
Learning Generalised Policies for Numeric Planning

Primary Keywords: (2) Learning;

Abstract
We extend Action Schema Networks (ASNets) to learn gen-
eralised policies for numeric planning, which features quan-
titative numeric state variables, preconditions and effects. We
propose a neural network architecture that can reason about
the numeric variables both directly and in context of other5

variables. We also develop a dynamic exploration algorithm
for more efficient training, by better balancing the explo-
ration versus learning tradeoff to account for the greater com-
putational demand of numeric teacher planners. Experimen-
tally, we find that the learned generalised policies are capable10

of outperforming traditional numeric planners on some do-
mains, and the dynamic exploration algorithm to be on aver-
age much faster at learning effective generalised policies than
the original ASNets training algorithm.

Introduction15

Generalised planning is broadly concerned with the repre-
sentation, synthesis, and learning of plans, policies, heuris-
tics, and other forms of control knowledge applicable to
many problem instances (Srivastava, Immerman, and Zil-
berstein 2011; Hu and Giacomo 2011; Celorrio, Aguas, and20

Jonsson 2019). Interest in generalised planning has steadily
increased in recent years, fueled in part by advances in ma-
chine learning, and by the development of new formalisms
to represent and reason about generalised planning tasks
and their solutions (Toyer et al. 2018; Francès et al. 2019;25

Garg, Bajpai, and Mausam 2019; Bonet and Geffner 2020;
Aguas, Jiménez, and Jonsson 2020; Toyer et al. 2020; Shen,
Trevizan, and Thiébaux 2020; Karia and Srivastava 2021;
Aguas, Jiménez, and Jonsson 2021; Ståhlberg, Bonet, and
Geffner 2022; Lin et al. 2022).30

An important limit of existing work on generalised plan-
ning is that it only allows for primitive forms of quantitative
information to be modelled,1 even though such information
is core to many real world problems – for example, mod-
elling a delivery robot requires modelling how much weight35

it can hold, and modelling flights require reasoning about the
the product of distance travelled and fuel consumption per
unit of distance. This is despite the existence of the vibrant
field of Numeric planning, which extends classical plan-
ning formalisms to allow modelling numeric fluents, condi-40

tions and effects (Fox and Long 2003), and typically handles
1We are only aware of a single exception (Lin et al. 2022).

them using new heuristic search, optimisation, or satisfiabil-
ity modulo theory based techniques (Hoffmann 2003; Coles
et al. 2013; Scala et al. 2016a,b, 2020; Kuroiwa et al. 2022;
Leofante 2023). 45

In this paper, we extend a state of the art generalised plan-
ning approach, namely Action Schema Networks (ASNets)
(Toyer et al. 2018, 2020) to handle numeric planning prob-
lems described in PDDL2.1 (Fox and Long 2003). ASNets
is a recent deep learning architecture capable of represent- 50

ing policies for generalised planning, and designed to learn
from smaller planning tasks and then apply that knowledge
to tackle larger, more complex challenges within the same
domain. The network’s contruction exploits the relational
structure of planning problems and domains, and its con- 55

nectivity reflects the precondition-effect relationships cap-
tured in the domain’s action schemas. This scheme makes it
possible to share weights between policy networks instanti-
ated for different problems in a domain, and learn a single
set of parameters which can be transferred to problems of 60

arbitrary size in that domain. ASNets are trained using an
imitation learning algorithm, which iteratively explores the
state space of the training problems using a teacher planner.
Experiments with classical and probabilistic domains have
shown that ASNets can outperform conventional planners 65

when the domain has simple tricks that are key to solving
larger problems but which can be learned from small prob-
lems.

To extend ASNets to numeric planning, We first propose
a network module that enables ASNets to directly reason 70

about numeric fluents. Then, we illustrate why such rea-
soning is not always sufficient for learning effective gener-
alised policies. We argue that reasoning about the interac-
tion between individual fluents is crucial, and allow ASNets
to perform this interaction reasoning through numeric com- 75

parisons in the problem. To cope with the increased length
of numeric plans and run-time of numeric planning teachers
in comparison with their classical planning counterparts, we
also propose a new training algorithm which offers greater
control over the exploration versus learning balance. 80

Finally, we evaluate our proposed techniques on a rep-
resentative set of benchmarks from the latest International
Planning Competition, featuring both simple and linear nu-
meric planning domains. Our results show that our exten-
sions to ASNets allow it to learn generalised policies capa- 85

ble of solving problem instances significantly more complex
than those seen in training, and outperform non-learning
planners in several domains. We also find that the greater
control offered by our new training algorithm allows ASNets
to be trained much more quickly without compromising the90

effectiveness of the learned generalised policies.

Numeric Planning

As in PDDL2.1 (Fox and Long 2003), a numeric planning
problem, denoted as P = ⟨D, I⟩, consists of a domain D
and an instance I . The domain includes predicates P , func-95

tions F , and action schemas A; the instance I comprises
objects O and additional elements. Each predicate p ∈ P
and function f ∈ F applies to object arguments o1, . . . , on
from O to form ground proposition p(o1, . . . , on) and flu-
ents f(o1, . . . , on) respectively.2 Through grounding, the100

sets P,F , and O define the set of all possible propositions
P and fluents F , which encode a state space S where a state
is an assignment of boolean values to each proposition and
real values to each fluent.

