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Abstract

Precise targeting of therapeutic proteins to specific subsequence motifs within
disease-related targets, such as conserved viral epitopes or mutant transcriptional
domains, is critical for improving treatment efficacy and minimizing off-target
interactions. Current computational binder design methods struggle to achieve this
specificity, especially without reliable structural information. Here, we introduce
moPPIt-v3, a generative, sequence-only model capable of the de novo design of
high-affinity, motif-specific peptide binders. By coupling the Multi-Objective-
Guided Discrete Flow Matching (MOG-DFM) framework with a residue-level
interaction predictor, BindEvaluator, and a pretrained affinity predictor, we can
guide peptide generation towards both sequence specificity and binding affinity.
BindEvaluator is a transformer-based model, trained on over 510,000 annotated
protein-protein interactions, that interpolates protein language model embeddings
of two proteins via a series of multi-headed self-attention blocks, with a key focus
on local motif features. BindEvaluator accurately predicts target binding sites
given protein-protein sequence pairs with a test AUC > 0.94, improving to AUC >
0.96 when fine-tuned on peptide-protein pairs. By integrating BindEvaluator, we
demonstrate moPPIt-v3’s in silico efficacy by designing high-quality binders to
specific motifs within target sequences with and without known peptide binders,
including both structured and disordered targets. Moreover, we validate the motif-
specificity of moPPIt-generated peptides in vitro by showing sensitive and specific
binding toward distinct domains of cancer receptor NCAM1. Altogether, moPPIt-
v3 is a powerful tool for developing highly-specific peptide therapeutics without
relying on target structure or known binding partner.

Introduction

Motif-specific targeting of protein-protein interactions (PPIs) offers the potential for highly selective
biotherapeutics that can modulate protein function while minimizing off-target effects, an advantage
unattainable with traditional small molecule drugs that rely on well-defined binding sites [1]. The
importance of targeting specific motifs is evident across a wide range of biological contexts. For
instance, in cancer biology, restoring the function of the p53 tumor suppressor by targeting its DNA-
binding domain could provide a powerful therapeutic approach in cancers where p53 is inactivated
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by mutations [2]. In neurodegenerative disorders like Alzheimer’s disease, precise binding to the
β-secretase cleavage site of the amyloid precursor protein (APP) could modulate its processing and
potentially reduce the formation of toxic amyloid-β peptides [3]. Targeting active sites of enzymes,
such as the catalytic domain of BRAF kinase in melanoma, offers more specific inhibition compared
to traditional small molecule inhibitors [4]. Allosteric domains present another important target,
exemplified by the potential to modulate G protein-coupled receptor (GPCR) function by binding to
their allosteric sites [5]. For intrinsically disordered proteins (IDPs), targeting specific regions of the
tau protein involved in pathological aggregation could provide new avenues for treating tauopathies
[6]. Furthermore, in cancers driven by fusion oncoproteins, such as PAX3::FOXO1 in alveolar
rhabdomyosarcoma, targeting the unique sequence at the fusion breakpoint could offer exquisite
specificity for therapeutic interventions [7, 8].

While experimental methods to generate motif-specific binders, such as animal immunization, phage
display, and yeast display, are often costly and labor-intensive, computational approaches offer a much
more streamlined and efficient design process [9]. Advances in this regard, including RFDiffusion
and BindCraft, have shown promise in various protein design tasks, including motif-specific binder
design [10, 11]. However, these methods operate purely in structure space, making them less suitable
for targets lacking stable tertiary conformations, such as IDPs, which are often underrepresented in
their training sets. Earlier motif-specific PPI targeting algorithms, moPPIt-v1 and moPPIt-v2, sought
to fill this gap but lacked the capacity to optimize for additional molecular properties, such as binding
affinity [12, 13]. We alleviate this shortcoming by leveraging the recent Multi-Objective-Guided
Discrete Flow Matching (MOG-DFM) framework, which demonstrated superior performance in
steering PepDFM, a sequence-based discrete flow matching model, toward generating peptide binders
optimized across multiple properties [14]. However, MOG-DFM has not yet been focused on
generating binders with a specific motif-targeting property, leaving a significant gap in our ability to
design targeted therapeutics.

As such, in this work, our key contributions are as follows:

1. moPPIt-v3, a sequence-only algorithm capable of generating both high-affinity and motif-
specific peptide binders of varying lengths across diverse protein targets.

2. BindEvaluator, a pre-trained transformer model that accurately predicts binding hotspots.

3. Extension of MOG-DFM, a multi-objective generation framework [14] that is extended to
jointly optimize motif specificity and binding affinity for de novo peptide generation using
BindEvalulator and a pre-trained binding affinity predictor.

4. In silico and in vitro validation results. Using AlphaFold3, AutoDock VINA, and PeptiDerive
[15–17], we demonstrate moPPIt-v3’s ability to design epitope-specific binders across diverse
targets, including kinases, transcription factors, GPCRs, and intrinsically disordered regions
(IDRs). These in silico findings are corroborated by in vitro validation of domain-specific
binders against both full-length and truncated NCAM1.

