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ABSTRACT

Vision language models (VLMs) excel at multimodal tasks such as image cap-
tioning and visual question answering, yet they remain vulnerable to input ma-
nipulation attacks (e.g., jailbreak and adversarial attacks). However, the vulnera-
bility of VLMs to adversarial weight perturbation remains largely underexplored.
Our initial investigation reveals that VLMs remain extremely resilient to conven-
tional weight corruption attacks leveraging memory fault injections (e.g., bit-flip
attacks). As a consequence, we propose the first successful adversarial weight per-
turbation attack against VLMs (VLM-PTA). Our attack leverages page table attack
(PTA), a well-established memory fault injection technique. In the main memory,
each weight block consists of a group of weights located at a specific address.
Consequently, a bit-flip in the page frame number replaces a victim weight block
of a VLM with another substitute weight block. However, the algorithmic chal-
lenge in creating a formal attack is that the random injection of weight replacement
into the model fails to cause any detrimental impact on the model’s performance.
Therefore, we theoretically analyze the bottleneck of the PTA-based fault injec-
tion mechanism and propose a novel estimation method (Block-Flip) to maximize
attack effectiveness and efficiency. VLM-PTA is the most successful weight per-
turbation attack against VLMs optimized to achieve adversarial objectives with an
extremely low overhead, bypassing existing defenses.

1 INTRODUCTION

In recent years, vision language models (VLMs) have achieved significant advancements in inter-
preting and reasoning across visual and textual modalities, achieving state-of-the-art performance in
a wide range of multimodal tasks, such as image captioning (Fei et al., 2023; Ramos et al., 2023),
visual question answering (Chen et al., 2022; Nguyen et al., 2024), and cross-modal retrieval (Chen
et al., 2023). Despite these impressive capabilities, recent studies have revealed that VLMs remain
vulnerable to a wide range of input manipulation attacks, such as jailbreak attacks (Shayegani et al.,
2023; Niu et al., 2024; Qi et al., 2024) and adversarial attacks (Cui et al., 2024; Zhao et al., 2023;
Tu et al., 2024). However, models’ internal parameter perturbation, formally known as adversarial
weight attack( (Yao et al., 2020; Dong et al., 2023; Li et al., 2024; Lin et al., 2025; Chen et al., 2021;
Ahmed et al., 2024; Rakin et al., 2020)) has not been investigated against VLMs.

Figure 1: Random weight substitution and
BFA fails for CLIP, while VLM-PTA de-
pletes the accuracy ≈ 0 with < 5 iterations.

Adversarial weight perturbation can be broadly clas-
sified into two categories: first, backdoor or Trojan
attack, which also requires external data manipula-
tion (Ahmed et al., 2024; Chen et al., 2021; Rakin
et al., 2020); and second, perturbing the weights only
through remote memory fault injection to achieve
attacker-designed model behavior without corrupt-
ing the input at all (Yao et al., 2020; Dong et al.,
2023; Lin et al., 2025). Our work focuses on the sec-
ond category, which aims to leverage memory fault
injection through remote side-channels such as row-
hammer exploitation (Kim et al., 2014). Prior works
have shown (Yao et al., 2020; Dong et al., 2023; Lin
et al., 2025) that leveraging such a unique attack vec-
tor, the intelligence of modern deep learning models
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can be destroyed by only a limited amount of bit-flips (e.g., 1-20 bits) in the quantized model
weights. In contrast, our observation shows that after applying the conventional bit-flip attacks
(BFA) in VLMs, the model performance still maintains at 21.61 after 200 bit-flips, as shown in
Figure 1.

This observation led our investigation of alternative memory fault injection mechanism that can
potentially exploit the vulnerability of VLMs more effectively. In this work, we propose a powerful
alternative, which is a well-established memory fault injection mechanism demonstrated in many
prior works (Frigo et al., 2020; Jattke et al., 2022; Gruss et al., 2016; Seaborn & Dullien, 2015; Van
Der Veen et al., 2016; Xiao et al., 2016; Zhang et al., 2020; Ahmed et al., 2024) known as the page
table attack. In the page table attack, the attacker uses the rowhammer (Kim et al., 2014) to induce
a bit flip in the Page Frame Number (PFN) to compromise memory systems. By flipping bits in
the PFN, the attacker can thus replace any victim block W1 with a substitute block W2 as shown in
Figure 2. However, when we apply the above weight replacement mechanism randomly to replace
any victim block of weights in VLMs, it fails (shown in Figure 1). As a result, to develop the first
successful weight perturbation attack against VLM, our work contributes three research outcomes:

• We propose a novel attack algorithm VLM-PTA that can jointly optimize the search process of
the victim and the substitute weight block to minimize attack overhead (e.g., energy, timing).
The proposed search algorithm is designed to achieve two distinct adversarial goals for VLMs,
which perform both retrieval and generative captioning: i) untargeted attack to disrupt the caption
generation process and ii) targeted attack to retrieve a target caption consistently.

• The failure of prior weight perturbation attacks on VLM lacks explanation, as they are often de-
signed heuristically without any theoretical foundation behind their design principle. In contrast,
our work is the first weight perturbation technique to provide a rigorous theoretical analysis un-
derpinning attack design choices and to offer an explanation for its effectiveness.

• Finally, we provide an extensive experimental analysis that demonstrates the effectiveness of
VLM-PTA in executing targeted and untargeted attacks across different model architectures, tasks,
and datasets. VLM-PTA is the most successful adversarial weight attack on VLMs evaluated in
terms of highest attack effectiveness, lowest attack overhead and ability to break existing defenses.

2 BACKGROUND AND RELATED WORKS

Vision Language Models (VLMs). The general structure of VLMs consists typically of two en-
coders: visual encoder and textual encoder. The visual encoder is commonly implemented using
Convolutional Neural Networks (CNNs) or vision transformers (ViTs), while the textual encoder
is generally based on language models. The primary purpose of these encoders is to project their
respective modalities into a shared latent space, where multimodal interactions are captured through
mechanisms such as attention (Lu et al., 2019) or contrastive learning objectives (Jia et al., 2021).