A comparison schema has the form ξ ⊵ γ, where ⊵∈ {≤105

, <,=, >,≥}, ξ is an arithmetic expression over F , and γ
is a real constant. Once grounded, ξ becomes an arithmetic
expression over F , and the ground comparison is a map-
ping from S to a truth value. Each action schema α ∈ A
has a precondition pre(α) that is a conjunction of compar-110

ison schemas and predicates. The effect of α, eff(α), is a
schema to assign boolean values to propositions and/or in-
crease/decrease/assign the value of arithmetic expressions
over F . Given objects O, action schemas in A ground to
a set of actions A. The problem P is linear if all arithmetic115

expressions are linear, and simple if furthermore the numeric
action effects only involve increasing or decreasing fluents
by a constant.

The instance I , in full, is a tuple I = ⟨O, s0, G,M⟩. The
initial state s0 is any state in S, the goalG is a conjunction of120

comparisons and propositions, and the plan metric M is an
optional arithmetic expression over F . An action is applica-
ble in a state when its precondition is satisfied, and its appli-
cation yields a new state according to its effect. Propositions
and fluents not included in the effect remain unchanged. A125

plan is a sequence of actions. It is an executable plan if when
iteratively applied in s0, each subsequent state satisfies the
next action precondition, and it is a goal achieving plan if
the final state satisfies G. A valid plan is an executable goal
achieving plan. The cost of a valid plan is the value of M at130

the final state if M is provided, or otherwise the number of
actions in the plan. For this paper, a generalised policy for
a domain D is a mapping from instances to executable (but
not necessarily goal achieving) plans. The effectiveness of
a generalised policy over a finite set of instances measures135

the proportion of instances the policy maps to goal-acheving
plans. The more effective a generalised policy is, the larger
this number is.

2The value of n, or arity, is dependent on the particular predi-
cate or function.

Numeric Action Schema Networks
Action Schema Networks are a state of the art approach for 140

learning generalised policies for classical planning problems
(Toyer et al. 2020). Core to its effectiveness is its ability to
generalise from a small set of training problems to much
larger and unseen problems in the same domain, thereby
amortising training time. This original approach is unable to 145

perform numeric reasoning effectively due to a lack of archi-
tectural components dedicated to numeric reasoning. In this
section we propose Numeric Action Schema Networks (ν-
ASNets) for learning generalised policies for numeric plan-
ning. 150

A ν-ASNet is a neural network with weights θ that takes
in input vectors describing the current state s and outputs a
probability distribution πθ(a|s) over all applicable actions
a. For each problem instance, a ν-ASNet is constructed
with the weights θ shared between all instances in the 155

same domain. That is, the network architecture is instance-
dependent, but the weights are instance-agnostic through a
weight-sharing mechanism that we describe later.

For each instance, the ν-ASNet architecture includes lay-
ers of network modules that alternate between encoding ac- 160

tion and state information, as shown in Figure 1. Each ac-
tion layer contains an action module for each action a ∈ A.
The last layer of a ν-ASNet is always an action layer whose
outputs determine πθ, and we inherit the assumption from
ASNets that the first layer is also always an action layer. 165

Each state layer contains one state module for each piece of
state information, namely propositions, fluents, and compar-
isons. Each network fixes a hidden dimension dh, and net-
works modules propagate forward a hidden representation
vector in Rdh to connected modules in the next layer. Net- 170

work modules are connected sparsely to modules in adjacent
layers through a notion of relatedness.
Definition 1 (relatedness) An action a is related to a
proposition p, fluent f , or comparison c at position k, de-
noted byR(a, p/f/c, k), if p/f/c is a ground instance of the 175

kth unique predicate/function/comparison schema appear-
ing in the action schema of a, respectively.
Example 1 Consider the following action schema for a
robotic arm picking up an object of a given weight, subject
to a limit on the total load carried by the arm: 180

pickup(b, o):
prec : clear(o),weight(o) + load(b) ≤ limit(b)
eff : ¬clear(o),holding(b, o), load(b)+= weight(o)

The action pickup(b1, o1) for a particular robot arm b1 and
object o1 is related at position 1 to the proposition clear(o1),
at position 2 to the proposition holding(b1, o1), at position 1
to the fluent weight(o1), at position 2 to the fluent load(b1), 185

at position 3 to the fluent limit(b1), and at position 1 to the
comparison weight(o1) + load(b1) ≤ limit(b1).

The notion of relatedness extends naturally to the various
network modules introduced below.

Action modules. The action module for a ∈ A in the lth 190

action layer takes an input vector ula and produces a hidden
representation

ϕla = σ(W l
a · ula + bla)

Figure 1: (Left) Overview of an ν-ASNet with L state layers and L+ 1 action layers, with colours in state layer indicating the
different types of modules. (Right) example fluent module for the fluent weight(o1) in a problem instance with two robot arms
b1 and b2 from a domain where weight(o) occurs in two action schemas pickup(b, o) and drop(b, o).

where W l
a ∈ Rdh×dl

a and bla ∈ Rdh are the learnt weight
matrix and bias vector for the action module, σ is a non-
linearity, dh is the fixed hidden representation size, and dla195

is the dimension of ula. The input vector is constructed by
concatenating the hidden representation of all related state
modules in the previous layer, ignoring relatedness position

ula =
[
ψl−1
1

T
. . . ψl−1

M

T
]T

where ψl−1
j is the hidden representation produced by a re-

lated state module in the preceding state layer. Since all ψl−1
j200

have dimension dh, ula has dimension M · dh.
The related state modules of an action a ∈ A can be de-

termined by enumerating all the predicates, functions, and
comparison schemas in its action schema grounding them
using the same objects used to ground a. If we impose an205

ordering on these constructs (e.g. using position), the struc-
ture and dimension of ula across all actions with the same
schema is fixed. Such structure is the key to weight-sharing.
For a given domain, all action modules across different ν-
ASNets at the same layer l with the same action schema α210

share the same weight matrix W l
α and bias vector blα. This

allows us to apply the same set of weights to any instance
in a domain, as all actions in these problem instances are
grounded from the same set of action schemas.

