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Abstract

Although 3D point cloud recognition has achieved substantial progress on standard
benchmarks, the typical models are vulnerable to point cloud corruptions, leading
to security threats in real-world applications. To improve the corruption robustness,
various data augmentation methods have been studied, but they are mainly limited
to the spatial domain. As the point cloud has low information density and signifi-
cant spatial redundancy, it is challenging to analyze the effects of corruptions. In
this paper, we focus on the frequency domain to observe the underlying structure
of point clouds and their corruptions. Through graph Fourier transform (GFT), we
observe a correlation between the corruption robustness of point cloud recognition
models and their sensitivity to different frequency bands, which is measured by
the GFT spectrum of the model’s Jacobian matrix. To reduce the sensitivity and
improve the corruption robustness, we propose Frequency Adversarial Training
(FAT) that adopts frequency-domain adversarial examples as data augmentation to
train robust point cloud recognition models against corruptions. Theoretically, we
provide a guarantee of FAT on its out-of-distribution generalization performance.
Empirically, we conducted extensive experiments with various network architec-
tures to validate the effectiveness of FAT, which achieves the new state-of-the-art
results.

1 Introduction

3D point cloud recognition based on deep neural networks (DNNs) [35, 36, 65] has achieved unprece-
dented performance on typical benchmarks [5, 67], which assume that the data are independently and
identically distributed. However, in practical scenarios, point clouds suffer from severe corruptions
(e.g., noise, density change, transformation) due to sensor imprecision and scene complexity [66, 76].
When the testing distribution is different from the training distribution caused by corruption, point
cloud recognition models have significant performance degradation [41, 51], indicating that they lack
the robustness of human visual system [40], while also raising concerns about safety and reliability
of these models. As deep 3D point cloud recognition has been increasingly deployed in safety-critical
applications, such as autonomous driving [6, 84], robotics [60, 92], and medical image processing
[54], it is of crucial importance to improve the robustness of 3D point cloud recognition models to
out-of-distribution (OOD) point cloud data induced by corruptions [10].
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Figure 1: (a): The graph frequency-domain representations of “Jitter” and “Rotate” in ModelNet-C [41]. “Jitter”
has higher power in the high-frequency region, while “Rotate” has higher power in the low-frequency region.
(b): The relationship between the corruption robustness (measured by mean overall accuracy (mOA) [41]) of
various models and the sensitivity to high/low frequency bands. Our proposed high/low frequency sensitivity
metric is negatively correlated with the model’s robustness under high/low frequency corruptions.

To improve the corruption robustness, the most effective approaches to date are based on carefully
designed data augmentation techniques [41, 51]. Inspired by 2D image augmentations [85, 89], some
methods blend two point clouds for data augmentation using shortest-path interpolation (e.g., Point-
Mixup [7]), random blending (e.g., PointCutMix-R [90]), and rigid transformation (e.g., RSMix [24],
PointCutMix-K [90]). PointWOLF [22] enriches data diversity by applying non-rigid deformation
to object parts. WOLFMix [41] deforms objects first and then rigidly blends two deformed objects.
Although these data augmentation techniques improve the corruption robustness to some extent,
they are all based on spatial-domain transformations. Raw point clouds in the spatial domain have
low information density and heavy spatial redundancy [8], making it challenging to analyze which
specific information is corrupted. To address this challenge, we shift our attention from the spatial
domain to the frequency domain to analyze the underlying structure of point clouds that is not
easily observable from the raw point clouds. In the frequency domain, point clouds are compactly
represented, facilitating a better understanding of low-level distortions that are free of high-level
semantics.

To design robust models, the first step is to understand how corruption is represented in the frequency
domain. We achieve this by transforming the raw point clouds and the corresponding corruptions into
compact representations in the frequency domain using the graph Fourier transform (GFT) [43]. By
visualizing the transformed signals, we observe that different corruptions affect varying frequency
bands, as shown in Fig. 1(a). Motivated by the differences, we investigate the relationship between
the corruption robustness of various point cloud recognition models and their sensitivity to different
frequency bands [81]. To measure the sensitivity, we design a novel metric based on GFT spectrum
of the Jacobian matrix of the model, as shown in Fig. 3. Our key insight is that our proposed
high/low frequency sensitivity metric is negatively correlated with the model’s robustness under
high/low frequency corruptions, as shown in Fig. 1(b). This correlation emphasizes the importance
of the model’s sensitivity to high and low frequencies for corruption robustness. However, it is still
challenging to simultaneously reduce the sensitivity of point cloud recognition models to both high
and low frequencies.

To address this issue, we propose Frequency Adversarial Training (FAT) to improve the corruption
robustness of 3D point cloud recognition models. FAT trains a model with adversarial examples that
add perturbations to the frequency-domain representations of point clouds. Intuitively, a model robust
to worst-case perturbations should be more resistant to real-world corruptions [72, 80]. We provide a
theoretical analysis that demonstrates the effectiveness of FAT in ensuring OOD generalization
of the model, as shown in Theorem 1. To eliminate potential performance degradation due to mutual
interference between high and low frequency signals, we utilize the AdvProp training framework [72],
based on which we use three separate batch normalization (BN) statistics for clean samples, high-
frequency adversarial samples, and low-frequency adversarial samples, respectively.

We conducted extensive experiments to validate the effectiveness of our approach in improving the
robustness of point cloud recognition models under common corruptions [41, 51]. With various
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network architectures, our method improves the corruption robustness by a large margin. By integrat-
ing our approach with previous data augmentation techniques, we achieve the new state-of-the-art
performance.

2 Related work

Deep learning on 3D point clouds. Deep 3D point cloud recognition [16, 35, 38, 55, 70, 73, 79] has
emerged in recent years as a prominent research area with diverse applications in several fields such
as 3D object classification [46, 83, 86], 3D scene segmentation [20, 64, 75], and 3D object detection
in autonomous driving [77, 95]. One of the pioneering works is PointNet [35], which employs
a multilayer perceptron to learn point features and utilizes a max-pool module to aggregate them
efficiently. Many subsequent works [13, 30, 36, 78] improve upon PointNet. Several approaches focus
on designing special convolutions on 3D domains [26, 31, 56] or developing graph neural networks
[14, 44, 65] to improve point cloud recognition, such as DGCNN [65] which builds a dynamic
graph for point cloud data. Recently, drawing inspiration from research in the frequency domain
[4, 49, 61, 81], GDANet [74] introduces a geometry-disentangle module to dynamically separate
point clouds into the contour and flat parts of 3D objects, thereby capturing complementary 3D
geometric semantics. PCT [17] uses Transformer to improve point cloud learning. Additionally, there
is a growing discussion on point cloud augmentation, including mix-based augmentations [7, 90],
deformation-based augmentations [22], and auto-augmentations [25].

