly learned smoothening. In /ICLR, 2021b.

Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Query-efficient
hard-label black-box attack: An optimization-based approach. In ICLR, 2019.

Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh.
Sign-opt: A query-efficient hard-label adversarial attack. In /CLR, 2020.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In ICML, 2017.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Detecting adversarial samples using influence
functions and nearest neighbors. In CVPR, 2020.

Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized
smoothing. In ICML, 2019.

Zac Cranko, Aditya Krishna Menon, Richard Nock, Cheng Soon Ong, Zhan Shi, and Christian J.
Walder. Monge blunts bayes: Hardness results for adversarial training. In ICML, 2019.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In /CML, 2020.

Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Mma training: Direct
input space margin maximization through adversarial training. In /CLR, 2020.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 9185-9193, 2018.

Yinpeng Dong, Zhijie Deng, Tianyu Pang, Jun Zhu, and Hang Su. Adversarial distributional training
for robust deep learning. In NeurIPS, 2020.

Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, and
Masashi Sugiyama. Learning diverse-structured networks for adversarial robustness. In Proceed-
ings of the 38th International Conference on Machine Learning, 2021.

Farzan Farnia, Jesse M. Zhang, and David Tse. Generalizable adversarial training via spectral
normalization. In /CLR, 2019.

Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In ICML, 1996.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale adversarial
training for vision-and-language representation learning. In NerIPS, 2020.

Ruigi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Jason D. Lee. Convergence of
adversarial training in overparametrized neural networks. In NeurIPS, 2019.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In NeurIPS, 2017.

11



Under review as a conference paper at ICLR 2022

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In CVPR, 2021.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87, 1991.

Sanjay Kariyappa and Moinuddin K Qureshi. Improving adversarial robustness of ensembles with
diversity training. arXiv preprint arXiv:1901.09981, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. In Symposium on Security and Privacy
(SP), 2019.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In NeurlIPS, 2018.

Huichen Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and Bo Li. QEBA: query-efficient boundary-
based blackbox attack. In CVPR, 2020a.

Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional filter
statistics. In ICCV, 2017.

Yan Li, Ethan X. Fang, Huan Xu, and Tuo Zhao. Implicit bias of gradient descent based adversarial
training on separable data. In /CLR, 2020b.

Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Siisstrunk. On the loss landscape
of adversarial training: Identifying challenges and how to overcome them. In NeurIPS, 2020.

Jiayang Liu, Weiming Zhang, Yiwei Zhang, Dongdong Hou, Yujia Liu, Hongyue Zha, and Nenghai
Yu. Detection based defense against adversarial examples from the steganalysis point of view. In
CVPR, 2019.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relationships
in multi-task learning with multi-gate mixture-of-experts. In SIGKDD, 2018a.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi N. R. Wijewickrema, Grant Schoenebeck,
Dawn Song, Michael E. Houle, and James Bailey. Characterizing adversarial subspaces using local
intrinsic dimensionality. In JCLR, 2018b.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In /CLR, 2018.

Mohammad Mehrabi, Adel Javanmard, Ryan A. Rossi, Anup B. Rao, and Tung Mai. Fundamental
tradeoffs in distributionally adversarial training. In /CML, 2021.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial
perturbations. In ICLR, 2017.

Matthew Mirman, Timon Gehr, and Martin T. Vechev. Differentiable abstract interpretation for
provably robust neural networks. In ICML, 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. In CVPR, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard. Robust-
ness via curvature regularization, and vice versa. In CVPR, 2019.

Konda Reddy Mopuri, Aditya Ganeshan, and R. Venkatesh Babu. Generalizable data-free objective
for crafting universal adversarial perturbations. IEEE Trans. Pattern Anal. Mach. Intell., 41(10):
2452-2465, 2019. doi: 10.1109/TPAMI.2018.2861800.

Amir Najafi, Shin-ichi Maeda, Masanori Koyama, and Takeru Miyato. Robustness to adversarial
perturbations in learning from incomplete data. In NeurIPS, 2019.

12



Under review as a conference paper at ICLR 2022

Preetum Nakkiran. Adversarial robustness may be at odds with simplicity. arXiv:1901.00532, 2019.

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial
examples. In NeurIPS, 2018.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via
promoting ensemble diversity. In ICML, 2019.

Tianyu Pang, Xiao Yang, Yinpeng Dong, Taufik Xu, Jun Zhu, and Hang Su. Boosting adversarial
training with hypersphere embedding. In NeurlIPS, 2020.

Tianyu Pang, Huishuai Zhang, Di He, Yinpeng Dong, Hang Su, Wei Chen, Jun Zhu, and Tie-Yan Liu.
Adpversarial training with rectified rejection. arXiv preprint arXiv:2105.14785, 2021.

