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ABSTRACT

Pruning and quantization are proven methods for improving the performance and
storage efficiency of convolutional neural networks (CNNs). Pruning removes
near-zero weights in tensors and masks weak connections between neurons in
neighbouring layers. Quantization reduces the precision of weights by replacing
them with numerically similar values that require less storage. In this paper we
identify another form of redundancy in CNN weight tensors, in the form of re-
peated patterns of similar values. We observe that pruning and quantization both
tend to drastically increase the number of repeated patterns in the weight tensors.
We investigate several compression schemes to take advantage of this structure
in CNN weight data, including multiple forms of Huffman coding, and other ap-
proaches inspired by block sparse matrix formats. We evaluate our approach on
several well-known CNNs and find that we can achieve compaction ratios of 1.4×
to 3.1× in addition to the saving from pruning and quantization.

1 INTRODUCTION

Deep Neural Networks are hugely successful in artificial intelligence applications such as computer
vision, natural language processing, and robotics. Deep networks with a large number of layers
and many thousands of trainable parameters within in each layer can achieve remarkable inference
accuracy. However, these networks require large amounts of computation, memory and energy (Han
et al., 2015b) for inference. These heavy requirements are a major barrier to the deployment of deep
learning, especially on resource-constrained mobile or embedded systems.

Although a large number of parameters can help to bring greater classification accuracy, researchers
have found that, in practice, parameters have a great deal of redundancy.

In particular, many trained weights are close to zero, and it is often possible to prune these small
weights (by setting them to zero) resulting in a sparse weight matrix (Iandola et al., 2016; Mao et al.,
2017; Luo et al., 2017).

Weights which are not close to zero can still be quantized to a lower precision to reduce storage
requirements. Quantization works by representing fewer digits of, or eliminating, the fractional part
of each weight. A number of schemes have been proposed for both encoding and quantization of
CNN weights (Judd et al., 2017; Gysel et al., 2016; Vanhoucke et al., 2011).

Pruning and quantization can be enormously successful in reducing the number and precision of
weight parameters in DNNs. Researchers have found that pruning can reduce the number of weights
by up to 90% (Han et al., 2015b).

Despite the success of pruning and quantization, there is still a need to reduce the size of weight
tensors in DNNs. High-performance and efficient inference on edge devices is becoming cru-
cial (Franklin, 2017) to make possible applications where response time is critical (e.g. detection of
pedestrians or obstacles in an automotive context). However, edge devices are heavily constrained,
particularly in terms of available memory for storing weight tensors.

By examining weight tensors from various DNNs, we observed a great deal of redundancy in the
non-zero weights. We found that after pruning and quantization, similar patterns of weights arise
again and again, in both the convolutional and fully connected layers of CNNs. This redundancy in
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convolutional layers is particularly important because pruning is much less effective in convolutional
than fully-connected layers (Mao et al., 2017).

A typical approach to exploiting structural redundancy in data to reduce storage requirements is to
use a compression scheme to store data in memory. Element-wise Huffman coding has previously
been used to compress CNN weight data (Han et al., 2015a), but other compression approaches seem
equally promising, particularly since the redundancy we observed in weight data appears at a range
of granularities, from single elements to whole blocks of repeated weight data.

CONTRIBUTIONS

We make the following contributions:

• We study the prevalence of repeated patterns in CNN weight tensors, and show that there
is significant redundancy even after pruning and quantization.

• We evaluate both element-wise and block Huffman coding for weight compression.
• We propose and evaluate a novel model compaction scheme that exploits redundancy in

weight tensors represented in a block sparse format.
• We evaluate our scheme and find that we achieve reductions of 1.4× to 3.1× in addition

to the savings from pruning and quantization.

2 RELATED WORK

DNN inference is often most useful in real-time (Han et al., 2015a) or resource-constrained Ding
et al. (2017); Yang et al. (2017b) contexts. However, the computational complexity and exception-
ally large number of parameters in deep neural networks presents challenges around execution time,
data movement, and memory capacity in these contexts (Denil et al., 2013). Pruning and quantiza-
tion both aim to reduce the number of parameters in deep networks. Since the complexity of most
network layers is a function of the number of parameters, a reduction in computation (typically stated
as the number of multiply-accumulate or MAC operations) accompanies parameter reduction (Yu
et al., 2017).

