
Journal of Data-centric Machine Learning Research (2024) Submitted 7/24; Revised 8/24; Published 9/24

Benchmarking Edge Regression on Temporal Networks

Muberra Ozmen muberra@block.xyz
Cash App
Montreal, QC, Canada

Florence Regol florencer@block.xyz
Cash App
Montreal, QC, Canada

Thomas Markovich tmarkovich@block.xyz

Cash App

Cambridge, MA, USA

Reviewed on OpenReview: openreview. net/ forum? id= 4k4cocpuSw

Editor: Yue Zhao

Abstract

Benchmark datasets and task definitions in temporal graph learning are limited to dynamic
node classification and future link prediction. In this paper, we consider the task of edge
regression on temporal graphs, where the data is constructed from sequence of interactions
between entities. Upon investigating graph benchmarking platforms, we observed that the
existing open source datasets do not provide the necessary information to construct tempo-
ral edge regression tasks. To address this gap, we propose four datasets that naturally lend
themselves to meaningful temporal edge regression tasks. We evaluate the performance of
a set of method based on popular graph learning algorithms in addition to simple base-
lines such as vertex-based moving average. Processed versions of proposed datasets are
accessible through this repository 1.

Keywords: Temporal Edge Regression, Graph Representation Learning, Edge-wise
Graph Learning, Temporal Graph Learning

1 Introduction

Graphs are mathematical structures that naturally model the complex and often correlated
relationships between entities by modeling the entities as vertices and relationships as edges.
This formulation enables modeling approaches that capture the correlated nature of complex
systems such as social networks (El-Kishky et al., 2022; Wu et al., 2022; Gao et al., 2021)
or financial networks (Liu et al., 2020; Zhang et al., 2022). Recent years have seen the
profileration of neural networks for a variety of different graph structured problems (Zhou
et al., 2020; Wu et al., 2020; Hamilton, 2020) including fraud detection (Liu et al., 2020;
Zhang et al., 2022), recommendation systems (Wu et al., 2022; Gao et al., 2021), chemistry
and materials science (Pezzicoli et al., 2022; Reiser et al., 2022; Bongini et al., 2021; Han
et al., 2021; Xiong et al., 2021), traffic modeling (Rusek et al., 2019; Chen et al., 2022), and

1. huggingface.co/cash-app-inc

©2024 Muberra Ozmen, Florence Regol and Thomas Markovich.

openreview.net/forum?id=4k4cocpuSw
huggingface.co/cash-app-inc


Temporal Edge Regression

weather simulation (Keisler, 2022; Ma et al., 2022). Much of this work focused on making
predictions about vertices or graphs, where the graph is often assumed to be static.

Acknowledging that most graphs in industrial settings evolve through time, the graph
learning community developed a subfield called Temporal Graph Learning (TGL), which fo-
cuses on solving tasks such as Dynamic Node Classification (DNC) (Kumar et al., 2019), Fu-
ture Link Prediction (FLP) (Arnoux et al., 2017), and Recent Link Classification (RLC) (Oz-
men and Markovich, 2024). DNC (FLP) can be understood as traditional semi-supervised
node classification (link prediction) in a setting where the graph connectivity, graph fea-
tures, or both can change through time. Both of these tasks have a variety of applications,
including predicting the probability of two people forming a friendship, or a person churning
their account, corresponding to FLP and DNC tasks respectively (Min et al., 2021; Song
et al., 2021; Frasca et al., 2020; Zhang et al., 2021). State of the art methods for both DNC
and FLP focus on learning representations for vertices, and ignore many of the details of
the edges, aside from the connectivity that they indicate.

By contrast, many problems in industrial settings are concerned with identifying prop-
erties about individual edges. Acknowledging this fact, RLC was developed to predict the
class of an edge, conditioned on that edge’s existence. Industrially relevant applications
of this task include identifying messages that are likely to be abusive, or transactions that
are likely to be fraudlent. It was found that traditional temporal graph learning methods
struggled in RLC settings (Ozmen and Markovich, 2024) when the appropriate modifica-
tions were made to the decoder. This suggests that additional, edge-focused, modeling will
be required to succeed on this task. Consequently, this makes RLC an exciting new task for
the graph learning community. Similar to RLC, it is common to predict a continuous target
value associated with an edge, with industrial applications including predicting the time to
message response, and delays in shipping or transit. This therefore begs the quesiton – “In
analogy to recent link classification, is it possible to define a temporal edge regression task?”
To answer this question, we formulate the task of Temporal Edge Regression (TER), which
aims to predict a target value for an edge, based on past observations and time-varying
graph connectivity. In this work, we present four novel datasets that have been tailored to
TER, as well as a variety of benchmark results for strong heuristic baselines and industry
standard temporal and static graph neural networks.

The remainder of this work is organized as follows. In Section 2 we present a review of
the literature and related work on the topic. We present a clear elucidation of the problem
statement in Section 3. In Section 4 we turn our attention to the four new datasets that we
have constructed. We present the baseline results in Section 5, and finally we present our
conclusions in Section 6.

2 Related Work

Temporal Graph Learning. There are two main types of dynamic graph models: discrete-
time and continuous-time (Zhou et al., 2022). Traditional static graph representations are
insufficient for capturing temporal dynamics. Temporal Graph Learning (TGL) models ad-
dress this limitation by extending graph-based models to time-varying structures (Kumar
et al., 2019; Pareja et al., 2020). TGL models can be categorized into two groups: ‘time-
and-graph’ and ‘time-then-graph’ (Gao and Ribeiro, 2022). Time-and-graph models learn

2



Temporal Edge Regression

node representations for each graph snapshot, while time-then-graph models construct a
multi-graph using past observations and learn node representations. The most well-known
TGL method is the Temporal Graph Network (TGN) (Rossi et al., 2020). This is a message
passing based encoder which learns graph node embeddings on a continuous-time dynamic
multi-graph represented as a sequence of time-stamped events. At time t, a memory vector
si(t) is stored for each node i ∈ V. This vector represents the node’s history in a compressed
format. TGN involves four main operations: (1) message function calculation; (2) message
aggregation; (3) memory update; and (4) embedding calculation.