Yao Qin, Nicholas Frosst, Sara Sabour, Colin Raffel, Garrison W. Cottrell, and Geoffrey E. Hinton.
Detecting and diagnosing adversarial images with class-conditional capsule reconstructions. In
ICLR, 2020.

Ali Rahmati, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Huaiyu Dai. Geoda: A
geometric framework for black-box adversarial attacks. In CVPR, 2020.

Leslie Rice, Eric Wong, and J Zico Kolter. Overfitting in adversarially robust deep learning. In ICML,
2020.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting
adversarial examples. In ICML, 2019.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. Adversarial training is a form of data-dependent
operator norm regularization. In NeurIPS, 2020.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In NeurIPS, 2019.

Fatemeh Sheikholeslami, Ali Lotfi, and J. Zico Kolter. Provably robust classification of adversarial
examples with detection. In /CLR, 2021.

Sahil Singla and Soheil Feizi. Second-order provable defenses against adversarial attacks. In ICML,
2020.

Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection.
In UAI, 2018.

Chuanbiao Song, Kun He, Liwei Wang, and John E. Hopcroft. Improving the generalization of
adversarial training with domain adaptation. In /CLR, 2019.

Chuanbiao Song, Kun He, Jiadong Lin, Liwei Wang, and John E. Hopcroft. Robust local features for
improving the generalization of adversarial training. In /CLR, 2020.

Philip Sperl, Ching-Yu Kao, Peng Chen, Xiao Lei, and Konstantin Bottinger. DLA: dense-layer-
analysis for adversarial example detection. In IEEE European Symposium on Security and Privacy,
EuroS&P, 2020.

Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and Venkatesh Babu R. Guided adversarial
attack for evaluating and enhancing adversarial defenses. In NeurIPS, 2020.

David Stutz, Matthias Hein, and Bernt Schiele. Confidence-calibrated adversarial training: Generaliz-
ing to unseen attacks. In /ICML, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In /CLR, 2014.

Jinyu Tian, Jiantao Zhou, Yuanman Li, and Jia Duan. Detecting adversarial examples from sensitivity
inconsistency of spatial-transform domain. In AAAI, 2021.

13



Under review as a conference paper at ICLR 2022

Shixin Tian, Guolei Yang, and Ying Cai. Detecting adversarial examples through image transforma-
tion. In AAAI 2018.

F Tramer, D Boneh, A Kurakin, I Goodfellow, N Papernot, and P McDaniel. Ensemble adversarial
training: Attacks and defenses. In ICLR, 2018.

Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations. In
NeurlPS, 2019.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-Margin training: Scalable certification
of perturbation invariance for deep neural networks. In NeurlIPS, 2018.

Haotao Wang, Tianlong Chen, Shupeng Gui, Ting-Kuei Hu, Ji Liu, and Zhangyang Wang. Once-
for-all adversarial training: In-situ tradeoff between robustness and accuracy for free. In NeurIPS,
2020a.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. In ICML, 2019.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In ICLR, 2020b.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach. In
ICLR, 2018.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In ICML, 2018.

Eric Wong, Frank R. Schmidt, and J. Zico Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations. In /CML, 2019.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. In
ICLR, 2020.

Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. Skip connections matter:
On the transferability of adversarial examples generated with resnets. In ICLR, 2020a.

Kaiwen Wu, Allen Houze Wang, and Yaoliang Yu. Stronger and faster wasserstein adversarial attacks.
In ICML, 2020b.

Xi Wu, Uyeong Jang, Jiefeng Chen, Lingjiao Chen, and Somesh Jha. Reinforcing adversarial
robustness using model confidence induced by adversarial training. In ICML, 2018.

Yuhang Wu, Sunpreet S. Arora, Yanhong Wu, and Hao Yang. Beating attackers at their own games:
Adversarial example detection using adversarial gradient directions. In AAAZ, 2021.

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially transformed
adversarial examples. In ICLR, 2018.

Kai Yuanqging Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, and Aleksander Madry.
Training for faster adversarial robustness verification via inducing relu stability. In /CLR, 2019.

Cihang Xie and Alan L. Yuille. Intriguing properties of adversarial training at scale. In /CLR, 2020.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
Improving transferability of adversarial examples with input diversity. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2730-2739, 2019.

Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V Le. Smooth adversarial training.
arXiv preprint arXiv:2006.14536, 2020.

Han Xu, Xiaorui Liu, Yaxin Li, Anil K. Jain, and Jiliang Tang. To be robust or to be fair: Towards
fairness in adversarial training. In ICML, 2021.