2.1 PRUNING

Researchers have found that not all parameters make an equal contribution to the output of any
one DNN layer. Similarly, some connections between layers have little impact on the output of the
overall network. Removing (pruning) these unimportant connections can save significant storage
and reduce execution time and has been widely advocated as an efficient method to reduce the
number of parameters (Yang et al., 2017a; Anwar et al., 2017; Guo et al., 2016; Lin et al., 2017; He
et al., 2017).

Much work on pruning focuses on identifying which weights can be pruned with least effect on
the classification accuracy of the overall network. Various metrics, such as second-order deriva-
tive (Hassibi & Stork, 1992; LeCun et al., 1989), Average Percentage of Zeros (Hu et al., 2016),
absolute values (Li et al., 2016; Han et al., 2015b), and output sensitivity (Engelbrecht, 2001), have
been proposed to guide the pruning process.

Pruning results in a sparse weight matrix, which can be compacted by storing only the non-zero
values (Kepner et al., 2017). Common sparse matrix representations (Saad, 2003) include coordi-
nate (COO) format, where each non-zero value is stored with its row and column coordinate; and
compressed sparse row (CSR) where non-zero values from the same row are grouped together, and
only the column index is stored for each non-zero.

These fine-grain sparse matrix formats save space, but modern CPUs and GPUs provide vector
SIMD/SIMT instructions that are much better suited to operating on dense matrix formats. Using a
fine-grained sparse format typically reduces computational performance versus similarly sized dense
matrices (Yu et al., 2017), making high-performance implementation of DNN layers more difficult.

To overcome this problem, alternative sparse matrix representations have been developed, where the
smallest granularity is a small dense block of data rather than a single matrix element. The most
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widely-used of these formats is block sparse row (BSR) (Williams et al., 2007), which is similar to
CSR but contains small dense blocks rather than indidual non-zeros.

2.2 QUANTIZATION

One way to reduce the storage required for non-zero values that remain after pruning is to use
approximate values. Quantization is typically used for inference, since at this stage the weight
values are frozen, and do not need to track updates in high precision, as they do during the network
training process.

Rather than storing each value in the full precision that is used for training, such as 32-bit floating
point, a smaller size such as 16-bits (Judd et al., 2017), 8-bits (Gysel et al., 2016; Vanhoucke et al.,
2011), or 4-bits (Moons & Verhelst, 2016) can be used for inference.

To convert the full-precision trained weights to lower-precision values for inference, some quanti-
zation scheme is needed. Provided the quantization is not too severe, the loss in inference accuracy
is typically small (Sze et al., 2017), but the saving in space is large. For example, quantizing from
32-bit floating point to 8-bit integer reduces the size of non-zero values by a factor of four.

2.3 ENCODING

To further reduce the memory requirements for weight data, various encoding schemes can be used.
For example, Han et al. (2015a) use Huffman coding to compress the weight data even further.
Huffman coding works by building a dictionary of values in the input data, and replacing instances
of each particular value with that value’s label from the dictionary. The most frequent values are
assigned the shortest labels. Using this tactic, we can represent elements in the weight matrix using
labels whose size is related to the number of unique values.

3 REDUNDANT PATTERNS

When we examine the weights of a trained CNN, we observe many similar patterns. The training
process seldom creates patterns that are identical to the last bit of precision in every weight. How-
ever, pruning and quantization both reduce the number of unique weight values appearing in the
tensors. Two patterns that are very similar before pruning and quantization often become identical
afterwards. The result is a large number of repeated patterns in the weight tensors.

