
Automated Knowledge Component Generation and
Knowledge Tracing for Coding Problems

Anonymous ACL submission

Abstract001

Knowledge components (KCs) mapped to prob-002
lems help model student learning, tracking their003
mastery levels on fine-grained skills thereby fa-004
cilitating personalized learning and feedback005
in online learning platforms. However, craft-006
ing and tagging KCs to problems, tradition-007
ally performed by human domain experts, is008
highly labor-intensive. We present a fully au-009
tomated, LLM-based pipeline for KC genera-010
tion and tagging for open-ended programming011
problems. We also develop an LLM-based012
knowledge tracing (KT) framework to leverage013
these LLM-generated KCs, which we refer to014
as KCGen-KT. We conduct extensive quantita-015
tive and qualitative evaluations on a real-world016
student code submission dataset. We find that017
KCGen-KT outperforms existing KT methods018
and human-written KCs on future student re-019
sponse prediction. We investigate the learning020
curves of generated KCs and show that LLM-021
generated KCs result in a better fit than human-022
written KCs under a cognitive model. We also023
conduct a human evaluation with course in-024
structors to show that our pipeline generates025
reasonably accurate problem-KC mappings.026

1 Introduction027

In student modeling, an important task is to map028

problems (or items or questions) to specific skills029

or concepts, referred to as knowledge components030

(KCs). KCs provide an invaluable resource to031

model student learning (Bier et al., 2014), estimat-032

ing their mastery levels (Corbett and Anderson,033

1994) on fine-grained units of knowledge. Accu-034

rately estimating student mastery levels on KCs035

helps enable both 1) teacher feedback, by showing036

this information in teacher dashboards, and 2) adap-037

tive and personalized learning in online learning038

platforms or intelligent tutoring systems (Huang039

et al., 2020), by tailoring instructions and content040

sequencing according to student knowledge lev-041

els. Identifying fine-grained KCs students strug-042

gle (Rivers et al., 2016) with also enables content 043

designers to develop targeted instructional content 044

and practice problems for students. 045

KCs are typically crafted by human domain ex- 046

perts, who also tag problems with KCs that stu- 047

dents need to master to solve the problem correctly. 048

This process can be highly labor-intensive, prone 049

to bias and errors, and may not be scalable. There 050

exist solutions to automate parts of this process 051

using Natural Language Processing (NLP) tools, 052

usually employing classification algorithms (Par- 053

dos and Dadu, 2017), to tag KCs to problems, 054

which relies on having a predefined set of KCs. Re- 055

cent advances in Large Language Models (LLMs) 056

have shown potential in developing automated ap- 057

proaches for KC identification in addition to tag- 058

ging, in domains such as math (Ozyurt et al., 2024) 059

and science (Moore et al., 2024). Automatically 060

generating KCs is challenging since KCs need to 061

satisfy various criteria including being relevant to 062

problems, being specific enough to provide teacher 063

and student support, and being generalizable across 064

settings. Another important aspect is that they need 065

to satisfy cognitive science principles, i.e., student 066

error rates on a KC should decrease as they attempt 067

it more times, according to the power law of prac- 068

tice (Snoddy, 1926). 069

Unlike other domains, generating KCs for open- 070

ended programming problems that are common 071

in the domain of computer science education has 072

unique challenges. Writing code is inherently non- 073

linear, with complex interactions between program- 074

ming concepts and skills, and requires students to 075

construct functioning code from scratch. More- 076

over, a programming problem can often have multi- 077

ple valid solutions using different strategies, which 078

may cover different sets of KCs. Prior work (Hos- 079

seini and Brusilovsky, 2013) uses a Java parser to 080

convert a solution program into an Abstract Syntax 081

Tree (AST) and reports ontological concepts at the 082

lowest level as KCs. LLMs, with their advanced 083

1

Problem: The number 6 is a truly great number. Given two int values, a and b, return true if either one is 6. Or
if their sum or difference is 6. Note: the function Math.abs(num) computes the absolute value of a number.

Representative Solution Code Generated KCs Human-written KCs
public boolean love6(int a, int b){

if (a == 6 || b == 6){
return true;

}
else if ((a + b) == 6 || Math.abs(a - b) == 6)
{

return true;
}
else{

return false;
}

}

If and else if statement If/Else
Basic arithmetic operations Math (+− ∗/)
Logical operators LogicAndNotOr
Numerical comparisons LogicCompare
Absolute value computation

Table 1: Example programming problem from the CodeWorkout dataset with a sample student solution code,
comparing KCs generated by our KCGen-KT framework to human-written KCs.

programming and reasoning abilities, are yet to be084

tested for automated KC generation and tagging085

for programming problems. Other recent works086

(de Alencar et al., 2025) use AST root nodes in087

student code submissions as KCs and show that088

these KCs lead to good learning curve fit under089

student models (Pavlik et al., 2009). Due to spatial090

constraints, see Section A in the Appendix for a091

more detailed review of related work.092

1.1 Contributions093

In this paper, we explore using LLMs to automati-094

cally generate KCs for open-ended programming095

problems. We also develop an LLM-based knowl-096

edge tracing (KT) framework to leverage these097

LLM-generated KCs, which we refer to as KCGen-098

KT1. Our contributions are summarized as follows:099

1. We develop a fully automated, LLM-based100

pipeline for KC generation and tagging. We101

first select a diverse set of representative stu-102

dent code submissions to each problem and103

then prompt GPT-4o (OpenAI, 2024), an ad-104

vanced, proprietary LLM, to identify KCs that105

are required to solve the problem. Then, to ag-106

gregate KCs across problems and de-duplicate107

similar ones, we cluster KCs on semantic sim-108

ilarity, followed by summarizing each cluster109

into a KC description. Finally, we automati-110

cally tag problems with KCs according to the111

clustering results. Table 1 shows an example112

problem with the set of LLM-generated KCs.113

2. We develop an LLM-based KT method to114

leverage the textual descriptions of the gener-115

ated KCs for the KT task. Our method explic-116

itly captures student mastery levels on each117

KC and is thus interpretable, while also pre-118

dicting both the actual student code submis-119

sion and its correctness.120
1We will make our code publicly available.

3. We conduct an extensive quantitative and 121

qualitative evaluation on the CodeWorkout 122

dataset (DataShop, 2021) that contains real- 123

world student code submissions to open-ended 124

programming problems. Results show that 125

KCGen-KT outperforms existing KT methods 126

and human-written KCs on predicting future 127

student performance. We also investigate the 128

learning curves for these KCs and show that 129

LLM-generated KCs have a comparable level 130

of fit to human-written KCs under the perfor- 131

mance factor analysis model. We also conduct 132

a human evaluation to show that the KC tag- 133

ging accuracy of our pipeline is reasonably 134

accurate to human instructors. 135

2 Methodology 136

We now detail our automated LLM-based approach 137

to generate KCs for programming problems, and 138

then introduce KCGen-KT, a strong KT method 139

leveraging the semantics of the generated KCs to 140

improve student performance prediction. 141

2.1 Automated KC Generation 142

For KC generation, we use GPT-4o (OpenAI, 143

2024), an advanced proprietary LLM with strong 144

reasoning and programming abilities. Illustrated 145

in Figure 1, we generate KCs for a programming 146

problem following 3 key steps: 1) generating KCs 147

associated with each problem and their descriptions 148

separately through few-shot prompting, 2) cluster 149

KCs across all problems, and 3) summarizing each 150

cluster to obtain a finalized description of each KC. 151

We detail these steps below. 152

Initial KC Generation For each programming 153

problem, we prompt GPT-4o in a chain-of-thought 154

manner, to generate a list of KCs that capture the 155

underlying skills or concepts necessary to solve 156

the problem. We also include a few carefully con- 157

structed in-context examples in our prompt as few- 158

2

Figure 1: Illustration of our three-step automated KC generation and tagging pipeline.