Results

BindEvaluator accurately predicts target binding sites provided two interacting sequences

To enable motif-specific peptide binder generation, we first developed BindEvaluator, a sequence-only
transformer model capable of predicting peptide-protein binding sites (Figure 1A). BindEvaluator
takes a binder sequence and a target sequence as inputs to predict the binding residues on the target
protein. Both binder and target sequences are first passed into a pre-trained ESM-2-650M model
to obtain their embeddings [18]. For the target sequence embedding, a dilated convolutional neural
network (CNN) module captures the local features of adjacent residues (Figure 1A). The processed
embeddings are then passed through multi-head attention modules to capture global dependencies for
each residue. In the reciprocal attention modules, the target and binder sequence representations are
integrated to capture binder-target interaction information (Figure 1A). Following several layers of
dilated CNN and attention modules, the resulting target sequence representation encapsulates the
binder-target interaction information. Finally, this representation is processed by feed-forward layers
and linear layers to predict the binding sites (Figure 1A).
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Figure 1: BindEvaluator. (A) Overview of the architecture of BindEvaluator. BindEvaluator predicts the binding
residues on the target protein given a target sequence and a binder sequence. The binder and target sequences
are first processed using a pre-trained ESM-2-650M model to obtain their embeddings. The target sequence
embeddings are further refined using a dilated CNN module to capture local features. Both embeddings are then
passed through multi-head attention modules to capture global dependencies. Reciprocal multi-head attention
modules integrate the representations of the target and binder sequences, allowing for the capture of binder-
target interaction information. Feed-forward and linear layers subsequently process the refined embeddings to
predict the binding sites. (B) Test performance metrics of BindEvaluator across different training configurations.
Performance metrics were calculated for BindEvaluator across three configurations: trained without dilated
CNN modules, trained with dilated CNN modules, and fine-tuned for peptide-protein binding site prediction.
Metrics include overall loss, binary cross-entropy (BCE) loss, KL divergence loss, accuracy, area under the ROC
curve (AUC), F1 score, and Matthews correlation coefficient (MCC).

We initially trained BindEvaluator without dilated CNN modules on a large PPI dataset, PPIRef,
containing over 500,000 entries with annotated interface residues [19] to provide foundational
knowledge of PPI information. The model’s strong performance on the test data across numerous
metrics confirmed its efficacy in distinguishing between binding and non-binding residues (Figure 1B).
To test whether dilated CNN modules improve BindEvaluator by better extracting local binding-
site features, we trained a modified version on the same PPI dataset under identical settings, aside
from slightly different gradient accumulation schedules. The inclusion of these CNN modules led
to observable improvements across several metrics (Figure 1B). To adapt our model specifically
to peptide-protein binding site prediction, the pre-trained BindEvaluator model with dilated CNN
modules was further fine-tuned on over 12,000 structurally validated, non-redundant peptide-protein
sequence pairs, resulting in improved predictive performance across all metrics, including a marked
increase in accuracy and AUC. Altogether, BindEvaluator is capable of highly precise, residue-level
prediction of peptide-protein binding sites (Figure 1B).

moPPIt-v3 applies MOG-DFM for motif-specific peptide binder generation

Although BindEvaluator enforces correct motif engagement, it does not directly predict thermody-
namic binding strength. Our previous works on moPPIt-v1 and moPPIt-v2, which were based solely
on BindEvaluator, often generated motif-specific peptides with poor binding affinity [12, 13]. There-
fore, we developed the motif-specific PPI targeting algorithm version 3 (moPPIt-v3) to generate
motif-specific peptide binders with high binding affinity based solely on target protein sequences.
moPPIt-v3 builds on our previous work on MOG-DFM, a general framework that steers any pre-
trained discrete flow matching (DFM) generator toward Pareto-efficient trade-offs across multiple
scalar objectives [14]. MOG-DFM demonstrated exceptional performance in generating peptide
binders optimized across multiple properties using PepDFM, an unconditional DFM model for diverse
peptide generation [14]. In moPPIt-v3, we apply MOG-DFM to guide PepDFM’s peptide sequence
generation with BindEvaluator and a pretrained binding affinity predictor (Section D), ensuring that
the resulting binders exhibit both high specificity and affinity for the target motifs (Figure 2A).

The inputs to moPPIt-v3 include a target protein sequence, target motifs, and a specified binder length.
At initialization, a peptide sequence is randomly generated and weight vectors are initialized via the
Das-Dennis simplex lattice [20], with one weight vector chosen to guide the optimization towards the
Pareto front in the current run. Beginning at a random amino acid position, BindEvaluator and the
pretrained affinity predictor compute the motif and affinity scores for the current peptide and for all
variant peptides where the amino acid at the selected position is mutated. These scores are then used
to update the PepDFM velocity field, favoring transitions that improve motif specificity and binding
affinity (Figure 2A). To ensure each candidate token replacement steers the sequence towards the
desired trade-off direction, adaptive hypercone filtering is applied, restricting candidate transitions to
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Figure 2: moPPIt-v3. (A) Schematic of moPPIt-v3. The algorithm starts with a randomly initialized binder
sequence as well as a target protein sequence and target motifs. MOG-DFM framework is used to iteratively
update the binder sequence so as to optimize motif specificity and binding affinity in the state space. (B), (C) Hit
rate of moPPIt-v3 on structured targets with known binders for ipTM and AutoDock VINA scores. The scores
for known peptides (red) from PDB structures were compared to moPPIt-v3-designed peptides (blue) for the
same target proteins. An ipTM score below 0.05 of the existing peptide (green line) was used as a threshold to
call hits. An AutoDock VINA score above 1.0 of the existing peptide (green line) was used as the threshold to
call hits. (D) AutoDock VINA docking visualization of protein (PDB ID: 7LUL) with existing and designed
peptide binders, highlighting interacting residues.