0 -0.030 0 0 0 -0.030 -0.04 0 0 -0.03 0 0 0

repeated 67 times repeated 9 times repeated 71 times

Figure 1: Repeated kernel-width vectors in the second convolutional layer of LeNet-5, after pruning
and quantization

To illustrate this phenomenon, Figure 1 shows an example of the weight tensor of the second convo-
lutional layer of LeNet-5 after pruning and quantization. In this convolutional layer the kernel size
of is 5× 5, and for the purposes of illustration we show the kernel tensor as a 2D matrix of width 5.
Thus, each row of the matrix is one row of a 5× 5 kernel. When viewed in this way, we can identify
rows of the matrix that appear more than once. Figure 1 shows three rows that appear 67, 9, and
71 times respectively. These repeated rows offer opportunities for compacting the kernel tensor to
reduce memory requirements.

In practice, the number of redundant vectors is large. Figure 2 shows the storage saving by keeping
just a single copy of each repeated vector. The first bar in Figure 2 shows the overall number of
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Figure 2: Parameter reduction in LeNet-5 by pruning followed by compression of redundant vectors.

1/4

1/4

0

0 0

0

1/41/4 1

1/9

1/9

1/9

1/9 1/9

1/9

1/91/9 1/9

4

24

1

36

6

244 16

164 24

41 6

4 1

16 4

246 6

16 4

4 1

1
256

(a) (b) (c)

Figure 3: Kernels used for image processing (González & Woods, 2008): (a) Edge detection (b) Box
blur (c) Gaussian blur. As highlighted by rows, kernel-vector redundancy exists within kernels.

kernel-width vectors in the second convolutional layer of LeNet-5. The second bar shows the num-
ber of vectors after kernel-wise pruning and quantization. Finally, the third bar shows the number
of vectors remaining after removing repeated copies. As we can see in this example, eliminating
repeated patterns can provide an additional saving of around 2× when compared with pruning and
quantization alone.

An important question is why so much redundancy arises between vectors of trained weights. It
can be difficult to fully understand why specific parameters within a CNN receive a particular value
during training. However, a partial explanation is that CNNs learn to replicate aspects of classical
machine vision techniques.

Figure 3 shows three classical machine vision filters that have been designed by humans to perform
edge detection and image blurring. It is notable that all three kernels are symmetric along one or
more axes. The symmetry of these kernels introduces redundancies in a granularity of kernel-width.
If we remove repeated horizontal vectors from the kernels in Figure 3, then the remaining values
occupy just two-thirds, one-third, and three-fifths of the orginal size respectively.

The kernel values in a trained DNN are not designed by humans, but instead emerge from the train-
ing process. The CNN learns them iteratively by back propagation and stochastic gradient descent
(SGD). However, many of the same kernel features that are designed by humans for classical ma-
chine vision are also likely to emerge from the training process. These regular features are likely to
appear alongside other, more complex features that allow CNNs to exceed the accuracy of classical
vision techniques. Thus, we expect to see symmetries emerge within trained kernels that can lead to
repeated rows within the kernel. Further, the same sub-features may appear across multiple patterns
leading to further redundancy. By keeping just one copy of these common sub-features and sharing
that copy among multiple instances, significant space savings become possible. In the next section
we explain how block sharing can reduce the size of CNN models using a method inspired by block
sparse row (BSR) format for representing sparse matrices.
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4 MODEL COMPACTION WITH BLOCK SHARING

Our block sharing method builds upon existing methods of network pruning and quantization to
further reduce the size of the model. Our method has four main steps, which are shown in Figure 4.

block-wise model 
compacting

element-wise 
pruning

retraining

weights
quantizing

retraining

Network Training Standard Pruning Block-wise Compacting

SBSR

Figure 4: Flow of our DNN model compaction method

In the first step we prune the network to replace existing values with zero where possible. We use
the Scapel Yu et al. (2017) pruning method, which iteratively masks out values in the weight tensors
and then retrains the network to recover accuracy. The retraining step is critical to the accuracy of
the pruned model. We iteratively prune and retrain in a similar way to other state-of-the-art Anwar
et al. (2017); Li et al. (2016); Hu et al. (2016) pruning techniques.