1. Message Function. The memory of a node is updated only when it is involved in
an event. For example, consider an interaction ei,j between nodes i and j at time t.
A message is calculated for each node:

mi(t) = fmsg

(
si
(
t−

)
, sj

(
t−

)
,∆t, ei,j(t)

)
, (1)

mi(t) = fmsg

(
si
(
t−

)
, sj

(
t−

)
,∆t, ei,j(t)

)
. (2)

Here fmsg(·) is a learnable function, si (t
−) denotes the memory of node i just before

time t, and ∆t denotes the time since the last interaction. In practice, the inputs are
concatenated and a Multi-layer Perceptron is used as the message function fmsg.

2. Message Aggregator. If there are multiple messages mi(t1), . . . ,mi(tb) involving a
node i such that t1, . . . , tb < t, they are aggregated using a non-parametric aggregation
function fagg(·):

mi(t) = fagg (mi(t1), . . . ,mi(tb)) . (3)

Candidate aggregation operations include a mean aggregator, i.e., taking the aver-
age of all relevant messages, and a ‘last’ aggregator, i.e., using only the most recent
message.

3. Memory Update. An autoregressive module, updates the memory state of each
node based on the aggregated messages and the current memory of the node:

si(t) = fmem

(
mi(t), si

(
t−

))
, (4)

where fmem(·) is memory update function.

4. Embeddings. The node embeddings are calculated as a function of memory states
and events. The embedding module can be as simple as the identity function, which
is equivalent to using the memory states directly. Alternatively, in a more complex
architecture, multi-head attention can be employed.

TGAT (Xu et al., 2020) incorporates self-attention and time encoding to predictively gen-
erate embeddings for new and existing nodes. CAWN (Wang et al., 2021) utilizes tempo-
ral random walks for inductive representation of temporal networks. Graph Mixer (Cong
et al., 2023) is a simple model that achieves state-of-the-art performance on benchmark
tasks. In general, existing TGL methods are benchmarked only on Dynamic Node Clas-
sification (DNC) and Future Link Prediction (FLP) tasks (Poursafaei et al., 2022; Huang
et al., 2023). More recently, Liu et al. (2024) introduced a framework Temporal Graph

3



Temporal Edge Regression

Clustering (TGC) that extends node clustering task widely investigated on static graphs to
temporal settings. The proposed method that combine a temporal module for time-based
data extraction with a clustering module for node grouping. This integration leverages deep
clustering techniques tailored for interaction sequence-based batch processing in temporal
graphs. The authors also enhance existing models with clustering assignment distribution
and adjacency matrix reconstruction, expanding the scope of deep graph clustering to tem-
poral graphs comprehensively. Despite the growing interest in temporal graph learning,
a significant research gap remains in edge-wise learning on temporal graphs (Chanpuriya
et al., 2023; Wang et al., 2023; Suresh et al., 2023), particularly when the target variable is
continuous. This is largely due to the lack of a suitable benchmark dataset that aligns with
this specific problem setting, hindering the exploration of this important area. We refer
the reader to Feng et al. (2024) for a comprehensive and recent review of temporal graph
learning methods.

Existing Benchmark Datasets. We investigate four existing temporal graph learning
benchmarking platforms:

- PyTorch Geometric 2 provides Jodie, a collection of temporal graph datasets for
predicting dynamic embedding trajectories, EllipticBitcoinTemporalDataset, a
Bitcoin transaction dataset labeled as licit or illicit, GDELT, a dataset of events collected
from 2018 to 2020, and GDELTLite, a reduced version of GDELT with events from
2016 to 2020.

- PyTorch Geometric Temporal 3 offers several datasets, including ChickenpoxDataset,
a county-level chickenpox cases dataset from Hungary, PedalMe, a PedalMe Bicycle
deliver orders dataset from London, WikiMaths, a vital mathematics articles dataset
from Wikipedia, and three WindmillOutput datasets for hourly energy output of
windmills from a European country. Additionally, there are METRLA and PemsBay

for traffic forecasting, EnglandCovid for mobility and COVID-19 cases in England,
MontevideoBus for inflow passenger data at bus stop level from Montevideo city,
TwitterTennis for Twitter mention graphs related to major tennis tournaments.

- SNAP 4 provides various datasets, including soc-RedditHyperlinks for hyperlinks
between subreddits on Reddit, sx-stackoverflow for comments, questions, and an-
swers on Stack Overflow, wiki-talk-temporal for users editing talk pages onWikipedia,
email-Eu-core-temporal for e-mails between users at a research institution, Col-
legeMsg for messages on a Facebook-like platform at UC-Irvine, soc-sign-bitcoin-
otc for Bitcoin OTC web of trust network, act-mooc for student actions on a MOOC
platform with student drop-out labels, and comm-f2f-Resistance for dynamic face-
to-face interaction network between groups of people.

- TGB 5 offers several datasets, including tgbl-wiki-v2 for co-editing network on
Wikipedia pages, tgbl-review-v2 for Amazon product review network, tgbl-coin

2. pytorch-geometric.readthedocs.io/en
3. pytorch-geometric-temporal.readthedocs.io/en
4. snap.stanford.edu/data
5. tgb.complexdatalab.com

4

pytorch-geometric.readthedocs.io/en
pytorch-geometric-temporal.readthedocs.io/en
snap.stanford.edu/data
tgb.complexdatalab.com


Temporal Edge Regression

for cryptocurrency transaction dataset, tgbl-comment for Reddit reply network, and
tgbl-flight for international flight network.

Unfortunately, our investigation into various datasets failed to yield any that possess the
necessary properties for a temporal edge regression task.