Fluent modules. In each state layer, there is one fluent215

module for each fluent in the problem. Fluent modules allow
the network to reason directly about the quantitative compo-
nents of the state space. Like action modules, a fluent mod-
ule for fluent f ∈ F in the lth state layer computes a hidden
representation220

ψl
f = σ(W l

f · vlf + blf)

where W l
f ∈ Rdh×dl

f and blf ∈ Rdh are the learned weight
matrix and bias vector, σ is the same nonlinearity as before,
vlf is the input feature vector, and dlf is the dimension of vlf .

Like action modules, weight-sharing requires that the in-
put vectors vlf have a similar structure for fluents derived225

from the same function. Unlike action modules, the num-
ber of actions related to a fluent is not instance-agnostic, so
simple concatenation of hidden representations of related ac-
tion modules from the preceding layer is not sufficient. We
treat this similar to how proposition modules are constructed230

in the original ASNets. From all the actions related to f at

various positions, we extract their action schemas and enu-
merate all unique pairs {(α1, k1), . . . , (αS , kS)} of action
schemas and position pairs. These pairs are only dependent
on the function of f . We then construct the input feature by 235

vlf =

pool({ϕla | op(a) = α1 ∧R(a, f, k1})
...

pool({ϕla | op(a) = αS ∧R(a, f, kS})


where op(a) is the action schema of a and pool is a pooling
function to combine multiple Rdh vectors into one Rdh vec-
tor. Like the original ASNets we use the element-wise max
function for pool. The structure of the resulting input feature
is only dependent on domain information, namely the action 240

schemas and functions, and hence enables weight-sharing
– all fluent modules across different ν-ASNets at the same
layer l with the same function share the same weight matrix
and bias vector.

Proposition modules. Like the original ASNets, in each 245

state layer we include a proposition module for each propo-
sition in the problem. Proposition modules are almost identi-
cal to fluent modules, with the same computation for hidden
representation, construction of input feature, and weight-
sharing property. 250

Comparison modules. By including fluent modules in the
network and fluent values in the network input, ν-ASNets
are able to learn generalised policies that reason directly
on the value of each fluent. Such reasoning is unfortunately
not always sufficient. Consider a domain D whose sole nu- 255

meric component involves robotic arms with load limits lift-
ing up items of varying weight, and suppose two problem
instances I and I ′ differ only in that all the load limit and
item weights in I ′ are double their counterparts in I . There
is no practical difference between the problem P = ⟨D, I⟩ 260

and P ′ = ⟨D, I ′⟩, and an ideal generalised policy should
produce the same plan for both problems. Fluent modules
are unable to recognise this “symmetry” between P and P ′

– weights learned by training on P would not apply directly
to P ′. 265

More generally, the value of fluents are often only mean-
ingful in the context of other fluent values, and it is valu-
able to allow learned generalised policies to reason about
the interaction between fluents. In particular, fluents interact
in comparisons in action preconditions, which we capture 270

through comparison modules. Let comp(a) denote the com-
parisons in action a and C =

⋃
a∈A comp(a), in each state

layer there is one comparison module for each comparison.
A comparison module for the comparison c ∈ C in the lth
state layer computes a hidden representation275

ψl
c = σ(W l

c · vlc + blc)

where W l
c ∈ Rdh×dl

c and blc ∈ Rdh are the learned weight
matrix and bias vector, σ is the same nonlinearity as before,
vlc is the input feature vector, and dlc is the dimension of vlc.

Similar to fluent modules, a pooling mechanism is em-
ployed to enable weight-sharing between comparisons that280

share the same schema. From all actions related to c at vari-
ous positions, we extract their action schemas and enumerate
all unique pairs {(α1, k1), . . . , (αS , kS)} of action schema
and position pairs. Again, these pairs only depend on the
comparison schema of c, and we construct the input feature285

using them by

vlc =

pool({ϕla | op(a) = α1 ∧R(a, c, k1})
...

pool({ϕla | op(a) = αS ∧R(a, c, kS})


where pool is the same pooling function as before. The re-
sulting input feature vlc is again only dependent on domain
information, and hence enables weight-sharing where all
comparison modules across different ν-ASNets at the same290

layer l with the same comparison schema share the same
weight matrix and bias vector.

Input. The first and last action layers take minor excep-
tions to the above as they are the input and output layers of
the network. For the first layer, there is no preceding state295

layer and the input vector u1a is a vector encoding state and
heuristic information relevant to the current action. Specifi-
cally,

u1a =
[
vTp vTf vTc gTp gTf m ca c

T
L
]T

where vp, vf , vc are the values of the related propositions,
fluents, and comparisons of the action in the current state300

respectively, gp and gf indicate if the related propositions
and fluents appear in the goal or not, m is a boolean value
indicating if the action a is applicable in the current state,
ca is the number of times a has been applied so far, and
cL is a boolean vector encoding landmark information. For305

vc, we treat the value of a comparison as the boolean value
indicating if it is satisfied.