In the second step, we quantize the remaining non-zero weights to reduce their precision, and thus
the space required for storage. Our quantization factor is linked to the threshold value that is used
in pruning, so that losses in precision are similar for both processes. After quantization, the network
is again retrained to recover the accuracy lost by reducing the precision of the weights. Finally,
we scan the weight tensors layer-by-layer to detect repeated weight blocks and replace them with
references to a single shared copy of the block.

4.1 NETWORK PRUNING

Similar to the standard pruning methods, the network is first trained in full 32-bit floating point
precision. The model is then iteratively pruned and retrained. In the pruning step, a theshold value
is selected and all weights whose absolute value is below the threshold are tentatively masked to
zero. The network is then retrained to improve accuracy. In the forward step, masked weights are
treated as zeroes, but during back-propagation the original, non-zero value is updated. Thus, a value
that is pruned in one iteration may recover in the next round of retraining.

One important question is the level of granularity at which pruning occurs. One approach is to
prune at the level of individual weights within a tensor. Another method is to prune entire blocks
of weights, or indeed entire kernels or channels. In general, finer-grain pruning eliminates large
numbers of weights with little impact on the accuracy of the DNN, whereas a similar level of coarser-
grain pruning tends to have a large impact on accuracy Mao et al. (2017). We prune at a fine grain to
maintain accuracy, but store the resulting tensors in a block-sparse row (BSR) format which offers
greater opportunity for efficient implementation on modern CPUs and GPUs Yu et al. (2017).

4.2 QUANTIZATION AND PRECISION REDUCTION

The remaining non-zero weights are quantized and their precision is reduced. An assumption of our
pruning approach is that values smaller than the threshold have only a minor impact on the result
of the CNN and can be safely removed. Similarly, in our quantization step we may full-precision
values to a nearby value that is representable in lower precision. In our experiments we use 32-bit
precision for the original values, and 16-bit for the quantized values.

A question that is often ignored in discussions of quantization is the rounding of full-precision values
that fall between two representable lower-precision values. The easiest strategy is to simply truncate
the lower bits of such values, but rounding to the nearest representable value gives slightly better
accuracy. The rounding strategy also has an impact on the patterns of values that appear in the
weight tensors, and in the number of repeated patterns. We investigate this in more detail in Section
5.
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Pruning and quantization are conceptually similar processes, in the sense that they replace an exact
value with a nearby approximation. Just as we retrain after pruning, to maintain the accuracy of the
CNN we must also retrain after quantization, as shown in Figure 4. This process tunes the quantized
values and the bias to recover the accuracy of the model.

4.3 BLOCK SHARING

After pruning and quantization we represent the resulting matrix in block sparse row (BSR) format
(see Figure 5). In contrast to fine-grain sparse formats, such as compressed sparse row (CSR) format,
BSR uses dense blocks of values containing at least one non-zero rather than individual non-zeros.
BSR has two main advantages: it allows faster CPU SIMD and GPU implementations, and by
sharing the row and column coordinates between multiple separate values it allows more compact
matrix representations Mao et al. (2017).

90 2 12 3

30 3 5 8

0.4 0.6 0.4 0.10.1 0.2 0.4 0.60.3 0.4 0.60.3 0.4 0.10.1 0.4 0.60.3

Column Index

Row Pointer

0.2 0.4 0.6 0.2 0.4 0.6

2 3

Values

Figure 5: Classic BSR format

Although BSR can result in more compact sparse matrix representations, our results in this current
paper show that it nonetheless contains a great deal of redundancy. As we show in Section 5 many
instances of the same dense blocks occur many times in BSR format. We apply block-wise sharing
to the matrix in BSR format to eliminate this redundancy. We propose a new matrix format which we
call shared-block sparse row (SBSR) format, which allows repeated blocks to be shared between
different entries in the sparse matrix.