Attacks on VLMs. Despite the remarkable capabilities of VLMs in processing and aligning
text–image information, a growing body of research has highlighted their vulnerabilities to vari-
ous types of attacks. Jailbreaking is one type of attack, in which adversaries attempt to bypass the
model safety mechanisms to elicit harmful or restricted content, such as generating toxic or unsafe
outputs (Shayegani et al., 2023; Qi et al., 2024). Adversarial attacks are another well studied cate-
gory of attacks on VLMs, where carefully crafted perturbations are introduced into the input image
or text to mislead the model outputs (Cui et al., 2024; Zhao et al., 2023; Tu et al., 2024).

3 THREAT MODEL

Our attack adopts a standard practical threat model following the attacker privileges established
by previous adversarial weight attacks (Frigo et al., 2020; Jattke et al., 2022; Gruss et al., 2016;
Seaborn & Dullien, 2015; Van Der Veen et al., 2016; Xiao et al., 2016; Zhang et al., 2020; Ahmed
et al., 2024) exploitations. The attack requires specific system-level privileges that allows them to
reverse-engineer the memory addressing scheme of models weights and flip bits in the page frame
number. Several side-channel attacks have demonstrated the feasibility of such attacks in main
memory of a DRAM (Pessl et al., 2016; Yao et al., 2020; Hu et al., 2020; Lin et al., 2025; Yan
et al., 2020; Xiang et al., 2020; Yu et al., 2020; Rakin et al., 2022). Additionally, by following
the standard practice of conventional white-box attack, we assume the attacker can access to model
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weights, architecture, and a batch of test data, but does not require training data or hyperparameter.
This white-box assumption can be utilized through remote side channel attacks (Yan et al., 2020;
Xiang et al., 2020; Yu et al., 2020; Rakin et al., 2022) across different platforms. In summary, we
adopt the standard practical threat model assumption following the convention of existing adversarial
input (Madry et al., 2018) and weight attacks (Lin et al., 2025; Ahmed et al., 2024; Yao et al., 2020;
Dong et al., 2023). A detailed explanation of threat model is on the Appendix C.

4 PROPOSED ATTACK: VLM-PTA
Page Table Entry (A1)

Page Table Entry (A2)

Victim Row (W1)

Bit-Flip

DRAM

buffer

......

Attacker's 2nd Virtual 
Address

Attacker's 1st Virtual 
Address

Substitute Row (W2)

1

Page Frame Number

A1

A2
2

2

1

Figure 2: Overview of using rowhammer to per-
form fault injection on Page Table Entry (PTE). In
normal execution, PTE A1 maps to Victim Row
(W1 weight block). On VLM-PTA: (1) attacker
hammers A1 to redirect it to PTE A2, (2) PTE A2
is mapped to Substitute Row W2.

We propose VLM-PTA, a page-table attack
designed to perform the first adversarial
weight perturbation on Vision Language Mod-
els (VLMs). Our attack is conducted at run-
time by injecting faults into the page tables of
memory addresses (Zhang et al. (2020)). Since
random fault injection fails as shown in Figure
1, our attack is supported by a weight block
searching algorithm (Block-Flip) whose goal is
to answer what part of the VLM weight block
should be perturbed and by how much. The at-
tacker performs the search step offline using a
second copy of the VLM to record these mem-
ory addresses of the vulnerable weight block.
At runtime, the attacker launches the attack
on the recorded address set, which has already
been optimized to minimize the attack overhead, effectively achieving the attacker’s objectives.

4.1 FAULT INJECTION OVERVIEW.

Page tables are components of virtual memory systems that translate virtual addresses used by pro-
cesses into corresponding physical addresses in RAM. Figure 2 shows that in ordinary execution
of a program, the virtual memory row (A1) should have been correctly mapped to its correspond-
ing physical address (includes W1 weight block). However, in VLM-PTA, the attacker employs
double-sided rowhammer to flip bits in the first Page Frame Number (PFN) within their Page Table
Entries (PTE) in step 1 , causing a particular PTE (A1) to point to the second-page table address
(A2) instead. This manipulation grants the attacker read or write access to PTE (A2), which allows
the attacker to manipulate the pointers to any desired physical pages, such as the Substitute Row
(includes W2) in step 2 . Hence, the attacker successfully replaced W1 with the W2 weight block.

4.2 MATHEMATICAL MODELING OF THE FAULT.

To develop the attack algorithm, we mathematically model the above fault injection technique. Con-
sider a VLM denoted as f(·), with its weights stored in a memory block. We define a set of virtual
memory addresses as A = {a1, a2, . . . , an}, where each address ai is a 32-bit value pointing to a
physical address containing weight block wi. Each weight block wi contains 1024 weights used
in the VLM. Therefore, we have a set of weight blocks represented by W = {w1,w2, . . . ,wn},
which collectively hold the weights of the VLM. Our attack flips bits in the page frame number of
the memory address ai, resulting in the replacement of a victim weight block wi at ai with a new
weight block wj taken from a different memory address aj , referred as substitute weight block.

4.3 VLM-PTA OBJECTIVES.

We propose two variants of the attack algorithm as outlined below:

1) VLM-PTA Untargeted (VLM-PTA-U): In this goal, VLM-PTA causes the VLM to generate unre-
lated or retrieve the least related caption (y) for all input images x ∈ X .

max
Ŵ

Ex∼X

[
L(f(x, Ŵ),y)

]
(1)

2)VLM-PTA Targeted (VLM-PTA-T). Under this objective, attack causes the VLM to retrieve the
target caption (yt) for all input images x ∈ X .

3
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aj aj aN
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5- Changememory address ai to aj
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1- Evaluate the vulnerability of the weight blocks

2- Identify victim weight block address (ai)

3- Compute substitute weight block

4- Find substitute weight block address (aj)

Sample batch
of data

Blook-Flip

?