The lack of goal input gc for comparisons is a conse-
quence of the lack of overlap between comparisons in action
preconditions and comparisons in the goal. We also cannot310

include goal comparisons directly in the input as there is no
notion of relatedness between them and actions. In domains
where all instances of interest have goals with the same
structure, one can define a “reach” action whose precondi-
tion is the original goal and effect is a proposition “goal-315

reached” which also replaces the goal. This special action
would allow ν-ASNets to reason about goal comparisons.

The inclusion of ca and cL is to compensate for the recep-
tive field problem discussed in the original paper (Toyer et al.
2020). Essentially, longest chain of related action and state320

modules the network can reason about is limited by its fixed

and finite depth. The inclusion of heuristic information can
effectively address this problem. The action count ca helps
the network avoid cycling between adjacent states. The nu-
meric landmark encoding cL in ν-ASNets is derived from 325

hybrid landmarks extracted from an AND/OR graph struc-
ture (Scala et al. 2017). Each such landmark ℓ has a target
tℓ along with a set of actions Aℓ and contributions for each
action {λaℓ | a ∈ Aℓ}, and represents the inequality∑

a∈Aℓ

λaℓ ya ≥ tℓ

where ya is the number of times action a is applied from the 330

current state. Given a set of hybrid landmarks, the resulting
landmark encoding cL is a vector in {0, 1}3, where c(1)L =
1 if the action a appears as the only action in Aℓ for any
landmark, c(2)L = 1 if the action a appears in any Aℓ with
other actions, and c(3)L = 1 if a does not appear in any Aℓ. 335

We have also experimented with other encodings of hy-
brid landmarks, specifically encodings that take into account
the contribution and target of landmarks. We additionally
experimented with removing all numeric components of the
numeric problem and encoding the LM-cut landmarks of the 340

resulting classical planning problem (Helmert and Domsh-
lak 2009), which were used in the original ASNets. We did
not find experimental success for either.

Output. The last layer of the network is the output layer.
The output ϕL+1

a of each action module in the last layer is 345

only a single real number, and the resulting output of the
network is the masked softmax of all individual outputs,

πθ(a | s) = ma exp(ϕ
L+1
a)∑

a′∈Ama′ exp(ϕL+1
a′)

wherema is a boolean mask of whether the action a is appli-
cable in the current state s, and πθ(a | s) is the probability
of selecting action a in state s. 350

Given weights θ for a domain, the resulting generalised
policy for a domain produces a plan for each instance by re-
peatedly selecting and applying actions using πθ, starting at
the initial state, and terminating upon reaching a goal state,
a state with no applicable action, or a fixed length limit. Like 355

ASNets, we use πθ during training by sampling from it, and
during evaluation by greedily selecting the action with max-
imum probability and breaking ties deterministically.

Miscellaneous. We have introduced comparison modules
and fluent modules together, along with their implications 360

for network input and action modules. It is important to note
that they can and are designed to be applied separately. We
term the network with only comparison modules C-ASNets
and the network with only fluent modules F-ASNets. This
specialisation allows the network to focus on a particular 365

form of reasoning, reduce computation burden, and poten-
tially reduce overfitting. To disambiguate, we will use B-
ASNets to refer to the network with both modules, and ν-
ASNets to refer to the collection of architectural variations.

It is worth noting that ν-ASNets make no requirement on 370

the form of comparisons or numeric effects appearing in the

Figure 2: The exploration algorithm used by the original
ASNets, where all states from the sampled trajectories are
explored with the teacher planner. For all states shown, the
teacher planner is called on all applicable actions to label the
optimal actions

problem, and can be applied to the full numeric fragment
of PDDL 2.1 (Fox and Long 2003). Additionally, we also
include skip connections between modules that correspond
to the same action, proposition, etc. (Toyer et al. 2020),375

which make it easier for the network to propagate informa-
tion across layers.

Dynamic Exploration
Like the original ASNets, for each domain, we train ν-
ASNets on a small number of training problem instances380

under the supervision and guidance of a teacher planner.
We use the state-of-the-art ENHSP numeric planner as our
teacher planner (Scala et al. 2020). The original algorithm
trains over a number of epochs. Each epoch involves an ex-
ploration phase and a learning phase. The exploration algo-385

rithm used by the original ASNets first uses the current net-
work weights θ to sample a number of trajectories from πθ,
then explores all the states from these trajectories by call-
ing the teacher planner on them, and adding all the resulting
states to a multiset state memory Smem, as illustrated in Fig-390

ure 2. For each state added to Smem, the teacher planner is
called on the resulting state of applying each applicable ac-
tion, and the actions leading to the lowest-cost plans are la-
belled optimal. The learning phase then updates the weights
through mini-batch gradient descent to choose the optimal395

actions.
In our preliminary experiments we find that the original

exploration algorithm is inadequate for effectively learning
generalised policies for numeric planning. We observe that
for numeric planning, the plan lengths of even simple train-400

ing problems tend to be longer than that of classical plan-
ning, and ENHSP to be much slower than teachers used by
ASNets for classical planning. In each epoch, the number of
states added to Smem in the original exploration algorithm is
quadratic in the plan lengths of the training problems, result-405

ing in a large number of states added for numeric planning.
This has a number of downstream consequences in the orig-
inal exploration algorithm:
1. For each state s added to Smem, the teacher is called

for each applicable action in s. An increased number of410

states added to Smem therefore leads to a significant in-
crease in calls to the teacher planner, especially in do-
mains where states tend to have many applicable actions.