Robustness in 3D point cloud recognition. Following the previous studies on robustness in the
2D image domain [53, 3, 15, 19, 32, 42, 59, 9, 82], several works [18, 50, 52, 63, 69, 34, 97] have
explored the robustness of 3D point cloud classifiers. Concerning adversarial robustness, Xiang
et al. [69] first demonstrate that point cloud recognition is vulnerable to adversarial point generation
attacks. Further research [21, 28, 29, 57, 91, 2] has employed gradient-based point perturbation
attacks. Some defensive techniques are proposed, such as input randomization [12, 93] and geometry-
aware framework [68] to defend against such vulnerabilities. Sun et al. [47, 48] have studied the
effectiveness of adversarial training and pre-training on self-supervised tasks in enhancing robustness.
In terms of corruption robustness, some works have studied the problem using invariant feature
extraction [71], and adaptive sampling [76]. Recently, two benchmarks [41, 51] are developed for the
robustness of 3D point cloud recognition under corruptions and demonstrate the effectiveness of data
augmentation. However, unlike the existing spatial-domain data augmentation techniques [22, 25], in
this paper, we focus on the frequency domain and propose Frequency Adversarial Training (FAT) to
improve the model’s out-of-distribution generalization ability.

3 Methodology

The existing 3D point cloud recognition models exhibit significant performance degradation under
point cloud corruptions [41, 51]. Although data augmentation techniques have shown the effectiveness
in improving robustness, they are typically based on spatial-domain transformations, which suffer
from low information density and heavy spatial redundancy of the raw point clouds. Consequently, it
is difficult to analyze which specific information has been lost due to corruptions within the spatial
domain. To address this challenge, we shift our focus to the frequency domain, which enables us to
analyze the underlying structure of point clouds.

In the following, we first provide the background knowledge of graph Fourier transform (GFT) in
Sec. 3.1, then analyze the point cloud corruptions in the frequency domain in Sec. 3.2, and investigate
the relationship between the model’s corruption robustness and sensitivity to frequency changes in
Sec. 3.3. Based on the analyses, we propose a Frequency Adversarial Training (FAT) method detailed
in Sec. 3.4 with a theoretical analysis to guarantee its effectiveness in Sec. 3.5.

3.1 Graph Fourier transform

Images are typically transformed and recovered in the frequency domain with the 2D discrete
Fourier transform (DFT) and inverse DFT [39]. Unlike images, although 3D point clouds are highly
structured, they reside on irregular domains without an ordering of points, hindering the deployment
of traditional Fourier transforms. However, graphs provide a natural and accurate representation of
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Figure 2: The leftmost image displays the graph frequency-domain representation of the raw point clouds. To
estimate the expected value of EP [|GF(P)|], we average over all validation point clouds in ModelNet40 [67].
The frequencies are arranged from left to right in ascending order. The other seven images display the graph
frequency-domain representations of each corruption in ModelNet-C [41]. The raw point clouds exhibit higher
power in the low-frequency region. The corruption “Jitter” has much higher power in the high-frequency region.
The power of corruptions such as “Rotate” and “Scale” is concentrated on the low-frequency components.

irregular point clouds. Once a graph is constructed to represent the point cloud, the graph Fourier
transform (GFT) [43] can compactly transform it into the frequency domain.

Given a point cloud P := {pi}ni=1 ∈ Rn×3 of n points, where pi denotes the xyz coordinates of a
point, we construct a directed graph G = {P, E ,W } to represent it. The graph consists of a vertex set
P , an edge set E connecting the vertices, and an adjacency matrix W . The entry wi,j in the adjacency
matrix represents the weight of the edge from vertices i to j, which is used to capture the similarity
between adjacent vertices. Here, we construct a weighted k-nearest neighbor graph (i.e., each vertex
is only connected to its k-nearest neighbors) using the Euclidean distance dij = ∥pi − pj∥2 between
vertices i and j, and the weight of the edge is wi,j = e−d2

ij .

After constructing the graph representation of the point cloud, we focus on the combinatorial graph
Laplacian [45], defined as L := D − W , where D is a diagonal matrix with the i-th diagonal
entry di,i =

∑n
j=1 wi,j representing the degree of the i-th node. L is symmetric and positive semi-

definite, and can be eigen-decomposed as L = UΛU⊤, where U = [u1, ...,un] is an orthogonal
matrix containing the eigenvectors ui, and Λ = diag(λ1, ..., λn) is a diagonal matrix containing the
eigenvalues. The eigenvalues are sorted in ascending order, representing frequencies from low to high.
For a point cloud P , the graph Fourier transform (GFT) can be applied to transform it into a compact
representation in the frequency domain: P̂ = GF(P) := U⊤P . The low-frequency components
represent the coarse shape of the point cloud, while the high-frequency components represent the fine
details. The inverse graph Fourier transform (IGFT) can be used to recover the point cloud in the
spatial domain as P = GF−1(P̂) := U P̂ .

3.2 Analyzing point cloud corruptions in the frequency domain

We employ GFT to transform point clouds and their corruptions into compact representations in the
frequency domain, allowing us to analyze the underlying structures of these low-level distortions that
are hardly observable in the spatial domain. For raw point clouds, we transform them to the frequency-
domain representations and calculate EP [|GF(P)|] by averaging over all validation point clouds in
ModelNet40 [67]. For each corruption type in ModelNet-C [41], we calculate EP [|GF(C(P)−P)|]
similarly, where C denotes the corruption function. As the input point clouds have three spatial axes
(x, y, z), we take the average over these channels. In Fig. 2, we visualize the graph frequency-domain
representations of raw point clouds and the corruptions in ModelNet-C. We can see that the raw point
clouds have higher power in the low-frequency region, while the corruption “Jitter” leads to higher
power in the high-frequency region. For corruptions such as “Rotate” and “Scale”, the corrupted
power is concentrated more on the low-frequency components. The results demonstrate that different
corruptions of point clouds affect different frequency bands.

3.3 Relationship between corruption robustness and sensitivity to frequency bands

Motivated by the different effects of corruptions on varying frequency bands observed in the graph
frequency-domain representations, we investigate the relationship between the corruption robustness
of 3D point cloud recognition models and their sensitivity to different frequency bands.
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Figure 3: An illustration of computing the Fourier spectrum of the Jacobian matrix for a single input point
cloud. First, the Jacobian matrix for the input point cloud is computed. The gradient value of the output loss is
visualized for each point. A higher gradient value (skewed to red) indicates that the model is more sensitive
to changes at that point. Next, we utilize Graph Fourier Transform (GFT) on the Jacobian matrix to obtain a
compact representation and measure its sensitivity in the Fourier domain. Finally, by examining the sensitivity
measurement of different point cloud models in different frequency bands, we construct a relationship diagram
with natural robustness.

To measure the sensitivity of a model on different frequency bands, we propose to perform graph
Fourier transform (GFT) on the Jacobian matrix of the model’s output loss with respect to its input
point cloud. Intuitively, the Jacobian matrix represents how the model’s output changes with small
variations in its input point cloud, revealing its sensitivity to different points in the spatial domain [1].
With GFT, we can obtain the frequency-domain representation of the Jacobian matrix, which reveals
the model’s sensitivity to different frequency bands of input. If a model’s Jacobian matrix has a high
proportion of low/high frequency components, it will be sensitive to low/high frequency bands.