shot demonstrations. We prompt GPT-4o to convert159

human-written topic tags, such as “If-else”, from160

the CodeWorkout dataset into more fine-granular161

natural language descriptions, and use them as the162

in-context examples. We instruct the model to rea-163

son step-by-step: to first identify why a particular164

KC is relevant to the problem, and then generate165

a clear textual description of the KC. To help the166

LLM better understand what is required to solve a167

problem, we include correct student submissions as168

examples in the prompt. Since programming prob-169

lems can often be solved in multiple valid ways, we170

include diverse examples to ensure comprehensive171

coverage of relevant KCs. Therefore, we apply a172

clustering algorithm to the CodeBERT (Feng et al.,173

2020) embeddings of all correct student submis-174

sions and sample one per cluster, with the number175

of clusters controlling the diversity of examples.176

Empirically, we find that this approach yields fine-177

grained, function-level KC descriptions. See Ap-178

pendix E for the exact prompt used for all steps in179

our KC generation pipeline.180

Clustering KCs and Controlling Abstraction181

Level The KCs generated for each problem are182

initially fine-grained, often describing specific183

function-level skills or concepts. To control the184

level of abstraction and obtain more generalizable185

KC descriptions, we first compute the Sentence-186

BERT (Reimers and Gurevych, 2019) embedding187

of the textual description of each KC, then apply188

Hierarchical Agglomerative Clustering (HAC) us-189

ing cosine similarity as the distance function. By190

adjusting the number of clusters, we can flexibly191

merge semantically similar KCs into broader cate-192

gories, effectively controlling the abstraction level193

of our KC descriptions. This clustering process en-194

ables us to move from detailed skill-level descrip-195

tions to higher-level conceptual groupings, aligning196

the KCs with different pedagogical or analytical197

goals depending on the downstream application.198

Labeling KC Clusters Finally, we label each KC199

cluster by prompting GPT-4o to generate a sin-200

gle, informative name that represents the cluster.201

We use a chain-of-thought prompt that guides the202

model to first reason whether any KC in the cluster 203

can represent the entire group. If such a KC exists, 204

it is selected as the cluster label; otherwise, the 205

model is instructed to synthesize a concise descrip- 206

tion that captures the shared meaning of KCs in 207

the cluster. This process yields a final set of gen- 208

erated KCs across problems at the desired level of 209

abstraction. As a final step, we obtain problem-KC 210

mappings, i.e., a Q-matrix (Barnes, 2005), by map- 211

ping each initially generated KC for each problem 212

to its corresponding summarized cluster label. 213

2.2 Improving Knowledge Tracing via 214

LLM-generated KCs 215

We now detail KCGen-KT, a novel LLM-based KT 216

method that exploits KC semantics and explicitly 217

models student mastery levels on each KC. 218

KT Problem Formulation For open-ended pro- 219

gramming problems, we define each student re- 220

sponse to a problem as xt := (pt, {wi
t}, ct, at), 221

where pt is the textual statement of the problem, 222

{wi
t} are the KCs associated with the problem, ct is 223

the student code submission, and at is the correct- 224

ness of the submission; in most existing KT meth- 225

ods, at is treated as binary-valued (correct/incor- 226

rect). Therefore, our goal is to estimate a student’s 227

mastery level of each KC given their past responses, 228

x0, . . . , xt, and use this estimate to predict both 1) 229

the overall binary-valued correctness at+1 ∈ {0, 1} 230

and 2) the open-ended code ct+1 submitted by the 231

student on their next attempted problem pt+1. Fol- 232

lowing previous work (Shi et al., 2022), at = 1 233

if the student-submitted code passes all test cases 234

associated with the problem, and at = 0 otherwise. 235

KCGen-KT KCGen-KT leverages the KCs associ- 236

ated with a problem in two ways: 1) by improving 237

the problem representation using the semantic in- 238

formation of KCs, and 2) by improving the student 239

representation by building an interpretable student 240

profile modeling student mastery levels on KCs. 241

Following TIKTOC (Duan et al., 2025), we use 242

an open-source LLM, Llama 3 (Llama Team, 2024), 243

as the backbone to predict both the overall correct- 244

ness and actual open-ended student code in a token- 245

3

Figure 2: Overview of our KCGen-KT’s model with the Llama 3 LLM as the backbone. KCGen-KT leverages KC
semantics, tracking student mastery levels on each KC, to predict both correctness and the student code submission.

by-token manner, in a multi-task learning approach.246

KCGen-KT differs from OKT (Liu et al., 2022) by247

leveraging the content of the KCs, and from Code-248

DKT (Shi et al., 2022) by using text embedding249

methods to embed the textual problem statement.250

Student Knowledge on KCs For each student,251

at each timestep t, KCGen-KT updates the stu-252

dent’s 512-dimensional knowledge state vector253

h ∈ R512, through a long short-term memory254

(LSTM) (Hochreiter and Schmidhuber, 1997) net-255

work as in DKT (Piech et al., 2015), given by256

ht = LSTM(ht−1, pt, ct). This knowledge state257

ht is compressed into a k-dimensional mastery vec-258

tor mt ∈ [0, 1]k, where k is the total number of259

KCs, through a linear layer with weights Wm and260

bias bm, followed by a sigmoid function to map the261

values of mt to be in the range of [0, 1], given by262

mt = σ(Wmht + bm). Each dimension j of mt263

denotes a student’s mastery level on the jth unique264

KC, with larger values denoting higher mastery.265

Predictions To use LLMs to predict the student266

response to the next problem, we need to connect267

student KC knowledge with the textual input space268

of LLMs. Therefore, following previous work (Fer-269

nandez et al., 2024; Liu et al., 2023), we transform270

KC mastery levels into soft text tokens, i.e.,271

sjt = mj
t · embtrue + (1−mj

t) · embfalse,272

where embtrue and embfalse are the embeddings of273

the text tokens “true”, and “false”, respectively. In274

other words, we use student KC mastery levels mj
t275

to combine two hard, discrete text tokens (“true”276

and “false”) into a differentiable soft token sjt , to277

enable the flow of gradients during training. We278

pass this student knowledge information using the279

input format of KC 1: <w1>. The student’s280

mastery level on <w1> is: s1t into the281

LLM for prediction tasks.282

Knowledge-Guided Response Prediction We con-283

struct our LLM prompt for the next response pre-284

diction by including both 1) the textual statement of285

the next problem and 2) student mastery levels on 286

the KCs associated with the problem, as question: 287

pt. <KCs with student mastery levels>. 288

To predict the binary-valued correctness of the 289

next student response, we average the hidden states 290

of the last layer of Llama 3 that correspond to only 291

the input (knowledge-guided prompt) to obtain a 292

representation r, transformed for correctness pre- 293

diction using a linear transformation matrix Wp 294

and a sigmoid function, given by ât+1 = σ(Wp ·r). 295

We minimize the binary cross entropy (BCE) loss 296

(for one response): 297

LCorrPred=at+1·log ât+1+(1−at+1)·log(1−ât+1). 298

To predict student code, we feed the knowledge- 299

guided prompt into Llama 3 to generate the pre- 300

dicted code ĉ token-by-token. We minimize 301

LCodeGen =
∑N

n=1− logPθ

(
ĉn

∣∣∣ p, j, {ĉn′}n−1
n′=1

)
, 302

where N is the number of tokens in the student 303

code. θ denotes the set of learnable parameters, 304

which includes the KT model, the linear layer with 305

weights Wm and bias bm for student mastery levels, 306

and the parameters of the finetuned Llama 3. 307

Promoting Interpretability To promote inter- 308

pretability of the student KC knowledge param- 309

eters, we use a compensatory model (Maier et al., 310

2021) and take the average of individual student 311

KC mastery levels to obtain an overall mastery 312

level ŷt+1 =
1∑K

k=1 I(wk)