a cone around the weight vector (Figure 2A). Finally, Euler sampling is employed to select the best
candidate transition (Figure 2A). After optimizing the initial peptide sequence for a specified number
of iterations, the final peptide is expected to achieve both high motif specificity and binding affinity.

moPPIt-v3 generates epitope-specific binders to target proteins

To validate that the MOG-DFM framework within moPPIt-v3 can balance trade-offs between motif
specificity and binding affinity, we performed binder generation experiments targeting three proteins:
5AZ8, 7JVS, and MYC (Table 1). Ablation experiments reveal that removing one or both objectives
dramatically decreases the corresponding property score, while only modestly improving the other.
By contrast, enabling both guidance signals produces the most balanced binder profiles across motif
and affinity scores. Notably, 5AZ8 and 7JVS are structured proteins with known binders, whereas
MYC is a disordered protein lacking pre-existing binders, thus illustrating moPPIt-v3’s ability to
balance potentially conflicting objectives while designing novel binders to diverse targets with both
high motif specificity and strong binding affinity.

To comprehensively evaluate moPPIt-v3 in a controlled setting, we designed binders for 15 structured,
unseen proteins and compared them to known peptide binders from the PDB using AlphaFold3
ipTM scores and AutoDock VINA docking scores, which represent confidence in interface formation
and binding affinity, respectively [15, 17]. We observed that moPPIt-v3-designed binders form
peptide–protein complexes with comparable or superior properties to pre-existing binders across both
metrics (Table 2). Indeed, none of the 15 designed peptides fell below the defined ipTM threshold,
(set at 0.05 lower than the ipTM score of the corresponding known complex) indicating the ability of
moPPIt-v3 to generate peptides that form stable complexes with target proteins (Figure 2B). Similarly,
docking evaluation using AutoDock VINA revealed that only 3 out of the 15 designed peptides scored
below the defined threshold (set at 1.0 lower than the reference complex), however, these peptides
still exhibited moderate binding affinity (Figure 2C). The overall higher ipTM and AutoDock VINA
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Table 1: Ablation results for moPPIt-v3 binder design targeting 5AZ8 (PDB ID), 7JVS (PDB ID), and MYC
with different guidance settings. For each setting, 100 binders were designed with lengths of 11, 11, and 8,
respectively. The average scores are displayed.

Guidance Settings 5AZ8 7JVS MYC

Motif Affinity Motif
Score

Affinity
Score

Motif
Score

Affinity
Score

Motif
Score

Affinity
Score

✓ ✓ 0.7048 7.3871 0.7970 7.8295 0.4950 7.2433

✓ × 0.6990 6.1803 0.8273 6.4606 0.5325 5.8708

× ✓ 0.5430 8.2470 0.4775 8.4952 0.1789 8.1899

× × 0.4876 5.6212 0.5442 6.0628 0.2014 6.0884

Table 2: Comparison of ipTM for existing and designed peptide-protein complexes. The ipTM scores are
calculated by AlphaFold3 for peptide-protein complexes using both existing peptides and peptides designed by
the moPPIt-v3 algorithm. The designed binders for each protein are presented.

PDB ID ipTM score
(existing binder)

ipTM score
(designed binder)

VINA score
(existing binder)

VINA score
(designed binder) Designed Binder

1AYC 0.52 0.64 -6.1 -4.9 YAYRYICYYCD

1B8Q 0.72 0.72 -5.1 -5.6 IVDWVCF

1DDV 0.56 0.89 -6.1 -6.7 RCVRWC

1E6I 0.58 0.66 -7.4 -7 GRWRC

2LTV 0.56 0.6 -3.4 -4.6 PTVEECSYWYHE

2Q8Y 0.52 0.69 -7.3 -5.2 WLSWCHVYC

3IDJ 0.66 0.69 -6.3 -6.5 IRRVRAP

4GNE 0.88 0.83 -5.4 -5.3 ARRVRWS

5AZ8 0.71 0.8 -7.2 -6.9 LRWEVYLVREV

5KRI 0.85 0.84 -3.8 -3.6 FAGMIVVNCIMR

5M02 0.55 0.6 -6.1 -4.1 PEVRWEVRD

6MLC 0.73 0.8 -5.5 -6.6 GRWYCW

7LUL 0.94 0.89 -7.2 -6.8 WEVTIWV

7JVS 0.43 0.54 -5.5 -8.1 CVGIICEIICP

8CN1 0.94 0.93 -6.2 -6 SAEV

scores highlight moPPIt-v3’s ability to generate peptide binders with both high structural stability
and strong binding affinity.

We further analyzed the relative interface scores (RIS) of both existing and designed peptide-protein
complexes using PeptiDerive [16], which quantifies the energetic contribution of specific residues to
the overall free energy of the binder-target complex (Figure 9, 10). The designed complexes exhibited
similar or higher RIS at the binding sites compared to existing complexes, indicating comparable
or enhanced binding energy. Crucially, residues with high RIS were predominantly located near
the binding motifs, demonstrating the high specificity of moPPIt-v3-designed binders. Moreover,
moPPIt-v3 successfully designed binders of varying lengths, highlighting its overall versatility (Table
2).