Fig. 3 illustrates the computation of the frequency-domain Jacobian matrix for a single point cloud.
Specifically, given an input point cloud P , a classification model h, and a standard cross-entropy
loss function Lh for the classification task, the Jacobian matrix J (P) := ∇PLh of the loss with
respect to the input point cloud can be calculated. We then perform GFT on J (P) to obtain its
frequency-domain representation, denoted as Ĵ (P) = U⊤J (P) in a compact form, using the
original point cloud’s neighborhood relations and feature vector matrix. Since the input point cloud
has three axis channels (x, y, z), we take the average of these channels and normalize the result. We
measure the model’s sensitivity to input perturbations in the low-frequency band by summing the
squares of the amplitudes of the first λ frequencies of the Jacobian matrix’s graph Fourier spectrum.
The sensitivity to high-frequency perturbations is measured by summing the squares of the amplitudes
of the remaining 1024− λ frequencies. A higher value of the metric indicates greater sensitivity to
perturbations in that frequency band.

We can now measure the importance of the sensitivity to different frequency bands of point cloud
recognition models on their corruption robustness. First, we measure and establish the relationship
between sensitivity to high/low frequency bands of different point cloud models and their accuracy
under high/low frequency corruptions. As illustrated in Fig. 1(b), our proposed frequency sensitivity
metrics are negatively correlated with the corruption robustness. Therefore, point cloud models
that are less sensitive to high/low frequency bands exhibit better robustness to high/low frequency
corruptions. This correlation indicates that the sensitivity of models to different frequency bands
affects their corruption robustness, providing insights for further improving the robustness of point
cloud recognition models.

3.4 Frequency adversarial training

The above analyses highlight the importance of the sensitivity of point cloud recognition models
to high and low frequencies on their corruption robustness. However, reducing the sensitivity of
point cloud models to both high and low frequencies is still challenging. To address this problem,
we propose Frequency Adversarial Training (FAT) to improve the corruption robustness of point
cloud recognition models using adversarial examples in the frequency domain. Intuitively, a model
trained to be robust to worst-case adversarial perturbations should be naturally robust to real-world
corruptions [72, 80], as also theoretically demonstrated in Sec. 3.5.

To simultaneously reduce the sensitivity of point cloud recognition models to high and low frequencies,
we generate high-frequency adversarial examples and low-frequency adversarial examples, which are
added to the training set. We generate high-frequency adversarial examples that alter the details of
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the point clouds, and low-frequency adversarial examples that change the rough shapes of the point
clouds. To prevent the mutual interference of high-frequency and low-frequency adversarial examples
that may lead to a decrease in model performance, we adopt the AdvProp training framework [72],
where clean samples, high-frequency adversarial samples, and low-frequency adversarial samples are
separately processed using three batch normalizations during adversarial training. Specifically, for an
input point cloud P with the ground-truth label y, our optimization objective is

argmin
θ

[
E(P,y)∼D

(
Lh(θ,P, y) + max

ϵh∈Sh
Lh(θ,GF−1(GF(P) + ϵh), y)

+ max
ϵl∈Sl

Lh(θ,GF−1(GF(P) + ϵl), y)
)]

,
(1)

where D is the underlying data distribution, Lh is the loss function, θ is the network parameter,
ϵh and ϵl are high-frequency and low-frequency adversarial perturbations, and Sh and Sl are the
high-frequency and low-frequency perturbation ranges, respectively.

3.5 Theoretical analysis

To verify the claim that a model robust to frequency-domain worst-case perturbations should be
more resistant to real-world corruptions, we provide a theoretical analysis that demonstrates the
effectiveness of FAT in ensuring OOD generalization of the model.

Suppose (x, y) is a pair of training sample x and its label y. The loss on (x, y) with model parameter
θ is L(θ, (x, y)), where L(θ, (x, y)) is continuous and differentiable for both θ and (x, y). We let
f(x) := L(θ, (x, y)) for simplicity. Let F and F−1 denote the Fourier transform and inverse Fourier
transform, respectively. The norm ∥ · ∥p denotes the ℓp-norm. We have the following theorem:

Theorem 1. If f satisfies that: f(x) ∈ [0,M ] for all x, |f(F−1(F(x) + α)) − f(x)| ≤ ϵ
for all x and ∥α∥p ≤ δ, then for any distribution Po and Pa satisfying that Wasp(Po, Pa) :=

(infu∈Π(Po,Pa) E(x,z)∼u[∥F(x)− F(z)∥pp])1/p ≤ η, where η < δ, then, with probability 1− γ, we
have:

Ez∼Po
[f(z)]− 1

m

m∑
i=1

f(xi) ≤ ϵ

(
1− ηp

δp
−
√

ln(4/γ)

2m

)
+

ηp

δp
M + 4M

√
ln(4/γ)

2m
, (2)

where {xi}mi=1 are i.i.d. samples from Pa.

Remark 1. Intuitively, OOD corresponds to the shifted distribution Po that approaches the training
distribution Pa. Thus Wasp(Po, Pa) defines OOD from the perspective of measuring the distance
between distributions. Ez∼Po

[f(z)] − 1
m

∑m
i=1 f(xi) represents the OOD generalization error of

the model. |f(F−1(F(x) + α))− f(x)| ≤ ϵ and ∥α∥p ≤ δ indicate that the model is robust under
frequency-domain perturbations. The bound (2) implies that models that are adversarially robust in
the frequency-domain have smaller generalization bounds on OOD data.

The proof of Theorem 1 is deferred to Appendix A. Thus, the frequency-domain adversarial robustness
of the model guarantees the generalization on OOD data. We have the following observations:

• The right-hand side of Eq. (2) implies that models that are more robust to frequency domain
adversarial samples (i.e., larger δ and smaller ϵ) have smaller OOD generalization bounds
and thus perform better on OOD data.

• For Eq. (2), a larger number of training samples m leads to a smaller OOD generalization
bound. This indicates that more training samples can compensate for the degradation of
generalization performance.

4 Experiments

In this section, we first detail the experimental settings in Sec. 4.1, then present the main results in
Sec. 4.2 to show the effectiveness of our method. We further integrate our method with other data
augmentation techniques in Sec. 4.3 and perform ablation studies in Sec. 4.4.
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Table 1: Quantitative results of vanilla training, adversarial training, DUP Defense and our proposed Frequency
Adversarial Training (FAT) on the ModelNet-C test set. Our proposed FAT outperforms all other methods in
terms of mean corruption error (mCE), which demonstrates the effectiveness of FAT for improving corruption
robustness.