∑K
k=1m

k
t · I(wk), where 313

the indicator function I(wk) is 1 if the KC wk is as- 314

sociated with the problem, and 0 otherwise. Empir- 315

ically, we found that averaging over KC masteries 316

performed better than taking a product over them, 317

consistent with findings in prior work (Maier et al., 318

2021). We then minimize the BCE loss between 319

this overall KC mastery level for this problem and 320

its binary-valued correctness, 321

LKC = at+1 · log ŷt+1+(1−at+1) · log(1− ŷt+1). 322

4

This loss regularizes the model to be monotonic,323

i.e., high knowledge on KCs corresponds to a high324

probability of a correct response, thus promoting325

the interpretability of mj
t .326

Multi-task Learning Objective Following previ-327

ous work (Duan et al., 2025) showing multiple328

objectives in KT are mutually beneficial to each329

other, our final multi-task training objective min-330

imizes a combination of all three losses together,331

with a balancing parameter λ ∈ [0, 1] controlling332

the importance of the losses, as333

LKCGen-KT = λ(LCodeGen+LCorrPred)+(1−λ)LKC,334

where losses are averaged over code submissions335

by all students to all problems.336

3 Experimental Evaluation337

We now detail our quantitative experimental set-338

tings to evaluate KCGen-KT on future student code339

submission correctness prediction.340

Dataset Details The CodeWorkout (DataShop,341

2021) dataset was first used in the Second CSEDM342

Data Challenge (Challenge Organizers, 2021) and343

contains actual open-ended code submissions from344

real students, collected from an introductory Java345

programming course, together with problem textual346

statements and human-written KC tags (estimated347

programming concepts) on each problem. In to-348

tal, there are 246 students attempting 50 problems349

covering various programming concepts including350

conditionals, and loops, among others. Following351

prior work (Shi et al., 2022), we only analyze stu-352

dents’ first submissions to each problem, leading353

to a total of 10, 834 code submissions.354

Metrics For the binary-valued correctness predic-355

tion task, following (Shi et al., 2022), we use stan-356

dard metrics such as AUC, accuracy, and F1 score.357

For the student code prediction task, following (Liu358

et al., 2022), we measure the similarity between359

generated student code and ground-truth student360

code using CodeBLEU (Ren et al., 2020), a variant361

of the classic text similarity metric BLEU (Papineni362

et al., 2002). This metric is customized for code363

and measures both syntactic and semantic similar-364

ity between two pieces of code.365

Baselines In terms of KCs, we compare our gener-366

ated KCs against human-written KCs that are avail-367

able in the CodeWorkout dataset. We test a version368

of KCGen-KT by replacing our LLM-generated369

KCs with human-written KCs and keeping the KT370

method unchanged, which we refer to as KCGen- 371

KT (Human-written KCs). In terms of KT meth- 372

ods, we adapt Test case-Informed Knowledge Trac- 373

ing for Open-ended Coding (TIKTOC) (Duan et al., 374

2025), a recent, strong KT method for program- 375

ming, as the main baseline. TIKTOC also uses 376

Llama 3 as the backbone and a multi-task learning 377

setup to jointly predict the exact code token-by- 378

token and whether it passes each test case. We 379

slightly modify it for our KT task, replacing test 380

case prediction with overall code correctness pre- 381

diction, by reducing the dimension of the predic- 382

tion head from the number of test cases to one, for 383

overall correctness prediction only. We refer to 384

the resulting method as TIKTOC*. We also use 385

Code-DKT, a popular KT method for program- 386

ming that leverages the content of student code, 387

to predict the overall correctness of student code 388

submissions. As a sanity check, to estimate a lower 389

bound of performance on our KT task thereby pro- 390

viding a sense of task difficulty, we include two 391

simple baselines: Random, which simply predicts 392

the overall binary-valued correctness of a student 393

code randomly with equal probability, and Major- 394

ity, which simply predicts the majority correctness 395

label (incorrect) among students for each problem. 396

Experimental Setup For the KT method compo- 397

nent of KCGen-KT as well as for all KT baselines, 398

to ensure a fair comparison, we use the instruction- 399

tuned version of Llama 3 (Llama Team, 2024) 400

with 8B parameters as the base LLM and a frozen 401

ASTNN (Zhang et al., 2019) as the code embedding 402

model. See Appendix B for detailed parameter set- 403

tings. We repeat our experiments across 5 random 404

train-validation-test data splits. 405

4 Results, Analysis, and Discussion 406

We now discuss our quantitative evaluation results 407

and qualitatively analyze the estimated student KC 408

mastery levels and predicted code. We also ana- 409

lyze the learning curves, conduct an ablation study, 410

and investigate the characteristics of KCs across 411

different levels of abstraction. 412

4.1 Quantitative Evaluation 413

KCGen-KT outperforms baselines Table 2 shows 414

the average performance (and standard deviation) 415

on our two KT tasks: binary correctness predic- 416

tion and student code generation for all methods. 417

For KCGen-KT, we report results using the best- 418

performing configuration, which generates 60 KCs 419

5

Model
KT Correctness Pred. Code Pred.

AUC ↑ F1 Score ↑ Accuracy ↑ CodeBLEU ↑

Random 0.499 0.368 0.506 −
Majority 0.500 0.644 0.526 −
Code-DKT (Shi et al., 2022) 0.766±1.8% 0.672±3.3% 0.724±1.0% −
TIKTOC* (Duan et al., 2025) 0.788±1.3% 0.666±3.0% 0.726±1.3% 0.507±1.5%

KCGen-KT(Human-written KCs) 0.797±1.6% 0.706±2.6% 0.727±2.0% 0.557±2.8%

KCGen-KT(Generated KCs) 0.816±1.2% 0.727±2.7% 0.746±1.2% 0.580±1.8%

Table 2: Comparing KCGen-KT against baselines on KT performance across all metrics. KCGen-KT, especially with
LLM-generated KCs, outperforms other KT methods. Best performance is in bold and second best is underlined.

after clustering, based on 5 student submissions420

per problem. We see that the Random and Major-421

ity baselines perform poorly, which suggests that422

the correctness prediction KT task is inherently423

difficult. Our proposed framework, KCGen-KT424

with either human-written or generated KCs, out-425

performs other strong KT methods that do not use426

KCs, including TITKOC* and Code-DKT. This427

observation suggests that for KT methods that use428

LLMs as the backbone, leveraging the semantic429

information in KC descriptions improves KT per-430

formance. More importantly, KCGen-KT with our431

generated KCs outperforms human-written KCs,432

by a consistent margin on both tasks, with statis-433

tical significance (p < 0.05). This observation434

shows that high-quality KC descriptions and accu-435

rate tagging are key to improving downstream KT436

performance. The performance gap is more evident437

in code prediction, which shows that semantically438

informative KCs, as evident from Table 1, are es-439

pecially important to LLMs in generative tasks.440

Less Fine-grained KCs hurt performance To in-441

vestigate the impact of KC granularity on model442

performance, we experiment with three levels of443

abstraction. We consider the 103 unique KCs gen-444

erated by the first step of our pipeline, before clus-445

tering, as the most fine-grained (low-level) repre-446

sentation. We then apply the clustering algorithm447

with the number of clusters equal to 60 and 10448

to get two other KC sets with medium and high449

abstraction levels. As the number of clusters de-450

creases, the resulting KC sets become increasingly451

abstract, forming a hierarchy of representations.452

We evaluate KCGen-KT’s performance using these453

three KC sets. Table 3 shows that the highest ab-454

straction level yields the lowest performance across455

all metrics on both tasks. In contrast, medium and456

low abstraction levels achieve comparable perfor-457

mance, which justifies our choice of using 60 KCs458

with medium-level abstraction. These results also459

suggest that overly abstract KCs may not pinpoint460

the necessary skills in a problem, underscoring the 461

importance of having sufficient granularity in KCs 462

for downstream student modeling tasks. 463

KC Abstraction Level AUC F1 Acc CodeBLEU
Low 0.815 0.726 0.737 0.572
Medium 0.816 0.727 0.746 0.580
High 0.794 0.683 0.708 0.557

Table 3: Comparing different KC abstraction levels. SD
omitted due to spatial constraints. Best performance is
in bold and second best is underlined.

Ablation Study We conduct an ablation study 464

among all components of KCGen-KT. We find that 465

including correct student submissions is crucial; 466

removing it results in a noticeable performance de- 467

crease. We also explore the impact of using LLM- 468

generated solutions and switching submissions to 469

AST representation. See Appendix C for details. 470

4.2 Qualitative Evaluation 471

Case Study Table 4 shows the estimated KC mas- 472

tery levels and predicted code submission for a 473

student on a problem in the test set. The low stu- 474

dent mastery level on KCs “For loop iteration” and 475

“Array indexing and assignment” results in a run 476

time error in the predicted code by indexing the 477

array outside of its bounds. In contrast, the higher 478

predicted mastery level of other KCs results in the 479

correct implementation of the if and else if state- 480

ments, proper use of boolean expressions, and accu- 481

rate application of the logical AND operator. This 482

example shows that informative KC descriptions 483

generated by the LLM can help KCGen-KT make 484

more accurate student code predictions. In practice, 485

the predicted mastery level may offer instructors in- 486

terpretable insights into the student’s understanding 487

of specific programming concepts. 488

Learning Curve Analysis A common method to 489

assess the quality of KCs is examining how well 490

they match cognitive theory; the expected pattern 491

on the KCs should follow the power law of prac- 492

tice, which states that the number of errors should 493

6

Problem: Given an array of ints, return true if the array contains two 7s next to each other, or there are
two 7s separated by one element, such as with {7, 1, 7}. Otherwise, return false.

Predicted Student Code Submission LLM-generated KC Mastery
public boolean has77(int[] nums){

for (int i = 0; i < nums.length - 1; i++){
if (nums[i] == 7 && nums[i + 1] == 7){

return true;
}
else if (nums[i] == 7 && nums[i + 2] == 7){

return true;
}

}
return false;

}

For loop iteration 26.1%
Array indexing and assignment 28.1%
Boolean logic 51.9%
Logical operators 57.6%
Numerical comparisons 59.9%
If and else if statement 74.4%

Table 4: Example showing low student knowledge on relevant KCs map to specific errors in predicted student code.

