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Abstract

Offboard perception aims to automatically generate high-quality 3D labels for
autonomous driving (AD) scenes. Existing offboard methods focus on 3D object
detection with closed-set taxonomy and fail to match human-level recognition
capability on the rapidly evolving perception tasks. Due to heavy reliance on human
labels and the prevalence of data imbalance and sparsity, a unified framework
for offboard auto-labeling various elements in AD scenes that meets the distinct
needs of perception tasks is not being fully explored. In this paper, we propose a
novel multi-modal Zero-shot Offboard Panoptic Perception (ZOPP) framework for
autonomous driving scenes. ZOPP integrates the powerful zero-shot recognition
capabilities of vision foundation models and 3D representations derived from point
clouds. To the best of our knowledge, ZOPP represents a pioneering effort in
the domain of multi-modal panoptic perception and auto labeling for autonomous
driving scenes. We conduct comprehensive empirical studies and evaluations on
Waymo open dataset to validate the proposed ZOPP on various perception tasks.
To further explore the usability and extensibility of our proposed ZOPP, we also
conduct experiments in downstream applications. The results further demonstrate
the great potential of our ZOPP for real-world scenarios. Code will be released at
https://github.com/PJLab-ADG/ZOPP.

1 Introduction

Comprehensive perception and understanding of 3D scenes are important for autonomous driving
(AD). We have witnessed the evolution of machine perception at different levels within a short period:
from single-modal [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] to multi-modal inputs [13, 14, 15, 16, 17, 18],
from limited categories to open set [19, 20, 21, 22, 23, 24, 25], from 3D box to 3D occupancy [26,
27, 28, 29, 30, 31, 32], and from low-level detection to high-level understanding. Though remarkable,
to train a model for different AD perception tasks, huge amounts of high-quality data and labels are
still required, which is time-consuming and expensive. Therefore, it is essential to come up with an
efficient solution to cope with such rapid changes.
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Table 1: Comparisons of recent onboard and offboard perception models. Seg., Det., Occ. represent
3D segmentation, 3D object detection, occupancy prediction, respectively. HLF means training in a
human-label-free manner. Grounding highlights models that can respond with text prompts. Zero.
stands for the zero-shot capability for unseen classes.

Method LiDAR Image Seg. Det. Occ. HLF Grounding Zero.
3DAL [33]
CTRL [34]
DetZero [35]
LabelFormer [36]
UniSeg [14]
LidarMultiNet [37]
SAM3D [38]
ZOPP (ours)

Recently, offboard detection and auto-labeling have gained significant attention in the field of AD,
which focuses on alleviating the burdens of human labor and the cost of labeling huge amounts of
data. These methods [33, 34, 35] have showcased impressive performance for point clouds based
3D object detection with closed-set taxonomy (e.g., predefined categories of vehicles, pedestrians,
and cyclists) compared to humans. However, their modular fashion always needs high-quality
human labels as a prerequisite for training the whole pipeline, which places the auto labeling as a
chicken-or-egg problem. Due to the data sparsity and imbalance, the supervised training fashion on
limited seen categories also struggles to effectively perform auto-labeling in open-set settings. In
particular, the compensated points of small and distant objects (e.g., traffic cone, traffic light) over the
entire sequence are still extremely sparse, so the auto-labeling models will lose effectiveness during
object-centric prediction. Furthermore, these auto-labeling models might not flexibly generalize well
due to unavoidable domain shifts arising from different types of 3D sensors. To sum up, we found
that all these shortages greatly limit the broad application prospects, and the development of a unified
framework for offboard auto labeling that effectively meets the distinct needs of each perception task
has not been fully explored.

To tackle this challenge, we propose ZOPP, which is a novel pioneering Zero-shot Offboard Panoptic
Perception framework with multi-modal data input and supports a wide range of perception tasks in
AD scenes. The core of ZOPP is a compact and lightweight pipeline to achieve panoptic perception
without any human-label-based model training.

Specifically, ZOPP first extends SAM-Track [39] to multi-view images to achieve open-set 2D
detection for object tracking and instance segmentation. Based on the aligned correspondence between
point clouds and multi-view images, we can obtain robust semantic and instance segmentation for
each 3D point with the proposed parallax occlusion and noise filtering module. The points belonging
to a specific object can be aggregated via the pose matrix, and then fed into the proposed point
completion module to generate dense point clouds. Equipped with such dense and high-quality
object points (especially for dynamic objects), we can acquire precise 3D bounding boxes in a
human-label-free manner. Furthermore, to achieve 3D occupancy prediction, unlike straightforward
voxel feature generation from image features or solely using BEV feature as in previous literature [26,
30, 29], ZOPP employs neural rendering based reconstruction [40] to decode 3D occupancy from the
reconstructed scenes. All the instance and semantic information are fused and leads to 4D occupancy
flow as the final output.

We conduct comprehensive empirical studies and evaluations on the large-scale Waymo open dataset,
to validate the proposed ZOPP on various perception tasks, i.e., 2D/3D semantic and panoptic
segmentation, 2D/3D detection and tracking, 4D occupancy flow prediction. It is noteworthy that
ZOPP not only produces 3D bounding boxes for the common object categories, but also integrates
the open-set detection capabilities into the 3D object detection task, which shows a more profound
significance for small and distant objects. Extensive ablation studies and generalization experiments
show that each proposed module of ZOPP performs well with their respective functions.

