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of the forest and the path. The explosion creates a bright flash of light…

Physical Annotation

Figure 1: Overview of our physical dataset WISA-80K. (Left) Examples of 17 physical phenomena across
three physics categories in WISA-80K. (Top right) WISA-80K consists of approximately 80,000 video clips,
with 35% related to Dynamics, 23% to Thermodynamics, and 42% to Optics. (Top right) Distribution of frame
counts across all videos in WISA-80K. (Bottom right) An example of physical annotation in WISA-80K.

Abstract

Recent advances in text-to-video (T2V) generation, exemplified by models such
as Sora and Kling, have demonstrated strong potential for constructing world
simulators. However, existing T2V models still struggle to understand abstract
physical principles and to generate videos that faithfully obey physical laws. This
limitation stems primarily from the lack of explicit physical guidance, caused by a
significant gap between high-level physical concepts and the generative capabilities
of current models. To address this challenge, we propose the World Simulator
Assistant (WISA), a novel framework designed to systematically decompose and
integrate physical principles into T2V models. Specifically, WISA decomposes
physical knowledge into three hierarchical levels: textual physical descriptions,
qualitative physical categories, and quantitative physical properties. It then incor-
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porates several carefully designed modules—such as Mixture-of-Physical-Experts
Attention (MoPA) and a Physical Classifier—to effectively encode these attributes
and enhance the model’s adherence to physical laws during generation. In addi-
tion, most existing video datasets feature only weak or implicit representations
of physical phenomena, limiting their utility for learning explicit physical princi-
ples. To bridge this gap, we present WISA-80K, a new dataset comprising 80,000
human-curated videos that depict 17 fundamental physical laws across three core
domains of physics: dynamics, thermodynamics, and optics. Experimental results
show that WISA substantially improves the alignment of T2V models (such as
CogVideoX and Wan2.1) with real-world physical laws, achieving notable gains
on the VideoPhy benchmark. Our data, code, and models are available in the
https://wisav1.github.io/WISA/.

1 Introduction

Many recent studies (e.g., Cosmos [1], Kling [14], Step-Video-T2V [21], Sora [26], and CogVideoX
[41]) have endeavored to develop robust text-to-video (T2V) models for building world simulators
[39, 6, 43]. While these models are capable of generating highly realistic and text-consistent videos,
leveraging the scale of their data and architectures, they still face challenges in understanding abstract
physical principles and producing videos that fully align with real-world physical laws [3, 23].

The substantial gap between abstract physical laws and their visual manifestations presents a signifi-
cant challenge for injecting physical guidance into T2V models. Physical principles or laws are often
conveyed through abstract natural language, reflecting the underlying operational logic of the real
world. In contrast, generative models map textual descriptions directly to the visual appearance of ob-
jects, including their color and shape. There is a complex logical reasoning process between physical
principles and the visual physical phenomena they give rise to. However, generative models, which
are trained to map learned data distributions, struggle to extract appropriate physical information
from a single textual instruction and translate it into a physically consistent visual representation for
a specific scenario. This challenge becomes even more pronounced in video generation, where the
strict temporal order of physical events must be preserved.

To this end, we propose the World Simulator Assistant (WISA), which decomposes abstract physical
principles into multiple categories of physical information and integrates them into T2V models to
enable physics-aware generation. Specifically, it decomposes physical principles into three levels:
textual physics descriptions, qualitative physics categories, and quantitative physical properties, and
designs appropriate tailored injection methods for each type of information. The Textual Physical
Description outlines the physical principles relevant to the scene, the resulting physical phenomena,
and their specific visual manifestations. WISA incorporates this information by concatenating it with
the caption before feeding it into the text encoder. The Qualitative Physics Categories indicate
the types of physical phenomena that may be present in a scene. Following the focus of existing
physical T2V benchmarks (e.g., VideoPhy and PhyGenBench), WISA targets 17 representative
phenomena commonly encountered in video generation tasks. These span three major branches
of physics (i.e., dynamics, thermodynamics, and optics) and include examples such as collision
(dynamics), refraction (optics), and melting (thermodynamics). Recognizing that different physical
phenomena require distinct physical features, WISA proposes Mixture-of-Physical-Experts Attention
(MoPA), inspired by MoE [30] and MoH [12]. MoPA assigns expert attention heads to individual
physics categories, activating only the relevant experts during generation to specialize in modeling
the associated phenomena. When a scene involves multiple physical phenomena, MoPA dynamically
activates multiple expert heads, allowing the model to effectively capture and synthesize complex
physical interactions. Quantitative Physics Properties refer to numerical physical attributes that
directly influence the physical process, such as density, duration, and temperature. WISA encodes
these properties as physical embeddings and injects them into the model via AdaLN [27]. In addition,
WISA employs a Physical Classifier, which is designed to recognize qualitative physics categories
and assist in perceiving physical properties.

However, extracting the above physical information and subsequently understanding physical prin-
ciples from general scene video in existing datasets [25, 36] is a suboptimal approach for T2V
models. Firstly, general scene videos often feature the interweaving of multiple physical phenomena.
Individual physical phenomena are not prominently visualized, which makes it difficult to accurately
extract physical information and establish a precise connection between the physical data and its
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corresponding visual manifestation. Secondly, in these datasets, only a few videos distinctly highlight
specific physical phenomena as representative examples, while most videos treat physical phenomena
as secondary elements. For instance, in the Figure 2, the flow of water is a secondary element. Despite
having physical information guidance, the T2V models are unable to perceive the physical principles
of fluid motion from this type of data.

Liquid motion in general scenarios: Physical phenomena are not obvious

Liquid motion in WISA-80K: Physical phenomena are obvious

Figure 2: Comparison between general videos in Koala-36M
and videos with distinct physical phenomena in WISA-80K.

To address these challenges, we col-
lect and construct WISA-80K, a
dataset containing 80,000 videos
that represent 17 physical phenom-
ena across three major branches of
physics as shown in Figure 1, de-
signed as a data assistant for world
simulators. Specifically, based on
the previously defined physics cate-
gories, we manually collect videos
that clearly exhibit obvious physical
phenomena corresponding to each
category (e.g., as shown in the lower
part of Figure 2). We then apply
shot boundary detection, aesthetic
quality filtering, and video captioning to the raw videos. Subsequently, we leverage GPT-4o mini
to extract and decompose the physical information from the video captions into textual physics
descriptions, qualitative physics categories, and quantitative physics properties for WISA.

Our contributions can be summarized as follows:

• We propose a physical principle decoupling method, bridging the gap between physical
laws and generative modeling. In this method, physical principles are represented as
structured physical information, encompassing textual physical descriptions, qualitative
physics categories, and quantitative physical properties.

• We present the World Simulator Assistant (WISA), which guides T2V models to efficiently
learn specific physical phenomena based on structured physical information, through special-
ized designs such as Mixture-of-Physical-Experts Attention (MoPA) and Physical Classifier.

• We manually collect 80,000 video clips that clearly showcase physical phenomena, creating
the first large-scale physics video dataset, WISA-80K. It broadly covers common physical
phenomena observed in the real world, encompassing 17 types of physical events (e.g.,
Collision, Melting, and Reflection) across three major branches of physics.