Figure 3: Overview of Block-Flip algorithm.

min
Ŵ

Ex∼X

[
L(f(x, Ŵ),yt)

]
(2)

In both 1 and 2, the quantification of loss L(·, ·) depends on the VLM task: for retrieval models (e.g.,
CLIP (Radford et al., 2021)), loss corresponds to an image–text similarity such as negative cosine
similarity, for generative captioning models (e.g., BLIP (Li et al., 2022)), loss corresponds to token-
level cross entropy between generated and ground-truth captions. By perturbing the VLM’s weights
from W to Ŵ , the attacker seeks to maximize or minimize loss, thus achieving the aforementioned
attack objectives.

In addition to the primary objectives, we design VLM-PTA to maintain two additional optimization
constraints: (1) minimize the number of attack iterations to reduce overhead, i.e, the amount of
weight blocks being modified and (2) restrict the weight modification within the existing set of
weight blocks to avoid unintended memory faults or reduce any additional write operation following
the practice of prior page table attacks (Zhang et al. (2020); Ahmed et al. (2024)). Specifically, a
victim weight block wi is replaced with an optimized block wj ∈ W by altering the address from
ai to aj ∈ A. As a result, our attack ensures that the altered addresses Â and modified set of weight
blocks Ŵ are confined within the initial weight and address set, i.e., Â ⊂ A and Ŵ ⊂ W and at
the same time minimizing the amount of weight alteration to reduce attack cost. Incorporating these
constraints, we redefine the attack objectives in equation 1 and equation 2 as follows:

max
Ŵ

Ex∼X

[
L(f(x, Ŵ),y)

]
, s.t. D(Â,A) ≤ γu, Â ⊂ A, Ŵ ⊂ W (3)

min
Ŵ

Ex∼X

[
L(f(x, Ŵ),yt)

]
, s.t. D(Â,A) ≤ γt, Â ⊂ A, Ŵ ⊂ W (4)

Where Â represents the set of new addresses due to memory address fault injection, Ŵ represents
the set of new weights resulting from the weight replacement. The function D(·, ·) denotes the
Hamming distance between the unaltered weight addresses A and the altered weight addresses Â,
and γu is our maximum budget of bit-flips to alter the addresses.

4.4 PROPOSED (BLOCK-FLIP) ALGORITHM

The proposed Block-Flip algorithm identifies the vulnerable victim and its corresponding substitute
weight block progressively, one at a time (attack iteration). To achieve the attacker-defined objec-
tives on 3 and 4, we devise a five-step process for each attack iteration, as shown in Figure 3, and
each specific attack design choices are supported by theoretical analysis.

First Step (Evaluate the vulnerability of the weight blocks): In this step, the weight blocks are
evaluated according to their impact in achieving the attack goals using loss gradients. Consequently,
blocks with the highest gradients are most vulnerable to the weight perturbation. The gradient of the
ith weight block wi as follows:

gi =
[
∂L(W)
∂wi1

. . . ∂L(W)
∂wi128

]T
(5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Second Step (Identify the address of the victim weight block): After obtaining the vulnerability
of each weight block using equation 5, attacker must choose only one weight block wt as victim
block on each iteration. So, we define a rank metric of each weight block wi as the l2-norm of its
gradient vector in equation 5, i.e.,

rank(wi) = ∥gi∥ (6)

Using the rank metric in equation 6, we select the highest-ranked weight block wi, indicating that
modifying this ith weight block will have a larger impact on the attack goal.

wt = argmax
wi∈W

rank(wi) (7)

Third Step (Compute the optimized substitute weight block): After identifying the victim block,
the attacker must decide how to modify wt to achieve the attack goal defined in equation 4 and 3.
To maintain the constraint of these equations, the next step in the search process must answer two
questions:

• Q1: Can we derive an optimized substitute block for the identified victim block wt in the
previous step to maximize the attack goal?

• Q2: Does this optimized substitute block exists withing the set of VLM weight blocks?

In the following Lemmas, we show that there is a substitute block w∗
r that maximizes the ef-

fectiveness of the attack, and under additional assumptions (Neal, 2012; Matthews et al., 2018;
de G. Matthews et al., 2018), that w∗

r lies within the VLM.
Lemma 4.1 (Optimized Substitute Weight Block). Consider a VLM with a victim weight block wt ∈
Rd and a corresponding differentiable loss function L(W). Assume that ∥∇wt

L(W)∥ > 0. Then for
any such victim weight block wt, there exists a substitute weight block w∗

r such that L(W ′) > L(W)
for a positive learning rate α, where w∗

r = wt + α∇wt
L(W) and W ′ = W \wt ∪w∗

r .

Proof. Let L(W) be the loss function of VLM, which is differentiable with respect to the weights
W . The gradient of the loss function w.r.t. wt is given by:

∇wt
L(W) =

(
∂L(W)

∂wt1
,
∂L(W)

∂wt2
, . . . ,

∂L(W)

∂wtd

)
Consider a substitute weight block w∗

r defined as: w∗
r = wt + α∇wt

L(W), where α is a positive
learning rate. Using a first-order Taylor expansion of L(W ′) around wt, we have1:

L(W ′) = L(W −wt +w∗
r) ≈ L(W) +∇wt

L(W)T (w∗
r −wt) (8)

Substituting w∗
r = wt + α∇wtL(W): L(W ′) ≈ L(W) +∇wtL(W)T (α∇wtL(W))

Simplifying, we get: L(W ′) ≈ L(W) + α∥∇wt
L(W)∥2

Since α > 0 and ∥∇wtL(W)∥ > 0, we have: L(W ′) > L(W)

Hence, this shows a strict increase in the loss function. This Lemma shows the existence of a
substitute weight block for loss maximization 3. Similarly, the substitute weight block for the loss
minimization problem (i.e., VLM-PTA-T in 4) can be derived as L(W ′) < L(W) when w∗

r =
wt − α∇wt

L(W).

Implication of Lemma 4.1 (Q1.Answer): It shows that for each victim weight block wt, there exists
a substitute weight block w∗

r that maximizes the attack Objective for the current attack iteration.