14



Under review as a conference paper at ICLR 2022

Hanshu Yan, Jingfeng Zhang, Gang Niu, Jiashi Feng, Vincent Tan, and Masashi Sugiyama. Cifs:
Improving adversarial robustness of cnns via channel-wise importance-based feature selection. In
ICML, 2021a.

Ziang Yan, Yiwen Guo, and Changshui Zhang. Deep defense: Training dnns with improved
adversarial robustness. In NeurIPS, 2018.

Ziang Yan, Yiwen Guo, Jian Liang, and Changshui Zhang. Policy-driven attack: Learning to query
for hard-label black-box adversarial examples. In /CLR, 2021b.

Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew Gardner, Andrew
Touchet, Wesley Wilkes, Heath Berry, and Hai Li. Dverge: Diversifying vulnerabilities for
enhanced robust generation of ensembles. In NeurIPS, 2020a.

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael 1. Jordan. ML-LOO:
detecting adversarial examples with feature attribution. In AAAI, 2020b.

Dong Yin, Kannan Ramchandran, and Peter L. Bartlett. Rademacher complexity for adversarially
robust generalization. In ICML, 2019.

Xuwang Yin and Soheil Kolouri Gustavo K. Rohde. GAT: generative adversarial training for
adversarial example detection and robust classification. In /CLR, 2020.

Yaodong Yu, Zitong Yang, Edgar Dobriban, Jacob Steinhardt, and Yi Ma. Understanding generaliza-
tion in adversarial training via the bias-variance decomposition. arXiv preprint arXiv:2103.09947,
2021a.

Yunrui Yu, Xitong Gao, and Cheng-Zhong Xu. LAFEAT: piercing through adversarial defenses with
latent features. In CVPR, 2021b.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. In NeurIPS, 2019a.

Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature scattering-based
adversarial training. In NeurIPS, pp. 1829-1839, 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In ICML, 2019b.

Huan Zhang, Hongge Chen, Zhao Song, Duane S. Boning, Inderjit S. Dhillon, and Cho-Jui Hsieh.
The limitations of adversarial training and the blind-spot attack. In ICLR, 2019c.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
ICLR, 2020a.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan S.
Kankanhalli. Attacks which do not kill training make adversarial learning stronger. In /ICML,
2020b.

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankanhalli.
Geometry-aware instance-reweighted adversarial training. In /CLR, 2021.

Yi Zhang, Orestis Plevrakis, Simon S. Du, Xingguo Li, Zhao Song, and Sanjeev Arora. Over-
parameterized adversarial training: An analysis overcoming the curse of dimensionality. In
NeurIPS, 2020c.

Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Efficient adversarial
training with transferable adversarial examples. In CVPR, 2020.

Tianhang Zheng, Changyou Chen, and Kui Ren. Distributionally adversarial attack. In AAAI 2019.

Difan Zou, Spencer Frei, and Quanquan Gu. Provable robustness of adversarial training for learning
halfspaces with noise. In /ICML, 2021.

15



Under review as a conference paper at ICLR 2022

A THEORETICAL PROOF
The proof of Eq.(8) is as follows.

Proof. Since we have

max exp <Wi‘97)’y)> S iexp (WM> S M~maxexp (W) ,

J g g J
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considering that —9 In(x) monotonically decreases w.r.t z, we have
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The proof of Proposition 2 is as follows.

Proof. The objective loss depends on the label probability (e.g., cross-entropy loss £ = — In p,(x)),
and the loss monotonically decreases with respect to p, (), so the best-performing sub-model has the
highest label probability. Combined the fact that PPD(p(x)) monotonically increases w.r.t. p, (z),
the best-performing sub-model corresponds to the highest PPD; therefore, Eq.(11) holds. O

B IMPLEMENTATION DETAILS

the design of the PPD head In our experiments, we use ResNet20 as our backbone model. For
the additional PPD head, we propose to use a one-layer MLP to model the relationship between
the prediction and its confidence. Our design of the PPD head is based on the following aspects:
1). convenient optimization; a simple model structure can be optimized easily and will not bring
a significant computation cost ; 2). robustness; a complex PPD head may be vulnerable to the
adversarial attack. Therefore, in our implementation, we choose to learn a simple PPD head for each
sub-model to improve its robustness.

Training devices We conduct all experiments on the device GeForce RTX 2080Ti.

C TRAINING COST ANALYSIS

Training cost is a notable issue. We compare the training cost of all methods from the two aspects; 1).
parameters and GFLOPs: all methods have the same model architecture (ResNet20), so all methods
have a similar number of parameters and GFLOps. Compared with baselines, our method has an
additional head (PPD head), which is a one-layer MLP with 128 parameters and has a negligible
computation cost; 2). training manner; all methods except DVERGE achieve adversarial training by
generating adversarial samples using PGD attack. The time consumption of all methods using the
device Geforce 2080Ti (100 epochs) is in Table 4.