10 2 12 3

30 3 5 8

0.4 0.6 0.4 0.10.1 0.2 0.4 0.60.3 Idx

Column Index

Row Pointer

2 3

Values F RF F IdxRR IdxR R Idx R Idx

Figure 6: SBSR format (ours)

Figure 6 shows our SBSR format. For blocks that appear for the first time, the format is similar to
BSR. The values of the block are stored in a block vector, which exists alongside the row pointers
and column indices. However, when a block appears for a second or subsequent time, the values
of the block are not represented. Instead, a reference is inserted into the block matrix, which refers
back to the previous location where that block appeared. Thus, the values of a repeated block appear
only in the first appearance of that block, and subsequent appearances are replaced with an reference
to the shared block. Note that this format also requires a flag to indicate whether the block appears
for the first time (F in Figure 6) or a repeat appearance (R). This flag can be represented as a single
bit.

5 EXPERIMENTAL EVALUATION

To evaluate our method we modified the Scalpel (Yu et al., 2017) framework for pruning and retrain-
ing DNNs using an AMD Linux server with two Nvidia GTX 1080Ti GPUs. We set the pruning
thresholds to achieve target levels of sparsity, and added a new quantization phase to reduce the
precision of trained weights. Finally, we build the resulting matrices in block sparse row (BSR) and
our own shared-block sparse row (SBSR) formats.
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Figure 7: Improvement of SBSR over BSR on CNNs for 40%, 60% and 80% sparsity.

Figure 7 shows the factor reduction in size from sharing repeated blocks rather than representing
them each time they appear. We explore three levels of sparsity: 40%, 60% and 80%. Mao et al.
(2017) found that pruning convolution kernels beyond 40%-60% sparsity typically results in large
losses in accuracy. In contrast, fully connected layers can commonly be pruned to 80%-90% with
negligible loss of accuracy.

Figure 7 shows that significant savings in storage are possible using our shared-block strategy. For
AlexNet, the saving is a factor of around 2.4, 2.6 and 3.2 (which corresponds to a reduction of around
58%, 62% and 69%) in the size of the represented matrix. The savings for other trained CNNs are
smaller, but in all cases the savings are positive and significant.

SizeBSR = BSRidx +BSRblocks (1)

SizeSBSR = Sflag + Sblock pointer + Sidx + Sunique blocks (2)

The memory requirement of BSR and SBSR formats are calculated according to Equations 1 and 2
respectively, where Bidx and Sidx represent the storage for the BSR format column and row indices,
BSRblocks the storage for the all non-zero tensor blocks, Sflag the memory for storing the flag that
indicates if the following block is repeated or not, and Sunique blocks is the size of all the unique
blocks that are present in the sparse tensor.

Table 1: Breakdown of the compaction ratio by layer for AlexNet for 60% sparsity

Layer Dense Sparse Matrix Sparse Matrix Compaction
Matrix (After Compaction) (over BSR) Ratio

conv1 90.75kB 40.03kB 38.19kB 1.05x
conv2 1200kB 626.7kB 386.9kB 1.62x
conv3 2.53MB 1.38MB 0.80MB 1.73x
conv4 3.38MB 1.12MB 0.67MB 1.67x
conv5 2.25MB 0.68MB 0.41MB 1.66x

fc6 144.0MB 83.60MB 28.69MB 2.91x
fc7 64.00MB 36.98MB 16.12MB 2.29x
fc8 15.63MB 8.51MB 4.20MB 2.03x

Table 1 shows a more detailed breakdown of the compaction that is achieved in different layers of
AlexNet. We see that the level of block sharing in the first layer, which is an 11 × 11 convolution,
is very small. However, the subsequent convolution layers, which use much smaller kernels, offer
much great opportunity for sharing blocks. Note that for convolution layers, we use a block size that
corresponds to one row of a convolution kernel (i.e. a vector of length 11 for an 11×11 kernel). The
savings from sharing in the fully-connected layers are even larger. Table 2 (in Appendix A) shows
the same data for VGG16. There is a correlation between the size of the matrix, and thus the number
of blocks, and the opportunities for sharing identical blocks.