Lemma 4.2 (Existence of Optimized Substitute Weight Block in VLM). Consider a VLM with
weight block set W = {w1,w2, . . . ,wn} where each wi ∈ Rd is a d-dimensional vector of i.i.d
normal random variables with zero mean and variance σ2, i.e., wi = (wi1,wi2, . . . ,wid) where
wij ∼ N(0, σ2) for all i and j. Let the optimized substitute weight block w∗

r ∈ Rd be a d-
dimensional block vector with weights w∗

r = (w∗
r1,w

∗
r2, . . . ,w

∗
rd), where w∗

rj ∼ N(0, σ2) for all
j. Then, the probability P (w∗

r ∈ W) → 1 as n → ∞.

1In equation 8, we slightly abuse notation by expressing W \wt ∪w∗
r as W −wt +w∗

r , since L(W ′) is
expanded only around wt.
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Proof. We consider a probabilistic approach in terms of proximity within an ϵ-neighborhood. The
probability that w∗

r is within an ϵ-neighborhood of wi is P (∥wi −w∗
r∥ ≤ ϵ), where ∥ · ∥ denotes

the Euclidean norm. The difference wi −w∗
r is a d-dimensional vector where each element (wij −

w∗
rj) ∼ N(0, 2σ2). Then the norm ∥wi −w∗

r∥ follows a chi distribution with d degrees of freedom

and a scaling factor of σ
√
2, i.e., ∥wi−w∗

r∥
σ
√
2

∼ χd. The probability that ∥wi−w∗
r∥ ≤ ϵ is as follows:

P (∥wi −w∗
r∥ ≤ ϵ) = P

(
χd ≤ ϵ

σ
√
2

)
= Fχd

(
ϵ

σ
√
2

)
where Fχd

is the CDF of the chi distribution with d degrees of freedom.

For n weight block vectors, the probability that none of the n block vectors is within ϵ of w∗
r is:

P

(
n⋂

i=1

{∥wi −w∗
r∥ > ϵ}

)
=

[
1− Fχd

(
ϵ

σ
√
2

)]n
Therefore, the probability that at least one vector wi is within ϵ of w∗

r is:

P

(
n⋃

i=1

{∥wi −w∗
r∥ ≤ ϵ}

)
= 1−

[
1− Fχd

(
ϵ

σ
√
2

)]n
As n → ∞, the term

[
1− Fχd

(
ϵ

σ
√
2

)]n
approaches 0, with ϵ > 0. Hence, 1−

[
1− Fχd

(
ϵ

σ
√
2

)]n
approaches to 1. Hence proving the statement of the lemma.

Implication of Lemma 4.2 (Q2.Answer): Lemma 4.2 shows that with an increasing number of
weight blocks n, the probability that at least one block wi is within ϵ of the optimized substitute
block w∗

r approaches 1. Indicating this probability is nearly one even for a small-scale model with
0.2 million parameters (n ≈ 2000) when ϵ = 0.05 and σ = 1. Considering the scale of the VLM
text and image encoder, this conclusion holds.

Once we theoretically analyze that there exists an optimized substitute block for every vulnerable
victim block, the next step is to design a strategy to find this optimized substitute weight block w∗

r
for the victim weight block wt (identified in the previous step 3).

Strategy to calculate optimized substitute weight block. Finding the optimized substitute block
requires two levels of optimization: First, which direction to change, and Second, how much to
change the victim weight block to achieve the objectives defined in equation 3 and 4 faster. The first
part can be optimized using the principle of gradient descent (targeted) or ascent (un-targeted) using
the following update equations: w∗

r = wt − α̂ · gt and w∗
r = wt + α̂ · gt respectively. However,

the second part (i.e., speed of attack convergence) depends on choosing an optimized learning rate;
next, Theorem 4.3 derives an optimized learning rate.
Theorem 4.3 (Optimized Learning Rate). Consider a VLM with a weight block set W =
{w1,w2, . . . ,wn}, any victim weight block wt ∈ W and the optimized substitute weight block
w∗

r , where each wi and w∗
r is a d-dimensional vector of i.i.d normal random variables with zero

mean and variance σ2. For any victim weight block wt and a corresponding differentiable loss
function L(W), the estimate α̂ is an unbiased estimate of the optimized learning rate α to reach the
desired substitute weight block w∗

r given by:

α̂ =
1

n− 1

∑
i̸=t ∥wt −wi∥
∥∇wt

L(W)∥
(9)

Proof. By Lemma 4.1 and 4.2, there exists a substitute weight block w∗
r within VLM weight block

set that minimizes the loss L(·). The gradient descent step to reach the optimized substitute weight
block is given by: w∗

r = wt + α∇wtL(W), where α is the optimized learning rate. Simplifying,
we get:

α =
∥wt −w∗

r∥
∥∇wt

L(W)∥
(10)

Now, to prove the statement of the Theorem, we need to show that α̂ in equation 9 is an unbiased
estimate of the optimized learning rate given in equation 10. The expected value of α̂ is given by:

E[α̂] = E
[

1

n− 1

∑
i̸=t ∥wt −wi∥
∥∇wtL(W)∥

]
=

1

n− 1
E
[∑

i̸=t ∥wt −wi∥
∥∇wtL(W)∥

]
=

1

n− 1

∑
i̸=t E[∥wt −wi∥]
∥∇wtL(W)∥

6
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Since wij are i.i.d normal random variables with zero mean and variance σ2 for all i ∈ [1, n] and
j ∈ [1, d], the difference wt − wi is also normally distributed with zero mean and variance 2σ2.
And it can be shown that the norm of this difference ∥wt − wi∥ follows a chi distribution with d

degrees of freedom, scaled by
√
2σ2. The expected value of the norm of a chi-distributed variable

with d degrees of freedom is given by: E[∥wt −wi∥] =
√
2σ2 · Γ( d+1

2 )
Γ( d

2 )