decrease as the amount of practice on certain KCs494

increases (Newell and Rosenbloom, 2013; Snoddy,495

1926). Hence, we compare the error rate across496

different attempts at KCs and the estimated student497

KC mastery levels from KCGen-KT. For this ex-498

periment, we prompt GPT-4o to label whether each499

student submission contains an error on each KC.500

For all incorrect student submissions, we provide501

the problem statement, the associated KCs, and502

the student code, and prompt GPT-4o to (1) reason503

about the errors, (2) generate a corrected version of504

the code, and (3) assign a binary correctness label505

to each KC, indicating whether the student made506

an error on this KC in their submission (See Ap-507

pendix E for the exact prompt). We acknowledge508

that although we find this process to be empirically509

accurate, a formal validation is necessary to verify510

the accuracy of the KC-level correctness labels.511

To plot the curves, at attempt t, we average the512

binary correctness label (where we use 1 as incor-513

rect) over all students on the problem that repre-514

sents their t-th attempt at the KC. We also calculate515

the predicted error rate similarly, using KCGen-KT516

to estimate the mastery level of each student on517

each KC at each time step and taking the comple-518

ment.519

Figure 3 shows three representative learning520

curves among all LLM-generated KCs. In all521

cases, both the ground truth and predicted error522

rate curves exhibit a general decreasing trend as523

the number of attempts increases, consistent with524

the power law of practice. The first predicted525

learning curve closely aligns with the ground truth,526

demonstrating KCGen-KT’s ability to accurately527

capture student learning progressions. The second528

predicted learning curve matches the ground truth529

error rates in trend, but has higher overall values.530

The third curve further exacerbates this discrep-531

ancy, for a KC that appears more frequently in532

the dataset. The ground truth error rates decrease533

overall but have significant fluctuation, making it534

difficult to fit the predicted learning curve. The 535

likely reason is that students attempt problems in 536

different orders in the CodeWorkout dataset, with 537

some students skipping certain questions; this vari- 538

ation means that the same attempt may correspond 539

to questions with different difficulties across stu- 540

dents, making the average error rate noisy. For a 541

more quantitative evaluation, we follow prior work 542

(Pavlik et al., 2009) and fit PFA models on each 543

KC. Results show that the weighted R2 metric us- 544

ing the LLM-generated KCs is 0.21, and using the 545

human-written KCs is 0.18. Therefore, the LLM- 546

generated KCs fit the power law of practice slightly 547

better compared to human-written KCs. 548

KC Ontologies We show a portion of the KC ontol- 549

ogy subtree obtained from KCGen-KT, for string- 550

related concepts, in Figure 4. The root node shows 551

the KC at the highest abstraction level; going down 552

the tree from there, we see how the KCs identified 553

increase in granularity at each level. To build the 554

ontology tree, we start from the top-level KC and 555

identify all KC labels from the next level that are 556

semantically included in it, and do it iteratively for 557

all KCs. This mapping defines the parent-child rela- 558

tionships between KCs across different abstraction 559

levels. This example demonstrates the controllable 560

abstraction property of our KC generation pipeline, 561

where adjusting the number of clusters directly con- 562

trols the granularity of the generated KCs. 563

5 Human Evaluation 564

We perform a human evaluation to assess the qual- 565

ity of the generated KCs and the accuracy of 566

problem-KC mappings on a sample of 30 questions. 567

We recruit 5 annotators with experience in teaching 568

college-level programming. To evaluate KC qual- 569

ity, we show annotators both LLM-generated KCs 570

and baseline human-written KCs for each problem, 571

and ask them to indicate their preference between 572

the two sets. On average, the LLM-generated KC 573

sets are preferred in 54.5% of the cases, suggesting 574

7

Figure 3: Representative learning curves for three generated KCs (Equality Comparison, String Length Determina-
tion, and For Loop Iteration), showing a generally decreasing error rate over attempts. Our KCs result in better
model fit (0.21 vs. 0.18 in R2) than human-written KCs under cognitive models (Pavlik et al., 2009).

Figure 4: A section of the generated KC ontology (re-
lated to Strings, at different abstraction levels.

that the generated KC is generally more informa-575

tive to human instructors than human-written KCs.576

To evaluate problem-KC mappings, we ask an-577

notators to label every KC mapped to each problem578

and perform a two-stage annotation. First, they de-579

termine whether the KC is relevant to the problem.580

For KCs labeled as relevant, they then rate how581

essential it is to the problem, in three categories: es-582

sential, marginal, or non-essential. Based on these583

annotations, we compute the average proportion of584

relevant KCs per problem, as well as the average585

proportions of essential and non-essential KCs per586

problem across all annotators. Results show that587

the average percentage of relevant KCs per problem588

is 92.0% for the LLM-generated set and 91.6% for589

the baseline. The average percentage of essential590

KCs per problem is 50.1% for the generated set and591

49.5% for the baseline, and the average percentage592

of non-essential KCs is 31.9% and 33.7%, respec-593

tively. These findings suggest that the LLM-based594

KC tagging is reasonably accurate and comparable595

to human-labeled baselines, although there remains596

significant room for improvement. See Appendix597

D for the detailed annotation rubrics for these tasks598

and inter-rater agreement results.599

Qualitative annotator feedback further reveals600

several important directions for future work. The601

LLM-generated KCs are generally easier to inter-602

pret and process due to their use of natural lan-603

guage. However, annotators note that some of 604

these KCs could be consolidated into more con- 605

cise representations, since they occasionally ex- 606

press overlapping concepts. Additionally, because 607

KCs are generated independently for each prob- 608

lem, the LLM may overlook commonly relevant 609

KCs present across multiple problems. Almost all 610

feedback suggests that a human-AI collaboration 611

approach for KC identification is a necessity: we 612

can use KCGen-KT to provide quantitative feed- 613

back on downstream KT performance and learning 614

curve fit, while humans merge, split, or edit LLM- 615

generated KC descriptions and tags. 616

6 Conclusions and Future Work 617

In this paper, we presented a fully automated, LLM- 618

based pipeline for KC generation and tagging for 619

open-ended programming problems. We also de- 620

veloped an LLM-based KT framework, KCGen- 621

KT, which leverages the textual content of KC de- 622

scriptions. Through extensive experiments on a 623

real-world student coding dataset, we showed that 624

KCGen-KT outperforms human-written KC labels 625

on KC generation and existing state-of-the-art KT 626

methods on predicting future student performance. 627

We also show that LLM-generated KCs lead to bet- 628

ter learning curves than human-written ones. A 629

human evaluation shows that the generated KCs 630

and problem-KC mappings are reasonably accurate 631

to programming instructors. 632

There are many avenues for future work. First, 633

according to annotator suggestions, a human-in- 634

the-loop KC generation method may address many 635

limitations of KCGen-KT. Second, we can explore 636

elevating the learning curve fit into the objective 637

function and explicitly train the model to follow 638

the power law of practice. Third, we can explore 639

whether our methods can be applicable in other 640

student modeling tasks and domains, including dia- 641

logues (Scarlatos et al., 2025), math (Ozyurt et al., 642

2024), and science (Moore et al., 2024). 643

8

Limitations644

We identify several technical and practical limita-645

tions of our work. First, the main limitation of our646

automatic KC generation pipeline is its reliance647

on in-context examples, which necessitates at least648

one human-written example to generate KCs at the649

lowest abstraction level. Without such examples,650

zero-shot prompting with LLMs tends to produce651

overly general and high-level KCs, since the LLMs652

are not explicitly trained for the KC generation653

task. Second, since each problem is associated654

with multiple KCs, obtaining reliable ground truth655

KC labels is inherently challenging. The current656

process of assigning ground truth correctness labels657

is time-consuming and requires further validation658

to ensure label quality. Third, the inter-rater agree-659

ment in our human evaluation is not high enough,660

which suggests that there is significant subjectiv-661

ity in the KC evaluation task among instructors.662

Future work is needed to examine where this dis-663

agreement comes from and revise the evaluation664

process, possibly by showing KC information in665

alternative ways or redefining the rubrics. Fourth,666

we evaluate our method on a single dataset in a sin-667

gle domain, computer science education; applying668

the KC generation pipeline and KCGen-KT model669

across multiple datasets and domains such as math670

would be valuable for assessing generalizability671

and robustness. Finally, even though we conducted672

a human evaluation, the real benefit of good KC la-673

beling is to enable students to improve learning out-674

comes from personalization methods informed by675

these KCs. Therefore, classroom studies compar-676

ing the LLM-generated KCs with human-written677

KCs in facilitating student progress and maximiz-678

ing learning outcomes are ultimately needed.679

Ethical Considerations680

Our goal in this work is to develop a system that can681

automatically generate knowledge components and682

integrate them into student modeling frameworks683

to track individual learning progress. The primary684

motivation is to reduce the manual effort required685

from educators in topic selection and KC design,686

thereby enabling more time and resources to be687

devoted to personalized student support. However,688

there is a concern that such systems could replace689

human educator jobs, which is a shared concern690

across most domains with AI applications. Another691

critical risk lies in the quality of the automatically692

generated knowledge components. If the generated693

KCs are inaccurate, overly abstract, or misaligned 694

with instructional goals, they may negatively af- 695

fect student learning outcomes by reinforcing mis- 696

conceptions or misrepresenting the required skills. 697

Because of these reasons, we recommend that the 698

generated knowledge component be reviewed by 699

experts before being deployed to real students. 700

References 701

Tiffany Barnes. 2005. The q-matrix method: Mining 702
student response data for knowledge. In American as- 703
sociation for artificial intelligence 2005 educational 704
data mining workshop, pages 1–8. AAAI Press, Pitts- 705
burgh, PA, USA. 706

Norman Bier, Sean Lip, Ross Strader, Candace Thille, 707
and Dawn Zimmaro. 2014. An approach to knowl- 708
edge component/skill modeling in online courses. 709
Open Learning, pages 1–14. 710

