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Abstract

Pretrained language models are remarkably effective in aligning with human brain
responses elicited by natural language stimuli, positioning them as promising
model organisms for studying language processing in the brain. However, existing
approaches for both estimating and improving this brain alignment are participant-
dependent and highly affected by the amount of data available per participant,
hindering both generalization to new participants and population-level analyses.
In this work, we address these limitations by introducing a scalable, generalizable
brain-tuning method, in which we fine-tune pretrained speech language models
to jointly predict fMRI responses from multiple participants. We demonstrate
that the resulting brain-tuned models exhibit strong individual brain alignment
while generalizing across participants. Specifically, our method leads to 1) a
5-fold decrease in the amount of fMRI data needed to predict brain data from
new participants, 2) up to a 50% increase in the overall brain alignment, and 3)
strong generalization to new unseen datasets. Furthermore, this multi-participant
brain-tuning additionally improves downstream performance on semantic tasks,
suggesting that training using brain data from multiple participants leads to more
generalizable semantic representations. Taken together, these findings demon-
strate a bidirectional benefit between neuroscience and Al, helping bridge the
gap between the two fields. We make our code and models publicly available at
https://github.com/bridge-ai-neuro/multi-brain-tuning.

1 Introduction

Language models (LMs) substantially align with human brain responses elicited during natural
language processing, such as functional magnetic resonance imaging (fMRI) signals recorded while
participants listen to or read stories [Toneva and Wehbel 2019, [Schrimpf et al.; 2021} |Goldstein et al.}
2022, Millet et al., 2022} |Oota et al., 2024}, Moussa et al.| 2025]. This intriguing correspondence has
positioned pretrained LMs as promising model organisms for studying human cognition, particularly
language comprehension [Toneval [2021]]. Such models can offer new insights into how the brain
represents and processes complex linguistic information.

However, despite the growing success of pretrained models in predicting brain activity, current brain
alignment approaches face significant limitations. Existing methods are data inefficient, requiring
extensive fMRI data from a new participant to estimate alignment with a specific LM [Antonello
et al.,|2024]. Additionally, these methods are participant-dependent, which limits generalization to
new participants. Even methods that incorporate brain data directly into the model during training
remain participant-dependent [Moussa et al.,|2025] [Vattikonda et al., [2025]]. As a result, leveraging
these models to study language processing across populations remains a challenge. Addressing these
issues is critical to advancing the use of language models as proxies for human language processing.
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To overcome these challenges, we propose a novel approach, designed to improve the efficiency
and generalization of brain alignment in speech models. Our method fine-tunes pretrained speech
language models to jointly predict brain responses from multiple participants who are exposed to
the same naturalistic speech stimuli. By pooling data across individuals, this brain-tuning approach
leverages common patterns in language processing, reducing the dependency on large amounts of
participant-specific data. This scalable strategy enables the creation of brain-tuned models that not
only align well with individual brain responses but also generalize effectively to new participants.

Our extensive experiments demonstrate the multiple benefits of brain-tuning. First, our method
reduces the amount of fMRI data required to achieve reliable brain alignment for new participants by
a factor of five, significantly lowering the required fMRI data for a robust estimate of brain alignment.
Second, brain-tuning yields up to a 50% improvement in overall brain alignment, indicating that
jointly training on data from multiple participants enhances model robustness and prediction quality.
Third, our approach improves brain alignment on novel stimuli and participants, indicating a strong
generalization ability. Notably, brain-tuned models also improve downstream performance on
semantics-related tasks relative to their pretrained counterparts, opening up the possibility of practical
integration of brain-tuned speech models into speech processing pipelines without compromising
linguistic utility. We hope that our extensive experiments on multiple pretrained models, as well as
comprehensive ablation studies, will help establish best practices for brain-tuning.

The proposed brain-tuning method provides a stepping stone towards scalable, participant-agnostic
brain alignment, facilitating more inclusive and generalizable models of human language processing.
By enabling the use of pretrained language models in population-level neuroscience studies, our
work bridges the gap between advanced computational techniques and the study of human cognition,
providing a robust foundation for future interdisciplinary research. We make all code and trained
models publicly available to facilitate reproducibility and further research in brain-tuning.

2 Related Work

A growing number of studies investigate the degree of alignment between language-evoked brain
activity and text-based language models [Wehbe et al.l 2014} Jain and Huth, [2018| [Toneva and
‘Wehbel 2019, |Abdou et al., 2021}, [Schrimpf et al.| 2021 Toneva et al., 2022allb, |Antonello et al.}
2021, |Oota et al., 2022, [Merlin and Toneva, 2022, |Antonello et al.,[2024]] and speech-based language
models [Millet et al.| 2022 [Vaidya et al., 2022} Tuckute et al., [2023] |Oota et al., [2023] {2024, |Chen
et al.,2024]). These works rely on participant-specific brain encoding models, as brain representations
exhibit substantial inter-subject variability due to anatomical and functional differences. Moreover,
accurately estimating brain alignment has been shown to require a large amount of per-participant
data [Antonello et al.,|2024]. This participant-specific nature severely limits model generalization
across individuals, particularly with modalities like fMRI, EEG, and MEG.

Previous work has proposed methods to unify multiple participants into the same space [Chen et al.|
2015, Haxby et al.| 2020} Nastase et al.,[2020| Beliy et al.l 2025]]. However, these approaches need
huge datasets and are typically not focused on the language and speech domains. Moreover, they do
not leverage the existing powerful pretrained models and instead train brain encoding models from
scratch. Additional work that focuses on brain decoding (i.e., predicting what stimulus a participant
observes from their brain response) has also made strides towards unifying brain responses from
multiple participants. This is typically achieved by training participant-specific projection networks
[Tang and Huth, 2025| Jayalath et al., 2024, Défossez et al., [2023]]. Such methods usually focus
on learning low-dimensional features, scale poorly with many participants, and require participants
to share the stimuli. In contrast, our method leverages pretrained language models for improved
efficiency and performance for encoding models, with a focus on language and speech in the brain.