To further explore the generalization of our proposed ZOPP, we also conduct experiments in down-
stream applications and demonstrate ZOPP’s great potential. ZOPP can be utilized as a quick

2



cold-start paradigm for existing auto-labeling methods. The completed dense object points can
not only further boost the performance of their object-centric refining fashion, but also be used for
generative assets modeling in simulation.

2 Related Work

Open-set 2D&3D Object Detection Open-set object detection is trained using existing bounding
box annotations and aims at detecting arbitrary classes with the help of language generalization.
Current image-based 2D open-set detectors often employ CLIP [41] to encode the text embedding
as queries to decode the category-specific boxes [24], or as knowledge distillation to learn region
embeddings containing the language semantics [42]. Leveraging additional data to train the model in
grounding [43] and captioning [44] fashions, can also improve the generalization ability.

For 3D point clouds, transferring image or vision-language pre-trained models is very challenging.
PointCLIP [22] achieves open-vocabulary point-cloud recognition via projecting point-cloud into
multi-view images. Explorations of data augmentation [45] and construction [46] are conducted
to improve open-set point cloud learning. Multi-model pre-trained models are also employed to
enable open-set 3D detection for indoor scenes [47, 25]. MLUC [23] combines metric learning and
unsupervised clustering for limited unknown categories in the outdoors. However, these approaches
are still far from large-scale open-set settings for outdoor driving scenarios.

3D Segmentation and Occupancy Prediction 3D segmentation includes semantic [48, 14] and
panoptic [49, 50] segmentation tasks by involving point clouds or multi-modal fusion with im-
ages [51, 52, 53, 54]. Some work [55, 56, 54] also associates features from previous frames to
establish 4D panoptic segmentation. Meanwhile, zero-shot segmentation is explored by implicitly
estimating the distribution of unseen features [20], or visual feature guidance [21].

Occupancy prediction recently arises with proposed benchmarks [28, 27]. Visual features are
leveraged to construct dense 3D occupancy with semantic labels [26, 30]. However, these methods
are all trainable with human labels or point clouds supervision [29]. In our offboard setting, we can
employ 3D reconstruction and neural rendering [40, 57] in our pipeline, to concentrate more on the
quality of the scene geometry and visual appearance.

Offboard Auto Labeling Relying on the serialized point cloud datasets, offboard 3D detection
approaches often follow a modular pipeline design [33, 58, 34, 35], and leverage off-the-shelf 3D
detectors [1, 2, 3, 5], trackers [59, 60, 61], and object-centric refining, to boost high-quality bounding
boxes for auto-labeling. LidarMultiNet [37] unifies 3D segmentation and detection in one network,
achieving performance gains on both tasks. Unfortunately, these methods only focus on 3D object
detection, their modules still require huge amounts of data with high-quality annotations, and lack
the capabilities of open-set and zero-shot settings.

In this paper, we focus on addressing the zero-shot offboard panoptic perception, and integrate the
aforementioned perception tasks with an offboard running manner into the outdoor AD scenes.

3 Methodology

In this section, we introduce the general framework and workflow of our proposed ZOPP in detail,
which generates multiple robust perception results from multi-view images and point clouds. As
shown in Fig. 1, our method comprises four stages: (1) generating multi-view object mask tracks by
Multi-view SAM-Track in Sec. 3.1, (2) Point Cloud Segmentation with aligned spatial correspondence
and parallax occlusion filtering in Sec. 3.2, (3) 3D Box Interpretation after completing the partial
points in Sec. 3.3, and (4) 4D Occupancy Reconstruction with neural rendering in Sec. 3.4.

3.1 Multi-view Mask Track Generation

Taking as input multi-view images and text prompts, we generate 2D panoptic segmentation and
tracking results with the proposed Multi-view SAM-Track.
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Figure 1: Our Occ3D dataset demonstrates rich semantic and geometric expressiveness. (a)
Diversity of scenes in the Occ3D dataset; (b) Out-of-vocabulary objects, also known as General
Objects (GOs), that cannot be extensively enumerated in the real world; (c) Irregularly-shaped objects
that 3D bounding boxes fail to represent their accurate geometry.

Abstract

Robotic perception requires the modeling of both 3D geometry and semantics.
Existing methods typically focus on estimating 3D bounding boxes, neglecting
finer geometric details and struggling to handle general, out-of-vocabulary ob-
jects. 3D occupancy prediction, which estimates the detailed occupancy states
and semantics of a scene, is an emerging task to overcome these limitations. To
support 3D occupancy prediction, we develop a label generation pipeline that
produces dense, visibility-aware labels for any given scene. This pipeline com-
prises three stages: voxel densification, occlusion reasoning, and image-guided
voxel refinement. We establish two benchmarks, derived from the Waymo Open
Dataset and the nuScenes Dataset, namely Occ3D-Waymo and Occ3D-nuScenes
benchmarks. Furthermore, we provide an extensive analysis of the proposed
dataset with various baseline models. Lastly, we propose a new model, dubbed
Coarse-to-Fine Occupancy (CTF-Occ) network, which demonstrates superior per-
formance on the Occ3D benchmarks. The code, data, and benchmarks are released
at https://tsinghua-mars-lab.github.io/Occ3D/.
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Figure 1: Overview of our proposed ZOPP. The core of ZOPP is a complete pipeline to achieve
offboard panoptic perception of AD scenes, including multi-view mask track generation (Red), 3D
semantic and instance segmentation (Orange), point cloud completion (Green), 3D detection (Blue),
and 4D occupancy reconstruction (Purple).