• Quantitative and qualitative experimental results demonstrate WISA and WISA-80K can
greatly assist basic T2V models in producing videos that better align with real-world physical
laws, while introducing only a 3.5% increase in parameter count and 5% inference time.

2 Related Work

Text-to-Video Generation Early text-to-video (T2V) generation research [10, 9, 33, 7, 8, 34, 4]
primarily extend image generation models [5, 18, 17, 28, 19, 22] with temporal capabilities to enable
video generation. These methods often suffered from limited realism and restricted motion dynamics.
The powerful 3D spatio-temporal modeling and scalability of Diffusion Transformers [27, 15] have
greatly advanced the development of visual generation models. Enabled by Diffusion Transformers,
a series of recent T2V works (including OpenSora [42], Cosmos [1], Sora [26], CogVideoX [41],
HunyuanVideo[x], Kling [14], Wan2.1 [31], and Step-Video-T2V [21]) significantly improve the
realism and motion quality of video generation by scaling up model parameters and training data.
These works are widely considered as a promising pathway towards building a World Simulator.
However, they still struggle to generate videos that fully comply with real-world physical laws as
they essentially fit the data distribution [13] from general-scene datasets such as Koala-36M [36]
and OpenVid [25], where physical laws are not explicitly reflected and physical phenomena are
not prominently presented (e.g., in the upper part of Figure 2). In contrast, our carefully curated
WISA-80K dataset prioritizes the explicit presentation of typical physical phenomena as the primary
criterion for video collection as presented in Figure 1. And it provides detailed and structured
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physical information annotations, making it a valuable data assistant for enhancing the physical
consistency of video generation.

Physical-aware Video Generation Recently, researchers [24, 3, 23, 16, 2, 20, 40, 37] have in-
creasingly focused on improving and evaluating the physical consistency of generated videos. On
the one hand, Videophy [3] and PhyGenBench [23] build test samples that reflect various physical
laws, and they evaluate how well generated videos follow real-world physical laws by either training
physics classification models with manual annotations or using question-answering methods based on
Vision-Language models [38]. Physics-IQ[24] establishes a high-quality image-to-video benchmark
designed to evaluate the ability of I2V models to generate physically consistent video sequences
based on an initial state and textual instructions. On the other hand, DANO [16], MotionCraft [2],
and PhysGen [20] parse objects from images and estimate their rigid motion in a differentiable
manner by considering physical properties such as mass, inertia, friction, and rotation. Based on
these estimations, they animate the images into videos. However, these methods are restricted to fixed
physical categories (e.g., rigid motion) and static scenarios that involve only object motion, which
hinders their generalizability. PhyT2V [40] leverages large language models and vision-language
models to extract physical inconsistency information from generated videos. Based on the extracted
physical feedback, it iteratively refines the textual description over multiple rounds, improving video
generation quality. Although this approach offers generality, it introduces significant inference
overhead and fails to enhance the generative model’s ability to encode physical knowledge. In this
paper, WISA incorporates structured physical information into the generative model, enhancing its
physical perception and enabling it to handle various physical phenomena more effectively.

3 WISA-80K

3.1 Data Collection and Annotation

Physical Laws Definition: In previous physics evaluation benchmarks [3, 23], the physical phenom-
ena emphasized in video generation tasks have primarily focused on three fundamental branches
of physics: Dynamics, Thermodynamics, and Optics. Therefore, in this paper, we select 17 repre-
sentative physical phenomena from these three core domains, excluding specialized cases such as
electromagnetic phenomena.

Dynamics: We consider six common dynamic phenomena: Collision, Rigid Body Motion, Elastic
Motion, Liquid Motion, Gas Motion, and Deformation. For instance, the swinging of a pendulum
serves as an example of Rigid Body Motion.

Thermodynamics: We select six common thermodynamic phenomena: Melting, Solidification,
Vaporization, Liquefaction, Explosion, and Combustion. For example, a time-lapse of melting ice
cream illustrates the Melting phenomenon.

Optics: We define five common optical phenomena: Reflection, Refraction, Scattering, Interference
and Diffraction, and Unnatural Light Sources.

We did not include certain physical phenomena (e.g., sublimation, condensation) due to their in-
frequent occurrence in real-world scenarios and the associated difficulties in collecting sufficient
high-quality data. Subsequently, for each selected physical phenomenon, we manually collected
videos from the Internet that clearly demonstrate the corresponding behavior, without relying on any
existing video datasets for filtering or selection. During the collection process, we exclude videos
with overlaid text or significant visual blur to ensure clarity and quality. As a result, we curate a
dataset comprising approximately 40,000 videos.

Pre-processing and Caption: We use PySceneDetect [29] to split the raw videos into individual
scene clips, followed by filtering based on aesthetic scores. This process yields approximately 80,000
high-quality clips. Then, we utilize Qwen2.5-VL [35] to generate video captions using the following
prompt: {Please describe the content of this video in as much detail as possible, including the objects,
scenery, animals, and camera movements within the video.} The caption length is limited to 256
tokens.
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Qualitative physics categories

Dynamics: collision, deformation, liquid motion

Thermodynamic: explosion

Optics: (20) no obvious phenomenon

Camera Movement: (22) no

Change of subjects: liquid objects appearance, 

object decomposition and splitting, mixing of 

multiple objects, object disappearance

• The most important physical principle is the

conservation of momentum. when the balloon

bursts, the water inside is rapidly expelled in all

directions, ···, leading to a dynamic splash effect.

• The phenomenon of fluid dynamics is crucial, as

it dictates how the water droplets disperse and

interact with the surrounding air and surfaces.

Textual physical description

Text Description 
with Qwen2-VL

Physical Description 
with GPT-4o mini

The video depicts a person holding a purple

water balloon in their hand. The individual is

positioned outdoors, with a natural background.

Suddenly, a stream of water is directed towards

the balloon, causing it to burst. The water from

the balloon sprays out in all directions,

creating a splash and a burst of water droplets.

Text Prompt
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• Temperature: 15 to 25 ( ) 
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(15) reflection
(16) refraction

Camera Movement: 

Change of subjects：

Manually
Search

Manually
Evaluation

Scene detection and 
striping

Aesthetics screening

Figure 3: Pipeline of WISA-80K. We first define 17 common physical phenomena and, based on this, manually
collect 80,000 video samples that clearly illustrate these phenomena. Then, we perform shot detection and
aesthetic filtering on the raw videos. Text descriptions are extracted using Qwen2.5-VL, and detailed physical
annotations are generated with GPT-4o mini.

3.2 Physical Information Decompose

We believe that simple video captions are not sufficient to clearly represent the physical information
and related physical phenomena in a video. As shown in the Figure 3, we further constructed
structured physical annotations to analyze the physical information from multiple dimensions. Specif-
ically, we decompose the physical information into: textual physical descriptions, qualitative physics
categories, and quantitative physical properties.

Textual physical descriptions: Provide a detailed explanation of the physical principles to be
considered and the resulting intuitive physical phenomena, while supplementing the missing physical
information in the prompt. For instance, the prompt "an antique clock swings" corresponds to the
textual physical description: "... the amplitude of the swing gradually decreases ...".