A promising recent direction for improving brain encoding involves fine-tuning pretrained language
models using brain fMRI responses for naturalistic stimuli (i.e., brain-tuning [Moussa et al., [2025]]
and BrainWavLM [Vattikonda et al., [2025]]). Brain-tuning demonstrated that fine-tuning with brain
data enhances a speech model’s brain alignment to semantic cortical regions and also improves the
model’s semantic performance on downstream tasks [Moussa et al., 2025[. Similarly, BrainWavLM
uses low-rank adaptation (LoRA) to fine-tune a pretrained speech transformer on naturalistic fMRI
data, showing improvement in brain alignment for a training participant and a held-out participant
[Vattikonda et al., |2025]]. While these methods illustrate that limited neural data can significantly



enhance the alignment of pretrained model representations, they are built per participant and do not
learn from brain data from multiple sources, limiting their scalability and generalization. Our method
overcomes these limitations, enabling the model to be jointly trained using responses from multiple
participants. By jointly brain-tuning models across multiple participants, we increase efficiency and
enhance generalization, reducing the need for huge per-participant data and facilitating robust and
scalable models for brain alignment and cognitive neuroscience research. Additionally, we explicitly
investigate the impact of our brain-tuning on the amount of fMRI data needed for brain encoding
models, as well as the impact of the tuning data size on generalization to novel participants and data.

3 Methods

3.1 Pretrained Speech Models

To evaluate different starting points for brain-tuning, we used two popular pretrained transformer-
based speech model families: Wav2Vec2.0 [Baevski et al.,|2020] and HuBERT [Hsu et al., [2021].
We selected comparable versions of the models, each with 90M parameters, 12 transformer layers,
an embedding dimension of 768, and a 20ms input token length. Both models are self-supervised and
were pretrained to predict masked segments on a 960-hour audio dataset that is independent of the
fMRI datasets that we use for developing and testing our brain-tuned models.

3.2 Naturalistic Brain Datasets
3.2.1 Datasets Details

For brain-tuning and evaluation, we use the Moth Radio Hour dataset [LeBel et al.| 2024], which
is the largest per-participant fMRI dataset that is publicly available. This dataset consists of fMRI
recordings of 8 participants who listened to autobiographical stories from the Moth Radio Hour
podcast. Three participants listened to 84 stories (=16.1h of audio for each participant), while the
rest listened to 27 stories (=6.4h of audio). fMRI images were acquired every 2s (TR = 2.0s).

To test cross-dataset generalization, we use a subset of the Narratives fMRI dataset [Nastase et al.,
2021]], in which 16 participants listened to a 56-minute fictional short story (with TR = 1.5s). This
subset provides a suitable setting to test generalization to a new dataset, as it has many participants
and less per-participant data than the Moth Radio Hour dataset.

3.2.2 Spatial Alignment of fMRI Data Across Participants

A key challenge in multi-participant brain-tuning is the anatomical differences across individuals,
leading to variations in brain size (and hence the number of fMRI voxels), surface geometry, and
region boundaries. This makes it challenging to train jointly or make predictions for a new participant.
Moreover, using the whole cortex for fine-tuning, as done in [Moussa et al.,|2025| [Vattikonda et al.,
2025]] limits our ability to control what areas are included during fine-tuning. We solve this by
spatially aligning participants.

To spatially align participants and be able to parse specific regions of interest (ROIs), we project
each participant’s data to a common cortical surface with FreeSurfer v7. We then use the cerebral
parcellation atlas from [Glasser et al., 2016] to parse auditory regions (A1l through A4) and late
language ROIs (e.g., bilateral inferior frontal gyrus, angular gyrus, anterior and posterior temporal
lobes, and middle frontal gyrus). The full list of ROIs and their functions is provided in SupplA.1]

3.3 Brain-tuning Approach

In this section, we elaborate on our approach and training details for fine-tuning speech models with
fMRI data from multiple participants (i.e., Multi-brain-tuning) as well as the comparison baselines,
namely brain-tuning with a single participant, LLM-tuning, and Stimulus-tuning (Sec[3.3.4).

3.3.1 Data Preparation

We follow [Moussa et al.|[2025]],|/Antonello et al.|[2024] to preprocess the stimulus and brain data
for training. We divide the audio stimulus into snippets of 2s. We then concatenate each snippet
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Figure 1: Multi-brain-tuning Approach. Given participant responses, we project them to a common
space (see Sec[3.2.2). The aligned responses of multiple participants are then used to fine-tune the
pretrained model with low-rank updates, binding by the shared stimulus as detailed in Sec@

with the preceding 8s (4TRs) to account for the fMRI hemodynamic response delay. This results in a
paired audio-fMRI dataset, with each sample having a 10s audio clip and its one corresponding fMRI
TR. fMRI responses are then spatially aligned and parcellated as described in Sec[3.2.2] Parsing the
desired auditory and language ROIs results in 30K voxels across both hemispheres.

3.3.2 Brain-tuning with Multiple Participants

After preparing the training data, we perform brain-tuning across multiple participants (Multi-
brain-tuning shown in Fig[T). To achieve this, we add an average pooling layer followed by a
unified projection head on top of the speech model. Given a stimulus batch S that is sampled
contiguously from the audio, and the corresponding fMRI responses from participants P, ,,, we
fine-tune the pretrained model to predict the participants’ fMRI responses. This involves computing
and backpropagating the training loss on each (.S, P;) pair independently and sequentially.