2. The learning phase uses states in Smem for training. We
observe that the size of Smem is sometimes a few orders 415

of magnitude larger than the number of states used in the
learning phase. In this case many states added to Smem

are rarely used, wasting memory and exploration effort.
3. The alternating exploration and learning phases mean

that states added to Smem early are explored using out- 420

dated network weights (stale) and hence less useful for
learning than more recently added states.

We propose a dynamic exploration algorithm to address
these problems by removing stale states and dynamically ad-
justing the amount of exploration performed based on the 425

time spent on the learning phase, as shown in Algorithm
1. In each exploration phase, dynamic exploration first uses
the current network weights to generate Tgen trajectories for
each training problem, i.e. calling the network iteratively
starting at the initial state and sampling the action to ap- 430

ply from πθ (line 8). Each such trajectory terminates upon
reaching a goal, a fixed length limit, or a state with no ap-
plicable actions. The states in these trajectories are added to
an initially empty Straj multiset (line 3). We then repeatedly
randomly remove (or explore) states from Straj and call the 435

teacher planner for each removed state until a termination
condition is met (lines 12 to 13). All states in the resulting
teacher plan are added to Smem (line 14). This can be un-
derstood as asking the teacher planner to guide the network
back onto a valid trajectory. If Straj ever becomes empty, 440

it is refilled by generating one trajectory from each training
problem from the initial state.

The termination condition (line 9) is based on the aver-
age time tlearn spent on recent learning phases and an hy-
perparameter r to control the ratio between spent on explo- 445

ration and learning. We terminate exploration when either
r · tlearn time has elapsed in the current exploration phase or
the number of states explored reaches an upper bound emax,
but never before at least emin states have been explored. For
the first exploration phase where tlearn is undefined, we ter- 450

minate once at lease one state from each problem and at least
emin states overall have been explored.

To avoid a size explosion of Smem and ensure its states
are recent, we group states in Smem by the epoch they are
added in. Whenever the number of states in Smem exceeds a 455

limit Nmem, we repeatedly remove the oldest group till the
size of Smem falls back under the limit (line 16).

To address point 1, we also enable an option in the origi-
nal ASNets implementation to approximate action optimal-
ity. Whenever a state s is added to Smem, this option approx- 460

imates the optimal action by only calling the teacher planner
on s instead of calling the teacher planning for each appli-
cable action. The approximated optimal action is simply the
action selected by the teacher planner on s.

Experimental Evaluation 465

For evaluation, we implemented ν-ASNets and dynamic ex-
ploration based on the original implementation of ASNets.

Algorithm 1: Dynamic exploration. We group new
states in Sexpl and add to Smem with epoch number

Data: A set of training problems Ptrain; current ν-ASNets
weights θ; epoch number n

1 Procedure genTraj()
2 for ζ ∈ Ptrain do
3 Straj.extend(runPolicy(s0(ζ), πθ))

4 Procedure explore(n, Smem)
5 Straj ← ∅
6 Sexpl ← ∅
7 for i = 1, . . . , Tgen do
8 genTraj()

9 while not terminate() do
10 if |Straj| = 0 then
11 genTraj()

12 s← Straj.popRandom()
13 Sexpl.extend(teacherPlan(s))

14 Smem.extend((Sexpl, n))
15 while |Smem| > Nmem do
16 Smem.popOldestEpoch()

The code will be publicly released when the paper is pub-
lished.

Experimental Setup470

Benchmark domains and teacher planner. We use
benchmarks from the International Planning Competition
2023 Numeric Track3, and use the state-of-the-art numeric
planner ENHSP-20 (Scala et al. 2020) as the teacher plan-
ner. These domains only include simple or linear numeric475

planning problems, and do not fully demonstrate the applica-
bility of ν-ASNetsto the entire numeric fragment of PDDL
2.1. For each domain, we use the 3 to 6 smallest instances
for training. ENHSP has a wide set of configurations based
on heuristic, search algorithm, and the use of methods such480

as redundant constraints and helpful actions. From these
configurations, we select as the teacher ENHSP configura-
tion one that produces short plans quickly (within one sec-
ond) for the training instances. We do not experiment with
domains where such a teacher configuration could not be485

found. The resulting benchmark domains and teacher con-
figuration used for each domain are shown in Table 1. We
classify domains by the proportion of reasoning that is nu-
meric versus propositional into heavily numeric and hybrid
domains.490

For the domain Counters, we do not use the IPC instances,
but instead use a set of evaluation instances with 2 to 60
counters where all the counters start with value 0. We only
use one of these evaluation instances for training, and in-
clude for training another two instances similar to it but with495

different initial states. This set up allows us to better under-
stand how the network would generalise across dimensions
(number of counters) unvaried during training.