3 Problem Definition

We are considering a dynamic graph setting in which the set of vertices is fixed, and the
edges are appearing over time. We are given a set of vertices V = {ui}Ni=1, and each vertex
ui ∈ V is endowed with a dv-dimensional feature vector xi ∈ Rdv . On this system of vertices,
we observe pairwise interactions over time represented as edges. An edge ej is composed of
4 components; the index of the source vertex sj , the index of the destination vertex dj , a
de-dimensional feature vector of the edge zj ∈ Rde , and the target value of interest yj ∈ R.
Each of these components can be observed at different times, so we additionally define the
time of observation;

- txj : time of observation of the source and destination vertex indices,

- tzj : time of observation of the edge features,

- tyj : time of observation of the edge target value,

with the constraint that txj ≤ tzj ≤ tyj . That is, txj marks the announcement time of
interaction j and tyj marks the completion time of the interaction. The complete information
of an edge is given by;

ej = (sj , dj , zj , yj , t
x
j , t

z
j , t

y
j ). (5)

At any time t, we can therefore define a set of completed interactions Ecompleted(t) =
{j : tyj ≤ t} and a set of announced but incomplete interactions Eannounced(t) = {j : txj ≤
t, tyj > t}. In Temporal Edge Regression (TER), we aim to learn a classifier that maps

the “known” of announced interactions Eannounced(t) to their target value, given the set
of completed interactions Ecompleted(t) at any time t. We further define variations of the
problem based on the timing of observation. If the system imposes the following sequence
of events:

txj = tzj < tyj ,

the problem is defined as Recent Link Regression (RLR). That is, at the inference time
the source and destination vertices and edge features are known. If the system imposes the
following sequence of events:

txj < tzj = tyj ,

the problem is defined as Proximate Link Regression (PLR). That is, at the inference
time the source and destination vertices are known. If the system imposes the following
sequence of events:

txj < tzj < tyj ,

the problem is defined as Future Link Regression (FLR). That is, at the inference time
nothing is known about the future interactions.

5



Temporal Edge Regression

Table 1: Dataset Statistics

epic-games-plr air-traffic-2019-rlr air-traffic-2015-rlr open-sea-rlr

# of src 542 274 257 1,932,463
# of dst 614 274 257 1,758,601
# of nodes 1,156 274 257 2,601,107
# of edges 17,584 484,551 5,138,263 25,876,360
# of timestamps 3,267 181 334 7,361,184
# of node features 573 0 0 0
# of edge features 512 20 20 86
average node degree 15.21 1,768.43 19,993.24 9.95
average # of repetitions 1.03 143.49 1,166.73 1.48
maximum # of repetitions 6 1,920 13,406 10,583

4 Datasets

This paper introduces four novel datasets: epic-games-plr, air-traffic-2015-rlr, air-
traffic-2019-rlr, and open-sea-rlr. The epic-games-plr dataset involves predict-
ing critic ratings, which are only observable after the critic’s identity is revealed, thereby
categorizing it as a Proximate Link Regression (PLR) problem. In contrast, the air-

traffic-2015-rlr and air-traffic-2019-rlr datasets aim to predict flight delays based
on pre-determined flight characteristics and weather conditions, falling under the category
of Recent Link Regression (RLR). Similarly, the open-sea-rlr dataset targets predicting
the profitability of NFT transactions, where features are observed simultaneously, but prof-
its are only known after subsequent trades, also classified as RLR. Future Link Regression
(FLR) cases are left for future exploration. This section provides an in-depth examination
of each dataset, with statistical summaries presented in Table 1.

4.1 Epic Games

Description. Epic Games Store 6 is a digital video game storefront. de Souza Gomes
(2022) provides a dataset that contains information on the games released on the platform
and their critics provided by different resources. Relevant to our work, the dataset includes
two types of records: game and critic.

Graph Construction. The critic records are used to define the graph G(V, E) such that
the source and destination of the critiques, i.e., the authors’ companies and game identities,
form the set of vertices and each critic denotes a temporal edge between them. Each vertex,
i.e., an author company or game, ui ∈ V is associated with a feature vector xi ∈ Rdv where
dv denote the feature dimensionality. The features of game vertices are extracted by textual
data such as game description, nominal data such as genres, and interval data such as price.
An edge (sj , dj) ∈ E , i.e., a critic released by company sj on game dj , is associated with
timestamp tj which and rating score yj ∈ R which denotes the overall rating provided by
the author. The joint density of edge target yj and time tj is visualized in Figure 1 along
with the degree centrality distribution of the vertices. The preprocessing details followed to
construct the graph, calculate the raw feature vectors and response variable are provided
in Appendix A.1.

6. store.epicgames.com

6

store.epicgames.com


Temporal Edge Regression

(a) The joint density of edge target and time
reveals a noticeable shift in distribution along
the time axis. This observation suggests that
the time components play a significant role
in target prediction, for that dataset.

(b) Vertex degree distribution. This indicates
that the dynamic graphs are highly sparse,
with most of vertices having few or no neigh-
bors.

Figure 1: epic-games-plr graph statistics

Sequence of Events. The events associated with an interaction (sj , dj) ∈ E are observed
in the following order:

1. The identity of source node sj and destination node dj are observed along with the node
features xj ∈ Rdv .

2. The source node interacts with the destination node by releasing a review with an overall
rating, which is observed as yj ∈ R.

This is fitting because a game will be given to a known set of reviewers, and put under
embargo while the reviewer plays the game and considers their review. Therefore, the edge
is known ahead of time, and we seek to regress on the future review score.

4.2 Air Traffic

Description. The Bureau of Transportation Statistics, under the United States Depart-
ment of Transportation, monitors and reports on the on-time performance of domestic flights
operated by major airlines. The datasets for 2019 (Trivedi, 2021) and 2015 (of Transporta-
tion, 2017) are publicly available on Kaggle 7 to enable analyses of flight delays and airport
performance. Each dataset consists of flight records for to the corresponding year. The
flight records contain information on source and destination airports and scheduled and ac-
tual departure and arrival times. To investigate the impact of weather conditions on flight
delays, we have supplemented the flight datasets with weather data from Open-Meteo 8,
an open-source weather API (Zippenfenig, 2023). We extracted weather conditions at the
scheduled departure times for both origin and destination airports, enabling the analysis
of weather-related delay predictions. This integration enhances the datasets’ capabilities,
allowing for a more comprehensive understanding of weather’s role in flight delay dynamics.

7. kaggle.com
8. open-meteo.com/en/docs

7

kaggle.com
open-meteo.com/en/docs


Temporal Edge Regression

(a) air-traffic-2019-rlr (b) air-traffic-2015-rlr (c) open-sea-rlr

Figure 2: Joint density of edge target and time. In both the air-traffic-2015-rlr and
air-traffic-2019-rlr, the distribution of target values remains relatively constant over
time, with potentially some periodicity. However, in the OpenSea dataset, the distribution
exhibits high irregularity across time, resembling the pattern observed in the epic-games-
plr dataset.