This training strategy encourages the model to learn more generalizable representations and increases
robustness to noise inherent in individual responses. We observed that it outperforms methods
that predict the averaged fMRI response across participants or those that average the loss across
participants, possibly because these alternatives risk discarding unique, informative signals from
individual responses. Furthermore, we found using a unified projection head on top of FreeSurfer
ROIs to be better than other alternatives like shared response modeling [Chen et al.l 2015] and
participant-specific projection heads (as in [Défossez et al., 2023]]). Detailed comparisons are

provided in Supp[A.3]

Note that our method does not require all participants to have listened to the same stimulus set.
Instead, we use each stimulus as an anchor during training, presenting the model with all available
fMRI responses for that stimulus consecutively. This design makes the method robust to datasets
where participants have varying levels of stimulus overlap. Importantly, we find that the critical factor
for successful Multi-brain-tuning is having sufficient tuning data, as discussed in Sec|4.2]

We test multiple training objectives (see Sec[4.4), and conduct our final set of experiments with
the best-performing one—Ls reconstruction objective— as we observed that it scales better than
the alternatives. Lastly, for easier scalability with more data, we reduce the number of trainable
parameters using a low-rank adaptation (LoRA) over the pretrained speech models [Hu et al., 2022].

Our approach removes the limitation of per-participant fine-tuning, as in previous work [Moussa
et al.,[2025| [Vattikonda et al.l |2025]] and allows the brain-tuned model to integrate information across
participants due to the shared projection head. The method is also adaptable to multiple datasets.



3.3.3 Training details

We train the Multi-brain-tuned model using fMRI responses from the three participants with the most
data from the Full Moth Radio dataset, and the rest are held out for evaluation. During fine-tuning,
we update the LoORA parameters and the projection head while keeping the feature extractor frozen.

We use a LoRA rank = 8, which corresponds to 0.625% of the total model parameters. Increasing
the rank beyond 8 did not help the model (Sec. We used a learning rate of 1 x 10~* with a 10%
warmup period and a linear decay. We split the fMRI stories into 2 validation stories, 1 held-out test
story (exclusively used for evaluation and never during training), and the remaining 81 stories for
training. At tuning time, we use a batch size of 128 samples of (audio, fMRI response) pairs (see
Sec[3.2) and train the model for 30 epochs. The training is stopped when the validation loss saturates
or begins to diverge. Training takes approx. 6h on two NVIDIA A40 48GB GPUs.

3.3.4 Comparison Baselines

Single-brain-tuned. The most important baseline is the brain-tuned model with data from a single
participant. We do this by limiting the data to a single source and carrying out the same method and
training settings (Fig[T]and Sec[3.3.3). We train n Single-brain-tuned models (one for each training
participant), and report their average performance when evaluating on held-out participants.

LLM-tuned. An alternative way to improve a speech model is to fine-tune using representations
from an LLM that encode rich semantics [Moussa et al.| 2025]]. Specifically, we replace the brain
responses with representations obtained from LLama2-7B (see SuppB.3|for more details).

Stimulus-tuned. This baseline aims to measure the benefits of brain-tuning against simply fine-tuning
with the stimulus audio. We use the same pretraining self-supervised objective ([Baevski et al., [2020]
Hsu et al.| 2021])) to fine-tune the model with the stimulus set (see Supp/B.3|for more details).

3.3.5 Ablations

The training objective and the number of trainable parameters can largely affect how a model can
learn from noisy fMRI data. Moreover, some objectives may be effective when the training data
size is small but scale poorly and vice versa. We investigate these effects by performing ablations in
our brain-tuning approach. Specifically, we vary the training objective and LoRA Ranks. We test
3 objectives: the L, loss, as done in [Moussa et al.| [2025]], Spatial Correlation Loss adapted from
[Vattikonda et al.}|2025]], and a combined Cosine Similarity + Lo loss. The exact formulation of the
losses can be found in Supp[A.3] To test the effect of the number of trainable parameters, we compare
different LoRA ranks, measuring how the ranks affect performance and scaling.

3.4 Evaluation

We evaluate multiple aspects of Multi-brain-tuning: efficiency, generalization, and downstream
performance. Specifically, a successful brain-tuning approach should: (1) require less data to achieve
reliable brain alignment for unseen participants (improved data efficiency), (2) yield higher brain
alignment on new participants and datasets (improved generalization) when tuned with more data,
and (3) result in no substantial degradation of the downstream utility of the model.

3.4.1 Estimating Brain Alignment

We compute brain alignment using standard voxel-wise encoding models. We follow |Vaidya et al.
[2022], [Oota et al.| [2024], Moussa et al.| [2025] in preparing the dataset needed for evaluation
(estimating the brain alignment). First, we extract speech features via a 16.0s sliding window (stride
= 0.1s) over the audio stimulus S. We feed these segments into the speech model and retain the
representations of the final token. Then, we interpolate these features with a Lanczos filter to match
the fMRI acquisition rate. Finally, we concatenate the features for the preceding 10s to account for
the hemodynamic delay. The concatenated features are used to train the voxel-wise encoding model.

We carry out this voxel-wise encoding by learning a linear function per-voxel on the concatenated
features. We use ridge regression to fit the model on the training portion of the encoding dataset, and
the ridge parameter is chosen via cross validation. The encoding performance is evaluated on the
held-out test set via Pearson correlation.