Figure 8 shows another view of the compaction ratio for different layers of AlexNet. Figure 8a
shows the compaction ration for AlexNet’s five convolution layers. The rows of the 11× 11 kernels
of the conv1 layer provide few opportunities for sharing. The rows are too long, the values are
too diverse, and the number of the kernels too small for many repeated rows to appear. In contrast,
the level of sharing increases rapidly as sparsity increases in the weights for layer conv2. As more
small values are replaced with zero, small differences between blocks tend to disappear and more
sharing becomes possible. In contrast, convolution layers 4, 5, and 6 have a great number of repeated
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Figure 8: Compaction per layer for AlexNet

blocks even without pruning. The compaction ratio for these layers falls with very high levels of
sparsity simply because blocks that might otherwise be duplicates are eliminated entirely when all
values are replaced with zeroes. The AlexNet fully-connected (FC) layers (Figure 8b) exhibit high
levels of block sharing, which is consistent with the large size and large numbers of blocks in these
layers. Appendix B and C analyze the sensitivity of vector granularity for fully connected layers and
rounding/truncation methods.

6 SBSR AND HUFFMAN CODING

For compression of the weight data after pruning, Huffman coding is a widely advocated method.
However, existing work focuses on element-wise encoding, e.g. Deep Compression (Han et al.,
2015a) which replaces every weight with a variable-length code to reduce the size of the sparse
tensor. Though effective, element-wise Huffman coding works suboptimally in many cases because
it ignores repeated patterns of values, leading to missed opportunities for compression.

While SBSR works conceptually like a linked list of blocks, the Huffman coding algorithm encodes
symbols by building a binary tree according to their occurrence frequencies. All symbols are leaves
of the tree while the path to a given leaf is its Huffman code. Rather than assigning every symbol a
fixed length code, Huffman coding introduces a variable-length code which allocates fewer code bits
to symbols that occur more often. The overall size of the memory requirement is therefore reduced
by the use of shorter codes for higher frequency values. Appendix D presents the detailed result of
element-wise and vector-wise Huffman coding. Comparing to element-wise Huffman coding (Han
et al., 2015a), our method reduces tensor sizes by 1.53x (SBSR) and 1.67x (vector-wise Huffman
coding). We have also discussed the algorithm complexity and flexibility of SBSR and Huffman
coding in Appendix E.

7 CONCLUSION

Network pruning and quantization are successful techniques that can efficiently reduce the size
of trained CNN models. However, even after pruning and quantization there remains significant
redundancy in the form of repeated patterns among the trained parameters. In this paper we propose
a novel approach to compacting trained CNNs by exploiting this kind of redundancy. We build
upon the existing block-sparse row format for sparse matrices, by sharing a single copy of duplicate
blocks. Repeated blocks are replaced by a reference pointing to their first appearance. We evaluated
our approach on several well-known CNNs and found that it results in compaction ratios of 1.4× to
3.1× in addition to the saving from network pruning and quantization.

We also evaluated element-wise Huffman coding to compress the weight matrices, and implemented
an improved block Huffman coding scheme. Both our SBSR approach and block Huffman coding
improve compression over element-wise Huffman coding on VGG-16 weight matrices, with an
average improvement of 1.53× (SBSR) and 1.67× (block Huffman coding) across all weight tensors
in the network.
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A BREAKDOWN OF THE COMPACTION RATIO BY LAYER FOR VGG16

Table 2: Breakdown of the compaction ratio by layer for VGG16 for 60% sparsity

Layer Dense Sparse Sparse Matrix Compaction Ratio
Matrix Matrix (After Compaction) (over BSR)

conv1 1 6.75kB 3.32kB 3.12kB 1.06x
conv1 2 144.0kB 71.93kB 50.10kB 1.44x
conv2 1 288.0kB 146.7kB 95.57kB 1.53x
conv2 2 576.0kB 203.5kB 179.5kB 1.13x
conv3 1 1.13MB 0.57MB 0.34MB 1.70x
conv3 2 2.25MB 1.17MB 0.68MB 1.74x
conv3 3 2.25MB 1.18MB 0.68MB 1.74x
conv4 1 4.50MB 2.43MB 1.37MB 1.77x
conv4 2 9.00MB 4.78MB 2.69MB 1.76x
conv4 3 9.00MB 4.48MB 2.53MB 1.77x
conv5 1 9.00MB 4.75MB 2.64MB 1.80x
conv5 2 9.00MB 4.68MB 2.58MB 1.81x
conv5 3 9.00MB 4.51MB 1.51MB 2.99x

fc6 392.0MB 225.7MB 72.51MB 3.11x
fc7 64.00MB 37.30MB 14.99MB 2.49x
fc8 15.63MB 8.73MB 4.65MB 1.88x