Qualitative physics categories: These indicate the types of physical phenomena involved in a video.
Although each video is collected based on a specific physical phenomenon, it may still encompass
multiple types. Therefore, for each video, we identify the presence of dynamics-related, optics-related,
and thermodynamics-related phenomena to effectively handle cases where multiple physical effects
are coupled. Additionally, three categories of anomalies (i.e., No obvious dynamic phenomenon, No
obvious thermodynamic phenomenon, and No obvious optical phenomenon) are introduced to account
for scenarios that do not involve dynamics, thermodynamics, or optical phenomena. Furthermore,
nine categories of visual phenomena are introduced, two of which pertain to whether the shot exhibits
motion, while the remaining seven correspond to changes in the state of moving entities (i.e., Object
decomposition and splitting, Mixing of multiple objects ... For detailed explanations, please refer to
Supplementary Material A.5. In total, there are 29 qualitative physics categories.

Quantitative physical properties: Three physical attributes related to multiple physical phenomena
are annotated, namely the density of primary motion physics, the time range during which the physical
phenomenon occurs, and the temperature range during which the physical phenomenon occurs.

Due to the significant computational overhead and cost associated with video multi-modal models,
the annotation of the above physical information is carried out using GPT-4o mini based on the
caption. Specifically, we conduct five rounds of annotation to label qualitative physical phenomenon
categories (i.e., dynamics, thermodynamics, optics, motion, the state of objects), and three rounds to
annotate quantitative physical attributes (i.e., Density, Time and Temperature). Detailed annotation
prompts and examples are provided in the Supplementary Material A.7 and A.8.

To verify the reliability of the automatic annotations, we conducted a manual evaluation on a randomly
sampled subset of 500 videos from our dataset. Our evaluation focused on the three types of AI-
generated annotations: 1) Textual Physical Descriptions: We measured human rater satisfaction
(i.e., does the description accurately reflect the video’s physics?). Result: 95% satisfaction rate. 2)
Qualitative Physics Categories: We compared the AI-generated labels against the ground-truth labels
assigned during initial video collection. Result: 76% accuracy. 3) Quantitative Physical Properties:
We again measured human rater satisfaction (i.e., are the estimated density/time/temperature values
plausible?). Result: 86% satisfaction rate. While some label noise is inherent in any large-scale,
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Textual physical description
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Text Prompt

Physical class token

Figure 4: Overview of the proposed WISA. WISA introduces the Physical Module and Physical Classifier, which
leverage structured physical annotations to guide and assist T2V models in generating physics-aware videos.

automatically annotated dataset, these results demonstrate that the overall quality of WISA-DATA-
80K’s annotations is high. The data is sufficiently reliable to provide a strong learning signal, as
evidenced by the performance gains in experiments. More analysis of WISA-80K please refer to the
Supplementary Material A.6 and A.9.

4 Method

4.1 Overview

Given textual physical descriptions, qualitative physical categories, and quantitative physical proper-
ties, we design the WISA framework to efficiently incorporate these conditions into existing T2V
models (i.e., CogVideoX [41] or Wan2.1 [31]). To facilitate the learning of physical knowledge
while preserving the model’s original capabilities with limited video data, we design three distinct
condition injection methods tailored to each of the three categories of physical information, as
illustrated in Figure 4. Specifically, for the textual physical descriptions, we concatenate them with
the video caption and leverage the generative model’s inherent semantic understanding to generate
visual phenomena described in text (Such as "amplitude of the swing gradually decreases over time"
in Figure 4). For qualitative and quantitative physical conditions, WISA introduces the Physical
Module. In this module, we propose a Mixture-of-Physical-Experts Attention (MoPA), which assigns
expert heads to each physics category to model category-specific features. Quantitative physical
quantities are encoded as physical embeddings and then integrated into the denoising feature within
the module using AdaLN. Additionally, we introduce a qualitative Physical Classifier to help the
model understand the physical conditions. Due to the significant computational and parameter cost
introduced by MoPA, only one physical module is inserted after all the Diffusion transformer blocks
to accelerate training and reduce the overall burden. Detailed explanations and elaborations of the
Physical Module and Physical Classifier are provided in Sec. 4.2 and Sec. 4.3.

4.2 Physical Module

Most videos from real-world scenes involve the coupling of multiple physical phenomena. Even
when decomposed into distinct physical categories in WISA-80K, it remains challenging for T2V
models to comprehend the abstract qualitative physical categories and accurately model specific
types of physical phenomena. To address this challenge, we propose a Mixture-of-Physical-Experts
Attention within the Physical Module. Inspired by MoH [12], this mechanism assigns each head in
the multi-head self-attention to a specific class of physical phenomena and activates the output of the
relevant head only when the corresponding phenomenon is present. This approach treats each head
as an expert in its domain, enabling it to independently model the properties of a particular physical
phenomenon. In the presence of coupled physical phenomena, multiple corresponding expert heads
are activated to effectively model the interactions among them.
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Specifically, qualitative physical categories are encoded as Pc ∈ RC , where C denotes the number
of defined physical phenomena (i.e., 29). Here, P i

c = 0 indicates that the corresponding category
is not activated, and P i

c = 1 indicates that the corresponding category is activated, with i being the
category index. Physical categories cannot be absolutely correct and may contain noise, such as
incorrect activations or suppressions. To mitigate the impact of these noises on training, we employ
a random perturbation operation, where the positions with P i

c = 1 are set to 0, and the positions
with P i

c = 0 are set to 1.0 with a certain probability (i.e., 0.2), resulting P̂c. After the multi-head
self-attention operation, the denoising feature Fh ∈ RN×d×h (where h presents the number of head
and h = C, and d denotes head dimension) will interact with P̂c to activate and suppress the experts
corresponding to different physical phenomena. The feature dimension is then restored through
concatenation and a linear layer. The mathematical representation of this process is as follows:

P̂c = Random(Pc), Fh = MHSA(F ),

Fo = Linear(Reshape(Fh ⊙ P̂c)) (1)

where Random denotes random perturbations operation, MHSA represents multi-head self-attention,
and ⊙ denotes element-wise multiplication.

Due to the large variations in the time and temperature spans of different physical phenomena, we
first represent the temperature and time in quantitative information using scientific notation, with
coefficients and exponents. These values Pp ∈ Rn are mapped through a linear layer, concatenated
with the timestep embedding Te ∈ Rt, and injected by AdaLN. The mathematical representation of
this process is as follows:

α, β, γ = Chunk(Linear(Concat(Linear(Pp), Te)),dim =− 1)
F = F ∗ (1 + α) + β, Fo = Fo ∗ γ (2)

Generative models often consist of multiple transformer blocks with large feature dimensions,
inserting the Physical Module after every block would lead to an explosion in both parameters and
computational complexity. Therefore, we insert the Physical Module only after the final transformer
block, achieving efficient physical information guidance while mitigating the aforementioned issues.

4.3 Physical Classifier

To guide the generative model in understanding abstract physical categories and modeling physical
properties, we introduce a Physical Classifier after the Physical Module to predict qualitative physical
categories. We introduce a learnable embedding vector, which we call the [PHYSICS_TOKEN].
This token is concatenated with the noisy visual tokens and text prompt tokens and is processed
by the entire MM-DiT and MoPA architecture. The final hidden state of the [PHYSICS_TOKEN]
Fc ∈ RC . is fed into a simple MLP classification head. This head outputs logits corresponding to
the 29 qualitative physical categories, performing a multi-label classification task over the categories
defined in our work. This output is used only to compute the multi-label binary cross-entropy loss for
training.