To estimate the alignment for the language areas, we first normalize the obtained voxel-wise correla-
tion on the test set by the estimated voxel-wise noise ceiling (the maximum explainable variance,
SuppA.2). After this normalization, we compute the mean of the voxels belonging to the language
ROIs (detailed in Supp[A.T). This serves as a standardized measure for brain alignment since it is
computed relative to the estimated explainable variance in the brain region.

In all experiments, normalized brain alignment is reported as an average across the upper-middle
layers of the corresponding model. These layers were selected because they have been shown to best
align with language regions [Antonello et al., 2024} |Oota et al.| [2024, Vaidya et al.| 2022]]. We report
the mean of this alignment across participants and the standard error of the mean in all figures.

3.4.2 Efficiency of Brain Alignment

The brain alignment of the existing pretrained language models is poor when the amount of data used
to train the voxel-wise encoding is small [[Antonello et al.}[2024]. Hence, these models require a large
per-participant data to achieve a good brain alignment. A model that’s more efficient would need
much less data to obtain the same good brain alignment.

To investigate this efficiency aspect of our Multi-brain-tuned model, we quantify the amount of
encoding data needed to match the pretrained performance. We do this by gradually reducing the
encoding data size, then computing the brain alignment of the voxel-wise encoding model trained on
the reduced data. At each fraction of data, we compare alignment to the pretrained counterpart fitted
on the full encoding dataset. We report this for training participants (the ones used for brain-tuning)
and for held-out participants (unseen during brain-tuning).

In addition to the Multi-brain-tuned model, we also test the efficiency of the Single-brain-tuned and
the pretrained models. Due to shared information among participants, it is expected that the Single-
brain-tuned model will be more efficient than its pretrained counterpart on the held-out participants.
However, we still expect the Multi-brain-tuned one to outperform both because it could better leverage
shared and general information learned from multiple participants.

3.4.3 Generalizability of Brain Alignment

A generalizable brain-tuned model should improve brain alignment with held-out participants and
out-of-distribution datasets by leveraging the shared general information it learned during brain-
tuning using multiple participants. To investigate this generalization aspect, we examine a) how brain
alignment changes when we vary the size of the data used for brain-tuning and b) the alignment
improvement on a completely different dataset.

We expect the model to generalize when it’s trained on a diverse enough dataset that also has a
sufficient amount of data per participant. This is due to the noise in fMRI data, which necessitates
both scale per participant and diversity to learn meaningful structure. For comparison, we similarly
test the Single-brain-tuned models.

To test cross-dataset generalization, we use the subset of 16 participants from the Narratives dataset
detailed in Sec[3.2.1]and estimate brain alignment (as in Sec[3.4.1)) on a held-out 20% of this data. As
a strong baseline, we also estimate the brain alignment of a Narratives-Multi-brain-tuned model, a
Multi-brain-tuned model on the same 16 participants used for testing.

3.4.4 Downstream Performance

Previous work has shown that Brain-tuning could benefit downstream performance [Moussa et al.,
2025]], but it didn’t show whether it scales when the amount of brain-tuning data is beyond a single
participant. Ideally, more data should benefit downstream performance, but the risk of catastrophic
forgetting is also greater due to training the model with a larger dataset on a specific task.

To test how our Multi-brain-tuning affects downstream performance, we test how downstream per-
formance scales with the data size used for brain-tuning. We do this for 2 tasks (namely Phonemes
Prediction and Phonetic Sentence Type prediction), following Moussa et al.| [2025]]. Detailed for-
mulations of these tasks can be found in SuppJA.4] We use linear probes to perform the tasks and
report the mean over model layers. In addition to the Multi-brain-tuned model, we also report the
Single-brain-tuned and the LLM-tuned models for comparison.
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Figure 2: Brain encoding efficiency for both training and held-out participants and two model families
(Wav2Vec2.0 and HuBERT). Brain-tuned models consistently outperform pretrained counterparts on
both training and held-out participants. Multi-brain-tuned models consistently outperform Single-
brain-tuned ones, reaching the max. pretrained performance with approximately a fifth of the brain
encoding data and improving brain alignment up to 50% from the max. pretrained brain alignment.

4 Results

4.1 Brain Alignment Efficiency

We evaluate Brain Alignment Efficiency by varying the size of brain encoding data as detailed in
Sec[3.4.2] This enables us to measure the fraction of encoding data required by a tuned model to
achieve or surpass the best brain alignment achieved by the pretrained model, which is obtained using
the full encoding data. We report this in Fig[2]across two model families (Wav2Vec2.0 and HuBERT)
for the training participants (seen during Brain-tuning) and the held-out participants (unseen by all
models). We note that all brain alignment is evaluated on fMRI data held-out from training.

For the training participants (left plots of Fig[2), both Multi-brain-tuned (Sec[3.3.2) and the Single-
brain-tuned (Sec[3.3.4) models match the maximum pretrained performance using approximately
one-fifth of the data. With more encoding data, both models continue to improve, reaching up to 50%
more alignment when using the full encoding data. Notably, the Multi-brain-tuned model consistently
outperforms the Single-brain-tuned model across all evaluated data fractions, alleviating the need for
the standard practice of building Single-participant models to attain the best performance.

The Multi-brain-tuned model maintains its efficiency advantage for held-out participants (right plots
of Fig[2), reaching the pretrained performance with roughly one-fifth of the data, whereas the Single-
brain-tuned model requires approximately twice this amount. Both models continue to improve with
more data, with a clear advantage for the Multi-brain-tuned model. These results are consistent across
both the Wav2Vec2.0 and HuBERT model families. The comparable efficiency of the Multi-brain-
tuned model on training and held-out participants strongly suggests that Multi-brain-tuning leads to
more efficient and general representations that are beneficial for unseen participants.