B COMPACTION FOR FULLY CONNECTED LAYERS

For convolutional layers, we select a block size that is equal to the size of one row of a kernel. This
allows our method to benefit from repeated patterns across different kernels. However, for fully-
connected layers, the appropriate block size is less clear. A small block size tends to result in a great
many repeated blocks, which reduces the space needed to store the unique blocks. However, each
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Figure 9: Impact of vector sizes on model compacting. The curves are the lower the better. Com-
paction ratio goes worse with the vector size increasing. However, the cost introduced by index
decreasing. Table 3 shows the best recorded vector sizes.

non-zero block needs a column index for its location, and repeated blocks need an index that refers
to the location of its shared block. Thus very small blocks can be quite space inefficient. Using a
larger vector block size tends to result in less sharing of common blocks, but requires less space for
indices.

Table 3: Optimal vector size for FC layers at 60% sparsity

Network Layer Block
Size

AlexNet fc6 8
AlexNet fc7 8
AlexNet fc8 4
VGG16 fc6 8
VGG16 fc7 4
VGG16 fc8 4
ResNet fc 2
LeNet fc3 4
LeNet fc4 2

Figure 9 shows the trade-off between block storage and index storage for AlexNet layer fc6 and
fc8. In both cases the best block size is a compromise between block and index storage, with a
size of four for fc6 and eight for fc8. Table 3 shows the optimal block size for fully-connected
layers across several different CNNs. In general it seems that FC layers with more parameters tend
to benefit from larger block sizes.

C IMPACT OF TRUNCATION AND ROUNDING

Finally, we investigated the effect of either quantizing the weights by rounding to the nearest repre-
sentable value or by simple truncation. The results in Figure 10 show that both approaches provide
almost identical levels of block sharing. Given that rounding to the nearest value gives a slightly
higher accuracy, this is the method that should be used.
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Figure 10: Comparison between the compaction ratio when using truncation and rounding

D VECTOR SHARING VS ELEMENT SHARING

It is straightforward to see how a block-sparse representation exploits patterns in nonzeroes to in-
crease the efficiency of storage. Each index incurs some overhead, so when indices address blocks of
data, rather than single elements, the overhead is amortized by the size of the blocks, at the expense
of a slight increase in the number of stored zeroes in partial blocks.

In order to capture repeated patterns of values using Huffman coding, we propose vector-wise Huff-
man coding, which assigns a code to a vector of values, as opposed to individual matrix elements.
To fully understand the advantage of vector-wise coding over element-wise coding, we do a break-
down analysis. We then compare the memory reduction from SBSR, vector-wise Huffman coding
and element-wise Huffman coding.

The storage required by element-wise Huffman coding consists of three parts: indices, variable-
length codes and the encoding dictionary. The memory requirement is calculated as shown in Equa-
tion 3.

Huff Size = HIdx +Hdict +

Size of Dict∑
i=1

code lengthi × freqi (3)

The indices HIdx represent the row and column index of the encoded data in the weight matrix.
For element-wise Huffman coding, the value indexed is a single non-zero matrix element, while
for vector-wise encoding, the value is a weight vector. HDict is a lookup table with two columns,
with one column listing Huffman codes and the other presenting the original value. It contains the
necessary information for decoding the weights.

After replacing each element of the tensor with its Huffman code, the memory required to
store the encoded values is the sum of the code size times its frequency. We use the formula∑Size of Dict

i=1 code length× freq to denote this.

To compare vector- and element-wise encoding methods, we use element-wise Huffman coding Han
et al. (2015a) as our baseline. We use the Compaction Ratio (CR) on graphs as a metric to evaluate
the comparison. The CR is read as the “improvement” in compression versus element-wise Huffman
coding (so larger CR represents greater compression).