3.1.1 Single-view Mask Tracking

We employ SAM-Track [39] to establish interactive open-set 2D object detection for segmenting and
tracking in outdoor AD scenes. Specifically, SAM-Track first includes a powerful open-set object
detector, Grounding-DINO [19], to detect objects in each frame according to predetermined text
prompts (e.g., “car”, “the woman in a red dress”). Then, SAM [62] is leveraged to obtain segmentation
masks for each object in the frame, serving as a reference input for DeAOT [63], a highly efficient
multi-object tracking model. DeAOT hierarchically propagates the extracted visual embeddings and
ID embeddings for each object from past to current frames based on the segmentation reference, to
establish object tracking frame-by-frame.

3.1.2 Multi-view SAM-Track

Considering the prevalent use of multi-view cameras in AD, we design a simple yet effective similarity
cost to measure the semantic and instance consistency among objects across all the views. This cost
involves the computation of appearance and location similarities to facilitate object association.

We first apply the aforementioned process to each image sequence of different views, yielding
independent tracking results. Simultaneously, we obtain the appearance information of each object by
extracting the visual features of Grounding-DINO and DeAOT with the 2D boxes. So the appearance
similarity is compared across different objects by computing the cosine distance of the visual features.
In contrast, the location similarity is derived by concatenating the images of all viewpoints in a
panoramic order, followed by normalizing the pixel distances along the horizontal axis for each object.
Hence, objects with large similarity scores would be associated together with the same instance ID.

As illustrated in Fig. 2, the use of appearance similarity allows for the discrimination of objects that
are spatially close but exhibit significant visual differences. Meanwhile, distance similarity serves
to prevent the matching of objects with similar appearances but substantial spatial separation. This
comprehensive design thereby enhances the robustness and accuracy in multi-view settings.

For the sake of the grounding ability, we preserve the interactive mode to select target objects
through natural language. For the automatic mode, we output all the object categories arising at
the driving surroundings, to establish multi-view panoptic segmentation. Finally, we directly output
the tracked object masks with a unique ID and corresponding categories as the final 2D semantic
and instance segmentation results. Note that background objects (e.g., buildings, trees) only have
semantic segmentation results.
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Figure 2: Overview of our object association across multiple views. Multi-view images are concate-
nated in a panoramic order. The visual features and horizontal pixel coordinates of each object are
drawn at the top and bottom of the images, respectively. Visual features v1 and v5 are very similar,
so the location differences d1 and d5 contribute to the matching determination. The visual features
of traffic lights are almost the same (v8, v9, v10), so we can associate them with location similarities
(d6, d7).

3.2 Point Cloud Segmentation

In this section, point cloud data is introduced to be well-aligned with multi-view image planes to
obtain corresponding semantic and instance information. Then, we can extract points belonging to
each foreground object based on the instance ID, for subsequent 3D box interpretation. The extraction
is carefully established by our proposed parallax occlusion and noise filtering module.

3.2.1 Multi-modal Spatial Alignment

We denote a frame of point cloud as PL = {pL1 , pL2 , ...}, where L represents the LiDAR coordinate
system. For each 3D point pLi = (xi, yi, zi)

T ∈ R3, we denote its corresponding pixel coordinate on
the image plane as qi = (ui, vi)

T ∈ R2. The point and the pixel can be correlated by the calibration
process in two steps. Firstly, pLi is transformed to the camera coordinate system C as pCi ∈ R3 through
pCi = R · pLi + t (R and t represent the rotation and translation between LiDAR and multi-view
cameras). Next, pCi is projected onto the image plane through a projection function: qi = K(pCi )
(K : R3 → R2 is defined with the camera intrinsic parameter for each specific view).

3.2.2 Parallax Occlusion and Noise Filtering

Given well-aligned point-to-pixel correspondence, we can easily obtain the instance ID and semantic
categories for most projected 3D points within the 2D object masks. This strategy is leveraged by
most of the previous methods to obtain 3D mask annotations [64]. However, LiDARs are always
equipped much higher than multi-view cameras on autonomous vehicles, leading to serious parallax
occlusion issues. As shown in Fig. 3, the 3D points belonging to backgrounds (green) are projected
into the pixel regions of the car (orange). Because disparity occlusion commonly arises at regions
around the upper edges of foreground objects, we thereby propose to filter out these background
points from the foreground pixels with an algorithm akin to a convolution filtering operation.