Therefore, the expected value of α̂ is:

E[α̂] =
1

n− 1

∑
i̸=t

√
2σ2 · Γ( d+1

2 )
Γ( d

2 )

∥∇wt
L(W)∥

=
(n− 1)

√
2σ2 · Γ( d+1

2 )
Γ( d

2 )

(n− 1)∥∇wt
L(W)∥

=

√
2σ2 · Γ( d+1

2 )
Γ( d

2 )

∥∇wt
L(W)∥

(11)

By Lemma 4.2, ∃w∗
r in a VLM. Since, each wrj ∼ N (0, σ2), ∀j ∈ [1, d], it can be shown that

∥wt − w∗
r∥ is also a chi-distributed variable with d degrees of freedom where the expectation is

given by:
E[∥wt −w∗

r∥] =
√
2σ2 ·

Γ
(
d+1
2

)
Γ
(
d
2

)
Therefore, the expected value of α is also given by equation 11. Hence, we have shown that α̂ is an
unbiased estimate of the optimized learning rate α.

Using equation 9, calculating the optimized substitute weight block for VLM-PTA-U is:

w∗
r = wt + α̂ · gt = wt +

1

n− 1

n∑
i=1,i̸=t

∥wt −wi∥ ·
gt

∥gt∥
(12)

However, calculating the optimized substitute weight block for VLM-PTA-T is:

w∗
r = wt − α̂ · gt = wt −

1

n− 1

n∑
i=1,i̸=t

∥wt −wi∥ ·
gt

∥gt∥

Figure 4 shows that using optimized learning rate to calculate the optimized substitute weight block
improves the convergence of the attack by 10×.

Figure 4: Example of attack conver-
gence showing that scaled gradients
(α̂ · gt) achieve faster convergence.

Fourth Step (Find the address of the optimized substi-
tute weight block): On this step, we first identify the set
of top-k similar weight blocks to our optimized substitute
weight block w∗

r using the dot product as a similarity metric:
Wr = {wi |wi ∈ W,wi ̸= wt and wi ∈ top-k(wT

i w
∗
r)}

Next, among the above candidates of the substitute weight
block, we compute the Hamming distance between the ad-
dress of the victim weight block wt and each of the weight
blocks in set Wr. Then we select the weight block with the
minimum Hamming distance as the substitute weight block
wr to minimize attack overhead even further:

wr = argmin
wi∈Wr

D(at, ai) (13)

where ai is address of weight block wi and at is the address of victim weight block wt.

Fifth Step (Change memory address): Once both the victim block wt and its substitute block
wr are identified, replace wt with wr and record their addresses for future references. The search
moves to the next iteration and continues until the attack objective is satisfied. At run-time, the
attacker launches the fault injection targeting the previously recorded addresses.

5 EXPERIMENTAL SETUP

We tested the efficiency of our attack (VLM-PTA) across a wide range of architectures, tasks, and
datasets. To evaluate the efficacy of VLM-PTA, we report the number of attack iterations, defined
as the total number of altered weight blocks. This metric more appropriately reflects our attack
complexity, as prior work (Yao et al., 2020) shows that flipping a single bit or multiple bits within
the same address page does not add any overhead. Details of the experiments, including dataset,
model, hyperparameters are in Appendix D. In addition, more details of the system setting we used
in our evaluation can be found in Appendix D, and the code will be released with final version.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Evaluation of VLM-PTA-U. Attack Iterations (AI) shows the number of replacements in
weight blocks. PAR refers to Post Attack Recall@1 and PAB refers to Post Attack BLUE-1. Attack
goals for PAA and PAB to decrease Recall@1 and BLUE-1 to zero respectively.

Dataset CLIP SigLIP BLIP
Recall@1 AI PAR Recall@1 AI PAR BLEU-1 AI PAB

Flickr8k 65.53 1 0.30 80.17 3 0.0 59.61 14 1.325
COCO 50.0 1 0.02 65.34 5 0.76 56.93 12 0.0245

Table 2: Evaluation of VLM-PTA-T: Attack Iterations (referred as AI) shows the number of replace-
ments in weight blocks. Here, ASR refers to Attack Success Rate (%).

CLIP SigLIP
Initial ASR AI ASR Initial ASR AI ASR

0.0 3 82.7 0.0 7 94.6

A man mountain 

climbing up an icy 

mountain

A man mountain climbing 

up an icy mountain

A construction worker

drills a hole into the

 ground

A boy sits on a tree

stump .

A group of boys play flag 
football while some 
bystanders watch 

A crowd walks along a 

sidewalk of a farmers 

market 

A person on skis is 
jumping a small hill 

A crowd walks along a 

sidewalk of a farmers 

market .

A crowd walks along a 

sidewalk of a farmers

 market 

A hiker waves to the camera 

as he standing in front of 

snowcapped mountains

Images 

Selected Captions

before attack 

Selected Captions

after attack 

Figure 5: Example of VLM-PTA-U generating wrong caption for each images.

A dog chases a stuffed

animal attached to 

a string

A closeup of grey shoes 

on the shore near the

beach water

A group of boys play flag 
football while some 
bystanders watch 

A boy wearing a red 

shirt jumps off the blue

 slide

This is a superhero image This is a superhero image This is a superhero image This is a superhero image This is a superhero image

A climber is attached by 

ropes to a brownccolored 

rock face

Images 

Selected Captions

before attack 

Selected Captions

after attack 

Figure 6: Example of VLM-PTA-T generating a targeted caption for each images.

6 EVALUATION OF VLM-PTA
Evaluation of VLM-PTA-U. Table 1 summarizes the results of VLM-PTA-U on three VLMs across
two datasets, showing the number of iterations required to reduce retrieval (Recall@1) and gener-
ative (BLEU-1) metrics to near zero, where the model will retrieve the least relevant or generate
random captions as shown in Figure 5. The result in Table 1 shows that VLM-PTA-U can effec-
tively deplete the performance of all three models within 14 attack iterations. In particular, CLIP
and SigLIP are more vulnerable to the proposed VLM-PTA-U, requiring less than five attack rounds
to compromise the performance.