Challenge Organizers. 2021. The 2nd CSEDM Data 711
Challenge. Online: https://sites.google.com/ 712
ncsu.edu/csedm-dc-2021/. 713

Albert Corbett and John Anderson. 1994. Knowl- 714
edge tracing: Modeling the acquisition of procedu- 715
ral knowledge. User Model. User-adapted Interact., 716
4(4):253–278. 717

DataShop. 2021. Dataset: CodeWorkout data Spring 718
2019. Online: https://pslcdatashop.web.cmu. 719
edu/Files?datasetId=3458. 720

Rafaella Sampaio de Alencar, Mehmet Arif Demir- 721
tas, Adittya Soukarjya Saha, Yang Shi, and Peter 722
Brusilovsky. 2025. Integrating expert knowledge 723
with automated knowledge component extraction for 724
student modeling. In Proceedings of the 33rd ACM 725
International Conference on User Modeling, Adapta- 726
tion and Personalization. 727

Zhangqi Duan, Nigel Fernandez, Alexander Hicks, and 728
Andrew Lan. 2025. Test case-informed knowledge 729
tracing for open-ended coding tasks. In Proceedings 730
of the 15th Learning Analytics and Knowledge Con- 731
ference, LAK 2025, Dublin, Ireland, March 3-7, 2025. 732
ACM. 733

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 734
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 735
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 736
BERT: A pre-trained model for programming and 737
natural languages. In Findings of the Association 738
for Computational Linguistics: EMNLP 2020, pages 739
1536–1547, Online. Association for Computational 740
Linguistics. 741

Nigel Fernandez and Andrew Lan. 2024. Interpreting 742
latent student knowledge representations in program- 743
ming assignments. In Proceedings of the 17th Inter- 744
national Conference on Educational Data Mining, 745
pages 933–940, Atlanta, Georgia, USA. International 746
Educational Data Mining Society. 747

9

https://sites.google.com/ncsu.edu/csedm-dc-2021/
https://sites.google.com/ncsu.edu/csedm-dc-2021/
https://sites.google.com/ncsu.edu/csedm-dc-2021/
https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.5281/zenodo.12730003
https://doi.org/10.5281/zenodo.12730003
https://doi.org/10.5281/zenodo.12730003
https://doi.org/10.5281/zenodo.12730003
https://doi.org/10.5281/zenodo.12730003

Nigel Fernandez, Alexander Scarlatos, Wanyong Feng,748
Simon Woodhead, and Andrew Lan. 2024. DiVERT:749
Distractor generation with variational errors repre-750
sented as text for math multiple-choice questions.751
In Proceedings of the 2024 Conference on Empiri-752
cal Methods in Natural Language Processing, pages753
9063–9081, Miami, Florida, USA. Association for754
Computational Linguistics.755

Aritra Ghosh, Neil Heffernan, and Andrew S Lan. 2020.756
Context-aware attentive knowledge tracing. In Proc.757
ACM SIGKDD, pages 2330–2339.758

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long759
short-term memory. Neural Comput., 9(8):1735–760
1780.761

Muntasir Hoq, Sushanth Reddy Chilla, Melika Ah-762
madi Ranjbar, Peter Brusilovsky, and Bita Akram.763
2023. Sann: programming code representation us-764
ing attention neural network with optimized subtree765
extraction. In Proceedings of the 32nd ACM Inter-766
national Conference on Information and Knowledge767
Management, pages 783–792.768

Muntasir Hoq, Jessica Vandenberg, Bradford Mott,769
James Lester, Narges Norouzi, and Bita Akram. 2024.770
Towards attention-based automatic misconception771
identification in introductory programming courses.772
In Proceedings of the 55th ACM Technical Sympo-773
sium on Computer Science Education V. 2, pages774
1680–1681.775

Roya Hosseini and Peter Brusilovsky. 2013. Javaparser:776
A fine-grain concept indexing tool for java prob-777
lems. In CEUR Workshop Proceedings, volume 1009,778
pages 60–63. University of Pittsburgh.779

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-780
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu781
Chen. 2022. LoRA: Low-rank adaptation of large782
language models. In International Conference on783
Learning Representations.784

Yun Huang, Vincent Aleven, Elizabeth McLaughlin, and785
Kenneth Koedinger. 2020. A general multi-method786
approach to design-loop adaptivity in intelligent tutor-787
ing systems. In Artificial Intelligence in Education:788
21st International Conference, AIED 2020, Ifrane,789
Morocco, July 6–10, 2020, Proceedings, Part II 21,790
pages 124–129. Springer.791

Naiming Liu, Zichao Wang, Richard Baraniuk, and An-792
drew Lan. 2022. Open-ended knowledge tracing793
for computer science education. In Proceedings of794
the 2022 Conference on Empirical Methods in Nat-795
ural Language Processing, pages 3849–3862, Abu796
Dhabi, United Arab Emirates. Association for Com-797
putational Linguistics.798

Xin Liu, Muhammad Khalifa, and Lu Wang. 2023. Bolt:799
Fast energy-based controlled text generation with tun-800
able biases. In Proceedings of the 61st Annual Meet-801
ing of the Association for Computational Linguistics802
(Volume 2: Short Papers), pages 186–200.803

AI @ Meta Llama Team. 2024. The llama 3 herd of 804
models. Preprint, arXiv:2407.21783. 805

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 806
weight decay regularization. In International Confer- 807
ence on Learning Representations. 808

Cristina Maier, Ryan Baker, and Steve Stalzer. 2021. 809
Challenges to applying performance factor analysis 810
to existing learning systems. 811

Steven Moore, Robin Schmucker, Tom Mitchell, and 812
John Stamper. 2024. Automated generation and tag- 813
ging of knowledge components from multiple-choice 814
questions. In Proceedings of the eleventh ACM con- 815
ference on learning@ scale, pages 122–133. 816

Allen Newell and Paul S Rosenbloom. 2013. Mech- 817
anisms of skill acquisition and the law of practice. 818
In Cognitive skills and their acquisition, pages 1–55. 819
Psychology Press. 820

OpenAI. 2024. Hello gpt-4o. 821

Yilmazcan Ozyurt, Stefan Feuerriegel, and Mrinmaya 822
Sachan. 2024. Automated knowledge concept anno- 823
tation and question representation learning for knowl- 824
edge tracing. arXiv preprint arXiv:2410.01727. 825

Shalini Pandey and George Karypis. 2019. A self atten- 826
tive model for knowledge tracing. In Proc. Int. Conf. 827
Educ. Data Mining, pages 384–389. 828

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 829
Jing Zhu. 2002. Bleu: a method for automatic evalu- 830
ation of machine translation. In Proceedings of the 831
40th annual meeting of the Association for Computa- 832
tional Linguistics, pages 311–318. 833

Zach A Pardos and Neil T Heffernan. 2010. Modeling 834
individualization in a Bayesian networks implemen- 835
tation of knowledge tracing. In Proc. Int. Conf. User 836
Model. Adaptation Personalization, pages 255–266. 837

Zachary A Pardos and Anant Dadu. 2017. Imputing kcs 838
with representations of problem content and context. 839
In Proceedings of the 25th Conference on User Mod- 840
eling, Adaptation and Personalization, pages 148– 841
155. 842

Philip I Pavlik, Hao Cen, and Kenneth R Koedinger. 843
2009. Performance factors analysis–a new alternative 844
to knowledge tracing. In Artificial intelligence in 845
education, pages 531–538. Ios Press. 846

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya 847
Ganguli, Mehran Sahami, Leonidas J Guibas, and 848
Jascha Sohl-Dickstein. 2015. Deep knowledge trac- 849
ing. Advances in neural information processing sys- 850
tems, 28. 851

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 852
Sentence embeddings using siamese bert-networks. 853
In Proceedings of the 2019 Conference on Empirical 854
Methods in Natural Language Processing. Associa- 855
tion for Computational Linguistics. 856

10

https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2022.emnlp-main.254
https://doi.org/10.18653/v1/2022.emnlp-main.254
https://doi.org/10.18653/v1/2022.emnlp-main.254
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,857
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio858
Blanco, and Shuai Ma. 2020. Codebleu: a method859
for automatic evaluation of code synthesis. Preprint,860
arXiv:2009.10297.861

Kelly Rivers, Erik Harpstead, and Kenneth R Koedinger.862
2016. Learning curve analysis for programming:863
Which concepts do students struggle with? In ICER,864
volume 16, pages 143–151. ACM.865

Alexander Scarlatos, Ryan S. Baker, and Andrew Lan.866
2025. Exploring knowledge tracing in tutor-student867
dialogues using llms. In Proceedings of the 15th868
Learning Analytics and Knowledge Conference, LAK869
2025, Dublin, Ireland, March 3-7, 2025. ACM.870