Before
After

Figure 3: Point clouds are projected into the image plane, and visualized in a color map based on the
depth values (Near to Far). On the right, we compare the effect before (top) and after (bottom) our
proposed parallax occlusion. Please zoom in the highlighted pink boxes to see the filtering points.
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Algorithm 1: Parallax Occlusion Filtering
Input: projected points PI, 2D instance segmentation

masksM, kernel size k, horizontal and vertical step
size sh, sv , depth threshold θ, image resolution h,w

Output: accurate object-specific points PL
i

forMi ← near to far do
cnt_h = 0, cnt_w = 0;
PI ← SpatialAligment(Mi,PL);
while cnt_h < h, cnt_w < w do

p← SampleDepthPixel(PI, cnt_h, cnt_w,
k);

if max(p)−min(p)
min(p)

> θ then
pnear, pfar ← SplitDepthPixel(p, θ);
if len(pnear) > 1 then Rect←
LocalRectConstruct();

else Rect← LocalRectConstruct();
if pfar in Rect then
PL

i ←FilterOut(pfar)
end

end
cnt_h+=sh, cnt_w+=sw

end
end

(a)

(b)

Figure 4: Two cases of construct-
ing the local rectangle regions in
our proposed algorithm. Projected
points with large depth values pfar

(orange) inside the local rectangle
region will be filtered out.

In specific, we first take a subset of the projected points that fall within a pre-defined filter kernel,
and then calculate the maximum depth differences among them. If the depth difference exceeds a
threshold θ, we identify all points that surpass θ as pfar, and pnear otherwise. Then, we will construct
a local rectangle region R based on the numbers of pnear.

As illustrated in Fig. 4, there are two cases to be considered: (1) If the number of pnear is greater
than one, we identify the maximum and minimum pixel coordinates along the horizontal axis among
pnear to define the left and right boundaries of R, and (2) if there is only one pnear, we record its
coordinate as the left boundary and assume a pseudo coordinate along the horizontal direction as the
right boundary. Meanwhile, the top and bottom boundaries are determined by the minimum vertical
pixel coordinate among pnear and the maximum vertical coordinate of the location covered by the
operation kernel, respectively. Finally, pfar that fall within R will be filtered out as background points
to be assigned with relevant semantic categories (e.g., road, sidewalk, wall).

In practice, we execute the filtering operation for each object mask after sorting their depth values
in ascending order. The kernel size and stride of this operation kernel can be adjusted to different
LiDAR types. Detailed steps are presented in Alg. 1. Note that the projected points may be located in
two valid 2D object masks from neighboring views. Thanks to our multi-view consistency design, we
could directly combine the object points together with the same instance ID. In addition, we filter
out isolated outliers and noise points by clustering the re-projected object points in 3D space with
DBSCAN [65] technique.

With the processing of all these methods, we can extract points belonging to foreground objects and
assign accurate semantic categories and instance IDs for them, resulting in the final 3D semantic and
instance segmentation outputs.

3.3 3D Box Interpretation

In this section, we aim to interpret the precise 3D bounding boxes with the instance segmented points
in a human-label-free manner, especially for the foreground objects.

However, super sparse point clouds of objects are very common in driving environments, typically
manifesting in two scenarios: (1) LiDARs often struggle to obtain dense scanning results for small
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or distant objects, and (2) due to the constraints of fixed configurations, it becomes challenging to
capture scans of objects from all views. Hence, it is challenging to precisely characterize the geometry
shape even after compensating the object points of the entire sequence. To meet the requirement of
deprecating human labels, it is intuitive to firstly complete point clouds from partial inputs.

3.3.1 Point Completion

Inspired by recent remarkable progress in the field of point cloud completion, we design a simple and
effective network to precisely capture the structural information of 3D shapes and predict complete
point clouds with highly detailed geometries.

The whole network consists of three models, the point encoder, geometry generator, and point
generator. Specifically, a PointNet-structure [66] encoder first extracts a shape embedding from the
partial point cloud input to capture both local structural details and the global context of the object.
To better take advantage of semantic information, we leverage pre-trained CLIP [41] text encoder
to generate object category embedding. Then, the geometry generator aims to produce a sparse but
complete geometric structure, based on decoding the shape and category embeddings. The final point
generator receives the shape embedding, the geometric structure, and the category embedding as input,
and generates the dense fine-grained point clouds. All the point cloud modules leverage self-attention
layers to adaptively aggregate information and reveal detailed spatial relations among the unordered
partial points. Please refer to the Appendix for more details of acquiring partial-complete data pairs
and model training process.

3.3.2 Box Interpretation

We first classify the motion state of the objects as static or dynamic based on the segmented points
of each object track. For static objects, we transform the object points of each frame to the global
coordinate with the pose matrix, and combine them together. We then apply L-Shape fitting to derive
an initial 3D box representing the geometric shape. Noisy points and outliers outside the initial box
are removed, and we randomly select a set of points with FPS sampling. L-Shape fitting is then
performed for these selected points to generate a refined 3D box, which is subsequently transformed
back to each frame as the final result.

In contrast to the combination operation for static objects, we process each sample of the dynamic
object tracks on a frame-by-frame basis. We first subsample a set of points with FPS sampling and fit
the initial 3D box for each object sample from each frame. Based on the distributions of these initial
boxes, we generate anchors that stabilize the refined 3D box through L-Shape fitting. Finally, the
trajectory is smoothed by linear fitting and Kalman filter in the global coordinate, and the results are
then updated to each frame.

3.4 4D Occupancy Flow

Eventually, multi-view images, point clouds, and the generated 3D boxes are all fed into a neural
rendering model to reconstruct the 3D scenes, which are used to decode occupancy grids as our 4D
occupancy flow output.