Method OA ↑ mCE ↓ Rotate Jitter Scale Drop-G Drop-L Add-G Add-L

Vanilla Training 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGCNN Adv Training 0.925 0.926 1.019 0.582 1.043 0.996 1.101 0.871 0.869

DUP Defense 0.906 0.905 1.112 0.902 1.181 1.048 1.483 0.285 0.327
FAT (Ours) 0.925 0.825 0.898 0.453 0.989 0.931 0.971 0.773 0.760

Vanilla Training 0.907 1.422 1.902 0.642 1.266 0.500 1.072 2.980 1.593
PointNet Adv Training 0.904 1.372 1.851 0.563 1.287 0.448 1.077 2.888 1.487

DUP Defense 0.876 1.246 2.088 0.668 1.649 0.802 1.396 0.966 1.153
FAT (Ours) 0.902 1.237 1.553 0.370 1.606 0.448 1.097 2.583 1.004

Vanilla Training 0.930 0.925 1.042 0.870 0.872 0.528 1.000 0.780 1.385
PCT Adv Training 0.919 0.976 1.042 0.389 1.074 0.911 1.193 1.108 1.116

DUP Defense 0.919 0.925 1.112 0.699 1.043 0.738 1.261 0.410 1.215
FAT (Ours) 0.920 0.907 1.009 0.345 1.085 0.843 1.237 0.912 0.920

Vanilla Training 0.934 0.892 0.981 0.839 0.830 0.794 0.894 0.871 1.036
GDANet Adv Training 0.926 0.960 1.112 0.506 1.032 0.927 1.140 1.064 0.938

DUP Defense 0.915 0.897 1.140 0.788 1.064 0.698 1.179 0.427 0.985
FAT (Ours) 0.928 0.850 1.167 0.408 0.926 0.794 1.111 0.654 0.887

4.1 Experimental setup

Dataset. To validate the effectiveness of our FAT method in enhancing the corruption robustness of
3D point cloud recognition models, we train all models on the standard ModelNet40 training set [67].
In addition to reporting the performance of the models on the original ModelNet40 validation set, we
also evaluate the corruption robustness on ModelNet-C [41] in the main paper and ModelNet40-C
[51] in Appendix B. The ModelNet40 dataset [67] contains 12,311 CAD models with 40 common
object categories in the real world. We use the official split [35], where 9,843 examples are used
for training and the remaining 2,468 examples are used for testing. The ModelNet-C dataset [41] is
designed for measuring the network robustness to common point cloud corruptions. It consists of 7
different corruption types, including “Scale”, “Jitter”, “Rotate”, “Drop Global”, “Drop Local”, “Add
Global”, and “Add Local”. Each type of corruption has five severity levels. ModelNet40-C [51] is a
similar dataset with 15 corruptions, which will be detailed in Appendix B.

Model architectures. Following [41, 51], we select four representative model architectures: Point-
Net [35], DGCNN [65], PCT [17], and GDANet [74]. These models represent different architectural
designs and have been widely applied in 3D visual tasks.

Evaluation metrics. To measure the corruption robustness of different methods, we follow [41] and
use the mean corruption error (mCE) as the main evaluation metric. We adopt the official baseline
DGCNN and first compute the corruption error (CE) for a given corruption type i by averaging over
5 severity levels: CEi =

∑5
l=1(1−OAi,l)∑5

l=1(1−OADGCNN
i,l )

, where OAi,l is the overall accuracy on a corruption test

set i at severity level l, and OADGCNN
i,l is the overall accuracy of the baseline. Then, we average over

the 7 corruption types to compute the mean corruption error: mCE = 1
N

∑N
i=1 CEi. In addition, we

also report the clean overall accuracy (OA), the corruption overall accuracy (mOA), and the relative
mCE (RmCE) following [41]. Due to space constraints, we provide the definition of RmCE and
report mOA and RmCE in Appendix B.

Implementation details. For each method, we train 250 epochs using the smooth cross-entropy
loss [65] and Adam optimizer [23], and select the best performant model for further evaluation. We
follow the DGCNN protocol [16]. For our method, we set k = 30 for the k-nearest neighbor graph
and λ = 100 for dividing high-frequency and low-frequency [29]. We use PGD [33] and AOF [27] to
generate high-frequency adversarial examples and low-frequency adversarial examples, respectively.
We constrain Sh and Sl by 0.3 and 0.5, respectively. For more detailed training settings, please refer
to Appendix B.
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Figure 4: Visualization of the sensitivity maps based on Jacobian matrices of Frequency Adversarial Training
(FAT) and vanilla training under four different model architectures. FAT reduces the model sensitivity to different
frequency bands, thereby enhancing their robustness to corruptions.

4.2 Main results

In this section, following [41, 51], we compare our proposed Frequency Adversarial Training (FAT)
method with vanilla training, adversarial training and DUP Defense [93] on the ModelNet-C test
set, demonstrating the effectiveness of FAT in enhancing corruption robustness. Table 1 presents
a comparative analysis of different methods based on mean corruption error (mCE), clean overall
accuracy (OA), and corruption error (CE) for each corruption type.

As shown in Table 1, our proposed Frequency Adversarial Training (FAT) outperforms all other
methods in terms of mean corruption error (mCE), while exhibiting comparable performance in
terms of overall accuracy (OA). The improvement in corruption robustness across the four different
model architectures demonstrates the generalizability/universality of our method across different
architectures. In Fig. 4, we visualize the sensitivity maps based on Jacobian matrices of Frequency
Adversarial Training (FAT) and vanilla training under four different model architectures. FAT reduces
the sensitivity of the model across different frequency bands.

It is noteworthy that GDANet introduces a geometry-disentangle module to dynamically disentangle
point clouds into the contour and flat part of 3D objects, capturing complementary 3D geometric
semantics. In contrast, FAT does not modify the network architecture to focus on the frequency
domain but instead employs adversarial training in the frequency domain. As shown in Table 1, the
two methods are complementary and synergistic, leading to improved model robustness. We report
the performance of different methods in terms of overall corruption accuracy (mOA) and relative
mCE (RmCE) in Appendix B, where the improvement in robustness of FAT is also significant under
these metrics. The comparisons in Table 1 and Appendix B confirm that our proposed FAT enhances
the OOD generalization ability of the model.

4.3 Data augmentation

To further validate the effectiveness of our proposed Frequency Adversarial Training (FAT), follow-
ing [41], we investigate the performance of FAT in combination with different data augmentation
strategies, including RSMix [24], PointWOLF [22], and WOLFMix [41]. These strategies respec-
tively represent mix-based augmentation, deformation-based augmentation, and a combination of both
mix-based and deformation-based augmentation. RSMix involves rigidly blending two point clouds
using a transformation. PointWOLF enriches data diversity by applying non-rigid deformations to
object parts. WOLFMix, designed based on PointWOLF and RSMix, first deforms the objects and
then rigidly blends two deformed objects. When combining the data augmentation strategies, we first
perform data augmentation on the input point cloud and then generate adversarial examples. For
mix-based augmentation, we perform untargeted adversarial attacks on both labels being mixed to
generate the adversarial examples.