Yang Shi, Min Chi, Tiffany Barnes, and Thomas Price.871
2022. Code-DKT: A code-based knowledge tracing872
model for programming tasks. In Proceedings of the873
15th International Conference on Educational Data874
Mining, pages 50–61, Durham, United Kingdom. In-875
ternational Educational Data Mining Society.876

Yang Shi, Robin Schmucker, Min Chi, Tiffany Barnes,877
and Thomas Price. 2023. Kc-finder: Automated878
knowledge component discovery for programming879
problems. International Educational Data Mining880
Society.881

Yang Shi, Robin Schmucker, Keith Tran, John Bacher,882
Kenneth Koedinger, Thomas Price, Min Chi, and883
Tiffany Barnes. 2024. The knowledge component884
attribution problem for programming: Methods and885
tradeoffs with limited labeled data. Journal of Edu-886
cational Data Mining, 16(1):1–33.887

Dongmin Shin, Yugeun Shim, Hangyeol Yu, Seewoo888
Lee, Byungsoo Kim, and Youngduck Choi. 2021.889
Saint+: Integrating temporal features for ednet cor-890
rectness prediction. In 11th Int. Learn. Analytics891
Knowl. Conf., pages 490–496.892

George S Snoddy. 1926. Learning and stability: a psy-893
chophysiological analysis of a case of motor learning894
with clinical applications. Journal of Applied Psy-895
chology, 10(1):1.896

Xinjie Sun, Qi Liu, Kai Zhang, Shen Shuanghong, Lina897
Yang, and Hui Li. 2025. Harnessing code domain898
insights: Enhancing programming knowledge trac-899
ing with large language models. Knowledge-Based900
Systems, 317:113396.901

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien902
Chaumond, Clement Delangue, Anthony Moi, Pier-903
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,904
Joe Davison, Sam Shleifer, Patrick von Platen, Clara905
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven906
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-907
formers: State-of-the-art natural language processing.908
In Proceedings of the 2020 Conference on Empirical909
Methods in Natural Language Processing: System910
Demonstrations, pages 38–45, Online. Association911
for Computational Linguistics.912

Yang Yang, Jian Shen, Yanru Qu, Yunfei Liu, Kerong 913
Wang, Yaoming Zhu, Weinan Zhang, and Yong Yu. 914
2020. Gikt: A graph-based interaction model for 915
knowledge tracing. In Proc. Joint Eur. Conf. Mach. 916
Learn. Knowl. Discovery Databases. 917

Michael V Yudelson, Kenneth R Koedinger, and Geof- 918
frey J Gordon. 2013. Individualized bayesian knowl- 919
edge tracing models. In Int. Conf. artif. intell. educ., 920
pages 171–180. Springer. 921

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, 922
Kaixuan Wang, and Xudong Liu. 2019. A novel 923
neural source code representation based on abstract 924
syntax tree. pages 783–794. 925

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan 926
Yeung. 2017. Dynamic key-value memory networks 927
for knowledge tracing. In Proc. Int. Conf. World 928
Wide Web, pages 765–774. 929

R. Zhu, D. Zhang, C. Han, M. Gaol, X. Lu, W. Qian, 930
and A. Zhou. 2022. Programming knowledge trac- 931
ing: A comprehensive dataset and a new model. In 932
2022 IEEE International Conference on Data Mining 933
Workshops (ICDMW), pages 298–307. 934

A Related Work 935

A.1 Knowledge Component Generation 936

Traditional methods for KC creation and tag- 937

ging rely on human domain experts to identify 938

the knowledge requirements for solving a prob- 939

lem (Bier et al., 2014), a highly time-consuming 940

process. Recent work has proposed automated ap- 941

proaches for KC discovery and tagging, employ- 942

ing data-driven approaches including the Q-matrix 943

method (Barnes, 2005). In programming, (Hosseini 944

and Brusilovsky, 2013) uses a rule-based parser to 945

obtain ASTs with KCs identified at their lowest 946

ontological level, (Rivers et al., 2016) define KCs 947

as nodes in an AST followed by a learning curve 948

analysis to identify KCs students struggle with the 949

most in Python programming, (Hoq et al., 2024) 950

uses an AST-based neural network to identify stu- 951

dent misconceptions, (Shi et al., 2024) presents a 952

deep learning approach for KC attribution, and (Shi 953

et al., 2023, 2024) learn latent KCs, lacking tex- 954

tual descriptions, by training deep learning models 955

on KT data enforced with priors from pedagogical 956

theory. Recent advances in LLMs have inspired au- 957

tomated approaches for descriptive KC generation 958

for dialogues (Scarlatos et al., 2025), and problems 959

in math (Ozyurt et al., 2024), and science (Moore 960

et al., 2024). However, we’re among the first ap- 961

proaches to present a fully automated, LLM-based 962

pipeline for KC generation and tagging for open- 963

ended programming problems. 964

11

https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://doi.org/10.5281/zenodo.6853105
https://doi.org/10.5281/zenodo.6853105
https://doi.org/10.5281/zenodo.6853105
https://doi.org/10.1016/j.knosys.2025.113396
https://doi.org/10.1016/j.knosys.2025.113396
https://doi.org/10.1016/j.knosys.2025.113396
https://doi.org/10.1016/j.knosys.2025.113396
https://doi.org/10.1016/j.knosys.2025.113396
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

A.2 Knowledge Tracing965

There exists a wide body of work on KT (Cor-966

bett and Anderson, 1994) in the student modeling967

literature. The classic KT task aims to estimate968

a student’s mastery of KCs from their responses969

to past problems and use these estimates to pre-970

dict their future performance. Classic Bayesian971

knowledge tracing methods (Pardos and Heffer-972

nan, 2010; Yudelson et al., 2013) use latent binary-973

valued variables to represent student KC mastery.974

With the widespread adoption of neural networks,975

multiple deep learning-based KT methods were976

proposed with limited interpretability since student977

knowledge is modeled as hidden states in these978

networks. Most of these methods use long short-979

term memory networks (Hochreiter and Schmid-980

huber, 1997) or variants (Piech et al., 2015; Shin981

et al., 2021), with other variants coupling them982

with memory augmentation (Zhang et al., 2017),983

graph neural networks (Yang et al., 2020), or at-984

tention networks (Ghosh et al., 2020; Pandey and985

Karypis, 2019). KT methods have been applied986

to many different educational domains, including987

programming (Hoq et al., 2023; Shi et al., 2022;988

Zhu et al., 2022). Recent work has attempted to989

leverage LLMs to develop generative KT methods990

predicting exact student responses to programming991

problems (Duan et al., 2025; Fernandez and Lan,992

2024; Liu et al., 2022). (Sun et al., 2025) uses993

LLM to automatically construct Q-matrices cap-994

turing fine-grained KC relationship in knowledge995

tracing, while their work lacks comparison with996

code-specific KT baselines, and does not explore997

LLM-based KC generation. To the best of our998

knowledge, we are the first to present an LLM-999

based KT method for programming problems that1000

leverages the textual content of KC descriptions,1001

modeling interpretable student mastery levels on1002

each KC, for improved KT performance.1003

B Experimental Setup1004

As detailed in 2.2, we use a LLM as our back-1005

bone and we use the instruction-tuned version of1006

Llama 3 with 8B parameters as our model. We1007

use the Parameter Efficient Fine-Tuning (PEFT)1008

library from HuggingFace (Wolf et al., 2020) load1009

Llama 3 and fine-tune it via Low-Rank Adaptation1010

(LoRA) (Hu et al., 2022) (α = 256, rank = 128,1011

dropout = 0.05) using 8-bit quantization. We use1012

the AdamW (Loshchilov and Hutter, 2019) opti-1013

mizer for LLM and Wm parameter with a batch1014

size of 32 and RMSprop optimizer for the LSTM 1015

and perform a grid search to determine the optimal 1016

learning rate. In KCGen-KT, we set different learn- 1017

ing rates for different model components: 1e− 5 1018

for Llama 3, 5e−4 for the LSTM model, and 1e−4 1019

for the Wm and bm parameters. KCGen-KT con- 1020

verges within 12 training epochs, with each epoch 1021

taking 80 minutes on an NVIDIA L40S 48GB GPU. 1022

We repeat all our experiments with 5 random train- 1023

validation-test data splits for cross-validation. 1024

For the baseline model TIKTOC* which also 1025

uses a LLM as the backbone of the model. We 1026

use same setup for a fair comparison: we use same 1027

Llama model with PEFT to load it and fine-tune 1028

it with LoRA (α = 256, rank = 128, dropout = 1029

0.05) using 8-bit quantization. The optimizers and 1030

learning rate used are the same as KCGen-KT ex- 1031

cept the learning rate for LSTM model is 1e− 4. 1032

For metrics, we use the rou_auc_score and 1033

f1_score from scikit-learn library to compute AUC 1034

and F1 metrics, respectively. For codeBLEU we 1035

adopt the official implementation provided in the 1036

microsoft/CodeXGLUE. In addition, we use scipy 1037

library to perform the hierarchical agglomerative 1038

clustering. All software we use in the development 1039

of this work is open source. We are consistent with 1040

the terms and intended use of all software and with 1041

OpenAI API. 1042

Model AUC F1 Acc CodeBLEU
KCGen-KT 0.812 0.723 0.724 0.569
- Student submission = 0 0.789 0.674 0.704 0.529
- Student Code → AST 0.794 0.691 0.725 0.546
- Student Code → Generated 0.810 0.706 0.731 0.557