Notably, our research marks the first exploration of this dataset in the context of graph
learning, offering a novel perspective on its applications.

Graph Construction. We construct a graph G(V, E) where airports are represented as
vertices and flights as edges. The vertices lack feature attributes. Each edge (sj , dj) ∈ E ,
symbolizing a flight from airport sj to dj , is associated with a timestamp tj indicating the
flight date and a feature vector zj derived from weather conditions at the endpoint airports,
comprising: daily precipitation sum, maximum and minimum daily air temperature, maxi-
mum wind speed and gusts on the flight day. Edge targets yj ∈ R, defined as arrival delay
normalized by flight duration, representing the delay outcome. The preprocessing steps
followed to construct the graph, calculate the raw feature vectors and response variable are
further detailed in A.2.

Sequence of Events. For a flight (sj , dj) ∈ E the events follow an order as follows:

1. At the time of take off, the information regarding the scheduled departure and arrival
times are known in addition to the weather conditions at the end points.

2. The actual delay yj ∈ R is observed only once the flight is landed.

4.3 Open Sea

Description. Open Sea 9, a prominent trading platform in the Web3 ecosystem, is the
source of a dataset comprising Non-Fungible Token (NFT) transactions. Initially introduced
by La Cava et al. (2023); Cava et al. (2023); Costa et al. (2023), this dataset is a collection of
Non-Fungible Token (NFT) transactions. Sourced from Open Sea, it is provided as a natural
language processing dataset and is mainly used for multimodal learning classification tasks.

9. opensea.io

8

opensea.io


Temporal Edge Regression

Graph Construction. We define a graph G(V, E) where vertices represent unique sellers
and buyers of NFTs, identified by collection memberships and token IDs. Each transaction
(sj , dj) ∈ E is associated with a timestamp tj and a feature vector zj ∈ Rde , comprising
binary representations of categorical variables, cryptocurrency exchange rates, and mone-
tary values. Notably, the vertices lack raw feature vectors, as the identities of buyers and
sellers remain unknown. The target value yj ∈ R of transaction i is calculated as the rate of
return on investment, determined by the difference between the revenue from a future sale
and the purchase price, normalized by the original purchase price. This metric reflects the
profitability of each transaction. The preprocessing steps followed to construct the graph,
calculate the raw feature vectors and response variable are further detailed in A.3.

Sequence of Events. The events associated with an interaction (sj , dj) ∈ E unfold in
the following sequence:

1. The identities of the source node sj and destination node dj are observed, accompanied
by the edge features zj ∈ Rde .

2. The profit of current transaction yj ∈ R is only revealed when the associated NFT is
traded again, thereby introducing a delay in the observation of edge targets.

The delay on observing edge targets aligns with the Recent Link Regression (RLR) setting,
where the outcome of an investment’s profitability is unknown at the time of purchase.

5 Methodology

In this section, we (1) define edge homophily which measures the correlation of neighbouring
edges on edge target variable, (2) share the details of models used to set baselines on
temporal edge regression task, (3) formulate the loss functions used to train neural networks
for edge regression task.

5.1 Edge Homophily

We introduce a measure of edge homophily to understand the importance of graph infor-
mation for temporal edge regression task. Denote by N e(α) an edge-wise neighbourhood
operator that constructs the set of all edges that are connected to a given edge, α = (sj , dj),
where sj and dj are the source and the destination. This operator forms the union of two
sets, i.e., N e(α) = I(j) ∪ O(j), where I(j) is the set of outgoing edges connected to the
source sj and O(j) is the set of incoming edges connected to the destination dj . Edge
homophily measure is then defined as:

H̄e(G) =
1

|E|

∑
α∈E

(
yα −

∑
β∈E yβ

|E|

)2

−
∑
α∈E

yα −

∑
β∈N (e)

α
yβ∣∣∣N (e)

α

∣∣∣
2 (6)

Edge-homophily measures the correlation between the target values of neighbouring
edges in analogy to the way node-homophily measures the fraction of neighbouring nodes
with the same class. Node-homophily is an important dataset property that can be highly
indicative of the value that can be derived by encoding graph structure in node classification
tasks (Pei et al., 2020), particularly for embedding procedures that rely on smoothing over

9



Temporal Edge Regression

(a) open-sea-rlr (b) air-traffic-2019-rlr

(c) air-traffic-2015-rlr (d) open-sea-rlr

Figure 3: Edge homophily trends. The x-axis represents the time of observation, while the
y-axis represents the edge homophily measure. Generally, after an initial warm-up period,
the edge homophily measure stabilizes across all datasets, though magnitude of the measure
varies between them.

a neighbourhood. In Figure 3, we illustrate the dynamics of edge homophily over time for
all four datasets.

5.2 Prediction Methods

In our experiments, we use two non-parametric baselines, a graph-agnostic neural network,
four widely used graph learning methods and a temporal graph neural network. In this
section, we share the details of each method.

Non-parametric Baselines. In order to set baseline, we use two non-learnable prediction
methods Moving Average (MA) and Edge Similarity (ES).

Moving Average (MA) method is a statistical technique used to analyze time series
data by smoothing out fluctuations and highlighting trends. It involves calculating the
average value of a sequence of data points over a specified period K, called the window
size. For an announced edge ei ∈ Eannounced with source vertex si and destination vertex
di, and the set of completed edges Ecompleted(txi ), we determine sets of most recent edges

10



Temporal Edge Regression

inductively. Let MAall(1), MAsrc(1) and MAdst(1) denote most recent completed edge,
most recent completed edge with same source vertex, and most recent completed edge
with same destination vertex, respectively. That is, Sall(1) = {ej : j = argmax tyj , ej ∈
Ecompleted(txi )}, Ssrc(1) = {ej : j = argmaxsj=si t

y
j , ej ∈ Ecompleted(txi )}, Sdst(1) = {ej : j =

argmaxdj=di t
y
j , ej ∈ Ecompleted(txi )}. Then we define the (k + 1)th order sets as follows:

Sall(k + 1) = {ej : j = argmax tyj , ej ∈ Ecompleted(txi ) \ ∪r={1,...,k}Sall(r)}}, (7)