Lpc =

C∑
i=1

(P i
c log(f

i
c) + (1− P i

c)log(1− f i
c)), (3)

where C is the number of physical categories, and fc ∈ RC represents the predicted probabilities,
which are obtained by passing Fc through the sigmoid function. For each video, the model predicts
which of these phenomena are present. During inference, the output from the classifier head is entirely
discarded and has no influence on the video generation process. Its sole purpose is to serve as an
auxiliary training signal, guiding the model to better learn and represent physical concepts.

To balance the introduced classification loss Lpc and the diffusion loss Ldiffusion, we adopt the
following loss function to optimize the physics-aware generative model.

L = Ldiffusion + λLpc/(1 + Lpc.detach), (4)

where λ is balance coefficient.
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Table 1: Quantitative evaluation using VideoCon-Physics conduct on the Videophy and PhyGenBench
prompt lists. The best performing metrics are highlighted in bold.

Method Inference Prompts from VideoPhy [3] Prompts from PhyGenBench [23]

Time (s) IS (↑) CLIPSIM (↑) SA (↑) PC (↑) IS (↑) CLIPSIM (↑) SA (↑) PC (↑)

VideoCrafter2 [7] - - - 0.47 0.36 - - - -
OpenSora [42] - 28.72 0.2638 0.21 0.35 - - - -

HunyuanVideo [17] - - - 0.46 0.28 - - - -
Cosmos-Diffusion-7B [1] 600 25.58 0.2444 0.52 0.27 20.17 0.1956 0.41 0.24

CogVideoX-5B [41] 210 30.17 0.2714 0.57 0.41 26.49 0.2590 0.34 0.42
CogVideoX-5B + PhyT2V [40] 1800 - - 0.59 0.42 - - 0.38 0.42

CogVideoX-5B-WISA 220 34.62 0.2822 0.62 0.45 27.31 0.2813 0.39 0.45

Wan2.1-14B [31] 900 36.52 0.2686 0.54 0.31 33.41 0.2488 0.39 0.28
Wan2.1-14B-WISA 960 38.18 0.2813 0.60 0.36 37.62 0.2725 0.42 0.33

5 Experiments

Training Setting: We select the current representative open-source T2V model, CogVideoX-5B
and Wan2.1-14B, as the base T2V models to validate the effectiveness of WISA. More training detail,
please refer to Supplementary Material A.3.

Evaluation: We select VideoCon-Physics from Videophy [3] to evaluate the physical law con-
sistency (PC) and semantic coherence (SA) of the generated videos. We use 160 carefully crafted
prompts from PhyGenBench [23] and 344 prompts from Videophy, designed to reflect various physi-
cal principles, for testing. Following VideoCon-Physics2, we compute SA and PC by averaging the
predicted results. Additionally, we adopt the Inception Score (IS) to evaluate the perceptual quality
of generated videos and employ CLIP similarity (CLIPSIM) [11] to measure text-video alignment.
More evaluation detail, please refer to Supplementary Material A.3.

5.1 Quantitative comparison

We select five general text-to-video generation models (i.e., VideoCrafter2, OpenSora, HunyuanVideo,
CogVideoX-5B and Cosmos-Diffusion-7B) and PhyT2V, a method specifically designed to enhance
physical properties, for quantitative comparison, as shown in Table 1.

VideoPhy: WISA achieves state-of-the-art performance on both SA and PC metrics while maintaining
high efficiency. Compared to the CogVideoX-5B, CogVideoX-5B-WISA improves SA and PC scores
by 0.05 and 0.04, respectively, demonstrating that our proposed method significantly enhances the
realism of generated videos. PhyT2V improves its performance by iteratively analyzing physical
errors in generated video captions and adjusting the input prompts based on feedback from VideoCon-
Physics scores. However, its cumbersome pipeline, which involves multiple rounds of Tarsier-34B
[32] inference for video generation, introduces extremely long inference time—approximately 9
times longer than the original generation model. Cosmos exhibits poor performance due to the
disordered physical processes and inconsistent temporal sequences. Furthermore, Wan2.1-14B-WISA
also achieves performance improvements on Wan2.1, showing advantages in metrics such as IS and
CLIPSIM. However, since Wan2.1 is not among the nine generative models used to construct the
training data for VideoCon-Physics (whereas CogVideoX is included), it shows certain disadvantages
in SA and PC. Despite this, Wan2.1 demonstrates superior video quality, achieving better performance
in the IS.

PhyGenBench: We also evaluate WISA using prompts from PhyGenBench, observing significant
improvements on both CogVidoX and Wan2.1, which demonstrates the generalizability of WISA.

5.2 Qualitative comparison

We further provide a qualitative comparison with existing methods to demonstrate the advantages of
WISA. As shown in the Figure 5, for the example of the rope supports a wooden swing, CogVideoX-

2https://github.com/Hritikbansal/videophy/issues/5
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An apple falls into a vat of cider, sending up a sprayThe rope supports a wooden swing

Figure 5: Qualitative comparison between CogVideoX-5B-WISA and existing T2V methods. CogVideoX-5B-
WISA exhibits better alignment with real-world physical laws.

Explosion: A firework bursts in mid-air, releasing a brilliant flash of light …. 

Fragments of colored paper scatter wildly, spiraling away like confetti ...

Melting: An ice cube melts in a warm environment … causes tiny droplets to 

form on its surface. these droplets gradually merge into small streams, 

sliding down the edges.

Reflection: A calm lake mirrors a single swan gliding gracefully across its 

surface … distorting its reflection ... that echoes the motion with each gentle 

stroke of its wings.

Interference and diffraction: A small soap bubble floats gently in the air. 

The surface of the bubble … causes light to interfere, creating beautiful 

rainbow patterns …

Rigid Body Motion: An antique clock's pendulum hangs inside its ornate 

wooden casing, with the camera focusing on its rhythmic motion. The metal 

rod remains …

Elastic motion: A bright green rubber band stretches as fingers pull it taut, 

revealing its thin ... demonstrating the elasticity of materials through clear 

deformation.

Rigid Body Motion: A solitary lantern swings gently in the night, casting 

flickering shadows on the cobblestone … creating dancing shapes that 

morph and twist …

Elastic motion: A vibrant red rubber ball bounces steadily on a smooth, sunlit 

sidewalk. each impact compresses the rubber, then releases, sending it soaring 

back into the air. 

Figure 6: More samples generated by CogVideoX-5B-WISA, covering additional physical phenomena.

5B-WISA generates a video where the rope suspending the wooden seat swinging back and forth in
accordance with physical laws. In contrast, CogVideoX-5B produces unstable swing motion; PhyT2V
fails to generate the swinging behavior of the wooden seat; and Cosmos generates a physically
inconsistent scene where the rope breaks while the wooden seat remains horizontally suspended. In
the example on the right, WISA successfully simulates the process of an apple falling into water: the
water surface remains calm before the apple enters, splashes form as the apple impacts the water, and
the apple experiences buoyant force after submersion. However, CogVideoX-5B generates chaotic
water and apple movements, PhyT2V omits the falling process, and Cosmos mistakenly generates
two apples at the end. Additional videos generated by CogVideoX-5B-WISA, demonstrating various
physical phenomena, are also presented in the Figure 6. All aforementioned videos, along with
comparisons on Wan2.1, are provided in the Project Page.