To further assess moPPIt-v3’s performance, we designed peptide binders for structured proteins
without pre-existing binders. We selected proteins from three enzyme classes (kinases, phosphatases,
and deubiquitinases), as well as GPCRs, to evaluate moPPIt-v3’s versatility in designing binders
for diverse structured proteins without pre-identified binding sites. Since these targets lack known
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Table 3: pTM and ipTM scores and VINA docking scores for moPPIt-v3-designed binders targeting
proteins without known binders. This table lists the pTM and ipTM scores for the complex structures of
proteins with designed binders targeting proteins without known binders. The proteins are categorized by type,
including kinases, phosphatases, and deubiquitinating enzymes (DUBs), GPCRs, and intrinsically disordered
proteins. The designed binders and AutoDock VINA docking scores are provided alongside each protein.

UniProt ID Protein Name Type ipTM score VINA Score Designed Binder

Q16671 AMHR2
Kinases

0.73 -5.7 EFEYEEV

P49759 CLK1 0.5 -6.9 PEVAAKEEEVEC

P53041 PPP5
Phosphatases

0.71 -8.5 YFLVYNVC

Q9UNI6 DUSP12 0.52 -6.9 QTCRYVVEC

Q9Y5K5 UCHL5 DUB 0.58 -5.4 GDGMTQGV

O43613

OX1R-TM3

GPCRs

0.58 -8.8 GYYVKCVDDY

OX1R-TM5 0.56 -8.2 MSYWCCCVGF

OX1R-TM7 0.54 -7.7 ARYTYDWVYLFA

P01106 MYC
Disordered

0.55 -5.6 EVFYWTWW

B1PRL2 EWS::FLI1 0.67 -6 IDEVCRRW

binders, potential binding sites are identified using APBS electrostatic analysis [21]. We evaluated the
epitope specificity of the designed binders to their respective targets (Figure 5, 6, 7, Table 3). Notably,
residues at specified binding motifs aligned with high RIS from PeptiDerive, while AutoDock VINA
scores and 3D docking visualizations further confirmed strong binding affinity and correct spatial
placement of the designed peptides.

To demonstrate moPPIt-v3’s capacity to design binders against IDPs, we generated peptides toward
two highly disordered proteins: MYC and EWS::FLI1. For both targets, PeptiDerive scores align
with the specified binding motifs, showing high predicted RIS, while 3D structural models reveal the
designed peptides positioned adjacent to these motifs (Figure 8). High ipTM scores and AutoDock
VINA docking scores further suggest high binding affinities (Table 3). These results indicate that
moPPIt-v3 can effectively design binders targeting both ordered and disordered regions of IDPs.

moPPIt-v3-generated binders show motif-specificity in vitro

In order to experimentally validate the motif-specific capabilities of moPPIt-v3, we generated peptide
binders against neural cell adhesion molecule 1 (NCAM1), a key marker of acute myeloid leukemia
[22]. NCAM1 is composed of multiple distinct folded domains, five consecutive immunoglobulin
(IgG) domains followed immediately by a two fibronectin-type 3 (FN3) domains [23]. Binders
targeting the FN3 domain will demonstrate interactions with both the full-length protein and the
FN3 domain alone. To facilitate this characterization, the NCAM1-FN3 domain was expressed
in E. coli, while four peptide binders against this FN3 domain were designed and expressed as
C-terminal fusions to a SUMO-tag protein (Figure 3A). Two of these peptides (FN3_1 and FN3_3)
showed specific interactions at mid-low nanomolar levels of NCAM1-FN3 compared to BSA and
peptide controls (BETA_CAT_N1+2) as measured by ELISA (Figure 3B). Moreover, one of these
peptides, FN3_1, shows potent, albeit slightly diminished, binding to the full-length NCAM1 protein
(IgG+FN3). These results together validate the motif-targeting capacity of moPPIt-v3.

Discussion

Designing highly specific peptide binders for disease targets without well-defined structural pockets
or with IDRs remains a major bottleneck in therapeutic development. In this work, we present
moPPIt-v3, a sequence-only framework that leverages discrete flow matching with multi-objective
optimization to design high-affinity, motif-specific peptide binders, regardless of target protein
structure. We demonstrate that moPPIt-v3 is capable of generating peptides that bind to user-defined
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Figure 3: Experimental validation of moPPIt-v3-designed peptide binders in vitro. (A) Schematic of
experimental pipeline. Peptides were designed to target the FN3 domain of the NCAM1 protein for downstream
ELISA binding affinity measurements. (B) moPPIt-v3 peptides targeting the NCAM1 FN3 domain were
expressed as C-terminal SUMO-tag fusions and screened for binding to NCAM1-FN3 and full-length NCAM1.
ELISA was performed on the top two candidates, with NCAM1-FN3, full-length NCAM1, or bovine serum
albumin (BSA) immobilized on 96-well plates, incubated with serial dilutions of biotinylated peptides or BSA,
and detected via streptavidin–HRP. Absorbance at 450 nm (A450) was measured, with data shown as mean ±
s.e.m. (n=3 biological replicates).

epitopes across a wide range of protein targets, including those with structured and conformationally
flexible motifs, even in cases lacking a known binder. Moreover, we validate moPPIt-v3 real-world
efficacy by showing specific binding of de novo designed peptides toward distinct domains of NCAM1,
a clinically relevant oncogenic target.