In particular, we aim to build a compositional scene representation that models the 3D world including
the dynamic objects and static scene, by leveraging StreetSurf [40]. The core is to render the well-suit
geometry representation with signed distance functions (SDF), by disentangling a 3D space volume
into a static background and a set of foreground objects [57, 67] which are determined by the input
3D boxes. Please refer to the Appendix or the original paper for more details.

With the implicit surface being reconstructed, we obtain a continuous representation of scene geometry
that has infinitesimal granularity. Subsequently, we can decode high-resolution occupancy grids out
of the reconstructed implicit surface. The semantic and instance information of each grid can still be
preserved based on the inside LiDAR points.

4 Experiments

In this section, we first introduce the dataset details and evaluation metrics. We then provide a detailed
performance of ZOPP on different perception tasks. The ablation studies and analysis are presented
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to convince each component of our entire approach. Please refer to Appendix for detailed quantitative
results, more qualitative results, and application experiments.

4.1 Dataset

Following the experimental setting of previous offboard perception methods [33, 35, 34, 36], we
conduct extensive experiments on the large-scale Waymo open dataset [68]. The dataset provides
20-second point cloud and 5-view image data for each scene with a sampling frequency at 10Hz.
Considering that the environmental conditions would affect the quality of neural rendering (e.g.,
weather conditions, image blurring), we select a set of sequences from the validation set to conduct
all the experiments.

4.2 Main Results

We present a comprehensive evaluation of 3D object detection, 3D segmentation, and occupancy
prediction. Note that there are only 5 cameras on WOD, we hence calculate the performance
(indicated by †) of each perception task by excluding regions outside the field of view of multiple
cameras.

3D Detection As illustrated in Tab. 2, we report the performance of our ZOPP on the validation
set of WOD. The Average Precision (AP) and Recall performance are calculated using different
matching criteria (IoU and BEV distance). Meanwhile, we compare the performance with several
methods across different distance ranges in Tab. 3. As the distance increases, the performance of
all methods decreases. Specifically, VoxelRCNN shows a decline in L1 AP of 14.37% and 36.12%
for the distance ranges of 30-50m and 50+m, compared to 0-30m. PVRCNN experiences decreases
of 15.52% and 37.05%, while our method demonstrates reductions of 16.94% and 29.35%. This
improvement can be attributed to our mask tracking module, which effectively utilizes the entire
temporal information in the point cloud sequence with generated object IDs. Consequently, our
method mitigates the impact of distance more effectively than other onboard methods, particularly at
farther ranges. Furthermore, we visualize the 3D object detection results in Fig. 5, where the red and
blue boxes are ground-truth and predicted ones, respectively.

Table 2: Verifying 3D object detection ability of our ZOPP on WOD val set. Metrics are 3D AP of
L2 difficulties for Vehicle, Pedestrian, and Cyclist.

Vehicle Pedestrian Cyclist
Criterion AP Recall AP Recall AP Recall
IoU† 35.6 48.8 34.5 46.7 11.2 22.9

Distance† 48.1 61.6 46.7 58.5 21.8 34.0

Table 3: Comparisons of fully-supervised detectors and human-label-free methods. We re-implement
these methods and report the AP performance (IoU criterion) of Vehicle within camera FOVs across
different distance ranges.

Total 0-30m 30-50m 50+m
Method Training Data L1 L2 L1 L2 L1 L2 L1 L2
Centerpoint [5] train set 73.04 64.72 88.17 86.81 72.12 66.50 51.24 39.72
VoxelRCNN [69] train set 76.29 67.05 89.27 87.84 76.44 69.68 57.03 44.37
PVRCNN [6] train set 75.53 66.77 89.03 87.63 75.21 68.33 56.04 43.33
DetZero [35] train set 89.49 83.34 96.64 95.90 88.84 84.37 78.32 66.77
SAM3D [38] - 6.90 5.88 19.51 19.05 0.029 0.026 0.0 0.0
ZOPP† (ours) - 37.56 35.61 42.31 41.16 35.14 33.86 29.89 28.67

Segmentation We present the results of semantic segmentation and panoptic segmentation for
both 2D images and 3D point clouds in Fig. 5. In addition to common objects such as vehicle, the
segmentation results for tree, pole, traffic light, and sign, are also impressive. This demonstrates that
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we not only retain the dense semantic and instance information from the foundation models, but also
establish carefully aligned correspondence by the proposed parallax occlusion and noise filtering. The
quantitative results of our ZOPP are shown in Tab. 4, along with the performance of SOTA methods
for reference. We achieve comparable performance, particularly on foreground objects (e.g., Vehicle,
pedestrian, bicyclist), showcasing the powerful potentials of our point clouds segmentation module.
Note that we merge all the categories belonging to car, truck, bus, other vehicle together as Vehicle
(its performance is the average of these four categories). Additionally, categories that cannot be fully
recognized are excluded from the results.

Table 4: Comparisons of ZOPP and state-of-the-art LiDAR semantic segmentation methods.
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Figure 5: Qualitative results of our proposed ZOPP on various perception tasks in AD scenes,
including 2D segmentation, 3D detection, 3D semantic segmenation, 3D panoptic segmentation,
and occupancy predition.