5.3 Ablation Study

We conduct ablation studies on VideoPhy using VideoCon-Physics to verify the effectiveness of key
components in our method, as shown in the Table 2. The baseline is CogVideoX-5B. As expected,
removing MoPA results in a performance drop due to the absence of qualitative physical information
as guidance. Similarly, the inclusion of the Physical Classifier aids the generative model in perceiving
and modeling physical properties, thereby enhancing both semantic relevance and consistency with
physical laws. Notably, the evaluation model VideoCon-Physics [3] is trained on samples generated
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by nine different T2V models, leading to a distribution shift when compared to the real-world
videos in WISA-80K. Consequently, relying solely on LoRA yields only limited improvement.

Table 2: Ablation study on the key components of WISA. "PC" denotes
the Physical Classifier.

Setting Data
Textual
Physical

Descriptions

Qualitative
Physics

Categories

Quantitative
physical

properties
SA (↑)PC (↑)

Baseline - - - - 0.57 0.41
only LoRAGeneral Data - - - 0.57 0.40
only LoRA WISA-80K ✓ - - 0.58 0.43
w/o MoPA WISA-80K ✓ - ✓ 0.59 0.43
w/o MoPA WISA-80K - - ✓ 0.57 0.42

w/o PC WISA-80K - ✓ - 0.60 0.44
w/o PC WISA-80K ✓ ✓ ✓ 0.61 0.44
WISA WISA-80K ✓ ✓ ✓ 0.62 0.45

To further investigate the
impact of clearly-defined
physical phenomena data
versus general scene data
on physical perception, we
fine-tune LoRA on 80,000
videos from an open-source
video dataset. This results
in only a slight performance
decline, indicating that the
physically grounded videos
in WISA-80K provide sub-
stantial value for modeling
physical properties.

5.4 User Preference

200

400

600

800

Semantic Consistency Physical Alignment

User Preference CogvideoX-5B Cosmos PhyT2V WISA

Figure 7: User Preference on VideoPhy
prompts.

The physical consistency of generated videos is abstract
and difficult to quantify directly. Therefore, we conduct
a human evaluation to assess the effectiveness of WISA.
Specifically, we selected three representative models for
comparison. The evaluation considered two aspects: se-
mantic consistency and physical alignment. Each candi-
date model is ranked in both aspects, receiving a score
based on its ranking: 3 points for first place, 2 points for
second, and 0 points for last. We collected preference re-
sults from 100 participants. As shown in the Figure 7 demonstrates that WISA achieves a significant
advantage in physical alignment, while also maintaining strong semantic consistency.

5.5 Attention Map Analysis

We further conduct a visual analysis of the Mixture-of-Physical-Experts attention maps, aiming to
investigate whether different physical experts focus on the regions corresponding to distinct physical
phenomena. As shown in the Figure 8, the rigid body motion expert perfectly focuses on the swing
region, while the non-dynamics expert attends to the static background with no apparent motion. This
demonstrates that the MoPA effectively models and captures the corresponding physical attributes.

6 Conclusion

Generated video

Attention map of “rigid body motion” expert

Attention map of “no obvious dynamic phenomenon” expert

Figure 8: Attention maps of different physical experts.

In this paper, we present WISA framework,
which decomposes physical principles into
structured physical information, includ-
ing textual physical descriptions, qualita-
tive physical categories, and quantitative
physical properties. To help T2V mod-
els learn these physical aspects effectively,
WISA incorporates two key components:
the Mixture-of-Physical-Experts Attention
and the Physical Classifier. Building on
this, we construct WISA-80K, a dataset
containing 80,000 video clips that cover
17 physical phenomena across three funda-
mental categories of physics, providing a
high-quality data foundation. Experimen-
tal results show that WISA and WISA-80K
can effectively help produce videos that
better align with real-world physical laws, while the additional computational overhead is under
5%. We hope that WISA can provide valuable insights into the research on building powerful world
simulators. We further discuss the limitation of this paper in the Supplementary Material A.2.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the main contributions of the
paper, including the proposed WISA and WISA-80K (3), the design of the Physical Module
(4.2), and the overall performance of WISA in experiments (5). These claims are well
supported by the methods and experimental results presented in the main paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attainable by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the proposed method have been clearly discussed in the
paper (A.2).

Guidelines:

• The answer NA means that the paper has no limitation, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides all necessary implementation details, including model
architecture, training settings, hyperparameters, and dataset preprocessing steps. We will
release the full code and trained models upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: To preserve anonymity during the review process, we have not released the
code and data yet. However, we commit to open-sourcing both the code and data, along
with detailed instructions for reproducing the experiments, upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all relevant experimental details in Supplementary Material A.3.
These details ensure the clarity and reproducibility of our experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While we do not report explicit error bars or confidence intervals, we follow
the standard evaluation protocols from prior related work to ensure fair comparisons.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information about the compute resources used for our
experiments, including the type of GPUs and other relevant training settings ( A.3). These
details are included to support reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully adheres to the NeurIPS Code of
Ethics. We have ensured that all ethical guidelines regarding data usage, privacy, and
research integrity have been strictly followed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]
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Justification: The paper does not explicitly discuss societal impacts. However, since the work
focuses on text-to-video generation, we acknowledge potential misuse, such as generating
misleading or harmful content. We plan to include safeguards and responsible usage
guidelines when releasing models to mitigate such risks.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Since our work focuses on text-to-video generation, we recognize its potential
for misuse, such as in generating misleading or fake images. To mitigate this, we intend to
release our model under a research-only license with clear usage restrictions. The dataset
used is public and curated to avoid harmful content.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We use several publicly available datasets and pretrained models (e.g.,
CogVideoX, Wan2.1) in our experiments. All datasets and models are properly cited
in the main text and/or appendix. We ensured that their licenses are respected, and no data
under restrictive or ambiguous licenses was used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: While we plan to release the code and model after the review process, at
the time of submission no new assets are publicly released. Upon release, we will ensure
that comprehensive documentation, licensing terms, and usage guidelines are provided in
accordance with the NeurIPS guidelines.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects, so
IRB approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for writing and editing assistance. They were not
involved in any part of the core methodology, experimental design, or scientific contribution.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Technical Appendices and Supplementary Material

A.1 Broader Impacts and Ethical Considerations

The development of powerful generative models, particularly those capable of creating realistic
video content, carries a significant responsibility. The work presented in this paper, while aimed at
advancing scientific understanding and technical capability in physics-aware video generation, is not
exempt from potential societal impacts and ethical challenges. This section transparently discusses
these issues and outlines the steps we are taking to mitigate potential harms.

Potential for Misuse and Societal Impact: We recognize the dual-use nature of our work. The
same technology that can be used for creative applications, scientific simulation, or special effects
could also be exploited to create compelling but fabricated content for malicious purposes. The
enhanced physical realism of videos generated by a model like WISA could amplify the verisimilitude
of synthetic media, increasing its potential to be used for misinformation, disinformation (e.g.,
"deepfakes"), or propaganda. Such content could erode public trust, be used as false evidence, or
create realistic depictions of accidents or violence to incite fear.