A. Performance scaling with tuning data size
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Figure 3: Brain-tuning generalization. (A) Scaling with tuning data size, showing that Multi-brain-
tuning scales better, especially on held-out participants. (B) Voxel-wise change in brain alignment
after Multi-brain-tuning for a held-out participant from the Moth Radio hour dataset (the remaining
participants are reported in SupplB.2), showing improved alignment across frontal and parietal
regions. (C) Alignment improvement on novel stimuli and participants (from the Narratives dataset),
indicating the capability of Multi-brain-tuned models for cross-dataset generalization.

4.2 Brain-tuning Generalization

In Sec[4.T] we demonstrated that Multi-brain-tuning enhances alignment magnitude and efficiency
for training and held-out participants. Here, we investigate how the brain-tuned models generalize
when provided with increasing amounts of data during brain-tuning and how these models perform
on a diverse out-of-distribution dataset.

FigBJA reports the change in brain alignment (relative to the pretrained Wav2Vec2.0) as a function
of increasing stimulus set size. The results for HUBERT can be found in Suppl[C.I] Generally,
Multi-brain-tuning strongly benefits from increasing the tuning data size. For training participants,
both Multi- and Single-brain-tuned models demonstrate increased alignment as the tuning data grows,
although the Multi-brain-tuned model consistently performs better when the entire stimulus set is
utilized. As for the held-out participants, both models perform similarly when the tuning data size is
less than 6 hours. Nonetheless, Multi-brain-tuned models show a strong upward trend when more
tuning data is used, while the Single-brain-tuned ones saturate. Overall, Multi-brain-tuning shows a
greater ability to improve and generalize with more brain-tuning training data.

When we visualize the improvement in brain alignment of the Multi-brain-tuned over the pretrained
Wav2Vec2.0 for held-out participants from the Moth Radio Hour dataset (Fig[3B, Supp[B.2), we
observe a widespread improvement across the brain, especially in the frontal and parietal regions.
The auditory cortex shows a slight decrease in alignment. This is because we report alignment over
the upper-middle and later layers of the models, which encode more semantics. An additional reason
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Figure 4: Scaling of downstream performance with tuning data size. Brain-tuned models’ performance
increases with more data, with the Multi-brain-tuned taking less data to match the LLM-tuned model.

may be that the auditory cortex can be dominated by the larger semantic language areas during
brain-tuning. This explanation is also supported by the results of [Vattikonda et al., 2025].

Finally, Fig[3IC shows the mean brain alignment improvement in late language regions for Multi- and
Single-brain-tuned models, which are tuned on the Moth Radio Hour dataset, when evaluated on an
entirely new dataset — 16 participants of the Narratives dataset. Both Moth-Brain-tuned models show
improvement over their pretrained ccounterparts, with the Moth-Multi-brain-tuned being considerably
better. In fact, Moth-Multi-brain-tuned does not lag much behind the Narratives-Multi-brain-tuned
(i.e., a model tuned using the same 16 participants from the Narratives dataset), which indicates a
strong generalization ability to novel stimuli and participants.

Our results confirm the scalability of Multi-brain-tuning in improving alignment with unseen par-
ticipants and stimuli when trained on sufficient amounts of data. The strong upward trend also
indicates room for further improvement if more data is integrated during brain-tuning. We further
corroborate these findings by showing that this scaling trend cannot be achieved with stimulus-tuning
or LLM-tuning in Supp[B.3] Next, we investigate the downstream performance of brain-tuning.

4.3 Downstream Performance

While the gains of Multi-brain-tuning in brain alignment are clear (Sec4.2]and [.T)), it’s important
to verify that Multi-brain-tuning doesn’t lead to catastrophic forgetting or degrade downstream
performance. Here, we evaluate the downstream performance of the tasks described in Sec[3.4.4]as a
function of tuning data size. We vary the size of the data similarly to Sec[4.2](i.e., by increasing the
size of the brain-tuning training stimulus set). In addition to reporting the performance of Single-
brain-tuned models, we also include the LLM-tuned baseline as it was shown to substantially improve
performance on similar tasks by [Moussa et al.|[2025]] and [Vattikonda et al.| [2025]].

Fig[] shows the percent improvement over the pretrained Wav2Vec2.0 model. Similar results for
HuBERT can be found in Supp|[C.2] Across all data fractions, brain-tuned models never underperform
the pretrained model, ruling out catastrophic forgetting. Impressively, the Multi-brain-tuned model
matches the LLM-tuned performance when the size of the data increases. Both Multi- and Single-
brain-tuned models benefit strongly from more tuning data, with the Multi-brain-tuned performing
better at smaller tuning data sizes. Overall, Multi-brain-tuning improves downstream performance,
which also scales up with the amount of data, eventually matching the LLM-tuned baseline.

4.4 Effect of Tuning Objective and Model Size

In the previous sections, we reported the results using the Lo objective and LoRA rank-8 updates.
Here, we explain the reasons for these choices by comparing the Multi-brain-tuning behavior for
different LoRA ranks and training objectives on Wav2Vec2.0 (Fig[3).

Fig[5]A reports gains in brain alignment at several brain-tuning training data sizes for different LoORA
ranks. We can observe that increasing the LoRA rank beyond 8 doesn’t improve performance,
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Figure 5: Effect of varying the loss function and LoRA rank on Multi-brain-tuning with (A) showing
that Rank-8 updates perform best, and (B) indicating that the Lo loss scales better.

especially when the data size increases. We find that even larger LoRA ranks as well as brain-tuning
the full model do not improve performance over using rank-8 updates (see Supp/B.T).