Table 5: Ablation study of KCGen-KT

C Ablation Study 1043

Table 5 shows the results of the ablation study 1044

among all components of KCGen-KT on the 1045

dataset. For ablation conditions requiring code 1046

submissions for KC generation, we report results 1047

using two code solutions since we note that LLM- 1048

generated code tends to follow similar problem- 1049

solving strategies; we adopt the lowest level of 1050

KC abstraction and manually verify the correctness 1051

of all generated solutions. We see that including 1052

correct submissions is crucial; removing it results 1053

in performance decrease on both KT tasks, which 1054

suggests that it is difficult to capture all necessary 1055

KCs from just the problem statement alone. Us- 1056

ing LLM-generated submissions instead of actual 1057

12

student submissions also results in a minor perfor-1058

mance decrease, which suggests that actual student1059

code is highly diverse and captures a more com-1060

plete set of skills required in each problem. We1061

also see that switching submissions to the abstract1062

syntax tree (AST) representation as input to the1063

LLM decreases performance, where we see the1064

generated KCs tend to be less detailed. This re-1065

sult can be explained by LLMs not being heavily1066

pre-trained on AST representations of code. See1067

Appendix E for prompt used for KC generation1068

with AST representation.1069

Furthermore, we explore the impact of the num-1070

ber of student submissions provided to the LLM on1071

the quality of generated KCs and KT performance.1072

For this ablation, we use the lowest KC abstraction1073

level. Table 6 shows the results, where we see that1074

using fewer submissions, such as 1 and 2, results1075

in worse performance, while the performance in-1076

creases and saturates after more than 5 submissions.1077

This result can be explained by a smaller number1078

of student submissions failing to capture diverse1079

solution strategies for some problems, thus result-1080

ing in an incomplete KC set. As the number of1081

submissions increase, the set of initial KCs before1082

clustering more or less stays the same, and the per-1083

formance mostly depends on the abstraction level1084

instead.1085

No. of Solutions AUC F1 Acc CodeBLEU
1 0.804 0.713 0.705 0.563
2 0.812 0.723 0.724 0.569
5 0.815 0.726 0.737 0.572
7 0.812 0.726 0.727 0.573
10 0.816 0.727 0.715 0.566

Table 6: Ablation study of KCGen-KT on different
No. of solution provided during KC Generation. Best
performance is in bold and second best is underlined.

D Human Evaluation Details1086

We conduct a human evaluation to assess the qual-1087

ity of generated KCs and problem-KC mapping ac-1088

curacy. Our evaluators were volunteers contacted1089

through a research partner and were not compen-1090

sated monetarily. They were made aware that their1091

annotations would be used in scientific research in1092

AI. Annotators perform two separate tasks, each1093

designed to evaluate a distinct aspect of the KC1094

quality. Below, we describe the annotation rubrics1095

and summarize the evaluation outcomes.1096

D.1 KC-Set Annotation Per Problem for 1097

Problem-KC mapping 1098

The instruction provided to annotators is as follows: 1099

Which KC-set is better (1 for Generated, 1100

2 for Baseline)? A KC-set is considered 1101

better if, overall, it more effectively cap- 1102

tures the key concepts that are practiced 1103

in the problem and necessary for solv- 1104

ing it. Imagine you are an instructor se- 1105

lecting problems for a homework assign- 1106

ment. Which set of concepts would be 1107

more informative in deciding whether to 1108

include this problem based on the skills 1109

it assesses? 1110

To assess inter-rater reliability, we calculate 1111

Kappa scores. The overall agreement across all 1112

five annotators is relatively low, with an average 1113

Kappa score of 0.121. The highest pairwise agree- 1114

ment observed is 0.51, indicating moderate agree- 1115

ment between two annotators. This disagreement 1116

suggests differing interpretations among annotators 1117

regarding which KCs are most relevant to a given 1118

problem. In particular, the task excludes KC un- 1119

derstandability as a criterion, focusing instead on 1120

relevance and completeness. These differences in 1121

evaluative emphasis and background knowledge 1122

likely contributed to the observed disagreement. 1123

D.2 Single-KC Annotation Per Problem for 1124

Generated KC Quality 1125

In the second task, annotators evaluate the quality 1126

of individual KCs generated for each problem by 1127

assessing their correctness and instructional rele- 1128

vance. This task focuses on the Problem-KC map- 1129

pings accuracy. 1130

The annotation rubric is as follows: 1131

Task: For each KC associated with a 1132

problem, provide a binary label for cor- 1133

rectness, and if the KC is correct, further 1134

classify its level of essentiality. 1135

Correct: if the KC accurately reflects a 1136

concept required to understand or solve 1137

the problem, and it holds educational 1138

value in the context. 1139

Essentiality (only if the KC is Correct): 1140

Classify the KC based on its instructional 1141

importance using the following three cat- 1142

egories: 1143

13

• Essential: The KC is critical to the1144

problem. It represents a core con-1145

cept that the problem is explicitly1146

designed to assess. Without un-1147

derstanding this concept, a student1148

would likely struggle to solve the1149

problem.1150

• Marginal: The KC is relevant but1151

not central. It may influence the1152

decision to assign the problem, but1153

only as a secondary consideration.1154

While the problem can help rein-1155

force this concept, it is not the pri-1156

mary instructional goal.1157

• Non-Essential: The KC appears in1158

the problem but plays a minimal in-1159

structional role. It is not a focus of1160

the problem and would not factor1161

significantly into an instructor’s de-1162

cision to use the problem for teach-1163

ing purposes.1164

Results show that the average percentage of rel-1165

evant KCs per problem is 92.0% for the LLM-1166

generated set and 91.6% for the baseline. The1167

average percentage of essential KCs per problem1168

is 50.1% for the generated set and 49.5% for the1169

baseline, the average percentage of marginal KCs1170

is 31.9% for generated KCs and 33.7% for the1171

baseline KCs and the average percentage of non-1172

essential KCs is 31.9% and 33.7%, respectively.1173

These findings suggest that the LLM-based KC tag-1174

ging is reasonably accurate and LLM-generated1175

KCs are largely relevant and instructionally mean-1176

ingful, which implies that LLM is capable of iden-1177

tifying topic-specific concepts with comparable in-1178

structional value, but still have room to improve1179

with human-AI collaboration approach.1180

Annotators complete the evaluation using a cus-1181

tom web-based interface, as shown in figure 5,that1182

presented each problem alongside its associated1183

KC set. For each KC, annotators labeled correct-1184

ness and essentiality and selected their preferred1185

KC set. The interface was designed to ensure con-1186

sistency and ease of use across annotators.1187

E Prompt1188

E.1 Prompt for KC Generation Pipeline1189

We show the prompt used for the KC generation1190

for each problem in Table 8, the prompt used for1191

the AST ablation study in Table 9, and the prompt1192

used for cluster summarization in Table 10.1193

E.2 Prompt for KC Correctness Labeling 1194

We show the prompt used for KC correctness label- 1195

ing for the learning curve analysis in Table 11. 1196

E.3 Prompt for In-context Example 1197

Conversion 1198

We show the prompt to convert the baseline KC list 1199

into natural language terms in Table 7. 1200

14

Figure 5: A demo of the interface for human evaluation

System Message:
You are an experienced computer science teacher and education expert. You are provided with a list
of human-labeled knowledge components (KCs) associated with programming problems. Your task
is to convert each KC into a equivalent natural language term.

User prompt:
The KC list is: [If/Else, NestedIf, While, For, NestedFor, Math+-*/, Math%, LogicAndNotOr, Log-
icCompareNum, LogicBoolean, StringFormat, StringConcat, StringIndex, StringLen, StringEqual,
CharEqual, ArrayIndex, DefFunction]

Table 7: Example prompt for Baseline KC conversion

15

System Message:
You are an experienced computer science teacher and education expert. You are given a Java pro-
gramming problem along with n sample solutions. Your task is to identify generalizable knowledge
components (skills or concepts) necessary to solve such problems.

A knowledge component (KC) is a single, reusable unit of programming understanding, such as a
language construct, pattern, or skill, that contributes to solving a programming problem and can be
learned or mastered independently.

Please follow these steps:
1. Analyze each solution carefully, noting critical constructs.
2. Reflect step by step on how each solution maps to distinct programming KCs that are independent
and reusable.
3. For each KC, generate a concise name and provide a one-sentence reasoning explaining why
this KC is necessary based on the provided solutions. Use the provided examples as reference for
the appropriate level of detail. Make sure KCs are generalizable and applicable to a wide range of
similar programming problems without referencing problem-specific details.
4. Ensure each KC is atomic and not bundled with others.