3https://ipc2023-numeric.github.io/

Baselines and ν-ASNet variations. We use ENHSP as
the baseline for comparison using all configurations that are 500

used as teacher for at least one domain, and report its results
for the best and teacher configurations of each domain. We
also compare within the ν-ASNets variations, namely the
baseline network without either fluent or comparison mod-
ules (N-ASNets), F-ASNets, C-ASNets, and B-ASNets. We 505

also compare the original ASNets training algorithm and the
dynamic exploration algorithm for training F-ASNets and
C-ASNets, and use superscripted O or D on the ν-ASNets
variation to denote them. For fairness, we enable action op-
timality approximation with the original algorithm. 510

Hyperparameters. For each domain, we train the network
and evaluate it once on each problem instance. Unless other-
wise specified, the hyperparameters for ν-ASNets are fixed
across domains and architectural variations. We use three ac-
tion layers and two state layers, with a hidden representation 515

size (dh) of 15 and an ELU as the non-linearity σ (Clevert,
Unterthiner, and Hochreiter 2016). When using dynamic ex-
ploration, in each exploration phase we collect Tgen = 2
trajectories initially, terminate exploration with parameters
r = 1, emin = 10, and emax = 1000, and impose an 520

Nmem = 15000 limit on the size of Smem. When using the
original algorithm, we collect two trajectories per problem
and explore all states within the collected trajectories. Af-
ter exploring, the learning phase performs weight optimisa-
tion using the Adam optimiser (β1 = 0.9, β2 = 0.99, and 525

ϵ = 10−7). Mini-batch gradient descent is performed with a
learning rate of 0.0003, batch size of 50, and 60 batches per
epoch. We additionally apply an ℓ2 regulariser with a coef-
ficient of 0.005 and a dropout probability of 0.1. We stop
training when all collected trajectories reach the goal for 20 530

consecutive epochs.

Computational limits. When training, we apply a time
limit of 8 hours for dynamic exploration and 24 hours for the
original training algorithm. We apply a 1800 seconds time
limit per problem for ENHSP and ν-ASNets during eval- 535

uation. Training of ν-ASNets and evaluation of ENHSP is
performed on a virtual machine with 32GB of memory and
a single dedicated core clocked at 4.5 GHz. Evaluation of ν-
ASNets is performed on the same virtual machine with only
8GB of memory. 540

Results
Table 1 shows the coverage achieved by the ν-ASNets vari-
ations and ENHSP by domain. The learned generalised poli-
cies are able to achieve coverages competitive with ENHSP,
and outperform it on several domains, namely Delivery, FO- 545

Counters, MPrime and TPP. Interestingly, except for FO-
Counters, the other three domains all involve some forms
of graph traversal and logistics. On Block Grouping, Rover,
and Zenotravel, the ν-ASNets achieve coverages commen-
surate with ENHSP. On the remaining two domains, Coun- 550

ters and Drone, ν-ASNets are able to generalise from the
small training problems to bigger problems and perform
similarly with or outperform its teacher, but not the best
ENHSP configuration.

Domain Classification Teacher

Numeric ASNet ENHSP

BD FD CD FO CO NO best teacher best

Block Grouping (20, 4) HN, simple hadd-gbfs 15 (8.0) 11 (8.0) 17 (8.0) 10 (15.5) 15 (9.8) 2 (24.0) 17 20 20
Counters (59, 1) HN, simple hrmax-astar 9 (0.2) 7 (0.1) 14 (6.4) 10 (0.1) 17 (1.3) 1 (14.8) 17 8 39
Delivery (20, 4) hybrid, simple hadd-astar 5 (8.0) 5 (5.3) 20 (1.9) 9 (9.9) 18 (6.7) 17 (3.3) 20 8 16
Drone (20, 4) HN, linear hadd-astar 9 (8.0) 4 (8.0) 3 (8.0) 7 (24.0) 3 (24.0) 0 (24.0) 9 11 19

FO-Counters (20, 3) HN, linear hrmax-astar 4 (3.6) 5 (1.6) 3 (8.0) 6 (7.3) 3 (10.2) 2 (15.4) 6 4 5
MPrime (20, 4) hybrid, simple hmrp-ha-gbfs 16 (3.1) 19 (1.8) 12 (7.9) 18 (4.4) 16 (24.0) 6 (24.0) 19 16 18
Rover (20, 4) hybrid, simple hmrp-ha-gbfs 7 (8.0) 4 (8.0) 4 (8.0) 5 (24.0) 4 (24.0) 4 (24.0) 7 7 7
TPP (20, 3) hybrid, linear hadd-gbfs 0 (8.0) 0 (8.0) 19 (8.0) 0 (24.0) 20 (24.0) 16 (22.7) 20 4 4

Zenotravel (20, 6) hybrid, linear hadd-gbfs 0 (8.0) 0 (8.0) 17 (0.6) 0 (24.0) 16 (0.8) 16 (0.6) 17 20 20

Table 1: Number of instances solved (coverage) by each system, with the ν-ASNets training time in hours shown in paren-
thesis. The number of instances for evaluation and the number of evaluation instances seen during training are shown in
parenthesis after the domain. We also show the classification of the domain (see text) by heavily numeric (HN) versus hy-
brid (hybrid) and simple versus linear. We additionally show the teacher configuration used for each domain in the format
{heuristic}−{search algorithm}, with the optional “ha” indicating the use of helpful actions.

Figure 3: Plan cost (left) and runtime in seconds (right) for each problem instance of the best ν-ASNets variation versus the
teacher ENHSP configuration. Points in the bottom-right triangle favour ENHSP and on the top-left triangle favour ν-ASNets.
Problems unsolved by a system have value set to the maximum of the axis. A constant of 1 is added to ensure all points lie
within view.