We believe moPPIt-v3 has the potential to be effective across a broad spectrum of protein targets.
To prove this, our next steps will include a comprehensive experimental validation of moPPIt-v3,
alongside structure-based methods like RFDiffusion and BindCraft [10, 11], evaluating performance
on both structured and disordered regions. This will involve biochemical binding affinity assays
and leveraging a chimeric peptide-E3 ubiquitin ligase ubiquibody (uAb) architecture for target
degradation studies [9, 24, 25]. Furthermore, the motif-specific nature of our approach suggests
promising applications in developing binders with mutant selectivity and the ability to target specific
post-translational modification sites [26] and disease isoforms [27]. Importantly, moPPIt-v3’s capacity
to design binders against specific epitopes could be particularly valuable in the case of viral proteins,
such as those of SARS-CoV-2 and future pandemic viruses, by enabling peptide binding to highly
conserved regions less prone to escape mutations [28]. Overall, these capabilities hold great promise
for both detection and therapeutic applications, enabling precise modulation of protein function in
diseases.
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A Dataset Preparation

The training data for BindEvaluator was curated from the PPIRef dataset, a large and non-redundant
database of PPIs [29]. To augment the dataset, additional entries were generated by reversing the
roles of the target and binder sequences for each original entry. Proteins exceeding 500 amino acids
were removed due to GPU constraints. After removing all duplicates, the final dataset comprised
510,804 triplets, each containing a target sequence, a binder sequence, and binding motifs. This
dataset was split at a 60/20/20 ratio into a training set, validation set, and test set.

The peptide-protein interaction data for fine-tuning BindEvaluator were curated from the PepNN and
BioLip2 databases [30, 31]. Specifically, 3022 PepNN and 9251 BioLip2 non-redundant triplets for
peptide-protein binding were collected. Proteins longer than 500 amino acids and peptides longer
than 25 amino acids were removed. The dataset was split at an 80/10/10 ratio into a training set,
validation set, and test set.

We collected 1,781 binding affinity data for classifier training from the PepLand and PeptideBERT
datasets [32, 33]. All sequences taken are wild-type L-amino acids and are tokenized and represented
by the ESM-2 protein language model [18].

B BindEvaluator Model Architecture

The generation algorithm is based on the BindEvaluator model. As shown in Figure 1A, BindEvaluator
takes a binder sequence and a target sequence as inputs to predict the binding residues on the target
protein. The design of this model draws inspiration from the architectures of PepNN and Pseq2Sites,
which have demonstrated effectiveness in similar tasks [30, 34].

Both binder and target sequences are first passed into the pre-trained ESM-2-650M model to obtain
their embeddings [18]. For the target sequence, a dilated CNN module captures the local features of
adjacent residues. Specifically, the module is composed of three stacked CNN blocks with different
dilation rates (1, 2, and 3) to extract hierarchical features. Each block consists of three convolutional
layers with different kernel widths (3, 5, and 7) to cover different receptive field sizes, accommodating
different binding site sizes. Padding is added to each convolutional layer to maintain consistent output
and input sizes. Since the focus is on identifying binding residues for the target protein, the dilated
CNN module is applied only to the target sequence. Given that no binding motifs in the training
set contain more than 23 continuous residues, the dilated CNN module is sufficient to capture the
binding region features.

The processed embeddings are then passed through multi-head attention modules to capture global
dependencies for each residue. In the reciprocal attention modules, the target and binder sequence
representations are integrated to capture binder-target interaction information. Specifically, in these
modules, the binder representations are projected into a key matrix K and a query matrix Q, while
the target representations are projected into a value matrix V , and vice versa. The reciprocal attention
is formulated as follows:

Attentiontarget(Q,K, Vbinder) = softmax
(
QKT

√
dk

)
Vbinder (1)

Attentionbinder(Q,K, Vtarget) = softmax
(
KQT

√
dk

)
Vtarget (2)

where dk is the model dimension.

Following several layers of dilated CNN and attention modules, the resulting target sequence repre-
sentation encapsulates the binder-target binding information. Finally, this representation is processed
by feed-forward layers and linear layers to predict the binding sites.

C BindEvaluator Training and Fine-Tuning

BindEvaluator is first trained on a PPI dataset and then fine-tuned using peptide-protein binding data.
During training and fine-tuning, the same model architecture is used. The weights of ESM-2-650M
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are fixed, and all other parameters remain trainable. To accurately capture the intrinsic distribution of
binding residues, the loss function L is designed to be the sum of the Binary Cross-Entropy (BCE)
loss and the Kullback-Leibler (KL) divergence between the predicted and the true binding motifs.
Specifically, letting ŷ be the predicted binding motifs and y be the true binding motifs, the loss
function is defined as:

L(y, ŷ) = −
∑
i

[yi log(ŷi) + (1− yi) log(1− ŷi)] + λ
∑
i

yi log

(
yi
ŷi

)
(3)

Here, λ is a hyperparameter that balances the contribution of the KL divergence to the total loss.
During training, λ is set to 0.1, while during fine-tuning, λ is set to 1.

BindEvaluator was trained on a 6xA6000 NVIDIA RTX GPU system with 48 GB of VRAM each
for 30 epochs. The batch size was set to 32, with a learning rate of 1e-3, a dropout rate of 0.3, and a
gradient clipping value of 0.5. The AdamW optimizer was used with weight decay. Fine-tuning was
performed on the same six GPUs for 30 epochs, with an increased dropout rate of 0.5. The batch size,
learning rate, gradient clipping, and optimizer settings were identical to those used during training.

D Affinity Predictor

Dataset Preparation. We collected 1,781 binding affinity data for classifier training from the
PepLand and PeptideBERT datasets [32, 33]. All sequences taken are wild-type L-amino acids and
are tokenized and represented by the ESM-2 protein language model [18]. The dataset was split into
a 0.8/0.2 ratio, maintaining similar affinity score distributions across splits.