Evaluation of VLM-PTA-T. Table 2 summarizes the results of VLM-PTA-T on VLMs. The Attack
Success Rate indicates the percentage of images in the validation dataset that successfully retrieved
the targeted captions injected by the attacker. For a targeted attack, we run the attack until the attack
success rate stalls and no longer improves for two successive iterations. A qualitative example of
retrieved captions on some images before and after the targeted attack is shown in Figure 6. The
reason targeted attacks are difficult to use with our attack is that altering weights in a group to
achieve gradient descent (for targeted attack) is often challenging. Our evaluation shows we could
achieve close to 82-94 % ASR using the proposed VLM-PTA-T.

Comparison with Competitive Methods. Although VLM-PTA employs a novel fault-injection
mechanism to perturb weights, we compare our algorithm’s impact with competitive adversarial
weight perturbation attacks (e.g., BFA / T-BFA (Rakin et al., 2019b; 2021a)), which use bit-flips to
corrupt model weights directly. VLM-PTA outperforms BFA by degrading the VLMs caption gener-
ation capabilities by a factor of 200×, demonstrating superior efficiency and efficacy. In contrast,
BFA fails to degrade models Recall@1 below 21.61 even after 200 rounds of attack iterations, re-
flecting proposed VLM-PTA is the most successful adversarial weight pertubation attack to date.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparing with competitive weight pertubation attack, e.g., bit-flip attacks (BFAs) (Rakin
et al., 2019b; 2021a) and VLM-PTA-U on VLMs (CLIP on flickr8k). The attack goal is to decrease
Recall@1 and BLUE-1 to zero. PAR refers to Post Attack Recall@1 and PAB refers to Post Attack
BLUE-1, and AI refers to Attack Iterations.

Method CLIP SigLIP BLIP
Recall@1 AI PAR Recall@1 AI PAR BLEU-1 AI PAB

BFA 65.53 200 21.61 80.17 200 51.32 59.61 200 59.51
VLM-PTA 65.53 1 0.30 80.17 3 0.0 59.61 14 1.325

Table 4: Energy and latency comparison between VLM-PTA, BFA, T-BFA on CLIP trained on
flicker8k. The Energy and Latency are reported in mJ and ms respectively.

Untargeted Attack Targeted Attack
Method Iterations Energy (mJ) Latency (ms) Method Iterations Energy (mJ) Latency (ms)

BFA 200 6.6 110 T-BFA 200 1.09 18.15
VLM-PTA-U 1 0.042 (3.2×) 0.688 (3.2×) VLM-PTA-T 2 0.44 (2.49×) 7.29 (2.49×)

Such inefficiency is reflected in our evaluation further in Table 4. From the results, the attack over-
head of VLM-PTA is significantly lower compared to BFA (3.2×) and T-BFA (2.49×). The detailed
computation steps for these energy and latency numbers for DDR4 are provided in Appendix D. This
reduction in energy and latency is because flipping a single bit or multiple bits within the same ad-
dress row page does not substantially impact the attack overhead. Hence, our attack’s lower energy
and latency costs are attributed to its lower number of attack iterations (200× less).

VLM-PTA against Prior Defenses. To the best of our knowledge, there are currently no defenses
specifically designed to protect VLMs against adversarial weight attacks. Therefore, we adopt two
state-of-the-art defense approaches, FaR (Nazari et al., 2024), designed for transformers, and Quan-
tization (He et al., 2020), a general defense against adversarial weight attacks and adapt them to
safeguard VLM components. Our evaluation reveals clear differences between traditional BFA and
the proposed VLM-PTA: while BFA requires hundreds of attack iterations, VLM-PTA achieves at-
tack objective with only a few iterations. Notably, both defenses significantly reduce the model’s
clean Recall@1, underscoring an inherent robustness–accuracy trade-off. Overall, the results show
that existing defenses are insufficient to protect VLMs against VLM-PTA, highlighting the urgent
need for new, VLM-specific defense mechanisms against proposed VLM-PTA.

Ablation Study. We have performed a comprehensive ablation study in Appendix A exhibiting: i)
The impact of weight block size , ii) Analyzing the impact of the constraint in equation 3 and 4 and
iii) Impact of attacking only Vision Encoder or Only Text Encoder or Both on attack effectiveness.
These ablation studies further clarifies our design choices and their impact on attack overhead and
effectiveness.
Table 5: Evaluation of defenses (FaR and Quantization) against BFA and VLM-PTA attacks on CLIP
with Flickr8k. PAR refers to Post-Attack Recall@1. Attack goal is to decrease Recall@1 to zero.

Defenses BFA Attack VLM-PTA Attack
Recall@1 AI PAR Recall@1 AI PAR

FaR (Nazari et al., 2024) 32.74 200 1.05 32.74 1 0.12
4-bit Quantization (He et al., 2020) 55.53 200 1.36 55.53 5 0.06

7 CONCLUSION

Vision Language Models (VLMs) are vulnerable to input manipulation attacks according to previous
studies. However, in this work, we further expose the security of these models against adversarial
weight attacks by utilizing a fault injection technique that flips bits in memory page tables. Our
proposed attack VLM-PTA addresses the unique challenges associated with the implementation of
this fault injection by providing theoretical analysis and proposing an optimization search method
(Block-Flip). We demonstrate that the proposed VLM-PTA is the most successful attack to date in
terms of effectiveness, cost, and ability to bypass defenses.
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A ABLATION STUDIES

To have better insight into whether directly using the optimized substitute block in place of a weight
block within the set of VLM weight blocks is presented in Table 6. Additionally, Table 7 illustrates
the effect of varying weight block sizes on attack efficacy. Finally, Table 8 shows the impact of
attacking each component of the VLM individually.