In Table 2, we show the performance of FAT when integrated with different data augmentation
strategies in terms of mean corruption error (mCE), clean overall accuracy (OA), and corruption
error (CE) for each corruption type. Compared with a single data augmentation strategy, the com-
bination of FAT and data augmentation strategies achieves a better mCE, which is attributed to
the complementary and compatible information from both the spatial and frequency domains. The
improvement in corruption robustness under three different data augmentation strategies demonstrates
the generalization capability of our proposed method. As shown in Table 2, training GDANet with
the combination of our proposed FAT with WOLFMix achieves a new state-of-the-art performance,
with an impressive 0.537 mCE.
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Table 2: Quantitative results of combining FAT with different data augmentation strategies on the ModelNet-
C test set. Compared with a single data augmentation strategy, the combination of FAT and different data
augmentation strategies achieves a better mCE. Training GDANet with the combination of our proposed FAT
with WOLFMix achieves the new state-of-the-art performance, with an impressive 0.537 mCE.

Method OA ↑ mCE ↓ Rotate Jitter Scale Drop-G Drop-L Add-G Add-L

Vanilla Training 0.907 1.422 1.902 0.642 1.266 0.500 1.072 2.980 1.593
RSMix 0.902 1.276 1.372 0.532 2.234 0.593 1.145 2.241 0.815
RSMix+FAT (Ours) 0.904 1.084 1.340 0.389 1.670 0.415 0.899 2.241 0.636

PointNet PointWOLF 0.902 1.311 0.912 0.633 2.128 0.754 1.575 2.210 0.964
PointWOLF+FAT (Ours) 0.902 0.993 0.558 0.487 1.372 0.589 1.411 1.759 0.775
WOLFMix 0.880 1.149 0.986 0.560 2.096 0.605 1.155 1.854 0.789
WOLFMix+FAT (Ours) 0.882 0.945 0.726 0.491 1.691 0.520 1.048 1.498 0.644

Vanilla Training 0.930 0.925 1.042 0.870 0.872 0.528 1.000 0.780 1.385
RSMix 0.925 0.660 1.116 0.614 1.106 0.488 0.522 0.302 0.473
RSMix+FAT (Ours) 0.925 0.604 1.093 0.354 1.106 0.427 0.531 0.308 0.411

PCT PointWOLF 0.923 0.846 0.428 0.788 0.979 0.504 1.130 1.040 1.051
PointWOLF+FAT (Ours) 0.923 0.785 0.465 0.415 1.096 0.556 1.217 0.953 0.796
WOLFMix 0.922 0.585 0.442 0.788 0.989 0.444 0.546 0.319 0.564
WOLFMix+FAT (Ours) 0.920 0.570 0.572 0.326 1.351 0.444 0.560 0.325 0.415

Vanilla Training 0.934 0.892 0.981 0.839 0.830 0.794 0.894 0.871 1.036
RSMix 0.927 0.680 1.205 0.873 1.000 0.484 0.531 0.281 0.385
RSMix+FAT (Ours) 0.929 0.617 1.153 0.427 1.021 0.504 0.531 0.285 0.396

GDANet PointWOLF 0.919 0.870 0.405 1.111 0.915 1.032 1.121 0.688 0.815
PointWOLF+FAT (Ours) 0.925 0.807 0.428 0.522 0.915 0.831 1.159 1.058 0.735
WOLFMix 0.920 0.601 0.428 0.937 0.968 0.540 0.589 0.298 0.444
WOLFMix+FAT (Ours) 0.930 0.537 0.530 0.418 1.138 0.460 0.527 0.281 0.404

Table 3: Quantitative results of FAT and its variants. FAT w/o low-frequency has a lower mCE for high-frequency
corruptions such as “Jitter”, while FAT w/o high-frequency has a lower mCE for low-frequency corruptions
such as “scale”. FAT w/o Advprop has a higher mCE but much worse OA. Compared with these methods, FAT
achieves the lowest mCE.

Method OA ↑ mCE ↓ Rotate Jitter Scale Drop-G Drop-L Add-G Add-L

Vanilla Training 0.907 1.422 1.902 0.642 1.266 0.500 1.072 2.980 1.593
FAT w/o low-frequency 0.890 1.306 1.614 0.373 1.734 0.504 1.193 2.627 1.098

PointNet FAT w/o high-frequency 0.906 1.317 1.702 0.519 1.234 0.452 1.043 2.851 1.415
FAT w/o frequency-division 0.904 1.310 1.679 0.516 1.351 0.444 1.106 2.817 1.255
FAT w/o Advprop 0.885 1.263 1.470 0.411 1.926 0.500 1.164 2.461 0.909
FAT 0.902 1.237 1.553 0.370 1.606 0.448 1.097 2.583 1.004

4.4 Ablation study

In this section, we conduct ablation study among our proposed Frequency Adversarial Training
(FAT), as well as FAT variants: FAT w/o low-frequency, FAT w/o high-frequency, FAT w/o frequency-
division, and FAT w/o Advprop. FAT w/o low-frequency generates only high-frequency adversarial
samples, while FAT w/o high-frequency generates only low-frequency adversarial samples. FAT w/o
frequency-division randomly generates adversarial samples within a certain frequency range, without
dividing the high and low frequency bands. FAT w/o Advprop does not use the AdvProp training
framework [72]. We compare these methods in Table 3 based on mean corruption error (mCE), clean
overall accuracy (OA), and corruption error (CE) measurements for each corruption type.

Compared with other methods, FAT w/o low-frequency has a lower mCE for high-frequency corrup-
tions such as “Jitter”, while FAT w/o high-frequency has a lower mCE for low-frequency corruptions
such as “scale”. As discussed in Sec. 3.3, this is because adversarial training on high/low frequencies
reduces the high/low frequency sensitivity, thus improving robustness to high/low-frequency corrup-
tions. The performance of FAT w/o frequency-division falls between FAT w/o low-frequency and
FAT w/o high-frequency. Although FAT w/o Advprop has a better mCE, its clean overall accuracy
(OA) is worse than the other methods due to mutual interference between samples from different
distributions, which may cause potential performance degradation. Compared with these methods,
FAT achieves the lowest mCE, showing the effectiveness of our algorithm. More experimental results
can be found in Appendix B.
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5 Conclusion

In this paper, we study the robustness of 3D point cloud recognition models under common corrup-
tions. We focus on the frequency domain to analyze the underlying structure of point clouds and
common corruptions. Through graph Fourier transform (GFT), we identify a correlation between
the corruption robustness and the model sensitivity to different frequency bands. Motivated by the
analysis, we propose Frequency Adversarial Training (FAT), an adversarial training method based
on frequency-domain adversarial examples to improve the corruption robustness of 3D point cloud
recognition models. Extensive experiments demonstrate that the proposed method significantly
improves the corruption robustness of various point cloud models, and can be integrated with other
data augmentation techniques to achieve the state-of-the-art performance.