Model Architecture. We developed an unpooled reciprocal attention transformer model to predict
protein-peptide binding affinity, leveraging latent representations from the ESM-2 650M protein
language model [18]. Instead of relying on pooled representations, the model retains unpooled
token-level embeddings from ESM-2, which are passed through convolutional layers followed by
cross-attention layers.

Training Details. We used OPTUNA [35] for hyperparameter optimization, tracing validation
correlation scores. The final model was trained for 50 epochs with a learning rate of 3.84e-5, a
dropout rate of 0.15, 3 initial CNN kernel layers (dimension 384), 4 cross-attention layers (dimension
2048), and a shared prediction head (dimension 1024) in the end. The classifier reached 0.64
Spearman’s correlation score on validation data.

E Discrete Flow Matching

In the discrete setting, we consider data x = (x1, . . . , xd) taking values in a finite state space S = T d,
where T = [K] = {1, 2, . . . ,K} is called the vocabulary. We model a continuous-time Markov
chain (CTMC) {Xt}t∈[0,1] whose time-dependent transition rates ut(y, x) transport the probability
mass from an initial distribution p0 to a target distribution p1 [36]. The marginal probability at time t
is denoted pt(x), and its evolution is governed by the Kolmogorov forward equation

d

dt
pt(y) =

∑
x∈S

ut(y, x) pt(x) . (4)

The learnable velocity field ut(y, x) is defined as the sum of factorized velocities:

ut(y, x) =
∑
i

δ(yī, xī)ui
t(y

i, x), (5)

where ī = (1, . . . , i − 1, i + 1, . . . , d) denotes all indices excluding i. The rate conditions for
factorized velocities ui

t(y
i, x) are required per dimension i ∈ [d]:

ut(y, x) ≥ 0 for all yi ̸= xi, and
∑
yi∈T

ui
t(y

i, x) = 0 for all x ∈ S, (6)

so that for small h > 0 , the one-step kernel

pt+h|t(y | x) = δ(y, x) + hut(y, x) + o(h) (7)
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remains a proper probability mass function.

In practice, we can further parameterize the velocity field using a mixture path. Specifically, a
mixture path is defined with scheduler κt ∈ [0, 1] so that each coordinate Xi

t equals xi
0 or xi

1 with
probabilities 1−κt and κt, respectively. The mixture marginal velocity is then obtained by averaging
the conditional rates over the posterior of (x0, x1) given Xt = x, yielding

ui
t(y

i, x) =
∑
xi
1

κ̇t

1− κt

[
δ(yi, xi

1)− δ(yi, xi)
]
pi1|t(x

i
1 | x), (8)

where κ̇t denotes the time derivative of κt.

F PepDFM

Peptide discrete flow matching model, PepDFM, is developed to generate biologically plausible
peptide sequences unconditionally or with multi-objective guidance.

Model Architecture. The base model is a time-dependent architecture based on U-Net [37]. It
uses two separate embedding layers for sequence and time, followed by five convolutional blocks
with varying dilation rates to capture temporal dependencies, while incorporating time-conditioning
through dense layers. The final output layer generates logits for each token. We used a polynomial
convex schedule with a polynomial exponent of 2.0 for the mixture discrete probability path in the
discrete flow matching.

Dataset Curation. The dataset for PepDFM training was curated from the PepNN, BioLip2, and
PPIRef dataset [30, 31, 19]. All peptides from PepNN and BioLip2 were included, along with
sequences from PPIRef ranging from 6 to 49 amino acids in length. The dataset was divided into
training, validation, and test sets at an 80/10/10 ratio.

Training Strategy. The training is conducted on a 2xH100 NVIDIA NVL GPU system with 94 GB
of VRAM for 200 epochs with batch size 512. The model checkpoint with the lowest evaluation loss
was saved. The Adam optimizer was employed with a learning rate 1e-4. A learning rate scheduler
with 20 warm-up epochs and cosine decay was used, with initial and minimum learning rates both
1e-5. The embedding dimension and hidden dimension were set to be 512 and 256 respectively for
the base model.

Dynamic Batching. To enhance computational efficiency and manage variable-length token se-
quences, we implemented dynamic batching. Drawing inspiration from ESM-2’s approach [18],
input peptide sequences were sorted by length to optimize GPU memory utilization, with a maximum
token size of 100 per GPU.

G moPPIt-v3 Formulation

moPPIt-v3 operates under the same setting as discrete flow matching described in Section E. At its
core, it leverages a pretrained discrete flow matching model, PepDFM, that defines a CTMC with a
factorized velocity field ui

t(y
i, x) , which transports probability mass from an initial distribution p0 to

the target distribution over plausible peptide sequences via mixture path parametrization. In addition,
moPPIt-v3 uses two pre-trained score models, the affinity predictor s1 and BindEvaluator s2, that
assign objective scores to any peptide sequence. The affinity predictor s1 calculates the affinity score
based on the peptide-protein pair, while s2 predicts the motif score given a target protein sequence,
a peptide binder sequence, and target motifs. Specifically, motif score is calculated as the average
probability of each target motif residue participating in binding, as predicted by BindEvaluator:

s2(x) =
1

n

∑
mi∈M

softmax(logits)[mi], (9)

where M represents the target motifs.