Ssrc(k + 1) = {ej : j = argmax tyj , ej ∈ Ecompleted(txi ) \ ∪r={1,...,k}Ssrc(r)}}, (8)

Sdst(k + 1) = {ej : j = argmax tyj , ej ∈ Ecompleted(txi ) \ ∪r={1,...,k}Sdst(r)}}. (9)

The final sets of most recent edges, most recent edges with same source node, most
recent edges with same destination nodes are set by union of iterative sets, i.e., Sall(K) =⋃

k=1,...,K Sall(k), Ssrc(K) =
⋃

k=1,...,K Ssrc(k), Sdst(K) =
⋃

k=1,...,K Sdst(k). Finally, the
estimations are made as the average of edges involved in these sets:

MA-all (K): ŷj =
1

K

∑
k∈Sall(K)

yk, (10)

MA-src (K): ŷj =
1

K

∑
k∈Ssrc(K)

yk, (11)

MA-dst (K): ŷj =
1

K

∑
k∈Sdst(K)

yk. (12)

Edge Similarity (ES) is a heuristic averaging model based on edge similarity. The
similarity between two edges, ej and ek, is defined using the cosine distance between

their edge feature vectors: cosj,k ≜
z⊤j ·zk

||zj ||||zk|| . Given the ordered set of edge indices similar

to ej at time t;

Sim(ej , t) =
(
ki; i < j =⇒ cosj,k > cosi,k, ek ∈ Ecompleted(t)

)
, (13)

we return the average of the K-th most similar edges to ej as the prediction:

ES (K): ŷj =
1

K

∑
k∈Sim(ej ,t)[1:K]

yk. (14)

Non-temporal Neural Networks. To establish a baseline for our experiments, we
present six neural network architectures: eMLP based on Multi-layer Perceptron (MLP)
as a graph-agnostic neural network and four graph neural networks eGCN, eGraphSage,
eGAT, eGraphTransformer based on the widely used Graph Convolutional Network
(GCN) (Kipf and Welling, 2017), Graph Sage (Hamilton et al., 2017), Graph Attention
Network (GAT) (Veličković et al., 2018), and GraphTransformer (Yun et al., 2019). Each
architecture has two variants: eNN and eNN-rich. The e-version refers to a straightfor-
ward implementation of the original method combined with an edge predictor module. The

11



Temporal Edge Regression

Table 2: Summary of the inputs to the various modules for our different baseline models
and their rich variants to obtain the prediction ŷj of the edge ej . The subscript sj and dj
denote the node indices of the source and destination of edge ej , while txj is the timestamp
of edge j announcement. σ is a readout function such as sigmoid or hyperbolic tangent,
fout is one layer of linear transformation, and || denotes concatenation.

Model fconv(·) fout(·) fout-rich(·)

eMLP na ŷj = σ
(
fout

(
he
j

))
ŷj = σ

(
fout

(
he
j ||ht

txj

))
eGCN/eGSage fconv(X,G) ŷj = σ

(
fout

(
hv
sj ||h

v
dj

))
ŷj = σ

(
fout

(
hv
sj ||h

v
dj
||he

j ||ht
txj

))
eGat/eGTransf. fconv(X,G,Z) ŷj = σ

(
fout

(
hv
sj ||h

v
dj

))
ŷj = σ

(
fout

(
hv
sj ||h

v
dj
||ht

txj

))

rich version incorporates additional data components that were not utilized by the original
method through the edge predictor module. In our experiments, we keep the number of
learnable parameters equal on all variants to make a fair comparison. There are three key
components that differ between these architectures:

Node embeddings calculation is achieved by convolution operation in graph learn-
ing methods. Specifically, convolutional layers take node features and graph adjacency
matrices as input and generate a set of node embeddings. GCN employs a normalized
adjacency matrix to compute node embeddings. GraphSage can be seen as a variant of
GCN, where neighborhood aggregation is sampling-based and the aggregation function
is more generalized. GAT and Graph Transformer incorporate attention mechanisms,
which enable them to combine edge features and node features to generate node embed-
dings. Let fconv(·) denote node embeddings module; its output can be summarized as an
embedding vector hv

i ∈ Rd for each vertex ui ∈ V, where d denotes model dimensionality.

Edge embeddings are generated using a simple two-layer neural network with ReLU
activation, which takes edge features zj as input. Let fmlp(·) denote edge feature encoder,
its output can be summarized as an edge embedding vector he

j ∈ Rd for each edge ej ∈ E .

Time embeddings are used to capture the temporal component of the interactions,
enabling the model to understand and predict temporal patterns and changes within the
graph data. For the time encoder, we employ learnable time projection introduced by Ku-
mar et al. (2019). Let ftime(·) denote the time encoder, its output can be summarized as
a time embedding vector ht

j ∈ Rd for a timestamp t ∈ R.

In eMLP, only edge attribute transformation is used to encode a given edge. In eMLP-
rich, we additionally concat time encoding. In eGCN and eGraphSage, we encode only
the node embeddings based on node features, in eGCN-rich and eGraphSage-rich we
also encode edge attributes and time encoding. In eGAT and eGraphTransformer, the
node embeddings are calculated from the node and edge features, so in eGAT-rich and
eGraphTransformer-rich we only add time encoding. Table 2 provides a summary of
the input and final decoder for each method.

Temporal Graph Network (TGN). The most well-known temporal graph learning
method is the Temporal Graph Network (TGN) (Rossi et al., 2020). This is a message

12



Temporal Edge Regression

Table 3: Model Comparison Results. Best and second-best performance are highlighted in
red and blue, respectively.