Limitation and broader impact. A limitation of our proposed method is that it reduces the clean
accuracy a bit, e.g., FAT reduces the clean accuracy of DGCNN by 0.1%, PointNet by 0.5%, PCT by
1.0%, and GDANet by 0.6%. This may be caused by the inherent trade-off between accuracy and
robustness [88]. Additionally, despite the complexity in implementation, FAT does not affect the
efficiency of model inference, ensuring unhindered deployment of well-trained models in practical
applications. The robustness of 3D point cloud recognition under corruptions is a severe problem
towards safe and reliable 3D perception. Our work proposes an effective method to solve this issue,
which does not have any negative social impact.
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A Proof

Theorem 1. If f satisfies that: f(x) ∈ [0,M ] for all x, |f(F−1(F(x) + α)) − f(x)| ≤ ϵ
for all x and ∥α∥p ≤ δ, then for any distribution Po and Pa satisfying that Wasp(Po, Pa) :=

(infu∈Π(Po,Pa) E(x,z)∼u[∥F(x)− F(z)∥pp])1/p ≤ η, where η < δ, then, with probability 1− γ, we
have:

Ez∼Po
[f(z)]− 1

m

m∑
i=1

f(xi) ≤ ϵ

(
1− ηp

δp
−
√

ln(4/γ)

2m

)
+

ηp

δp
M + 4M

√
ln(4/γ)

2m
, (A.1)

where {xi}mi=1 are i.i.d. samples from Pa.

Proof. Assume u is a joint distribution of Po and Pa, such that (E(x,z)∼u[∥F(x)−F(z)∥pp])1/p ≤ η.
Firstly, by Markov inequality, we have that:

P(x,z)∼u(∥F(x)−F(z)∥p ≥ δ)
= P(x,z)∼u(∥F(x)−F(z)∥pp ≥ δp)

≤ E(x,z)∼u[∥F(x)−F(z)∥p
p]

δp

≤ ηp

δp .

(A.2)

Then, we have that:

E(x,z)∼u[I(∥F(x)−F(z)∥p ≤ δ)] = P(x,z)∼u(∥F(x)−F(z)∥p ≤ δ) ≥ 1− ηp

δp
. (A.3)

Now, let {(xu
i , z

u
i )}mi=1 be i.i.d. sampled from distribution u. Then, by Hoeffding inequality, we have

that:

(1): with probability 1− γ/4, there are

1
m

∑m
i=1 I(∥F(xu

i )−F(zui )∥p ≤ δ)

≥ E(x,z)∼u[I(∥F(x)−F(z)∥p ≤ δ)]−
√

ln(4/γ)
2m

≥ 1− ηp

δp −
√

ln(4/γ)
2m ,

(A.4)

which indicates that there are at least m(1 − ηp

δp −
√

ln(4/γ)
2m ) number of i ∈ [m] makes that

∥F(xu
i )−F(zui )∥p ≤ δ;

(2): with probability 1− γ/4, there are

− 1

m

m∑
i=1

f(zui ) + Ez∼Po [f(z)] = − 1

m

m∑
i=1

f(zui ) + E(x,z)∼u[f(z)] ≤ M

√
ln(4/γ)

2m
; (A.5)

(3): with probability 1− γ/4, there are

1

m

m∑
i=1

f(xu
i )− Ex∼Pa

[f(x)] =
1

m

m∑
i=1

f(xu
i )− E(x,z)∼u[f(x)] ≤ M

√
ln(4/γ)

2m
; (A.6)

Let {xi}mi=1 are i.i.d. samples from distribution Pa, then, by Hoeffding inequality, we have that:

(4): with probability 1− γ/4, there are

− 1

m

m∑
i=1

f(xi) + Ex∼Pa
[f(x)] ≤ M

√
ln(4/γ)

2m
; (A.7)
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So, with probability 1− γ makes that (1), (2), (3) and (4) stand, at this times, we can estimate the
Ez∼Po [f(z)]− 1
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i=1 f(xi), there are:
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(A.8)
We get our conclusion.

Our generalization bound can also be extended to Lipschitz neural networks, which are a class of
networks with global Lipschitz constants [11, 87].
Corollary A.1. If f satisfies that: f(x) ∈ [0,M ] for all x ∈ [0, 1]n, |f(F−1(F(x)+α))− f(x)| ≤
ϵ∥α∥p for all x ∈ [0, 1]n and α, then for any distribution Po and Pa in [0, 1]n satisfying that
Wasp(Po, Pa) := (infu∈Π(Po,Pa) E(x,z)∼u[∥F(x)−F(z)∥pp])1/p ≤ η, then, with probability 1− γ,
we have:

Ez∼Po
[f(z)]− 1

m

m∑
i=1

f(xi) ≤ ϵ(η + vη

√
ln(4/γ)

2m
) +

M

vp
+ 3M

√
ln(4/γ)

2m
, (A.9)

where {xi}mi=1 are i.i.d. samples from Pa, v is any real number greater than 1.

Proof. Assuming u is a joint distribution of Po and Pa, and makes that (E(F(x),F(z))∼u[∥x −
z∥pp])1/p ≤ η. Firstly, by Markov inequality, we have that:

P(x,z)∼u(∥F(x)−F(z)∥p ≥ vη)
= P(x,z)∼u(∥F(x)−F(z)∥pp ≥ (vη)p)

≤ E(x,z)∼u[∥F(x)−F(z)∥p
p]

(vη)p

≤ ηp

(vη)p = (1/v)p.

(A.10)

Then, we have that:

E(x,z)∼u(I(∥F(x)−F(z)∥p ≤ vη)) = P(x,z)∼u(∥F(x)−F(z)∥p ≤ vη) ≥ 1− 1

vp
. (A.11)

Now, let {(xi, zi)}mi=1 are i.i.d. samples from distribution u. Then, by Hoeffding inequality, we have
that:

(1): with probability 1− γ/4, there are
1
m

∑m
i=1 I(∥F(xu

i )−F(zui )∥p ≤ vη)∥F(xu
i )−F(zui )∥p
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(A.12)

(2): with probability 1− γ/4, there are
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; (A.13)
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(3): with probability 1− γ/4, there are
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Let {xi}mi=1 are i.i.d. samples from distribution Pa, then, by Hoeffding inequality, we have that:

(4): with probability 1− γ/4, there are
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So, with probability 1− γ makes that (1), (2), (3) and (4) stand, at this times, we can estimate the
Ez∼Po [f(z)]− 1

m

∑m
i=1 f(xi), there are:

Ez∼Po
[f(z)]

≤ 1
m

∑m
i=1 f(z

u
i ) +M

√
ln(4/γ)

2m

≤ 1
m

∑m
i=1 f(x

u
i ) + |f(xu

i )− f(zui )|+M
√

ln(4/γ)
2m

≤ 1
m

∑m
i=1 f(x

u
i ) + ϵ∥F(xu

i )−F(zui )∥pI(∥F(xu
i )−F(zui )∥p ≤ vη)

+MI(∥F(xu
i )−F(zui )∥p > vη) +M

√
ln(4/γ)

2m

≤ 1
m

∑m
i=1 f(x

u
i ) + ϵ(η + vη

√
ln(4/γ)

2m ) + M
vp +M

√
ln(4/γ)

2m

≤ Ex∼Pa
[f(x)] + ϵ(η + vη

√
ln(4/γ)

2m ) + M
vp + 2M

√
ln(4/γ)

2m

≤ 1
m

∑m
i=1 f(xi) + ϵ(η + vη

√
ln(4/γ)

2m ) + M
vp + 3M

√
ln(4/γ)

2m .