We aim to generate novel sequences x1 ∈ S whose objective vectors
(
s1(x1), s2(x1)) lie near the

Pareto front (not guaranteed to be Pareto optimal)

PF =
{
x ∈ S

∣∣ ∄x′ ∈ S : sn(x
′) ≥ sn(x) ∀n, ∃m : sm(x′) > sm(x)

}
.
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To achieve this, moPPIt-v3 applies the MOG-DFM framework that guides the CTMC sampling
dynamics of PepDFM using multi-objective transition scores, steering the generative process toward
Pareto-efficient regions of the state space (Figure 2A).

moPPIt-v3 begins by initializing the generative process at time t = 0 by sampling an initial sequence
x0 uniformly from the discrete state space S = [K]d. To steer the generation towards diverse
Pareto-efficient solutions, we introduce a set of M weight vectors {ωk}Mk=1, where ω ∈ R2, that
uniformly cover the 2-dimensional Pareto front. Intuitively, each ω encodes a particular trade-off
among both objectives, so sampling different ω promotes exploration of distinct regions of the Pareto
front. We construct these vectors via the Das–Dennis simplex lattice [20] with H subdivisions,
yielding components

ωi =
ki
H

, ki ∈ Z≥0,

N∑
i=1

ki = H, (10)

A single ω is then sampled randomly to define the optimization direction toward the Pareto front for
the current run. Once initialized, moPPIt-v3 performs Step 1 (Guided Transition Scoring), Step 2
(Adaptive Hypercone Filtering), and Step 3 (Euler Sampling) over T iterations to generate a final
sequence x1 whose score vectors have been steered close to the Pareto front, with both objectives
optimized. For detailed formulations of these steps, please refer to [14].

H Sampling Settings

The hyperparameters were set as follows during sampling: The number of divisions used in generating
weight vectors, num_div, was set to 64, λ to 1.0, β to 1.0, αr to 0.5, τ to 0.3, η to 1.0, Φinit to 45◦,
Φmin to 15◦, Φmax to 75◦. The total sampling step T was 100. The importance vector was set to
[20, 1], corresponding to motif score and affinity score, respectively.

I Expression and purification of SUMO–peptide constructs

Peptides of interest were cloned into a pET-24a+ (Novagen) expression vector containing an N-
terminal 6×-histidine–SUMO tag to facilitate downstream purification. Oligonucleotide primer pairs,
each encoding for one half of the peptide sequences, were designed using NEBaseChanger V2, then
incorporated into the plasmid using Q5 site-directed mutagenesis, as per the manufacturer’s instruc-
tions. Plasmid assembly was verified using Sanger sequencing (GENEWIZ) and then transformed
into chemically competent Escherichia coli BL21(DE3) cells. Starter cultures (3ml of LB media,
50µg/ml kanamycin) were inoculated from freshly streaked agar plates or glycerol stocks and grown
at 37°C with shaking at 225 r.p.m. overnight. Starter cultures were then diluted 1:500 in bulk cultures
and grown to an optical density at 600 nm (OD600) of 0.6–0.8 and then induced at a concentration of
1 mM isopropyl β-d-thiogalactopyranoside (IPTG) overnight at 37 °C with shaking. Thirty minutes
after induction, rifampicin was added to a final concentration of 150µg/ml. Cells were then collected
by centrifugation (4,500xg) at 4°C and washed twice with ice-cold 1× PBS. The resulting cell pellets
were frozen at -20°C overnight, thawed to room temperature, and then lysed using BugBuster protein
extraction reagent (Millipore Sigma, 70584-3) supplemented with recombinant lysozyme (Millipore
Sigma, 71110-3) and benzonase endonuclease (Millipore Sigma, E1014-25KU) for 20 minutes at
room temperature with gentle rocking. The corresponding lysate was diluted with lysis buffer (1×
PBS, 20mM imidazole, 1× Halt protease inhibitor cocktail (Thermo Fisher Scientific, 78430)) and
then centrifuged at 14,000xg for 30 minutes. The cleared supernatant was mixed end over end at
4°C for 30 minutes with HisPur Ni-NTA resin (Thermo Fisher Scientific, 88221) equilibrated with
20mM imidazole in 1× PBS. Resin was centrifuged at 700xg for 2 minutes and then washed three
times with 50mM imidazole in 1× PBS. Protein was eluted with three consecutive washes with
500mM imidazole, concentrated (Millipore Sigma, 3K MWCO, UFC900308), and desalted using
Zeba spin desalting columns (Thermo Fisher Scientific, 89892). Expression and purity of purified
proteins in both the soluble and insoluble fractions, as well as purified fractions, were assessed using
SDS-PAGE. Protein concentrations were quantified using a Qubit Protein Assay (Thermo Fisher
Scientific, Q33211).
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J Sandwich ELISA