Dataset Ethics and Release Strategy: The creation and distribution of any large-scale dataset
require careful consideration of privacy, copyright, and consent. The WISA-80K dataset is constructed
using video clips from publicly available channels on YouTube.

• Copyright and Terms of Service: To respect the rights of content creators and to comply with
platform Terms of Service, we have adopted a metadata-only release strategy. We will not
host or distribute any video files, clips, or raw pixel data. The released dataset will contain
only the public YouTube video IDs, the relevant start and end timestamps of the physical
phenomena, and our corresponding physical annotations. This is a standard and widely
accepted practice in the research community (e.g., AudioSet) that enables reproducible
research while avoiding copyright infringement.

• Responsible Data Access: To further ensure responsible use, the WISA-80K metadata will
not be available for direct public download. Instead, we will implement a gated access
mechanism. Researchers wishing to use the dataset must submit a request outlining their
institutional affiliation and research purpose. They will be required to agree to a Data Usage
Agreement (DUA), which will stipulate that: (1) the dataset is to be used for non-commercial
research purposes only; (2) users are responsible for their own adherence to YouTube’s
Terms of Service when accessing the original videos; and (3) the metadata and any derived
video content may not be redistributed.

• Content Creator Rights: We will provide a clear and accessible opt-out mechanism on our
future project page. Any content creator can request the removal of their video’s ID from
our dataset at any time, and we are committed to promptly honoring all such requests.

Annotation Process: Quality and Bias: The physical annotations in WISA-80K were generated
using a large language model (GPT-4o-mini). We acknowledge that this automated process may
introduce biases or factual inaccuracies ("hallucinations").

• Human Validation: To quantify the quality and reliability of these annotations, we conducted
a human validation study on a randomly sampled subset of 500 videos. The results (detailed
in Appendix X) indicate a high degree of quality, with 95% satisfaction for textual descrip-
tions and 86% satisfaction for the plausibility of quantitative estimates. The accuracy for
qualitative category classification was 76% against human-assigned labels.

• Dataset Positioning: These results confirm that while some label noise is inherent, the
annotations provide a strong and reliable learning signal. Nonetheless, WISA-80K should be
understood as a large-scale, weakly-supervised dataset rather than a gold-standard, error-free
resource. We encourage future work to further refine and build upon these annotations.

Mitigation Strategies for the Generative Model: To address the risks of misuse associated with
the generative model itself, we commit to the following safeguards for any future public release:
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• Visible Watermarking: All video outputs generated by our released model will be pro-
grammatically embedded with a clear and persistent visible watermark to identify them as
synthetic.

• Responsible AI License: We plan to release the model under a Responsible AI License
(e.g., a CreativeML Open RAIL-M license). Such licenses contractually prohibit users from
employing the model for malicious, deceptive, illegal, or unethical purposes, including the
generation of harmful misinformation.

A.2 Limitation

Although our approach significantly improves the ability of existing T2V models to generate videos
that align with real-world physical laws, it still has the following limitations: 1) Limited physical
categories: We collect 80,000 videos in WISA-80K, covering 17 types of physical phenomena. How-
ever, due to constraints in time and manpower, the dataset does not include all physical phenomena
encountered in the real world, such as corrosion or vacuum environments. 2) Limited physical
information guidance: WISA primarily provides high-level semantic guidance and lacks detailed
constraints at the physical mechanism level (e.g., energy conservation, Newton’s laws). However,
introducing more detailed physical principle constraints currently requires modeling object motion
based on image or 3D information, which suffers from poor generalization and can only handle
limited categories and scenarios. How to incorporate physical principle constraints into text-to-video
generation while maintaining generalization remains an area worth further research. 3) Expanding
WISA to Unseen Classes: We conducted additional qualitative evaluations on unseen physical
categories such as corrosion and electromagnetism, as shown in Figure 9. As expected, both our
WISA-enhanced model and the base model struggle to generate physically plausible videos for
these categories. This limitation primarily stems from the absence of relevant concepts and visual
examples in the WISA-80K training set, underscoring the current challenge of generalizing to entirely
out-of-distribution physical phenomena. However, we argue that WISA’s modular design, particularly
the Mixture-of-Physical-Experts Attention (MoPA) mechanism, makes it inherently more scalable
than monolithic architectures. When introducing a new physical category, traditional fine-tuning
methods (e.g., applying LoRA on the base model) typically require retraining large portions of the
network to assimilate the new knowledge. In contrast, MoPA allows for a more targeted and efficient
expansion: we can simply add and train a new expert head dedicated to the novel phenomenon
while keeping the existing experts largely frozen, thus preserving prior knowledge and facilitating
incremental learning.

Figure 9: Visual comparison on unseen categories.

Further work: In future research, we plan to explore physically consistent generation for the
image-to-video (I2V) task. In principle, WISA can be applied to I2V as well. The main distinction
between I2V and text-to-video (T2V) lies in the input: I2V models receive a clean latent code for the
first frame, whereas the rest of the input text and model architecture remain the same. With explicit
initial frame information, the I2V model primarily learns to infer subsequent states, generating
intermediate and final frames that follow plausible physical processes.

Compared with T2V, I2V is particularly relevant in embodied intelligence and robotics, where
agents often observe a concrete initial state and must predict or plan the outcomes of actions in a
physically consistent way. While T2V remains a more challenging task—requiring the model to
imagine the entire physical process from scratch based solely on abstract text—the I2V task provides
a complementary and practically important setting to study and improve physical consistency in video
generation. We aim to extend WISA to I2V in future work, leveraging its modular design to generate
videos that maintain accurate physical dynamics starting from a known initial state.
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A.3 Training and Evaluation Detail

Training: We choose two representative open-source T2V models—CogVideoX-5B and Wan2.1-
14B—as the base models to validate the effectiveness of the proposed WISA. WISA is trained on
our constructed WISA-80K dataset for 8,000 steps, using a learning rate of 2e-5 and a batch size of
16. For CogVideoX-5B, the video resolution is set to 480×720 with 49 frames per video, while for
Wan2.1-14B, the resolution is 480×832 with 81 frames. We adopt LoRA with a rank of 128 and an
alpha of 16. During training, only the physical module, physical classifier, and LoRA parameters are
updated, resulting in a total of 187 million learnable parameters for CogVideoX-5B and 587 million
for Wan2.1-14B. All experiments are conducted on 8 A100 GPUs, each equipped with 80 GB of
memory.

Evaluation: VideoCon-Physics was trained by collecting videos generated from nine different
models, which were manually annotated for adherence to real-world physical laws and strong
semantic consistency. Using this data, a vision-language model (VLM) was fine-tuned to serve as
a reward model. During inference, the generated video and corresponding text prompt are fed into
VideoCon-Physics, which outputs scores ranging from 0 to 1 for both metrics.

A.4 Inference without Annotation

For any given user prompt, we use a large language model (GPT-4o) with a set of predefined
instructions to generate the required physical annotations (textual description, qualitative categories,
quantitative properties). Crucially, this process uses only the input text prompt, with no access to any
visual information, thus preventing any unfair information leakage. The cost is also minimal (approx.
2000 tokens per prompt). The detailed instructions are provided in the Figure 12, Figure 13, and
Figure 14.