Table 6: Performance of VLM-PTA on CLIP (Flickr8K) by directly using the value of optimized
substitute block instead of replacing with the most similar weight block within VLM to the optimized
substitute replacement block, a constraint that was imposed by equation 3 and 4 to reduce additional
write operation. The results clearly demonstrate that the optimization constraint has a negligible
impact on attack efficacy.

Method VLM-PTA-U VLM-PTA-T
Recall@1 Attack Iterations Recall@1 Attack Iterations

Writing the optimized substitute block 0.370 1 97.96 5
Replace with highly similar block

to the optimized block 0.30 1 82.7 3

Table 7: Performance of VLM-PTA on CLIP (Flickr8K), with using different block sizes. The
results clearly exhibit that the impact of weight block size is minimal on the un-targeted attack,
while the targeted attack performs well with a smaller block size.

Block size Untargeted Attack Targeted Attack
Recall@1 # of iterations ASR # of iterations

1 0. 0617 2 99.62 4
128 0. 494 2 74.61 7
512 0. 1235 1 78.13 3

1024 0.308 1 82.70 2

Table 8: Performance of VLM-PTA on CLIP (Flickr8K) by attacking different components of VLM
(vision text/ both encoders). The results exhibit that attacking any component individually yields
similar performance using VLM-PTA. However, utilizing the Vision component makes BFA slightly
more potent.

Encoder VLM-PTA BFA
# of iterations Recall@1 # of iterations Recall@1

Vision 3 0.3088 200 1.852
Text 4 0.802 200 7.411

Vision and Text 1 0.300 200 21.61

B EXTENDED RESULTS BEYOND VLM

Our attack was motivated to design and target VLM, considering the shortcomings of other attacks in
the VLM domain. However, Table 9, 10, and 11 show the performance of VLM-PTA-U and VLM-
PTA-T across different DNN architectures on three benchmark datasets: CIFAR-10, CIFAR-100,
and ImageNet. The results demonstrate that the VLM-PTA-U attack can degrade model perfor-
mance to the level of random guessing in fewer than 10 iterations, while the VLM-PTA-T attack
successfully enforces classification into the target class within a maximum of 29 iterations.

Table 10: Performance Summary of VLM-PTA-U and VLM-PTA-T Attacks on CIFAR-100 dataset.

Model Untargeted Attack Targeted Attack
Initial ACC (%) Iterations Initial ASR (%) Iterations

ResNet-20 62.82 4 1.09 16
ResNet-32 65.23 4 0.91 2
ResNet-44 68.06 2 0.93 2
ResNet-56 67.36 2 0.82 2

MobileNetV2 64.80 1 0.74 22
ShuffleNetV2 67.08 3 0.79 29
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Table 9: Performance Summary of VLM-PTA-U and VLM-PTA-T attacks on CIFAR-10 dataset.

Model VLM-PTA-U Attack VLM-PTA-T Attack
Initial ACC (%) Iterations Initial ASR (%) Iterations

ResNet-20 92.40 7 9.95 4
ResNet-32 93.45 4 9.79 8
ResNet-44 93.90 10 9.95 7
ResNet-56 94.28 4 9.81 5

MobileNetV2 93.00 2 9.75 16
ShuffleNetV2 93.25 5 10.01 6

Table 11: Performance Summary of VLM-PTA-U and VLM-PTA-T Attacks on ImageNet dataset.

Model Untargeted Attack Targeted Attack
Initial ACC (%) Iterations Initial ASR (%) Iterations

ResNet18 69.498 5 0.098 9
ResNet34 73.126 5 0.100 15
ResNet50 75.834 2 0.092 10

DenseNet121 74.248 9 0.096 8
DenseNet169 75.358 3 0.096 5

DeiT-S 79.644 9 0.086 10

C DETAILED THREAT MODEL

Our attack adopts a standard practical threat model following the attacker privileges established by
prior works, including both system (Yao et al., 2020; Rakin et al., 2022; Hong et al., 2019; Zhang
et al., 2020) and software-level (Rakin et al., 2019b; Chen et al., 2021; Rakin et al., 2021b) ex-
ploitation. For the system level, we assume the VLM inference is running on a resource-sharing
environment, which is practical due to the recent popularity of Machine-Learning-as-a-Service
(MLaaS) (Ribeiro et al., 2015). The attacker can run user-level unprivileged processes remotely
on the same machine as the victim’s VLM. The attacker can map the virtual addresses to physi-
cal addresses using several techniques such as leveraging huge page support, hardware-based side
channel attack (Gruss et al., 2018), and memory messaging (Kwong et al., 2020). The attacker
requires knowledge of the DRAM memory addressing scheme, which can be obtained via reverse-
engineering (Pessl et al., 2016). We assume the attacker can cause a targeted bit-flip to the page
table and cause a bit-flip at the desired location using fast and precise multi-bit-flip techniques (Yao
et al., 2020), which includes entire address bit profiling, then fast and precise bit-flipping using
rowhammer. We use double-sided rowhammer where an attacker can set specific bit patterns (Rakin
et al., 2022) in the aggressor rows to achieve targeted bit-flips. Following the existing rowhammer
attack setting (Kim et al., 2014; Yao et al., 2020; Zhang et al., 2020), we will utilize read disturbance
as a mechanism to induce a fault in the victim page table only. While prior attacks exploit mem-
ory data corruption directly, our novel attack perspective is to exploit the memory address space
through side-channel only. Nevertheless, we assume the kernel and operating system are trusted and
well-protected (Konoth et al., 2018). Again, following standard practice, we assume the commercial
DRAM is not protected by ECC and thus cannot protect large-scale VLM against rowhammer (Yao
et al., 2020; Rakin et al., 2022).