Table 4: time consumption of all methods (100 epoches).

methods GAL DEVRGE ADP CDA?
time 6h36min 11h40min 6h35min 7h23 min

DVERGE distills non-robust features by computing transferable adversarial samples, which have
a O(IN?) time complexity in which N is the number of sub-models, so it has a relatively large time
consumption. Our method outperforms baselines by training an additional PPD head and it could
cause an additional small time consumption as shown in the above table.
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D MORE EXPERIMENTAL RESULTS

For the transfer attack, we also use a more challenging setting following the work in (Yang et al.,
2020a). For the attack methods, we use PGD with momentum (Dong et al., 2018) with three random
starts, M-FGSM (Xie et al., 2019) and SGM (Wu et al., 2020a). We use hold-out baseline models
with 3, 5, and 8 ResNet-20 sub-models as the surrogate models. Meanwhile, we generate adversarial
samples with cross-entropy loss and CW loss (Carlini & Wagner, 2017b). For each sample, we
generate 30 adversarial variants, and only if the model classifies all the 30 variants can the model
defend the transfer attack successfully. The results are shown in the following Table. From Table 5,
CDA? outperforms baselines as 0.01 < ¢.

Table 5: Robustness results (%) under transfer attack with 30 adversarial variants.

\(ﬂio.m 0.02 0.03 004 005 0.06 0.07
metho

GAL 57.8 64.1 463 560 439 445 414
ADP 84.2 80.1 739 696 653 560 60.7
DVERGE 81.5 781 735 684 672 638 57.1
CDA? 832 804 750 710 691 628 614

E MORE DISCUSSION ABOUT THE COLLABORATION

E.1 MODEL CAPACITY AND COLLABORATION

A model with sufficient capacity to cover all cases does not need to collaborate with others. To verify
this claim, we conduct experiments using the ResNet model with different depths and show the clean
accuracy (%) of single/multiple models in the following table.

Table 6: the accuracy using different model structures

depth 2 8 14 20
single model 65.0 883 90.5 919
collaboration 67.0 89.5 91.6 925

gain 2.0 1.2 09 06

From the Table 6, with the depth 2, the model has the insufficient model capacity to learn the feature
extractor, collaboration can have a relatively large improvement (2.0). As the depth of the model is
20, the model has sufficient model capacity to fit all data samples. Collaboration achieves a slight
improvement compared with a single model (0.6).

Compared with standard training, adversarial data are adaptively changed based on the current model
to smooth the natural data’s local neighborhoods. The volume of these surroundings is exponentially
large. The model often encounters insufficient model capacity especially when there is a relatively
large € ball. Therefore, it is urgent to improve the utilization of the capacity for adversarial training.

E.2 COLLABORATION WITH S SINGLE BIG MODEL

advantages of the collaboration Compared with collaboration, a single big model may be difficult
to fit the adversarial data. For a big single model with a deeper structure, it may face gradient vanish
or gradient explosion during optimization. Without a well-designed optimization method, it could be
more vulnerable to an imperceptible perturbation compared to a simple model. The collaboration
alleviates this problem by learning multiple relatively small models.

disadvantages of the collaboration A single big model may be a direct solution for address-
ing insufficient capacity in adversarial training. Compared with learning a single big model, the
collaboration needs to design a complicated mechanism to improve the utilization of the model
capacity.
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E.3 COLLABORATION IN ADVERSARIAL TRAINING CAN AVOID A TRIVIAL OPTIMIZATION

As our proposed collaboration mechanism enhances the performance of the best-performing sub-
model. One may wonder whether it obtains a trivial case, e.g., only one sub-model is properly trained.
In fact, our collaboration will not bring such a trivial case. Fitting the adversarial data consumes a
tremendous model capacity so the model usually cannot fit all adversarial samples. For a learned
sub-model, there still exist adversarial samples that cannot handle. From our proposed collaboration
mechanism, these adversarial samples generated from a learned sub-model are more likely to be
assigned to other sub-models which perform better. Therefore, in our collaboration, all sub-models
will be trained.

Table 7: the accuracy (%) on the clean data

CDA? sub-model A sub-model B sub-model A
85.6 83.9 84.2 83.9

To experimentally verify this claim, we present the accuracies on clean data of all three sub-models
with adversarial training (¢ = 0.02) in the Table 7. From the Table 7, all sub-models have a similar
performance on the clean data.
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