A.5 The Definition of Physical Categories

We define a total of 29 qualitative physical categories, organized into 5 major classes. The physical
categories within each class, along with their corresponding category IDs, are listed as follows:

Dynamics: 1. Collision, 2. Rigid Body Motion, 3. Elastic Motion, 4. Liquid Motion, 5. Gas Motion,
6. Deformation, and 7. No obvious dynamic phenomenon

Thermodynamics: 8. Melting, 9. Solidification, 10. Vaporization, 11. Liquefaction, 12. Explosion,
13. Combustion and 14. No obvious thermodynamic phenomenon

Optics: 15. Reflection, 16. Refraction, 17. Scattering, 18. Interference and Diffraction, 19.
Unnatural Light Sources, and 20. No obvious optical phenomenon

Camera motion: 21. Yes, 22. No

The state of object: 23. Liquids Objects Appearance, 24. Solid Objects Appearance, 25. Gas Objects
Appearance, 26. Object decomposition and splitting, 27. Mixing of Multiple Objects, 28. Object
Disappearance and 29. No Change

Specifically, Liquids objects appearance: new liquids appear from the camera over time and due
to external forces, such as water squeezed out of a towel. Solid objects appearance: new solids
appear from the camera over time and due to external forces, such as Chemical reaction that produces
precipitates, or cars drive in from outside the camera. Gas objects appearance: new gas appears
from the camera over time and due to external forces. Object decomposition and splitting: Over
time and under the action of external forces, an object is broken into multiple sub-parts: such as
fruits and vegetables being cut in half. Mixing of multiple objects: Over time and with the action of
external forces, two objects of the same state mix together, such as two solutions mixing. Object
disappearance: As time passes and external forces act, objects disappear from the camera. No change:
No change in the state of the object

A.6 Dataset Property Analysis

We visualize the distribution of different physics categories and video frame counts in WISA-
80K, as shown in the paper Figure 1. Dynamics frequently occur in daily life, accounting for the
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Figure 10: Accuracy of qualitative physical category annotations.

largest proportion at 47%. Optics and thermodynamics, which typically require specific temperature
or environmental conditions, account for 29% and 24%, respectively. The proportions of each
subcategory are shown in the outer ring of the Figure Based on the labels of the manually collected
videos, we evaluate the accuracy of the qualitative physical category annotations. The results are
shown in the Figure 10, where the accuracy for dynamics, optics, and thermodynamics reaches 84%,
71%, and 64%, respectively, with an overall accuracy of 75%.

A.7 More Examples and Annotation

Following the proposed physical information annotation pipeline, we construct the WISA-80K
dataset. Several example videos and their corresponding annotations are shown in the Figure 11. This
pipeline enables accurate and detailed annotation of physical information, ensuring that each video is
comprehensively labeled with its relevant physical properties and phenomena.

A.8 Annotation Prompts

The detailed prompt used for physical information annotation is illustrated in the Figure 12, Figure
13, and Figure 14.

A.9 Word Cloud

We conducted a word frequency analysis on the textual physical description in the dataset and
generated the word cloud shown in Figure 15. To filter out irrelevant words, we retained only nouns
and selected them based on their frequency, from highest to lowest. Notably, physical terms such
as ’motion,’ ’phenomenon,’ and ’light’ appear more frequently, highlighting the strong physical
relevance of the dataset.

A.10 Discussion of Quantitative Evaluation

During the quantitative evaluation, we observe several misjudgments in VideoCon-Physics, as shown
in the Figure 16. Specifically, WISA generates a physically plausible process where the object enters
the water first, followed by the splash, aligning well with real-world physical laws. However, this
sample only receives a low score of 0.08 from VideoCon-Physics. We further conduct a simple test
using Qwen2.5-VL for evaluation, and the model also struggles to distinguish the correct or incorrect
sequence of physical events. These findings show the limitations of existing video-based physics
evaluation metrics, indicating that future research into more reliable physical property assessments
for videos is necessary.
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Captions: The video depicts a close-up view of a mechanical device in 

operation. The device appears to be a type of press or hydraulic machine, 

characterized by its metallic components and the presence of a yellow and 

black striped cylinder at the top. The cylinder has a warning label, indicating 

caution or danger, which is typical for industrial machinery. The machine is in 

the process of compressing or forming a metal component, as evidenced by 

the movement of the upper part of the device, which is descending and 

exerting pressure on the lower part. The lower part of the machine consists of 

a circular base and a cylindrical component that is being compressed. The 

base has a handle attached to it, which is likely used for manual operation or 

adjustment. The metal components show signs of wear and use, with visible 

scratches and marks, suggesting that this is a well-used piece of equipment. 

The background is blurred, focusing attention on the machine, but it appears 

to be an industrial setting, possibly a workshop or a factory floor.

Textual physical description : when generating a video of the described 

mechanical device, it is crucial to consider the principle of force and pressure, 

particularly how hydraulic systems operate based on pascal's principle, which 

states that pressure applied to a confined fluid is transmitted undiminished in 

all directions. additionally, attention should be paid to the physical 

phenomenon of deformation, as the metal component being compressed will 

experience changes in shape and possibly yield stress, reflecting the material's 

properties under load.

Qualitative physics categories:{

Dynamics: collision, deformation,

Thermodynamics: no obvious thermodynamic phenomenon,

Optics: no obvious optical phenomenon,

Camera motion: no,

The state of object: 1. no change 2. object decomposition and splitting (if 

the metal component is being cut or broken) 3. solid objects appearance (if 

new metal components are formed during the process),

}

Quantitative physical properties: {

Density: mechanical device: 7.5 to 8.0 g/cm³  cylindrical component: 7.5 

to 8.0 g/cm³,

Time: 0 to 5 seconds,

Temperature: 20 to 100 degrees celsius,

}

Captions: The video begins with a serene forest scene, showing a dirt path 

winding through a dense area of trees. The trees are tall and green, indicating 

a healthy forest environment. The path is flanked by the trunks of these trees, 

and the ground is covered with a layer of fallen leaves and small plants. The 

sky is not visible, suggesting that the camera is focused on the ground level. 

As the video progresses, there is a sudden and dramatic change in the scene. 

A large explosion occurs, sending a massive cloud of smoke and debris into 

the air. The smoke is thick and billows upwards, obscuring the view of the 

forest and the path. The explosion creates a bright flash of light, which is 

visible even through the smoke. The force of the explosion is so intense that it 

appears to shake the camera, causing it to vibrate slightly. The explosion is 

the focal point of the video, and it dominates the scene. The smoke and debris 

are the only visible elements.

Textual physical description : when generating a video of an explosion in a 

forest scene, it's crucial to consider the principles of conservation of 

momentum and energy, as well as the behavior of gases and smoke in 

response to rapid changes in pressure. the explosion should realistically 

demonstrate how the shockwave propagates through the air, causing nearby 

objects to react (e.g., trees swaying or debris being displaced), and how the 

smoke rises and expands due to the hot gases produced, following the laws of 

fluid dynamics.