Occupancy We leverage Occ3D [28] as ground truth to evaluate the performance. Our approach
is based on neural rendering reconstruction, which operates in an offboard fashion, prioritizing
reconstruction quality over running efficiency. The performance of other training-based methods
is reported as a reference, rather than for detailed comparison. As shown in Tab. 5, we achieve
promising results compared to previous methods, especially for slim objects (e.g., traffic light, pole)
and flat objects (e.g., road). Object categories not recognized in the selected sequences are excluded
(e.g., tree trunk). Notably, ZOPP can outperform a LiDAR-only baseline (supervised training) in
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some object categories with limited training samples (e.g., traffic light, sign, cone), by utilizing the
zero-shot capabilities of foundation models. Meanwhile, as shown in Fig. 5, the reconstructed scenes
are highly complete and spatially coherent, e.g., the predicted road is highly complete and accurately
well-defined, demonstrating that our reconstruction method can preserve the detailed 3D geometry
effectively.

Table 5: Comparison of 3D occupancy prediction performance.
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TPVFormer [29] 3.89 17.86 12.03 5.67 13.64 8.49 8.90 9.95 14.79 0.32 13.82 11.44 5.8 73.3 51.49 16.76
BEVFormer [8] 3.48 17.18 13.87 5.9 13.84 2.7 9.82 12.2 13.99 0.0 13.38 11.66 6.73 74.97 51.61 16.76
BEVFormer-Fusion 5.11 64.61 52.35 21.52 32.74 17.1 42.62 27.75 13.36 0.05 63.65 60.51 35.64 81.89 66.84 39.05
LiDAR-only 1.01 57.41 35.31 20.33 11.7 13.01 36.21 7.81 0.13 0.0 57.83 54.71 27.07 69.15 54.47 29.74
ZOPP† (ours) 0.08 49.68 10.63 6.44 12.33 21.73 32.75 19.87 9.41 0.07 41.14 46.22 - 69.07 32.34 25.13

5 Conclusion

In this work, we have proposed ZOPP, a novel framework of zero-shot offboard panoptic perception for
autonomous driving. Foundation models empower our ZOPP comprehensive capability of language
understanding to establish various perception tasks for open-set settings in a zero-shot manner. We
enhance SAM-Track to ensure semantic and instance consistency among object mask tracks across
multiple views. The proposed parallax occlusion and noise filtering can produce robust 3D semantic
and panoptic segmentation results after the well-aligned correspondence between point clouds and
multi-view image planes. Equipped with the proposed point completion module, we can generate
dense completed points and subsequently interpret precise 3D bounding boxes. These modules
cooperate to make the 3D segmentation and detection more accurate and consistent, especially for
dynamic foreground objects. Finally, we decode high-quality 4D occupancy by concentrating on
the geometry quality and visual appearance with neural rendering reconstruction fashion. Extensive
experimental results not only demonstrate that ZOPP substantially advances promising open-set
perception results in offboard manner for outdoor AD scenes, but also show a profound significance
in industry auto-labeling applications.

6 Limitations and Broader Impacts

While foundation models have endowed our ZOPP with open-set capabilities, the annotated categories
in the existing dataset still incorporate expressions that lack universality, which may hinder the
effective recognition of similar object categories. Additionally, neural rendering may encounter
numerous challenges in street-view scenes, influenced by practice factors (adverse weather conditions,
sensor imaging issues). Moreover, ZOPP may raise concerns about data capturing, abuse, privacy, and
legal implications in driving surroundings. Nonetheless, ZOPP still offers a high degree of flexibility,
allowing for seamless integration with SOTA models to meet diverse application requirements,
showcasing resilience and applicability in both industry and daily lives. We believe that advancements
in technology and the development of regulatory frameworks can pave the way for unified AD systems.
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Appendix

A Overview

This document is the supplementary material of our ZOPP. We provide more details of models,
experiments and analysis results in this document.

Sec. B.1 provides the details of acquiring partial-complete data pairs and model training process.
Sec. B.2 introduces more details about the neural rendering reconstruction method. Sec. C shows the
implementation details of the network setting and training process. Sec. D provides more experiment
results and analyses in detail. In specific, we compare the distribution of predicted bounding boxes
with different distance thresholds in Sec. D.1. The effectiveness of our method to overcome the
influence of occlusion is shown in Sec. D.2. The qualitative and quantitative results to show the
effectiveness of parallax occlusion and noise filtering are presented in Sec. D.3. And the effectiveness
of point completion in our whole pipeline is shown in Sec. D.4. We also illustrate the open-set
detection capabilities in Sec. D.5, and the failure pattern analysis in Sec. D.6.

B Method Details

B.1 Point Completion

We implement an automatic algorithm to determine whether the extracted object points are completed
or not, selectively filtering out those with intact shapes. The automatic selection is mainly based
on the ratio of occupied grids. During the training process, we randomly remove part of the points
to generate the partial inputs, based on the constraints of geometric projection principles, inducing
realistic structural incompleteness data pairs. For the sparse but complete geometric points, we
randomly sample a set of points based on the FPS sampling strategy to promise the geometric
structure. We also use random rotations sampled from a uniform distribution [−π/2, π/2] and
random linear transformations sampled from a standard Gaussian distribution to translate the point
coordinates. Chamfer distance is utilized as the metric distance of points to formulate the supervision
between partial input and real dense complete object point clouds. We don’t require any human labels
in this procedure.