epic-games-plr air-traffic-2019-rlr air-traffic-2015-rlr open-sea-rlr

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MA-all (K=10) 0.1322 0.1954 0.4510 0.5931 0.1877 0.3005 0.3812 0.4963
MA-src (K=10) 0.1480 0.2499 0.4421 0.5833 0.1864 0.2993 0.3737 0.4910
MA-dst (K=10) 0.2951 0.4341 0.4444 0.5867 0.1848 0.2970 0.3470 0.4677
ES (K=10) 0.1374 0.2017 0.4032 0.5515 0.1854 0.2991 0.3870 0.4939

eMLP 0.1054 0.1755 0.4325 0.5741 0.1727 0.2946 0.3523 0.4707
eMLP-rich 0.1188 0.1891 0.4282 0.5692 0.1684 0.2971 0.3588 0.4717

eGCN 0.1178 0.1883 0.3983 0.5467 0.1673 0.2965 0.3551 0.4638
eGCN-rich 0.1062 0.1788 0.4151 0.5593 0.1727 0.2975 0.3502 0.4693
eGSage 0.1205 0.1894 0.4021 0.5502 0.1727 0.2975 0.3550 0.4750
eGSage-rich 0.1191 0.1883 0.4028 0.5516 0.1667 0.2933 0.3520 0.4663
eGAT 0.1180 0.1883 0.4252 0.5699 0.1665 0.2944 0.3395 0.4573
eGAT-rich 0.1186 0.1888 0.3995 0.5474 0.1669 0.2942 0.3509 0.4654
eGTransf 0.1191 0.1894 0.4174 0.5597 0.1678 0.2964 0.3556 0.4673
eGTransf-rich 0.1190 0.1887 0.4028 0.5507 0.1689 0.2974 0.3357 0.4672

TGN 0.1198 0.1888 0.4084 0.5696 0.1689 0.2958 0.3535 0.4648

passing based encoder which learns graph node embeddings on a continuous-time dynamic
multi-graph represented as a sequence of time-stamped events. At any time, a memory
vector is stored for each node. This vector represents the node’s history in a compressed
format. TGN involves four main operations: (1) message function calculation; (2) message
aggregation; (3) memory update; and (4) embedding calculation. In our experiments, we
use TGN as a representative memory based neural network.

5.3 Loss Functions

Let ŷj denote the response value predicted by the classifier for jth edge; the quality of
estimation can be evaluated by the mean square error Lmse(yj , ŷj), mean absolute error or
Lmae(yj , ŷj) during training:

Lmse =
∑
j

(yj − ŷj)
2 , Lmae =

∑
j

|yj − ŷj | (15)

Alternatively, we can use Huber loss:

Lhuber(y, ŷ) =

{
0.5 (yj − ŷj)

2 , if |yj − ŷj | < δ

δ(|yj − ŷj | − 0.5δ) otherwise
(16)

In our experiments, we tune each model individually to select between Lmse, Lmae and
Lhuber.

6 Experiments

In order to understand TER as a novel temporal graph learning task, we evaluate a range
of baselines which have been detailed in Section 5 using Mean Absolute Error (MAE) and

13



Temporal Edge Regression

Root Mean Squared Error (RMSE). Let yj and ŷj denote actual and estimated target value
for edge ej ∈ E , and let ȳ denote the mean target value, the performance metrics are
formulated as follows:

MAE =
1

|E|
∑
j

|yj − ŷj | , RMSE =

√
1

|E|
∑
j

(yj − ŷj)
2. (17)

Results. In Table 3, we present the results for MAE and RMSE. In Figures 4, 5, and 6
we demonstrate the relative performance of methods grouped by their various properties.
In Figure 4, we compare non-parametric baselines, graph-agnostic neural networks, static
graph neural networks and temporal graph neural network. In Figure 5, we make a com-
parison within static graph neural networks. In Figure 6, we compare the vanilla and rich
versions of deep learning methods.

Epic Games Air Traffic 2019 Air Traffic 2015 Open Sea
Dataset

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
M

AE

Baseline
MLP
Static GNN
Temporal GNN

Epic Games Air Traffic 2019 Air Traffic 2015 Open Sea
Dataset

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
R

M
SE

Baseline
MLP
Static GNN
Temporal GNN

Figure 4: Relative comparison of baselines, MLP, GNN, and TGN results

The main trend that can be observed in results is that GNN-based methods generally
outperform MLPs, with naive baselines performing the worst. This pattern is clearly illus-
trated in Figure 4. This trend of results confirms that graph information is useful to solve
that task and it cannot be trivially solved by naive baselines.

Epic Games Air Traffic 2019 Air Traffic 2015 Open Sea
Dataset

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e 
M

AE

eGCN
eGCN-rich
eGSage
eGSage-rich
eGAT
eGAT-rich
eGTransf
eGTransf-rich

Epic Games Air Traffic 2019 Air Traffic 2015 Open Sea
Dataset

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
R

M
SE

eGCN
eGCN-rich
eGSage
eGSage-rich
eGAT
eGAT-rich
eGTransf
eGTransf-rich

Figure 5: Relative comparison of GNNs

14



Temporal Edge Regression

However, among the GNN methods, there is no clear leading method or variant that
stands out; all methods appear to achieve similar performance, see Figure 5. This suggests
that currently, no specific architecture based on message passing is particularly well-suited
for addressing this task. This can further motivate the development of new methods tailored
specifically for edge regression tasks.

Epic Games Air Traffic 2019 Air Traffic 2015 Open Sea
Dataset

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e 
M

AE

Vanilla
Rich

Epic Games Air Traffic 2019 Air Traffic 2015 Open Sea
Dataset

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
R

M
SE

Vanilla
Rich

Figure 6: Relative comparison of vanilla and rich versions

Lastly, the rich variant of the GNN based methods fails to deliver significant performance
improvements across all datasets, as it is highlighted in Figure 6. This reinforces the notion
that existing methods are insufficient to effectively address this task, as simple adjustment
are not able to provide any benefit.

Implementation Details. In all our experiments, data is divided into training (70%),
validation (10%) and testing (20%) sets chronologically. All the models are implemented
using PyTorch (Paszke et al., 2019), PyTorch Geometric (Fey and Lenssen, 2019) and
PyTorch Geometric Temporal (Rozemberczki et al., 2021) libraries. All computations
were run on an Nvidia DGX A100 machine with 128 AMD Rome 7742 cores and 8
Nvidia A100 GPUs.