Qualitative physics categories:{

Dynamics: collision, gas motion, deformation,

Thermodynamics: explosion,

Optics: scattering, unnatural light source,

Camera motion: yes,

The state of object: 1. gas objects appearance 2. object decomposition and 

splitting 3. object disappearance,

}

Quantitative physical properties: {

Density: smoke: 0.001 to 0.01 g/cm³  debris: 1 to 2.5 g/cm³ ,

Time: occur rapidly after the explosion. the main physical phenomena, 

including the explosion and the subsequent rise of smoke and debris, would 

typically take place within a very short time frame. \n\nbased on the 

description, the explosion itself and the immediate effects would likely occur 

within: 0 to 5 seconds.,

Temperature: 500 to 1000 degrees celsius,

}

Figure 11: The video data and its detailed annotations in WISA-80K.
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"model": “GPT-4o-mini“

content: "You are a physics expert. Now you want to help the generative model generate videos based on
text descriptions. You need to provide some physics knowledge to make the generated videos more
consistent with the laws of physics. What is the most important physical principle and the special physical
phenomena to be aware of when generating a video based on the following sentence? Please explain briefly
with one or two sentence."

content: caption

content: "You are a physicist with expertise in material properties and fluid mechanics. Your task is to
assist a generative model in creating videos that align with the laws of physics based on text descriptions.
Carefully analyze the text and provide a single estimated density value or range for each main moving
object described. Express the density value or range for each object in the unit g/cm³ . Ensure that each
object is listed only once, with its corresponding density value or range. If no density information can be
estimated for an object, omit it from the output. Present the results in the format: Object: XXX to XXX
g/cm³ (for a range) or Object: XXX g/cm³ (for a single value), separated by newlines for each object.“

content: "You are a physicist with expertise in dynamics and time-related physical processes. Your task is
to assist a generative model in creating videos that align with the laws of physics based on text
descriptions. Carefully analyze the text and estimate the time range during which the main physical
phenomena occur. Only output the time range in the format XXX to XXX seconds."

content: "You are a physicist with expertise in thermodynamics and temperature-related phenomena. Your
task is to assist a generative model in creating videos that align with the laws of physics based on text
descriptions. Carefully analyze the text and estimate the temperature range during which the main
physical phenomena occur, expressed in degrees Celsius (e.g., '100 to 200'). Only output the temperature
range in the format XXX to XXX degrees Celsius."

"role": “system“ "role": "user"

content: caption

content: caption

content: caption
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Figure 12: Prompts for annotating textual physical descriptions and quantitative physical properties
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"model": “GPT-4o-mini“

content: "You are a physicist with expertise in classical and modern dynamics. Carefully analyze the
following text and determine which of the following dynamic phenomena are most likely represented in the
described scene. Please base your judgment on the principles of motion, force interactions, and material
behavior. Select one or more options from the list below and provide your answer by outputting only the
corresponding names, separated by commas (if multiple apply):\
Collision (e.g., objects impacting and exchanging momentum)
Rigid body motion (e.g., rotation or translation without deformation)
Elastic motion (e.g., oscillations, vibrations, or stretching and compressing of elastic materials)
Liquid motion (e.g., flow of liquids or interactions with liquids)
Gas motion (e.g., expansion, compression, or flow of gases)
Deformation (e.g., structural deformation under applied pressure)
No obvious dynamic phenomenon."

content: caption

content: "You are a physicist with expertise in thermodynamics. Your task is to carefully analyze the
following text and determine which thermodynamic phenomena are most likely represented in the
described scene. Use the principles of energy transfer, phase transitions, and heat-related processes to
guide your judgment. Below are detailed explanations of the thermodynamic phenomena to help you make
an accurate assessment:\
Melting: A solid turns into a liquid due to heat being absorbed. Examples include ice melting into water or
metal melting in a furnace.
Solidification: A liquid turns into a solid as heat is removed. Examples include water freezing into ice or
molten metal solidifying when cooled.
Vaporization: A liquid transforms into a gas through boiling or evaporation. Examples include water boiling
into steam or alcohol evaporating into vapor.
Liquefaction: A gas transforms into a liquid due to cooling or pressure increase. Examples include water
vapor condensing into liquid or liquefied natural gas formation.
Explosion: A sudden and rapid release of energy causes a violent expansion. Examples include chemical
explosions, gas detonations, or bursting pressurized containers.
Combustion: An exothermic chemical reaction, typically involving fuel and oxygen, resulting in heat and
light. Examples include burning wood, gasoline, or natural gas.
No obvious thermodynamic phenomenon: The described scene does not exhibit any distinct thermodynamic
process.
Carefully evaluate the text and select one or more phenomena from the above list based on the scene's
description. Provide your answer by outputting only the corresponding names (e.g., "Melting, Combustion")
separated by commas if multiple phenomena apply. If none apply, output "No obvious thermodynamic
phenomenon."

"role": “system“ "role": "user"

content: caption
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Figure 13: Prompts for annotating qualitative physics categories
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"model": “GPT-4o-mini“

content: You are a physicist with expertise in optics. Your task is to analyze the following text carefully
and determine which of the listed optical phenomena are most likely represented based solely on the clear
and explicit descriptions provided in the text. Base your judgment strictly on principles of light behavior,
wave properties, and interactions with matter. Avoid making assumptions about phenomena not clearly
implied or described. Select one or more options from the list below and provide your answer by
outputting only the corresponding names, separated by commas (if multiple apply):\
Reflection (e.g., light bouncing off a surface)
Refraction (e.g., light bending as it passes through a medium)
Scattering (e.g., light dispersed in various directions, such as in fog or smoke)
Interference and diffraction (e.g., light waves overlapping, forming patterns or bending around obstacles)
Unnatural light source (e.g., artificial or unexpected light emissions, such as lasers or LEDs)
No obvious optical phenomenon.

content: caption

content: "You are a cinematographer and physics expert. Your task is to analyze the provided text
description and determine whether the camera is in motion within the scene. Consider factors such as
panning, tilting, tracking, or any other type of camera movement. If the text implies camera motion,
output 'Yes' If the text indicates a stationary camera or lacks information about camera motion, output
'No' Only output 'Yes' or 'No’."

"role": “system“ "role": "user"

content: caption
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content: "You are an ordinary residents. Please provide the possible phenomena's name in the following 7
types (i.e., liquids objects appearance; solid objects appearance; object decomposition and splitting;
mixing of multiple objects, object disappearance, no change) without any explanation.
The types of phenomena:\
liquids objects appearance: new liquids appear from the camera over time and due to external forces, such
as water squeezed out of a towel.
solid objects appearance: new solids appear from the camera over time and due to external forces, such
as Chemical reaction produces precipitate or car drives in from outside the camera.
Gas objects appearance: new gas appear from the camera over time and due to external forces.
Object decomposition and splitting: Over time and under the action of external forces, an object is
broken into multiple sub-parts: such as fruits and vegetables being cut in half.
Mixing of multiple objects: Over time and with the action of external forces, two objects of the same
state mix together, such as two solutions mixing.
Object disappearance: As time passes and external forces act, objects disappear from the camera.
No change: No change in the state of the object."

content: Which of the above phenomena are most likely to occur in the text description: {caption}

Figure 14: Prompts for annotating qualitative physics categories
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Figure 15: Word cloud generated from textual physical description, where larger words indicate
higher frequencies in the dataset text
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0.05 < 0.5: Violating the laws of physicsViolating the laws of physics

0.08 < 0.5: Violating the laws of physicsConsistent with physical laws 0.29 < 0.5: Violating the laws of physicsConsistent with physical laws

0.78 > 0.5: Consistent with physical lawsConsistent with physical laws

Figure 16: Human and machine evaluation results do not fully align.
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