B.2 Neural Rendering

We aim to build a compositional scene representation that models the 3D world including the dynamic
objects and static scene, by leveraging a neural rendering method [40]. A 3D space volume is first
defined over the entire scene. The volume consists of a static background and a set of dynamic
objects, determined by the input 3D boxes. Such that separate neural feature fields and feature grids
can be used to model them, respectively.

The static background is delimited into three parts, close-range, distant view, and sky. This design can
well-suit geometry representation by signed distance functions (SDF). Then, three neural rendering
models are employed for these three parts to jointly render a differential pixel color by querying
samples for each ray. The queried samples are combined from near to far for the subsequent volume
rendering.

The dynamic foreground objects are transformed to their local box coordinates (centroid of the box),
and their feature grids are at the world coordinate to compose with the background. allowing us to
disentangle the 3D motion of each object and focus on representing shape and appearance [57, 67].

C Implementation Details

For parallax occlusion filtering, the kernel size is 15, the steps in horizontal and vertical directions
are 10 and 5 respectively. The depth ratio threshold is set to 0.25. For Grounding-DINO, we keep
the same setting to leverage pre-trained Swin-L [71] as image backbone, and BERT-base [72] from
Hugging Face [73] as text backbones. The point completion network is tuned on WOD training
set, with our proposed data preparation mentioned before. The whole training includes 100 epochs
because of the limited amounts of objects, while the learning rate is initialized to 1e−4 and decayed by
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0.7 every 40 epochs with Adam optimizer. The batch size is set to 32. For occupancy reconstruction,
we train the model for around 15000 iterations and add additional cross-entropy supervision after
5000 iterations, compared to the original version [40]. In one batch, we use 8192 rays. The entire
pipeline does not rely on too many computation resources, the point completion module and the
reconstruction module need to train the network. We utilize four NVIDIA A100 to accelerate the
reconstruction with multi-processing settings.

D More Experiments and Ablations

D.1 3D Detection Analysis

In this section, we show a detailed analysis of our 3D detection performance shown in Tab. 6.
Specifically, we first match the predicted boxes with the ground-truth boxes that have the smallest
center distance up to a certain threshold. Then the performance (Recall) is the statistics for the
matched part of all ground-truth boxes in the FOV of cameras. The final results are averaged over the
matching thresholds of (0.5, 1, 2, 4) meters. We can draw several conclusions:

1) Over 50% of objects (Vehicle and Pedestrian) are recalled in the 1m range compared to ground
truths, showing the accuracy of our multi-modal spatial alignment and parallax occlusion and
noise filtering.

2) Almost 70% to 80% of objects are recalled in the 4m range, demonstrating vision foundation
models possess sufficient capability to provide detection proposals, and the majority of objects
not recalled are primarily due to occlusion (cameras are installed at a lower position relative to the
LiDAR).

3) There exists a distance gap between predictions and ground-truths (almost 20% of objects are
in the range of 1∼4m), which is mainly due to the processing pipeline of our box interpretation.
Previous box prediction of 3D detection models are always separately to predict the components,
e.g., the CenterHead of CenterPoint predicts the box center, geometry size, and heading direction
with different network layers. Different from them, our box interpretation would first predict the
geometry size, and then calculate the center with the half of length, height, and width. Therefore,
if the geometry size is inaccurate, the box center will also not be precise.

Table 6: Detailed performance of 3D object detection on WOD val set. Metrics are Recall (with BEV
distance criterion) of L2 difficulties for Vehicle, Pedestrian, and Cyclist. All results are in the FOV of
camera views.

Avg. 0.5m 1m 2m 4m
Vehicle 61.6 39.2 54.9 70.7 81.6

Pedestrian 58.5 42.5 57.2 64.5 70.1

Cyclist 34.0 25.4 32.8 37.5 40.4

D.2 Performance of Occlusions

We report the L1 AP performance of the overall and the occlusion part on WOD validation set to
compare with other methods. The occlusion levels are defined based on whether the objects are
obscured in the image perspective, which are provided by WOD.

As shown in Tab. 7, compared to the overall performance, the occlusion part of CenerPoint, VoxelR-
CNN and PVRCNN exhibit decreases of 18.81%, 18.78% and 19.07% respectively, while SAM3D
shows a decrease of 31.30%. In contrast, our method demonstrates a decrease of only 11.02%. This
improvement is attributed to our mask tracking module, which effectively leverages temporal context
to mitigate the influence of occlusion.

D.3 Parallax Occlusion and Noise Filtering

We present the effectiveness of our parallax occlusion and noise filtering module by comparing the
box interpretation results before and after the filtering operation. As shown in Fig. 6, if we assign
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Table 7: Performance comparison of occlusion on WOD val set. Metrics are L1 AP (with IoU
criterion) for Vehicle. All results are in the FOV of camera views.

Training Data Overall Occluded
CenterPoint train set 73.04 59.30

VoxelRCNN train set 76.29 61.96

PVRCNN train set 75.53 61.13

SAM3D - 6.90 4.74

ZOPP (ours) - 37.56 33.42

(a) (b)

Figure 6: (a) Before the parallax occlusion and noise filtering, our box interpretation would produce
inaccurate box dimensions based on the wrong object points. (b) After filtering, we will output 3D
boxes with precise dimensions.

the instance and category information to the points that are directly projected to the image plane,
some background points would be classified as the foreground objects, resulting in incorrect box
interpretation. Our method could filter out the background and noise points, which significantly
reduces the burden of our box interpretation module.