Purified SUMO-tagged peptide constructs were coated onto 96-well plates (Corning, CLS9018) at
a concentration of 5µg/ml in coating buffer (10mM phosphate, pH 7.4) at a volume of 50–100µl
per well at 4°C overnight with gentle rocking. Plates were washed once with Tris-buffered saline
supplemented with 0.05% Tween-20 (v/v) (TBS-T), then blocked with 300µl of SuperBlock in PBS
(Thermo Fisher Scientific, 37516) per the manufacturer’s instructions. Recombinant NCAM1 (Sino
10673-H08H) or NCAM1-FN3 were serially diluted in triplicate in SuperBlock with 0.05% Tween-20,
after which 100µl of each solution was added to each well and incubated at room temperature with
gentle rocking for 1 hour. Plates were then washed five times using 300µl of TBS-T per well and
then incubated with 100µl of SA-HRP (Thermo Fisher Scientific, N100, diluted 1:10,000 SuperBlock
with 0.05% Tween 20) for 1 hour at room temperature. Plates were again washed five times with
300µl of TBS-T and then incubated with 100µl per well of 3,3’-5,5’-tetramethylbenzidine substrate
(1-Step Ultra TMB-ELISA; Thermo Fisher Scientific, 34029) for 30 minutes at room temperature
with gentle rocking. Finally, the reaction was quenched with 100µl of 2N H2SO4, and absorbance at
450nm was immediately quantified using a Promega GloMax Discover plate reader.
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Figure 4: Validation loss curves for BindEvaluator training and fine-tuning. (A) Validation loss, binary
cross-entropy (BCE) loss, and Kullback-Leibler (KL) divergence loss curves during training of BindEvaluator on
the PPI dataset without dilated CNN modules. (B) Loss curves for training with dilated CNN modules, showing
similar trends to (A) but with noticeable reductions in losses during the final epochs. (C) Loss curves during
fine-tuning of BindEvaluator with dilated CNN modules on peptide-protein binding data, illustrating further
decreases in loss metrics, particularly in KL divergence.
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Figure 5: Structural visualization and PeptiDerive relative interaction scores for designed peptides
targeting structured motifs. The peptide-protein complex structures are visualized for three proteins without
known binders: (A) AMHR2, (B) CLK1, (C) PPP5 using AlphaFold3 and AutoDock VINA. The target proteins
are depicted in grey, the designed peptide binders are shown in yellow, and the binding residues specified by the
moPPIt-v3 algorithm are highlighted in magenta. Below each structure, the relative interaction scores (RIS)
computed by PeptiDerive are shown, with high scores indicating strong binding potential. Positions highlighted
in red were input into moPPIt-v3 as the desired target amino acids.
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Figure 6: Structural visualization and PeptiDerive relative interaction scores for designed peptides
targeting structured motifs. The peptide-protein complex structures are visualized for two proteins without
known binders: (D) DUSP12, (E) UCHL5 using AlphaFold3 and AutoDock VINA. The target proteins are
depicted in grey, the designed peptide binders are shown in yellow, and the binding residues specified by the
moPPIt-v3 algorithm are highlighted in magenta. Below each structure, the relative interaction scores (RIS)
computed by PeptiDerive are shown, with high scores indicating strong binding potential. Positions highlighted
in red were input into moPPIt-v3 as the desired target amino acids.
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Figure 7: Structural visualization and PeptiDerive relative interaction scores for designed peptides
targeting structured motifs. The peptide-complex structures are visualized for three different domains on
OX1R: (F) Transmembrane (Name=3), (G) Transmembrane (Name=5), (H) Transmembrane (Name=7) using
AlphaFold3 and AutoDock VINA. The target proteins are depicted in grey, the designed peptide binders are
shown in yellow, and the binding residues specified by the moPPIt-v3 algorithm are highlighted in magenta.
Below each structure, the relative interaction scores (RIS) computed by PeptiDerive are shown, with high scores
indicating strong binding potential. Positions highlighted in red were input into moPPIt-v3 as the desired target
amino acids.
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Figure 8: Structural visualization and PeptiDerive relative interaction scores for designed peptides
targeting intrinsically disordered proteins. The peptide-complex structures are visualized for two intrinsically
disordered proteins: (A) MYC, (B) EWS::FLI1 using AlphaFold3 and AutoDock VINA. The target proteins are
depicted in grey, the designed peptide binders are shown in yellow, and the binding residues specified by the
moPPIt-v3 algorithm are highlighted in magenta. Below each structure, the relative interaction scores (RIS)
computed by PeptiDerive are shown, with high scores indicating strong binding potential. Positions highlighted
in red were input into moPPIt-v3 as the desired target amino acids.
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Figure 9: PeptiDerive relative interface scores for existing and designed peptide-protein complexes. Heatmaps
of PeptiDerive relative interface scores (RIS) are shown for 7 peptide-protein complexes among 15 structured
complexes with known binders that were tested: (A) 1AYC, (B) 1B8Q, (C) 1DDV, (D) 1E6I, (E) 2LTV, (F)
2Q8Y, (G) 3IDJ. The first heatmap for each protein shows the RIS of the existing peptide-protein complex,
while the second heatmap shows the scores for the designed peptide-protein complex. For each heatmap, the
x-axis indicates the residue positions, with highlighted positions in red representing the target binding amino
acid positions that were input into moPPIt. High RIS at these positions indicate strong binding potential.
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Figure 10: PeptiDerive relative interface scores for existing and designed peptide-protein complexes. Heatmaps
of PeptiDerive relative interface scores (RIS) are shown for 7 peptide-protein complexes among 15 structured
complexes with known binders that were tested: (H) 4GNE, (I) 5AZ8, (J) 5KRI, (K) 5M02, (L) 6MLC, (M)
7JVS, (N) 8CN1. The first heatmap for each protein shows the RIS of the existing peptide-protein complex,
while the second heatmap shows the scores for the designed peptide-protein complex. For each heatmap, the
x-axis indicates the residue positions, with highlighted positions in red representing the target binding amino
acid positions that were input into moPPIt. High RIS at these positions indicate strong binding potential.
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