To better understand how well ν-ASNets are able to gen-555

eralise, we examine the particular problem instances to see
if it is only generalising to problems with similar size to
those seen during training. On Block Grouping, the largest
training instance has 10 blocks on a 15 by 15 grid, whereas
the largest solved instance has 25 blocks on a 100 by 100560

grid. The training instances for Counters all have 4 coun-
ters, while ν-ASNets variations are generally able to solve
evaluation instances with up to 15 counters. This result on
Counters shows that ν-ASNets are able to generalise across
factors (number of counters in this case) kept constant dur-565

ing training. The largest Delivery training instance has 10
items to deliver, while the largest solved instance has 42.
Similar scales of generalisation are achieved on other do-
mains, and demonstrate the strong generalisation capabili-
ties of ν-ASNets.570

Table 1 also shows the training time of various ν-ASNets
variations. By comparing the training times of CD-ASNets
with CO-ASNets and FD-ASNets with FO-ASNets, our re-

sults show that dynamic exploration is able to achieve much
lower training times than the original exploration algorithm. 575

This is not a consequence of the lower training time limit we
apply for dynamic exploration, as the trend continues even
when neither training methods reach their respective time
limits, see e.g. in Delivery or FO-Counters. Furthermore,
we do not observe any notable reduction in coverage for dy- 580

namic exploration when compared to training with the orig-
inal algorithm. This suggests that dynamic exploration con-
sistently enables learning generalised policies faster without
compromising the effectiveness of the learned generalised
policies. The only notable exception on Counters with C- 585

ASNets is likely due to a high variance in training time that
we found during multiple training runs.

Figure 3 shows the plan cost and evaluation runtime pro-
duced by the learned generalised policies and ENHSP with
the teacher configuration. When both produce valid plans, 590

they produce plans with similar costs. On Zenotravel ν-
ASNets tend to produce better plans, while on Block Group-

ing ENHSP tends to produce better plans. For runtime, when
both produce plans quickly (less than 10 seconds), ENHSP
tends to be quicker than the generalised policies. This is595

likely due to the higher constant overhead required by ν-
ASNets to construct the network and load the weights. On
more complex problem instances, ν-ASNets tend to pro-
duce plans faster than the ENHSP teacher configuration. The
large number of points on the top line in the runtime plot600

demonstrates that the learned generalised policies are able
to solve many instances the teacher cannot solve.

Why do we need F-ASNets or C-ASNets? Results in Ta-
ble 1 show that the specialisation in reasoning offered by
F-ASNets or C-ASNets often allow one of them to perform605

better than if they are both included. For example, compari-
son modules alone on Delivery or fluent modules alone in
MPrime achieve notably higher coverages than when the
other is included.

Why do fluent modules result in coverages of 0 in TPP610

and Zenotravel? In both domains, whenever fluent mod-
ules are included in the network, the learned generalised
policies fail to solve any problem. In these domains, except
for fluents used to help the plan metric, all the other fluents
are only meaningful in context of each other. We suspect that615

when fluent modules are included, the network attempts to
learn to reason directly on the fluent values, but receive con-
flicting information on how to do so on the different training
instances. This results in training never being able to con-
verge, and ultimately the coverage of 0.620

Which ν-ASNets variation is the best? The best ν-
ASNets variation by coverage depends on the nature of the
domain. Generally, C-ASNets tend to perform well on all
benchmark domains, while F-ASNets and B-ASNets per-
form well on particular domains such as MPrime and Rover625

respectively.

How can N-ASNets perform well on some domains? N-
ASNets is not equipped with network modules for numeric
reasoning, but it still has the capability for classical planning
reasoning. Unsurprisingly, this allows it to still be effective630

on hybrid domains where there is a sizeable classical plan-
ning component. However, on heavily-numeric domains its
unsuitability for numeric reasoning is clear from the poor
coverage it achieves.

How do ν-ASNets compare with the IPC 23 competition635

planers? On domains where we use the same problem sets
as IPC 23 (i.e. all but counters), ν-ASNets achieve better
coverages than the reported coverage4 of the IPC 23 compe-
tition planners except on Drone and Rover.

Related Work640

Existing work on generalised planning is severely limited
when it comes to dealing with numeric information. Popular
approaches based on Qualitative Numeric Planning (QNP)
(Srivastava, Immerman, and Zilberstein 2011; Bonet and
Geffner 2020), can represent a fixed number of positive645

4https://ipc2023-numeric.github.io/results/presentation.pdf

numeric variables that can only be increased or decreased
by a positive non-deterministic amount in action effects,
and boolean combinations of comparisons of these variables
with 0 in action preconditions, initial states and goals. Other
approaches allow for incrementing or decrementing a finite 650

set of positive counters by a constant in a deterministic fash-
ion (Srivastava, Immerman, and Zilberstein 2010; Srivastava
et al. 2015). The more recent Generalised Integer Numeric
Planning (GLINP) (Lin et al. 2022) supports non-simple
numeric effects, but is limited to integer variables. In con- 655

trast our work support the full numeric fragment (level 2) of
PDDL2.1 (Fox and Long 2003), including nonlinear effects
(Scala et al. 2016a) and numeric variables whose number
grows with the number of objects. On the other hand, the
above works provide guarantees on the effectiveness of gen- 660

eralised policies, whereas our learning approach cannot.
Independently and concurrently to our work, Tariq, Valen-

zano and Soutchanski (2023) experimented with handling
numeric planning problems with the original ASNet policy
representation. They reduced the set of values each fluent 665

takes to a finite range, which they then manually discretised
into consecutive intervals, each represented by a new pred-
icate. Numeric conditions in the action schemas are then
compiled into a disjunction over these predicates. As Tariq
et. al observe, this approximation of the original numeric 670

problem creates a large number of related propositions for
each action, which leads to impactically large networks and
compromises the sparseness of the ASNets policy represen-
tation. The empirical evaluation conducted by Tariq et al.
only used four unseen test instances per domain. These are 675

only marginally larger than the training instances and solved
within less than a second by both ENHSP and ASNets. In
contrast, we have proposed an architecture that treats fluents
and comparisons as first-class citizens and explicitly reasons
about them. Its performance is competitive with ENHSP 680

over the latest numeric planning competition instances.