We calculate CR as shown in Equations 4 and 5.

CR huffman =
Size of Element Wise Huffman

Size of V ector Wise Huffman
(4)

CR SBSR =
Size of Element Wise Huffman

Size of SBSR
(5)
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(a) Normalized size of memory consumption on VGG16
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(b) Normalized size of memory consumption on VGG16, but 10-20% Sparser than 11a

Figure 11: Comparison between element-wise and vector-wise Huffman coding on VGG-16

Figure 11 presents the result of vector-wise over element-wise compaction. Limited by the length re-
quirement of the paper, we only present the experiment carried out on the VGG-16 network. Similar
results have been found across other networks in fact. All of the 16 layers, including 13 convo-
lutional layers (Conv) and 3 fully connected (FC) layers, have been examined in our experiment.
Besides all layers, the network under two different sparsities is also examined. Though the spar-
sity varies across layers in practice, on average, each layer in Figure 11a is 10-20% sparser than in
Figure 11b.

As presented in Figure 11, in most cases, the vector-wise sharing works better than element-sharing.
There are two exceptions, which are the layers Conv1 and FC1 in our experiment. The front layers
usually come with low sparsities. In our experiment, the sparsity of the Conv1 is the lowest. Because
the length of the vector-based dictionary is much larger than element-based one for a dense matrix,
extra code bits and storage space are required accordingly. Therefore, the element-wise Huffman
coding works better than the vector-wise implementation. However, as SBSR does not require
encoding, it works equally well as the element-wise Huffman. For the FC1 layer, the reason that
vector-sharing comes worse than element-sharing is that the vector size is too small. Here we select
size 2 for all fully connected layers. The FC1 suffers a poor storage ratio while the other two layers
experience enhanced compaction. Once given a larger vector, as we can see from the Figure 12 that
enlarges the size to 4 elements, all FC layers with vector-wise sharing are better than element-wise
Huffman. In general, vector-wise Huffman coding works better than SBSR which is far better than
element-wise Huffman coding.

To further understand the memory consumption, we break down the equation 2 and 3 to examine the
contribution of each component. Figure 13 shows the percentage of memory required by each item
in the equations for element-wise Huffman coding, vector-wise Huffman coding, and the SBSR. As
we can see in the Figure 13, in most of the cases, space spent on storing index dominates the whole
memory usage. However, the memory gap between the index and others are larger for element-wise
Huffman Coding, e.g. bars in Figure 13a, than the vector-sharing methods, e.g. Figure 13b and
Figure 13c. Optimising the dominant component can effectively reduce the size of overall memory
consumption.
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Figure 12: Using a larger vector to the fully connected layers. In this experiment, the size of vector
is 4.
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(b) Vector-wise Huffman Size Breakdown
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Figure 13: Comparison between the element-wise and vector-wise sharing

E DISCUSSION BETWEEN SBSR AND HUFFMAN CODING

Though both vector-wise Huffman coding and SBSR works better than element-wise sharing, these
two methods proposed in this paper have some fundamental difference. As the Huffman coding
builds a binary tree on the vectors according to their repeated frequency, its performance complexity
is O(nlogn). To the contrary, the SBSR does not require to sort the vector. It can be created by a
single scan of the tensor; therefore, its computation complexity is O(n). For extracting the value,
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both vector-wise Huffman coding and the SBSR has the complexity of O(1). For Huffman coding,
the indices are used to get the code first and then decode it by checking the dictionary. For the SBSR,
the indices are used to get the block in the SBSR. By checking the flag, we can acquire the value
directly or a pointer which leads us to the value.

Apart from the performance complexity, the SBSR are more flexible than the Huffman coding. For
each time when the values changed, we have to rebuild the Huffman tree accordingly. However, the
SBSR format can handle such issue easily. As it works as a link list, we can insert a new node or
simply update the pointer once the vector changed.

In general, there is a compensation between the two implementations we provided in this paper.
The vector-wise Huffman coding provides a better compaction ratio, while the SBSR has a higher
performance and flexibility.
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