(A.16)

We get our conclusion.

B Supplementary experimental results

In this section, we provide more experimental results. All of the experiments are conducted on
NVIDIA Tesla V100 GPUs.

B.1 The performance in terms of mOA and RmCE

In this section, we present full results for corruption overall accuracy (mOA) and relative mCE
(RmCE) [41]. The mOA is computed as the average OA over all corruptions. The RmCE quantifies
the performance drop compared to a clean test set. We adopt the official baseline DGCNN and

Table B.1: Quantitative results of vanilla training, adversarial training and our proposed Frequency Adversarial
Training (FAT) on the ModelNet-C test set. Our proposed FAT outperforms all other methods in terms of
corruption overall accuracy (mOA), which demonstrates the effectiveness of FAT for improving corruption
robustness.

Method OA ↑ mOA ↑ Rotate Jitter Scale Drop-G Drop-L Add-G Add-L

Vanilla Training 0.926 0.764 0.785 0.684 0.906 0.752 0.793 0.705 0.725
DGCNN Adv Training 0.925 0.790 0.781 0.816 0.902 0.753 0.772 0.743 0.761

FAT (Ours) 0.925 0.815 0.807 0.857 0.907 0.769 0.799 0.772 0.791

Vanilla Training 0.907 0.658 0.591 0.797 0.881 0.876 0.778 0.121 0.562
PointNet Adv Training 0.904 0.673 0.602 0.822 0.879 0.889 0.777 0.148 0.591

FAT (Ours) 0.902 0.717 0.666 0.883 0.849 0.889 0.773 0.238 0.724

Vanilla Training 0.930 0.781 0.776 0.725 0.918 0.869 0.793 0.770 0.619
PCT Adv Training 0.919 0.778 0.776 0.877 0.899 0.774 0.753 0.673 0.693

FAT (Ours) 0.920 0.798 0.783 0.891 0.898 0.791 0.744 0.731 0.747

Vanilla Training 0.934 0.789 0.789 0.735 0.922 0.803 0.815 0.743 0.715
GDANet Adv Training 0.926 0.781 0.761 0.840 0.903 0.770 0.764 0.686 0.742

FAT (Ours) 0.928 0.810 0.749 0.871 0.913 0.803 0.770 0.807 0.756
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Table B.2: Quantitative results of vanilla training, adversarial training and our proposed Frequency Adversarial
Training (FAT) on the ModelNet-C test set. Our proposed FAT outperforms all other methods in terms of relative
mCE (RmCE), which demonstrates the effectiveness of FAT for improving corruption robustness.

Method OA ↑ RmCE ↓ Rotate Jitter Scale Drop-G Drop-L Add-G Add-L

Vanilla Training 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGCNN Adv Training 0.925 0.914 1.021 0.450 1.150 0.989 1.150 0.824 0.816

FAT (Ours) 0.925 0.746 0.837 0.281 0.899 0.897 0.947 0.692 0.667

Vanilla Training 0.907 1.488 2.241 0.455 1.300 0.178 0.970 3.557 1.716
PointNet Adv Training 0.904 1.393 2.142 0.339 1.250 0.086 0.955 3.421 1.557

FAT (Ours) 0.902 1.334 1.674 0.079 2.650 0.075 0.970 3.005 0.886

Vanilla Training 0.930 0.884 1.092 0.847 0.600 0.351 1.030 0.724 1.547
PCT Adv Training 0.919 0.929 1.014 0.174 1.000 0.833 1.248 1.113 1.124

FAT (Ours) 0.920 0.853 0.972 0.120 1.098 0.741 1.323 0.855 0.861

Vanilla Training 0.934 0.865 0.753 0.822 0.600 0.895 0.864 1.090 1.028
GDANet Adv Training 0.926 0.970 1.170 0.355 1.150 0.897 1.218 1.086 0.915

FAT (Ours) 0.928 0.795 1.270 0.236 0.750 0.718 1.188 0.548 0.856

Table B.3: Quantitative results of vanilla training and our proposed Frequency Adversarial Training (FAT) on the
ModelNet40-C test set. Our proposed FAT outperforms other methods in terms of mCE, which demonstrates the
effectiveness of FAT for improving corruption robustness.

Method OA ↑ mCE ↓ Uni. Gauss. Impluse Upsamp. Back. Occlu. LiDAR Den.Inc. Den.Dec. Cutout Rotate Shear FFD RBF Inv.RBF

DGCNN VT 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FAT 0.925 0.782 0.687 0.601 0.551 0.580 0.764 0.952 0.912 0.881 0.919 0.863 0.808 0.824 0.817 0.787 0.785

PointNet VT 0.907 1.157 0.850 0.871 1.168 0.733 1.763 0.883 0.677 0.739 0.671 0.778 1.930 2.105 1.626 1.277 1.274
FAT 0.902 1.009 0.763 0.731 0.833 0.631 1.689 0.904 0.694 0.710 0.633 0.730 1.688 1.807 1.328 1.012 0.979

PCT VT 0.929 0.959 0.828 0.839 1.568 0.908 1.091 0.956 0.947 0.837 0.829 0.942 0.949 0.956 0.943 0.892 0.898
FAT 0.920 0.699 0.584 0.535 0.519 0.553 0.604 0.953 0.739 0.653 0.757 0.753 0.872 0.858 0.814 0.647 0.644

GDANet VT 0.934 0.869 0.950 0.995 0.912 0.864 0.801 0.987 0.829 0.698 0.690 0.777 0.947 0.914 0.883 0.900 0.885
FAT 0.928 0.764 0.645 0.604 0.502 0.579 0.508 0.998 0.817 0.776 0.805 0.819 1.029 0.979 0.888 0.758 0.753

initially calculate the relative corruption error (RCE) for a given corruption type i by averaging over
5 severity levels: RCEi =

∑5
l=1(OAclean−OAi,l)∑5

l=1(OADGCNN
clean −OADGCNN

i,l )
, where OAclean is the overall accuracy on the

clean test set. Subsequently, we compute the relative mean corruption error (RmCE) by averaging
over the 7 corruption types: RmCE = 1

N

∑N
i=1 RCEi. In Tables B.1 and B.2, we compare different

methods based on the mOA and RmCE metrics, confirming that our proposed FAT enhances the
model’s out-of-distribution generalization ability.