Conclusion and Future Work
We have introduced ν-ASNets and its variations, neural net-
work architectures for learning generalised policies for nu-
meric planning based on ASNets. The network is able to 685

reason directly about numeric values through fluent mod-
ules, and about numeric contexts through comparison mod-
ules. We also introduced dynamic exploration, which trains
ν-ASNets much faster than the original algorithm used by
ASNets, without harming the effectiveness of the learned 690

generalised policies.
Our work leaves significant room for future research. A

common trait in plans for numeric planning problems is the
repetition of actions. We believe that a network architecture
capable of not just predicting the action to apply, but also the 695

number of times to apply it, can be highly effective. Addi-
tionally, while our work has focused on numeric planning,
the method we use to construct comparison modules can in
principle be applied to other components of actions mod-
elled in PDDL, to include constructs such as action effects 700

and universal/existential quantifiers. This leads to a network
that can potentially learn generalised policies for a much
more expressive class of problems than numeric planning.

References
Aguas, J. S.; Jiménez, S.; and Jonsson, A. 2020. General-705

ized Planning with Positive and Negative Examples. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 9949–9956.
Aguas, J. S.; Jiménez, S.; and Jonsson, A. 2021. Generalized
Planning as Heuristic Search. In International Conference710

on Automated Planning and Scheduling (ICAPS), 569–577.
Bonet, B.; and Geffner, H. 2020. Qualitative Numeric Plan-
ning: Reductions and Complexity. J. Artif. Intell. Res., 69:
923–961.
Celorrio, S. J.; Aguas, J. S.; and Jonsson, A. 2019. A review715

of generalized planning. Knowl. Eng. Rev., 34: e5.
Clevert, D.; Unterthiner, T.; and Hochreiter, S. 2016. Fast
and Accurate Deep Network Learning by Exponential Lin-
ear Units (ELUs). In International Conference on Learning
Representations (ICLR).720

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
Hybrid LP-RPG Heuristic for Modelling Numeric Resource
Flows in Planning. J. Artif. Intell. Res., 46: 343–412.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.725

Intell. Res., 20: 61–124.
Francès, G.; Corrêa, A. B.; Geissmann, C.; and Pommeren-
ing, F. 2019. Generalized Potential Heuristics for Classical
Planning. In International Joint Conference on Artificial In-
telligence (IJCAI), 5554–5561. ijcai.org.730

Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
631–636.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-735

cal Paths and Abstractions: What’s the Difference Anyway?
In International Conference on Automated Planning and
Scheduling (ICAPS).
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables. J.740

Artif. Intell. Res., 20: 291–341.
Hu, Y.; and Giacomo, G. D. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
International Joint Conference on Artificial Intelligence (IJ-
CAI), 918–923.745

Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 8064–8073.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;750

and Beck, J. C. 2022. The LM-Cut Heuristic Family for
Optimal Numeric Planning with Simple Conditions. J. Artif.
Intell. Res., 75: 1477–1548.
Leofante, F. 2023. OMTPlan: A Tool for Optimal Planning
Modulo Theories. J. Satisf. Boolean Model. Comput., 14(1):755

17–23.
Lin, X.; Chen, Q.; Fang, L.; Guan, Q.; Luo, W.; and Su,
K. 2022. Generalized Linear Integer Numeric Planning.

In International Conference on Automated Planning and
Scheduling (ICAPS), 241–251. 760

Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
4384–4390.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016a. 765

Interval-Based Relaxation for General Numeric Planning.
In European Conference on Artificial Intelligence (ECAI),
655–663.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2020.
Subgoaling Techniques for Satisficing and Optimal Numeric 770

Planning. J. Artif. Intell. Res., 68: 691–752.
Scala, E.; Ramı́rez, M.; Haslum, P.; and Thiébaux, S. 2016b.
Numeric Planning with Disjunctive Global Constraints via
SMT. In International Conference on Automated Planning
and Scheduling (ICAPS), 276–284. 775

Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks. In International Conference on Automated Plan-
ning and Scheduling (ICAPS).
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2010. 780

Computing Applicability Conditions for Plans with Loops.
In International Conference on Automated Planning and
Scheduling (ICAPS), 161–168.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general- 785

ized planning. Artif. Intell., 175(2): 615–647.
Srivastava, S.; Zilberstein, S.; Gupta, A.; Abbeel, P.; and
Russell, S. 2015. Tractability of Planning with Loops. In
AAAI Conference on Artificial Intelligence (AAAI), 3393–
3401. 790

Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learn-
ing General Optimal Policies with Graph Neural Networks:
Expressive Power, Transparency, and Limits. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 629–637. 795

Tariq, A.; Valenzano, R.; and Soutchanski, M. 2023. Ac-
tion Schema Networks for Numeric Planning. In ICAPS
2023 Heuristics and Search for Domain-Independent Plan-
ning Workshop.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020. 800

ASNets: Deep Learning for Generalised Planning. J. Artif.
Intell. Res., 68: 1–68.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies With Deep
Learning. In AAAI, 6294–6301. 805