Hyperparameter Search. In our experimental setup, the dimensionality of the layers
in fconv(·) is consistently set to ensure a final concatenation dimensionality of 600 before
readout. The number of layers for all deep learning methods is set to 2. We conduct a grid
search for the dropout probability, exploring values in [0, 0.1, 0.3, 0.5]. The readout function
σ is chosen dataset-dependent, with the Sigmoid function employed for Epic Games and the
Tanh function for the remaining datasets. The loss function is selected from among MAE,
MSE, and Huber loss. We utilize the Adam optimizer, with the learning rate tuned from a
uniform distribution between 0.0001 and 0.003 and weight decay selected from [0.0, 0.05, 0.1].
The learnig rate scheduler is set to reduce the learning rate by a factor of 0.1 per 10, 20,
or 100 steps. The batch size is set to 512 and the maximum number of epochs is set
to 300, with early stopping criteria defined as no improvement in validation loss for five
consecutive steps. We performed 100 steps of hyperparameters optimization to optimize
the hyperparameters of all models using the software package Optuna (Akiba et al., 2019).
All tuning was performed on the validation set, and we report the results on the test set that

15



Temporal Edge Regression

are associated with those hyperparameter settings. The tuned values for hyperparameters
are provided in the Appendix B.

7 Conclusions

Summary of Contributions. In this work, we present Temporal Edge Regression (TER)
as a novel benchmark task for the temporal graph learning community. Unlike traditional
graph learning tasks, TER requires forecasting continuous values, which necessitates the
creation of entirely new datasets. As such, existing benchmark datasets like MOOC or
Reddit (Kumar et al., 2019) cannot be easily adapted for this purpose. To address this
gap, we introduce four novel datasets specifically designed for TER. We evaluate these
datasets using both simple baselines and state-of-the-art temporal graph learning methods.
We believe TER closely aligns with many real-world industrial tasks, offering a level of
dynamism and complexity that is often lacking in conventional graph machine learning
problems. Therefore, the introduction of TER as a benchmark task represents a significant
and valuable contribution to the temporal graph learning community.

Future Work. The introduction of TER as a benchmark task opens up several exciting
avenues for future research, including but not limited to:

• Development of Advanced Methods: Creating more sophisticated temporal graph
learning methods that are specifically tailored to the unique challenges of the TER
task.

• Exploration of Applications in Future Link Regression (FLR): Investigating
applications and datasets that fall under the FLR setting, where none of the observa-
tions that constitute a future interaction are known until inference time.

• Dynamic Problem Extensions: Extending the problem formulation to more com-
plex scenarios where (1) the set of vertices representing entities is dynamic, or (2)
edges representing relationships may disappear over time, adding an additional layer
of complexity and realism to the task.

Broader Impact Statement

The study of temporal graphs has predominantly focused on tasks like dynamic node clas-
sification and future link prediction. However, these tasks represent only a fraction of
the potential applications of temporal graph learning. By introducing the concept of edge
regression on temporal graphs, our work broadens the scope of temporal graph analysis,
opening new avenues for research and practical applications. Our research has several
broader impacts:

1. Advancement in Temporal Graph Learning: By defining and formalizing the edge
regression task on temporal graphs, we provide the community with a new perspective
and methodology for analyzing temporal interactions between entities. This can lead
to the development of more sophisticated models that better capture the dynamic
nature of real-world relationships.

16



Temporal Edge Regression

2. Enrichment of Benchmarking Platforms: The current landscape of open-source datasets
is insufficient for thoroughly evaluating temporal edge regression models. Our intro-
duction of four new datasets specifically designed for this task fills a critical gap in the
resources available to researchers. These datasets not only enable more comprehen-
sive benchmarking but also ensure that future models can be rigorously tested and
compared.

3. Practical Applications Across Domains: Temporal edge regression has significant im-
plications for various fields, including social network analysis, financial modeling, and
recommendation systems. For instance, accurately predicting the weight or strength
of future interactions (edges) can enhance the performance of recommendation al-
gorithms, improve financial risk assessment, and provide deeper insights into social
dynamics.

4. Encouraging Methodological Innovation: By evaluating a diverse set of graph learning
algorithms and simple baselines, our work encourages the exploration of new method-
ological approaches. This can stimulate innovation and lead to the discovery of more
effective techniques for temporal graph analysis.

5. Ethical Considerations and Data Use: In creating and sharing new datasets, we em-
phasize the importance of ethical considerations in data collection and usage. Ensur-
ing that our datasets are anonymized and free from biases helps promote responsible
research practices and the development of fair and unbiased models.

6. Educational Impact: The introduction of a new task in temporal graph learning,
along with relevant datasets and baseline evaluations, provides a valuable resource for
educational purposes. It can be used in academic curricula to teach students about
the complexities and opportunities in temporal graph analysis, preparing the next
generation of researchers and practitioners.

In summary, our work not only extends the boundaries of what is possible in temporal graph
learning but also provides the necessary tools and frameworks to support future research and
practical applications. Through this contribution, we aim to foster a deeper understanding
and more widespread adoption of temporal graph methodologies across various domains.

Acknowledgments and Disclosure of Funding

All funding was provided by Block Inc. 10.

10. block.xyz

17



Temporal Edge Regression

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In The 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2623–
2631, 2019.

Thibaud Arnoux, Lionel Tabourier, and Matthieu Latapy. Combining structural and dy-
namic information to predict activity in link streams. In Proc. IEEE/ACM Int. Conf.
Advances in Social Networks Analysis and Mining, pages 935–942, 2017.

Pietro Bongini, Monica Bianchini, and Franco Scarselli. Molecular generative graph neural
networks for drug discovery. Neurocomputing, 450:242–252, 2021.

Lucio La Cava, Davide Costa, and Andrea Tagarelli. Visually wired nfts: Exploring the
role of inspiration in non-fungible tokens, 2023.

Sudhanshu Chanpuriya, Ryan A. Rossi, Sungchul Kim, Tong Yu, Jane Hoffswell, Nedim
Lipka, Shunan Guo, and Cameron N Musco. Direct embedding of temporal network edges
via time-decayed line graphs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=Qamz7Q_Ta1k.

Bo Chen, Di Zhu, Yuwei Wang, and Peng Zhang. An approach to combine the power of deep
reinforcement learning with a graph neural network for routing optimization. Electronics,
11(3):368, 2022.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong,
and Mehrdad Mahdavi. Do we really need complicated model architectures for temporal
networks? In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=ayPPc0SyLv1.

Davide Costa, Lucio La Cava, and Andrea Tagarelli. Show me your nft and i tell you how
it will perform: Multimodal representation learning for nft selling price prediction. In
Proceedings of the ACM Web Conference 2023, WWW ’23, page 1875–1885, New York,
NY, USA, 2023. Association for Computing Machinery. URL https://doi.org/10.