B.2 The performance on the ModelNet40-C

In this section, we evaluate the corruption robustness on ModelNet40-C [51]. The ModelNet40-
C dataset is specifically designed to assess the network robustness against prevalent point cloud
corruptions. It consists of 15 different corruption types, including “Uniform”, “Gaussian”, “Impulse”,
“Upsampling”, “Background”, “Occlusion”, “LiDAR”, “Local Density Inc”, “Local Density Dec”,
“Cutout”, “Rotation”, “Shear”, “FFD”, “RBF”, and “Inv RBF”. Each type of corruption has 5 severity

Table B.4: Quantitative results of the performance of FAT when integrated with data augmentation strategy in
terms of mCE and ERcor on the ModelNet40-C test set. In previous studies [51], PCT with CutMix-R achieves
the best robustness with the 0.635 mCE and 0.163 ERcor. However, training GDANet with the combination of
our proposed FAT with WOLFMix achieves the new state-of-the-art performance, with the impressive 0.555
mCE and 0.147 ERcor.

Method OA ↑ mCE ↓ Noise Density Trans. ERcor ↓ Noise Density Trans.

PCT+CutMix-R 0.928 0.635 0.469 0.669 0.766 0.163 0.105 0.271 0.112
PCT+WOLFMix 0.922 0.627 0.580 0.673 0.629 0.158 0.118 0.267 0.090
PCT+WOLFMix+FAT (Ours) 0.920 0.583 0.454 0.636 0.658 0.151 0.097 0.261 0.094
GDANet+WOLFMix 0.920 0.669 0.709 0.685 0.612 0.171 0.137 0.289 0.087
GDANet+WOLFMix+FAT (Ours) 0.930 0.555 0.450 0.627 0.588 0.147 0.094 0.263 0.084
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Table B.5: Quantitative results of vanilla training, adversarial training, DUP Defense and our proposed Frequency
Adversarial Training (FAT) on the ScanObjectNN-C test set. Our proposed FAT outperforms all other methods
in terms of mean corruption error (mCE), which demonstrates the effectiveness of FAT for improving corruption
robustness.

Method OA ↑ mCE ↓ Rotate Jitter Scale Drop-G Drop-L Add-G Add-L

Vanilla Training 0.858 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGCNN Adv Training 0.843 1.062 1.146 0.778 1.097 0.873 0.960 1.185 1.396

DUP Defense 0.832 1.029 1.195 0.833 1.157 1.197 1.214 0.773 0.834
FAT (Ours) 0.856 0.933 0.968 0.815 0.959 0.852 0.950 0.959 1.026

Vanilla Training 0.739 1.354 1.610 0.884 1.427 0.786 1.264 1.487 2.022
PointNet Adv Training 0.725 1.334 1.532 0.844 1.403 0.873 1.333 1.474 1.881

DUP Defense 0.712 1.348 1.717 0.825 1.555 1.157 1.480 0.829 1.875
FAT (Ours) 0.734 1.254 1.393 0.796 1.465 0.844 1.264 1.259 1.759

Vanilla Training 0.873 0.921 0.995 1.079 0.803 0.807 0.942 0.944 0.875
PointNext Adv Training 0.870 0.901 0.991 1.027 0.803 0.833 0.929 0.912 0.809

DUP Defense 0.859 0.901 0.980 1.046 0.826 0.748 0.973 0.923 0.809
FAT (Ours) 0.875 0.877 0.998 0.916 0.791 0.786 0.867 0.938 0.840

Table B.6: Quantitative results of vanilla training, adversarial training, DUP Defense and our proposed Frequency
Adversarial Training (FAT) on the PointNeXt on ModelNet-C. Our proposed FAT outperforms all other methods
in terms of mean corruption error (mCE), which demonstrates the effectiveness of FAT for improving corruption
robustness.

Method OA ↑ mCE ↓ Rotate Jitter Scale Drop-G Drop-L Add-G Add-L

Vanilla Training 0.932 0.856 1.460 1.297 0.904 0.847 0.957 0.251 0.276
PointNeXt Adv Training 0.924 0.834 1.593 0.716 1.025 0.876 1.144 0.230 0.251

DUP Defense 0.919 0.840 1.461 0.838 1.192 0.715 1.188 0.224 0.262
FAT (Ours) 0.930 0.781 1.412 0.692 0.986 0.827 1.082 0.230 0.241

levels. In Table B.3, we compare different methods on the ModelNet40-C test set, confirming that
our proposed FAT enhances the OOD generalization ability of the model.

In Table B.4, we show the performance of FAT when integrated with data augmentation strategy in
terms of mCE and ERcor. In previous studies [51], PCT with CutMix-R achieves the best robustness
with the 0.635 mCE and 0.163 ERcor. However, training GDANet with the combination of our
proposed FAT with WOLFMix achieves a new state-of-the-art performance, with the impressive
0.555 mCE and 0.147 ERcor.

B.3 The performance on the ScanObjectNN-C

We further conduct experiments on the ScanObjectNN dataset, which is collected by LiDAR sensors
and represents more realistic conditions under real-world scenarios [2, 58, 96, 94]. The experimental
settings and evaluation metrics on ScanObjectNN-C [62] are consistent with those on ModelNet-C.
The results are shown in Table B.5. It can be seen that our FAT generally leads to lower mCE on
ScanObjectNN-C. The experimental results on ScanObjectNN-C further validate the generalizability
and applicability of our FAT under real-world conditions.

B.4 The performance on the PointNeXt

We further conduct experiments for the updated point cloud model PointNeXt [37]. The results in
Table B.5 and Table B.6 demonstrate that FAT achieves consistent performance on the advanced
network architecture PointNeXt, similar to observations on PointNet and more. Our FAT outperforms
all other methods in terms of mCE. This indicates that FAT’s performance is largely independent of
the underlying model architecture, making it applicable to both traditional and modern networks.

B.5 The performance in combination with AdaptPoint

We further conduct experiments for comparison with AdaptPoint [62] on ScanObjectNN-C. Adapt-
Point follows the official experimental settings. The results are shown in Table B.7. It is evident that
incorporating FAT achieves a lower mCE, indicating its superiority.
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Table B.7: Quantitative results of combining FAT with AdaptPoint on ScanObjectNN-C. Compared with single
AdaptPoint, the combination of FAT and AdaptPoint achieves a better mCE.

Method OA ↑ mCE ↓ Rotate Jitter Scale Drop-G Drop-L Add-G Add-L

PointNet AdaptPoint 0.743 1.256 1.359 0.875 1.519 0.676 1.112 1.448 1.804
AdaptPoint+FAT (Ours) 0.744 1.196 1.370 0.823 1.446 0.690 1.125 1.220 1.701

PointNext AdaptPoint 0.885 0.783 0.767 1.030 0.810 0.508 0.628 0.911 0.824
AdaptPoint+FAT (Ours) 0.885 0.761 0.748 0.948 0.833 0.521 0.648 0.829 0.802
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed limitations in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided the full set of assumptions in every theorem and made a
complete proof in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided reproductive details in Section 4.1 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have provided our codes in the supplemental matrial.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided experimental details in Section 4.1 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: For fair comparison, we do not provide error bars because there are many
baseline methods, it is computationally expensive to reproduce all of these methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Justification: We have provided them in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed them in Appendix 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use open-source dataset and models in our paper, and have cited the
original paper of these dataset and models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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