Fig[5B contrasts different training losses for increasing tuning data sizes. Generally, Lo performs
better when the size of the brain-tuning training data increases, while the other two losses saturate. At
low brain-tuning data sizes (< 6 hours), the Correlation loss outperforms other losses. While these
results motivate using the L, loss because it scales better, they also highlight that the brain-tuning
loss can have a large effect on brain-tuning. Future work may find improved brain-tuning losses.

5 Discussion and Conclusion

In this work, we introduced a novel brain-tuning approach that significantly improves the general-
izability and efficiency of brain alignment in pretrained speech models. By fine-tuning language
models on brain responses from multiple participants exposed to speech stimuli, we demonstrated
that our method effectively addresses the limitations of existing participant-dependent approaches.
Our extensive experiments showed that brain-tuning not only reduces the fMRI data requirements by
a factor of five but also increases brain alignment by up to 50% and generalizes to new brain datasets.

These results highlight the potential of brain-tuning to create robust, participant-agnostic models that
generalize well across individuals, paving the way for more scalable and inclusive approaches to
studying language processing in the brain. Moreover, our comprehensive ablation studies on training
loss and model parameters establish best practices for implementing brain-tuning in speech models.

Notably, brain-tuning also improves speech models’ downstream performance on semantic tasks.
This finding suggests that incorporating brain data during fine-tuning not only aligns models with
the human brain in efficient and generalizable ways but also leads to representations that better
capture generalizable semantic information. This direct evidence for a bidirectional benefit between
neuroscience and Al contributes towards bridging the gap between the two fields.

Limitations and Future Work. We focused here on language-related brain regions, as they are
most directly involved in processing the naturalistic speech stimuli used in our experiments. Future
work can leverage our brain-tuning method for non-language regions or specific brain areas to
gain new insights into their functional roles. Notably, our method is flexible and can be adapted
to target different brain regions. Second, our experiments were conducted exclusively in English,
reflecting the availability of large public fMRI datasets. Investigating brain-tuning with multilingual
data in the future can assess whether brain-tuning can learn language-independent, generalizable
semantic representations. Lastly, while we explored several training losses, there remains potential
for developing new loss functions that lead to even better data efficiency and generalization.

By making our code and trained models publicly available, we aim to foster reproducibility and
encourage further research on brain-tuning. We hope that our work will not only advance the
integration of language models into cognitive neuroscience but also inspire new approaches to
modeling human language comprehension.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: In the abstract and at the end of the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not involve any proofs or theoretical assumptions.
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
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All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: As described in the Methods section and throughout the Appendix, we have
provided detailed descriptions and analyses of the experimental setups for all our investiga-

tion.
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release all code and models publicly to replicate our analyses upon
publication. The data is already publicly available.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As described in the Methods section and throughout the Appendix, we have
provided detailed descriptions of the training and evaluation setups.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars are described in Section 3.4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Methods.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We are convinced that we comply with NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have addressed the broader impacts of our work in Section 5. Additionally,
as our research is primarily a fundamental scientific exploration and poses no additional
social risks, we have not included a discussion on potential harmfulness.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use pretrained speech models and they are properly credited in the Methods,

and publicly available fMRI dataset and downstream task datasets, which we have properly
cited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release code and models publicly and we will document them
properly before release upon publication.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We use previously collected publicly available data.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We use previously collected publicly available data.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We use pretrained speech models and describe the usage throughout the paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Methodology Details

A.1 Brain ROIs Details

The Glasser Atlas for human cerebral cortex parcellation has 180 labeled ROIs per hemisphere
[Glasser et al.l 2016]. From these labels, we extract the following regions to be used during brain-
tuning: Angular gyrus, lateral temporal cortex, inferior frontal gyrus, and middle frontal gyrus [Oota
et al, 2024] Desai et al., [2023]]. It also has the primary auditory and the early auditory regions. Figlo]
highlights the ROIs used for brain-tuning on the right hemisphere. Table [T|details each region and the
ROI labels that cover it from the parcellation atlas.

Table 1: Brain regions and corresponding ROI labels.

Region Labels

Angular gyrus (AG) PFm, PGs, PGi, TPOJ2, TPOJ3

Lateral temporal cortex STSda, STSva, STGa, TEla, TE2a, TGv, TGd, AS,
(LTC) STSdp, STSvp, PSL, STV, TPOJ1

Inferior frontal gyrus (IFG) 44, 45, IFJa, IFSp

Middle frontal gyrus (MFG) 55b

Primary auditory cortex (A1) Al

Early auditory regions Al, PBelt, MBelt, LBelt, RI, A4

A.2 Noise Ceiling Calculation

Noise in fMRI data is very common and can impair brain-tuning and brain alignment estimation, so
it is important to estimate the noise ceiling of each voxel in the fMRI responses. The voxel-wise
noise ceiling is estimated for all participants based on the method by the fMRI dataset paper LeBel
et al.[[2024]]. This method leverages repetitions of the same story for the participant (e.g., a story is
repeated 10 times), then uses these repetitions to compute the maximum explainable variance for
each voxel. This noise ceiling value estimates the amount of explainable variance in the brain signal,
ranging from 0 to 1. We use this estimated noise ceiling to normalize the brain alignment during
brain alignment estimation, as mentioned in Sec[3.4.T]of the main paper.

Figure 6: Brain-tuning ROIs. Yellow-highlighted regions are used for brain-tuning.

A.3 Loss Functions and Training Details
Here, we detail the formulations of the different loss functions compared in Sections [3.3]and [4.4] of

the main paper. We then compare different training techniques and alternatives for Multi-brain-tuning,
showing that the one we used in Sec[3.3.2] performs best.
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A.3.1 Loss Functions

We define the loss functions over a batch B of audio-fMRI pairs for Participant 7, where the ground-
truth fMRI responses are R’ and the predicted fMRI responses are ‘.