In addition, we evaluate its effect on the segmentation task. We first report the performance of semantic
segmentation in Tab. 8, which shows a significant quantitative improvement for all foreground objects
and backgrounds. For the objects that always appear at higher altitudes (e.g., sign, traffic light),
the parallax occlusion issue is not serious, hence the performance is maintained the same after the
filtering module. We also show the visualization comparison of segmentation results in Fig. 7. As we
can see, the background points may be located in the boundary regions of the foreground car, hence
the corresponding categories are all incorrectly assigned as car. Our filtering module can filter out
these points and better align the relation between LiDAR points and image pixels, producing more
accurate segmentation results.

Table 8: Comparisons of ZOPP on semantic segmentation before and after the proposed parallax
occlusion and noise filtering.
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ZOPP† (before) 51.6 - 47.7 76.1 29.5 34.0 49.6 32.7 21.2 34.2 73.8 72.3 - - 80.5 - - - 60.4
ZOPP† (after) 54.2 - 49.6 77.3 29.7 34.2 51.7 33.1 21.8 35.4 75.5 73.6 - - 81.8 - - - 61.2

D.4 Point completion

We first evaluate the performance of point completion, we visualize the generated dense and completed
object points shown in Fig. 8. The input object points are always sparse (1st, 5th columns) and
uncompleted (2nd, 3rd, 4th columns), e.g., the bus in the 3rd column only has points at the top of the
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(a) (b)

Figure 7: (a) Before the parallax occlusion and noise filtering, we would assign the instance ID or
semantic category of foreground objects to background points. (b) After the filtering operation, the
segmentation results would be more accurate.

side surface. As a comparison, the generated dense points contain much more geometric structures,
which would contribute much to interpreting precise 3D bounding boxes. The high-quality results
can also be used for generative assets modeling in simulation applications.

Afterward, to better evaluate the effectiveness of point completion in our pipeline, we visualize
the interpreted 3D bounding boxes based on the object points processed before and after the point
completion in Fig. 9. It is crucial to first generate complete point clouds for our human-label-free box
interpretation module, resulting in accurate geometric sizes (length, width, height) prediction.

Figure 8: Visual comparisons of point cloud completion. Compared with the sparse inputs (Top), we
can produce fine-grained geometric structures of dense point clouds (Bottom).

(a) (b)

Figure 9: (a) The object points are always sparse and partial, which would lead to inaccurate box
interpretation. (b) After point completion for each object, we will predict 3D boxes with precise
dimensions.

Furthermore, we report the quantitative results that would reflect the improvements of both the
filtering and completion modules. We calculate the Recall performance based on IoU criterion, which
considers the accuracy of box shapes. As shown in Tab. 9, after the point completion process, the
Recall is gained with 26.2, 12.5, and 11.4 points on the three categories. Because vehicles are always
larger than the other two categories, it is more likely to produce sparse and incomplete point clouds.
So, our completion module shows an impressive effect for our 3D box interpretation module.
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Table 9: Verifying the effect of parallax noise filtering and point completion for 3D bounding box
interpretation on WOD val set. Metrics are Recall of L2 difficulties for Vehicle, Pedestrian, and
Cyclist with IoU criterion. The results are in the FOV of the cameras.

Vehicle Pedestrian Cyclist
Before 22.6 34.2 11.5

After 48.8 46.7 22.9

D.5 Open-set 3D Detection

As shown in Fig. 10, our ZOPP can output the open-set 3D detection results of traffic sign and traffic
light (represented with red color bounding boxes).

(a) (b)

(c) (d)

(e) (f)

Figure 10: The open-set detection results of ZOPP on WOD in both 2D and 3D spaces for consecutive
frames.

D.6 Failure Pattern Analysis

We have briefly summarized some representative challenging scenarios in Sec. 6 of our main contents.
Firstly, our method would fail to effectively recognize similar object categories (e.g., construction
vehicle, truck, trailer) and some uncommon object categories (e.g., tree trunk, lane marker) with the
foundation models (Grounding-DINO). Since this is the first stage of our entire method, it will result
in subsequent stages lacking the output of corresponding perception results, such as 3D segmentation
and occupancy prediction. Secondly, neural rendering methods may encounter numerous challenges
in street-view scenes, constrained by practice factors (adverse weather conditions, sensor imaging
issues), such as camera overexposure. Our occupancy decoding will fail in these scenarios where
it is impossible to generate geometrically plausible 3D reconstructions. Please refer to Fig. 11 for
qualitative visualizations.
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(a) (b)

(d)(c)

Figure 11: The illustration of the failure cases. It indicates that the image data are influenced by the
lighting conditions at night (a), rainy weather conditions (a), and the camera’s overexposure condition
(c). Then we could not generate accurate detection and segmentation results (b), and reconstruction
with lower quality (d).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The motivations and contributions are well depicted and summarized in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are performed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results are included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation of our method and the dataset details are clearly and fully
presented in the main content and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22



Answer: [Yes]
Justification: The open access to the code is provided in Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full details are presented in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our method mainly focuses on offboard perception tasks in autonomous
driving, which naturally includes several test time augmentation and ensemble techniques
with multiple inference times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information about computation resources is illustrated in the implementa-
tion details of Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure that the research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential societal impacts in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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