For software VLM, we assume a white-box attacker, following the standard threat model of prior
adversarial weight attack (Rakin et al., 2019b; Hong et al., 2019; Yao et al., 2020; Chen et al., 2021;
Rakin et al., 2021b). In a white-box threat model, the attacker can access model weights, archi-
tecture, and some sample test data. The recent advancement of side channel attacks to extract the
black-box model makes the white-box assumption more practical. Prior works have demonstrated
that an attacker can effectively steal layer number, layer size, weight bit size, and parameter values
through remote side channel attacks (Yan et al., 2020; Xiang et al., 2020; Yu et al., 2020; Rakin et al.,
2022). However, even for a white-box threat model the attacker cannot access training information
(i.e., training dataset, hyper-parameters). An attacker can only access the inference stage model and
flip (0 to 1 or 1 to 0) identified bits of memory addresses. In summary, our threat model follows
conventional threat model for adversarial weight attack established in the literature (Hong et al.,
2019; Yao et al., 2020; Rakin et al., 2019a; Chen et al., 2021).
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D EXPERIMENTAL DETAILS

Datasets and Models. In this work, we evaluate our proposed attack across diverse datasets and
architectures, spanning VLMs, deep neural networks (DNNs), and speech models. For VLMs, we
use Flickr8k (Hodosh et al., 2013) and COCO (Lin et al., 2014), both consisting of images paired
with five captions each, and evaluate three architectures: CLIP (Radford et al., 2021), SigLIP (Zhai
et al., 2023) for caption retrieval, and BLIP (Li et al., 2022) for caption generation. For DNNs, we
evaluate models on classification datasets with varying numbers of classes and image resolutions:
CIFAR-10 (Krizhevsky et al., 2009) (32×32, 10 classes), CIFAR-100 (Krizhevsky et al.) (32×32,
100 classes), and ImageNet (Deng et al., 2009) (224×224, 1,000 classes). On the CIFAR datasets,
we test six architectures: ResNet-20/32/44/56 (He et al., 2015), MobileNetV2 (Sandler et al., 2018),
and ShuffleNetV2 (Ma et al., 2018). On ImageNet, we evaluate larger models, including ResNet-
18/34/50 (He et al., 2015), DenseNet121/169, and the Vision Transformer (DeiT-S).

Evaluation Metrics and Hyper-parameters. For untargeted attacks, in VLMs we report
the number of iterations required to reduce the retrieval metric (for retrieval models) or the
BLEU score (for generative models) to near zero; in DNNs we report the number of it-
erations required to degrade classification accuracy to the level of random guessing (e.g.,
10% for CIFAR-10). For targeted attacks, we report the number of iterations required
to increase the Attack Success Rate (ASR) of retrieving the attacker-chosen target cap-
tion (e.g., “This is a superhero image”) in VLMs; for DNNs, we report the iterations re-
quired to force inputs to be misclassified into a specified target class (e.g., yt = 2).

Xilinx U200 FPGA

Testing DDR4 DRAM

Host PC

External connection

Temperature Ctrl

Figure 7: Our test-
ing infrastructure
for DDR4 modules.

Details of System Evaluation Settings All experiments are conducted in a
hardware environment consisting of an Intel Core-i9-10900X, 3.70 GHz CPU
with 64 GB RAM, and an Nvidia GeForce GTX RTX A5000 GPU with 24 GB
Memory. Python is used to write all necessary codes, and the PyTorch deep
learning library is used to implement the VLMs and neural networks. In addi-
tion, we experimentally implemented and tested the VLM-PTA on 16 DRAM
modules from two major DRAM manufacturers (Hynix and Samsung-16GB,
2400 MHz DDR4) with various die densities and die revisions (as listed in Ta-
ble 12) by modifying the FPGA-based testing infrastructure in (Olgun et al.,
2023) to understand the attack behavior. Our testing infrastructure shown in
Figure 7 consists of the Alveo U200 Data Center Accelerator Card (Ale, 2021) as the FPGA that
accepts DDR4 modules and runs the test programs by sending DDR4 command traces generated
by the host machine. Besides, to have a fair comparison among under-test DRAM chips, the tem-
perature is kept below 30◦C with INKBIRDPLUS 1800W temperature controller. Based on this
infrastructure, we test our software attack searching algorithm on the PyTorch platform similar to
the experimental evaluation platform developed by prior work (Yao et al., 2020) for rowhammer
attack evaluation. Following the address flipping attack setting in (Saxena et al.), we assume an OS
page size of 4KB and our 8-bit evaluation model. We will identify a specific address (A2) shown in
Figure 2 that points to one of the weight blocks following the above setting. Then, in the DRAM,
we keep opening and closing the adjacent rows of the original page table (A1) until bit-flips occur
and make it point to A2. By repeatedly accessing the rows adjacent to the row containing the victim
address (A1), we induce electrical disturbances that can cause bit-flips in the victim row. We ensure
precise bit-flip at the targeted victim row by ensuring complementary data content in the attacker’s
aggressor row. These bit-flips can alter the memory contents, changing the address pointer in the
original page table to point to A2. This allows us to manipulate the memory to redirect the address
to the specific weight location, demonstrating the rowhammer attack’s efficacy under our simulation
setup.

Evaluation of Energy and Latency. Common tRAS values for DDR4 memory modules range
from 36 to 48 tCK (Choi et al., 2020), but these values can vary based on the module’s speed rating
(e.g., DDR4-2133, DDR4-2400, DDR4-3200, etc.). The duration of a clock cycle for DDR4-2133
memory can be calculated as tCK = 1

2133MT/s . If we consider the full sequence of activating a
row, accessing data, and then precharging the row, the total time would be 70 tCK . Moreover, the
energy consumption of a single activation operation in a DDR4-2400 memory module is calculated
as E = VDD × IDD × t. To provide a concrete example, let us assume the following typical values
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for DDR4 memory: VDD = 1.2V, IDD = 30mA, t is the total time of activating the row. Taking
into account the row-to-row delay, the total energy consumption is approximately 1644.6 pJ.

Table 12: Under-test DRAM chips.
Vendor #Chips Freq (MHz) Die rev. Org. Date

mf-a (SK Hynix 16GB) 16 2400 A x8 1817
mf-b (Samsung 16GB) 16 2400 B x8 2053
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E LLM USAGE

In this paper, we employed large language model (LLM) to assist with grammar correction, spelling
refinement, and contextually appropriate word selection.
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