L, Loss. We compute the Ly loss between R and R* as follows:

|B|-1
1 N
Lo= g > (B~ R} M
b=0

Correlation Loss. We compute the correlation loss between R' and R as follows (where corr is the
correlation over voxels):
|B|-1

1 o
ﬁcorr = @ Z (1 - COI‘I‘( ;77 Ré)) (2)
b=0

Cosine + Ly Loss. We compute the Cosine + Lo loss between R and R as follows (where cos is
the cosine similarity over voxels):

|B|—-1

1 o
Loos = 3 > (1 —cos(Ry, Ry)) 3)
b=0

Then we use it alongside the L, Loss (with A = 0.5):
Lcos—l2 = Lcos + /\£12 (4)

A.3.2 Comparing Multi-brain-tuning Techniques

The training strategy we use in the paper is predicting each participant’s FreeSurfer ROIs responses
independently (but using the same projection head), then computing the loss, and updating the
model parameters. We detail here other techniques and alternatives and compare them to this setting,
highlighting that our approach works best.

Loss Average. In the Loss average method, we compute the loss for each participant, then average it
across participants before updating the parameters.

Response Average. For the Response average method, we average responses over participants, then
compute the loss and update the parameters.

Separate Heads. Another alternative is to use a separate projection head for each participant. While
this might work well with a limited number of participants, it will increase the training parameters
considerably when fine-tuning with many participants.

SRM-tuned. Instead of FreeSurfer, we could potentially use other multi-participant alignment
methods (e.g., SRM: Shared Response Modeling [Chen et al., |2015]]) and apply the same tuning
method. One limitation of SRM is the reduced projection dimension and difficulty in controlling the
included ROIs.

Non-linear Heads. Lastly, rather than one FC layer to predict brain responses from the output tokens,
we could use a non-linear network (of 2 or more fully connected layers).

Fig[7)reports the brain alignment improvement over the pretrained Wav2Vec2.0 for all aforementioned
alternatives. It shows that our method works better than these alternatives as it allows the models to
learn more robustly from information across participants.

A.4 Downstream Tasks

We elaborate here on the datasets and the formulation of the downstream tasks mentioned in Sections
[3.4.4and[4.3] of the main paper.

Phonemes Prediction. Phoneme recognition is done as a multi-label classification problem, following
the work of Moussa et al.|[2025]]. A linear classifier projects the layer representation to a set of 39
possible phonemes that occurred in the original input audio segment. We use the TIMIT dataset
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Figure 7: Comparing Multi-brain-tuning using FreeSurfer projection and independent loss compu-
tations(i.e., the loss is computed and backpropagated for each participant separately) versus other
alternative techniques (refer to Sec[3.3.2] of the main paper).

[Garofolo, |1993] because of its phonetically rich audio snippets. The final performance measure is the
classifier’s F1-score on the held-out test set. We report the F1-score averaged over the upper-middle
layers as done for brain alignment (refer to Sec[3.4.1]in the main paper).

Phonetic Sentence Type Prediction. Predicting the phonetic sentence type can be used to evaluate a
model’s phonetic understanding beyond single phonemes (or words). The TIMIT dataset
has one of three phonetic types for each utterance: SA (for utterances that cover all English
phonemes), SX (for phonetically balanced utterances that cover many phones with few words), and
SI (for natural and phonetically diverse utterances). Each of the three types (SA, SX, SI) highlights
specific speech dialectal or phonetic aspects. To evaluate performance on this task, we follow
to predict the phonetic sentence type. We add a projection classification head to predict
the sentence type from the given layer’s representation. The performance is measured by the F1-score
on the held-out test set, averaged across the upper-middle layers.

B Additional Results

B.1 Extended LoRA Rank Ablations

Fig[8|extends Fig[5|by adding Rank-32 updates and all model updates (fine-tuning all transformer
parameters). It supports our finding that we don’t need more than rank-8 updates for our method
to work well. Moreover, it shows that updating the entire model scales more slowly than LoRA,
indicating that it needs more data to reach the same performance.

B.2 Additional Brain Alignment Plots

Here, we visualize the impact of brain-tuning on brain alignment for the remaining held-out par-
ticipants. Fig[T2]extends Fig[3B by showing the remaining 4 participants. Similarly to Fig[3B, we
observe a widespread improvement across the brain for these participants, especially the frontal and
parietal regions, while the auditory cortex shows a slight decrease in alignment. We attribute this
decrease in auditory cortex alignment to the fact that we report alignment over the upper-middle and
later layers of the models, which are known to be more semantic (refer to Sec[4.2]in the main paper
for more details).

B.3 Brain Alignment Generalization of LLM-tuning and Stimulus-tuning

In this section, we elaborate on the training details of LLM-tuning and Stimulus-tuning, then report
on how they scale with more tuning data.

LLM-tuning. For tuning, we use representations from layers 18 to 24 of the Llama2-7B Model
Touvron et al.} 2023]] instead of brain signals. These layers are used because they show the best
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Figure 8: Effect of the number of trainable parameters for Wav2Vec2.0 (Extending Sec of the
main paper). Increasing the number of trainable parameters with a higher rank (e.g., 32) or by
fine-tuning the entire model doesn’t lead to better scaling than rank-8 updates.
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Figure 9: Brain Alignment scaling with LLM-tuning and Stimulus-tuning of Wav2Vec2.0. This figure
extends Sec[d.2] of the main paper by reporting the improvement in alignment with more data for
LLM-tuning and Stimulus-tuning. It shows that LLM-tuning can help improve brain alignment with
more data, but it tends to saturate and is always worse than brain-tuning. Stimulus-tuning doesn’t
seem to improve alignment and always performs comparably to the pretrained model.

alignment with late language regions. We then apply a similar fine-tuning pipeline to that of brain-
tuning (detailed in Sec of the main paper). We use LoRA rank-8 updates, a learning rate of 10~*
with linear decay, and a batch size of 128 samples of (audio, fMRI response) pairs. For LLM-tuning,
we found that it takes longer to converge than brain-tuning; we train them for 250 epochs, which
takes around 10h on two NVIDIA A40 48GB GPUs.