Your final response must strictly follow this JSON template:
{ "KC 1": "reasoning": "Reasoning for this KC (exactly 1 sentence)", "name": "Knowledge
component name", "KC 2": "reasoning": "Reasoning for this KC (exactly 1 sentence)", "name":
"Another specific knowledge component name", ... }

User prompt:
Example 1:
Problem: Write a function in Java that implements the following logic: Given a string str and a
non-empty word, return a version of the original string where all chars have been replaced by pluses
(+), except for appearances of the word which are preserved unchanged.
Expected Output: KC 1: If and else statement KC 2: While loop KC 3: Numerical comparisons KC
4: String formatting KC 5: String concatenation KC 6: String indexing KC 7: String length KC 8:
String equality comparison

Now analyze the following problem using their solution code.
Problem: A sandwich is two pieces of bread with something in between. Write a Java method that
takes in a string str and returns the string that is between the first and last appearance of "bread" in
str. Return the empty string "" if there are not two pieces of bread.
First sample solution is:
public String getSandwich(String str){

String bread = "bread";
if (str.contains(bread) && str.length () >= 10){

int first = str.indexOf(bread);
int last = str.lastIndexOf(bread);
String between = str.substring(first + 5, last);
return between;

}
else{

return "";
}

}

Follow the instructions in system message. First, carefully examine the solutions and identify
the important elements and patterns. Then, explicitly reason about what underlying knowledge
components are required based on these solution codes. Finally, take the examples as reference and
summarize your analysis clearly into generalizable and concise knowledge components.

Table 8: Example prompt for KC generation with one in-context example and one student solution

16

System Message:
You are an experienced computer science teacher and education expert. You are given a Java
programming problem along with n AST representation of sample solutions. Your task is to identify
generalizable knowledge components (skills or concepts) necessary to solve such problems.

A knowledge component (KC) is a single, reusable unit of programming understanding, such as a
language construct, pattern, or skill, that contributes to solving a programming problem and can be
learned or mastered independently.
The AST shows the hierarchical structure of the Java code, where each node represents a code
construct (like class or method) along with its position in the source file.

Please follow these steps:
1. Analyze each AST carefully, noting critical constructs.
2. Reflect step by step on how each AST maps to distinct programming KCs that are independent
and reusable.
3. For each KC, generate a concise name and provide a one-sentence reasoning explaining why
this KC is necessary based on the provided solutions. Use the provided examples as reference for
the appropriate level of detail. Make sure KCs are generalizable and applicable to a wide range of
similar programming problems without referencing problem-specific details.
4. Ensure each KC is atomic and not bundled with others.

Your final response must strictly follow this JSON template:
{ "KC 1": "reasoning": "Reasoning for this KC (exactly 1 sentence)", "name": "Knowledge
component name", "KC 2": "reasoning": "Reasoning for this KC (exactly 1 sentence)", "name":
"Another specific knowledge component name", ... }

User prompt:
Example 1:
Problem: Write a function in Java that implements the following logic: Given a string str and a
non-empty word, return a version of the original string where all chars have been replaced by pluses
(+), except for appearances of the word which are preserved unchanged.
Expected Output: KC 1: If and else statement KC 2: While loop KC 3: Numerical comparisons KC
4: String formatting KC 5: String concatenation KC 6: String indexing KC 7: String length KC 8:
String equality comparison

Now analyze the following problem using their AST.
Problem: A sandwich is two pieces of bread with something in between. Write a Java method that
takes in a string str and returns the string that is between the first and last appearance of "bread" in
str. Return the empty string "" if there are not two pieces of bread.
First sample solution AST is:
JavaCodeAST [0, 0] - [11, 1]

program [0, 0] - [10, 1]
method_declaration [0, 0] - [10, 1]

modifiers [0, 0] - [0, 6]
identifier [0, 33] - [0, 36]

if_statement [2, 4] - [9, 50]
parenthesized_expression [2, 7] - [2, 27]

binary_expression [2, 8] - [2, 26]
method_invocation [2, 8] - [2, 20]

argument_list [2, 18] - [2, 20]
return_statement [3, 8] - [3, 18]

Follow the instructions in system message. First, carefully examine the ASTs and identify the impor-
tant elements and patterns. Then, explicitly reason about what underlying knowledge components
are required based on these ASTs. Finally, take the examples as reference and summarize your
analysis clearly into generalizable and concise knowledge components.

Table 9: Example prompt for KC generation with one in-context example and one student solution AST. Only part
of the AST shown due to spatial constraints.

17

System Message:
You are an experienced computer science teacher and education expert. You will be provided with a
list of knowledge components (KCs) that may vary in wording but sometimes refer to the same or
related underlying concepts or skills.

The KCs will be given in the format: ["KC 1 name", "KC 2 name", ..., "KC k name"]

Your task is to:
1. Carefully examine all the KCs in the list to ensure none are overlooked.
2. Reason explicitly whether the KCs collectively refer to the same underlying concept or skill, or if
they are related but represent distinct or complementary aspects of a broader theme.
3. Based on your reasoning:
- If the KCs refer to the same concept or skill, select one KC from the list that best represents the
group — choose the one that is most clearly worded, generalizable, and inclusive of the others.
- If the KCs are related but too distinct to be represented by a single KC, create a concise and
meaningful summary name that captures the broader theme or category shared by the KCs.

Return your output strictly in the following JSON format:
{ "reasoning": "...", // Exactly one sentence explaining your reasoning
"representative kc": "..." , // Selected KC if applicable, otherwise null
"summary name": "..." , // Summary name if representative KC not chosen, otherwise null }

User prompt:
The knowledge components list is: [for loop iteration, while loop, array iteration]

Now follow the instructions in system message. First, examine the list carefully to understand their
shared meaning. Second, explicitly reason about the fundamental skill or concept underlying these
knowledge components. Third, based on the reasoning, either select one KC that best represents the
group if they share the same concept or summarize your analysis into one clear and concise phrase
that accurately captures the essence of this cluster.

Table 10: Example prompt for Cluster summarization

18

System Message:
You are an experienced computer science teacher and education expert. You are given a Java
programming problem, an incorrect student submission, and a predefined list of general programming
knowledge components (KCs) relevant to solving the problem.

The predefined KCs relevant to solving the problem will be given in a list using the format ["KC 1
name", "KC 2 name", ..., "KC k name"]

Your task is to:
1. Identify all key errors in the student’s code, and describe each error in exactly one sentence.
2. Fix the code by correcting the identified errors and return a correct version of the code.
3. Assess the student’s mastery of each provided KC in the list based on the incorrect submission.
- Reflect on the student’s original incorrect code and your corrected code output fixing the identified
errors.
- For each KC, return a binary label which equals 1 if the student makes an error on this KC, and
equals 0 if not.
- Your label should be based solely on the student’s incorrect code submission.

Your final response must strictly follow this JSON template:
{ "error reasoning": ["First error described in one sentence.", "Second error described in one
sentence.", ...], "fixed code": "The corrected Java implementation as a single string, properly
formatted.", "KC error": "KC 1 name": 0/1, "KC 2 name": 0/1, ... }

User prompt:
Now analyze the following programming problem and the student’s incorrect code submission to
identify all errors and evaluate which knowledge components the student has made an error

Problem:
Write a function in Java that implements the following logic: Given 2 ints, a and b, return their sum.
However, sums in the range 10..19 inclusive, are forbidden, so in that case just return 20.

Incorrect submission:
public int sortaSum(int a, int b){

if (a + b <= 10 && a + b >= 20)
return 20;

else
return a + b;

}

The knowledge components relevant to this problem are: [Basic arithmetic operations, Logical
operators, If and else if statement, Numerical comparisons]

Follow the instructions in system message. First, carefully examine the problem and the incorrect
code to understand what the intended correct behavior should be. Second, identify and describe
each error in the code in exactly one sentence. Third, fix the errors and provide the corrected Java
implementation. Finally, based on the incorrect submission, assess each knowledge component in
the provided list by assigning a binary label: 1 if the student has made an error, or 0 if not.

Table 11: Example prompt for KC correctness labeling

19

	Introduction
	Contributions

	Methodology
	Automated KC Generation
	Improving Knowledge Tracing via LLM-generated KCs

	Experimental Evaluation
	Results, Analysis, and Discussion
	Quantitative Evaluation
	Qualitative Evaluation

	Human Evaluation
	Conclusions and Future Work
	Related Work
	Knowledge Component Generation
	Knowledge Tracing

	Experimental Setup
	Ablation Study
	Human Evaluation Details
	KC-Set Annotation Per Problem for Problem-KC mapping
	Single-KC Annotation Per Problem for Generated KC Quality

	Prompt
	Prompt for KC Generation Pipeline
	Prompt for KC Correctness Labeling
	Prompt for In-context Example Conversion