Stimulus-tuning. This baseline aims to test the benefits of brain-tuning against simply fine-tuning
using stimulus audio. This highlights any improvements in the model that would be solely due to
seeing more data. We follow the training setting in [Moussa et al.,|2025]] for stimulus-tuning. The
same pretraining losses (the diversity loss and the contrastive loss) with the same hyperparameters of
[Baevski et al.,2020|] are used. The model is then fine-tuned for 300 epochs using a base learning rate
of 2 x 10~° with a warm-up for the first 10% of the updates, followed by a linear decay schedule. It
takes around the same amount of time to train as LLM-tuning.

Next, we test whether scaling the data for LLM-tuning and Stimulus-tuning leads to improved
alignment, as we observe with brain-tuning (refer to Sec[4.2). Fig[9]shows the change in brain-
alignment for brain-tuning as well as LLM-tuning and Stimulus-tuning on the training participants.
LLM-tuning improves alignment with more data, but it shows a saturation trend and is always
lower than brain-tuned models. Stimulus-tuned models don’t show improvement over the pretrained
counterpart, indicating that seeing more audio data is not the cause for the improved alignment.
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Figure 10: Impact of scaling the tuning data of brain-tuning on brain alignment for HuBERT. Similar
to brain-tuned models of Wav2Vec2.0 (Sec4.2)), when the tuning data scales up, Multi-brain-tuned
models perform better than Single-brain-tuned ones, on both training and held-out participants.

—®— Multi-brain-tuned —@— Single-brain-tuned LLM-tuned
A. Phoneme Prediction B. Phonetic Sentence Type Prediction
° s G0 ——— /:
0 / /./

= i —

% A in F1 Score from Pretrained
\
% A in F1 Score from Pretrained
N o
\.

0 2 ! 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Brain-tuning Stimulus Size (Hours) Brain-tuning Stimulus Size (Hours)

Figure 11: Scaling of downstream performance with tuning data size for HuBERT. Brain-tuned
models’ performance increases with more data, eventually matching that of the LLM-tuned model.

C HuBERT Results

C.1 Generalization Results

We repeat here the same analysis in Sec4.2]but for the HuBERT model family. We test how the
brain-tuned models generalize against increasing amounts of data during brain-tuning. This is done
by measuring brain alignment improvement (relative to pretrained HuBERT) when we scale the data
used for Multi- and Single-brain-tuning. Fig[T0]shows a similar trend to Fig[3]on both training and
held-out participants. When we increase the data used for brain-tuning, Multi-brain-tuned models
tend to perform better than Single-brain-tuned ones. As for lower data fractions, the improvement of
both was comparable. These results (along with their Wav2Vec2.0 parallels in Sec[4.2]of the main
paper) further confirm the scalability of Multi-brain-tuning in improving alignment with new unseen
participants. The upward trend also indicates the potential for further improvement if more data is
integrated for brain-tuning.

C.2 Downstream Results

We report here the downstream performance of HuBERT on the same tasks detailed in Sec[4.3]and
SupplA:4] Fig[TT]shows similar findings to Fig[4]of the main paper. When the amount of tuning data
increases, brain-tuned models eventually reach the same level of performance as the LLM-tuned one
(which was shown to substantially improve performance on similar tasks by [Moussa et al., [2025]
Vattikonda et al.| 2025]]). Moreover, for all data sizes, brain-tuned models never perform worse than
their pretrained counterparts. These results (alongside their Wav2Vec2.0 equivalents in Sec 4.3]of the
main paper) further confirm that our brain-tuning approach doesn’t lead to catastrophic forgetting; on
the contrary, it leads to a strong improvement in downstream performance.
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Figure 12: Impact of Multi-brain-tuning on brain alignment for held-out participants. The figure
shows the change in brain alignment (measured by Pearson Correlation) after Multi-brain-tuning,
compared to the pretrained Wav2Vec2.0 model. It shows a widespread improvement across the brain
for these participants, especially the frontal and parietal regions.

26



	Introduction
	Related Work
	Methods
	Pretrained Speech Models
	Naturalistic Brain Datasets
	Datasets Details
	Spatial Alignment of fMRI Data Across Participants

	Brain-tuning Approach
	Data Preparation
	Brain-tuning with Multiple Participants
	Training details
	Comparison Baselines
	Ablations

	Evaluation
	Estimating Brain Alignment
	Efficiency of Brain Alignment
	Generalizability of Brain Alignment
	Downstream Performance


	Results
	Brain Alignment Efficiency
	Brain-tuning Generalization
	Downstream Performance
	Effect of Tuning Objective and Model Size

	Discussion and Conclusion
	Additional Methodology Details
	Brain ROIs Details
	Noise Ceiling Calculation
	Loss Functions and Training Details 
	Loss Functions
	Comparing Multi-brain-tuning Techniques

	Downstream Tasks

	Additional Results
	Extended LoRA Rank Ablations
	Additional Brain Alignment Plots
	Brain Alignment Generalization of LLM-tuning and Stimulus-tuning

	HuBERT Results
	Generalization Results
	Downstream Results