1145/3543507.3583520.

Samuel de Souza Gomes. Dataset epic games, 2022. URL https://doi.org/10.5281/

zenodo.7606569.

Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim, Ramy
Eskander, Yury Malkov, Frank Portman, Sof́ıa Samaniego, Ying Xiao, et al. Twhin:
Embedding the twitter heterogeneous information network for personalized recommen-
dation. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pages
2842–2850, 2022.

ZhengZhao Feng, Rui Wang, TianXing Wang, Mingli Song, Sai Wu, and Shuibing He. A
comprehensive survey of dynamic graph neural networks: Models, frameworks, bench-
marks, experiments and challenges, 2024. URL https://arxiv.org/abs/2405.00476.

18

https://openreview.net/forum?id=Qamz7Q_Ta1k
https://openreview.net/forum?id=ayPPc0SyLv1
https://doi.org/10.1145/3543507.3583520
https://doi.org/10.1145/3543507.3583520
https://doi.org/10.5281/zenodo.7606569
https://doi.org/10.5281/zenodo.7606569
https://arxiv.org/abs/2405.00476


Temporal Edge Regression

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020.

Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan,
Jianxin Chang, Depeng Jin, Xiangnan He, et al. Graph neural networks for recommender
systems: Challenges, methods, and directions. arXiv preprint arXiv:2109.12843, 2021.

Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equiv-
ariant graph representations. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Re-
search, pages 7052–7076. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.

press/v162/gao22e.html.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/

paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

William L. Hamilton. Graph Representation Learning, volume 14. Morgan and Claypool,
2020.

Kehang Han, Balaji Lakshminarayanan, and Jeremiah Liu. Reliable graph neural networks
for drug discovery under distributional shift. arXiv preprint arXiv:2111.12951, 2021.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu,
Emanuele Rossi, Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau, and Rei-
haneh Rabbany. Temporal graph benchmark for machine learning on temporal graphs.
In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL https://openreview.net/forum?id=qG7IkQ7IBO.

Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:

//openreview.net/forum?id=SJU4ayYgl.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD ’19, page 1269–1278.
Association for Computing Machinery, 2019. URL https://doi.org/10.1145/3292500.

3330895.

19

https://proceedings.mlr.press/v162/gao22e.html
https://proceedings.mlr.press/v162/gao22e.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://openreview.net/forum?id=qG7IkQ7IBO
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/3292500.3330895


Temporal Edge Regression

Lucio La Cava, Davide Costa, and Andrea Tagarelli. Sonar: Web-based tool for mul-
timodal exploration of non-fungible token inspiration networks. In Proceedings of the
46th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’23, page 3200–3204, New York, NY, USA, 2023. Association for
Computing Machinery. URL https://doi.org/10.1145/3539618.3591821.

Meng Liu, Yue Liu, KE LIANG, Wenxuan Tu, Siwei Wang, sihang zhou, and Xinwang Liu.
Deep temporal graph clustering. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ViNe1fjGME.

Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. Alleviating the
inconsistency problem of applying graph neural network to fraud detection. In Proc. Int.
ACM SIGIR Conf. Research and Development in Information Retrieval, pages 1569–1572,
2020.

Minbo Ma, Peng Xie, Fei Teng, Tianrui Li, Bin Wang, Shenggong Ji, and Junbo Zhang.
Histgnn: Hierarchical spatio-temporal graph neural networks for weather forecasting.
arXiv preprint arXiv:2201.09101, 2022.

Shengjie Min, Zhan Gao, Jing Peng, Liang Wang, Ke Qin, and Bo Fang. Stgsn—a spatial–
temporal graph neural network framework for time-evolving social networks. Knowledge-
Based Systems, 214:106746, 2021.

Department of Transportation. 2015 flight delays and cancellations, 2017. URL https:

//www.kaggle.com/datasets/usdot/flight-delays.

Muberra Ozmen and Thomas Markovich. Recent link classification on temporal graphs
using graph profiler. Transactions in Machine Learning Research, 2024.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki
Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. EvolveGCN: Evolving
graph convolutional networks for dynamic graphs. In Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence, 2020. URL https://arxiv.org/abs/1902.

10191.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/

bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-
gcn: Geometric graph convolutional networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=S1e2agrFvS.

20

https://doi.org/10.1145/3539618.3591821
https://openreview.net/forum?id=ViNe1fjGME
https://www.kaggle.com/datasets/usdot/flight-delays
https://www.kaggle.com/datasets/usdot/flight-delays
https://arxiv.org/abs/1902.10191
https://arxiv.org/abs/1902.10191
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=S1e2agrFvS


Temporal Edge Regression

Francesco Saverio Pezzicoli, Guillaume Charpiat, and François P Landes. Se (3)-equivariant
graph neural networks for learning glassy liquids representations. arXiv preprint
arXiv:2211.03226, 2022.

Farimah Poursafaei, Andy Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022. URL https://openreview.

net/forum?id=1GVpwr2Tfdg.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao,
Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural
networks for materials science and chemistry. Communications Materials, 3(1):93, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. In
ICML 2020 Workshop on Graph Representation Learning, 2020. URL https://arxiv.

org/abs/2006.10637.

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,
Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas Collignon, and Rik
Sarkar. PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural
Machine Learning Models. In Proceedings of the 30th ACM International Conference on
Information and Knowledge Management, page 4564–4573, 2021.

Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and Albert Cabellos-
Aparicio. Unveiling the potential of graph neural networks for network modeling and
optimization in sdn. In Proc. ACM Symposium on SDN Research, pages 140–151, 2019.

Chenguang Song, Kai Shu, and Bin Wu. Temporally evolving graph neural network for fake
news detection. Information Processing & Management, 58(6):102712, 2021.

Susheel Suresh, Mayank Shrivastava, Arko Mukherjee, Jennifer Neville, and Pan Li. Ex-
pressive and efficient representation learning for ranking links in temporal graphs. In
Proceedings of the ACM Web Conference 2023, WWW ’23, page 567–577. Association
for Computing Machinery, 2023. URL https://doi.org/10.1145/3543507.3583476.

Pawan Trivedi. Flight delay and causes, 2021. URL https://www.kaggle.com/datasets/

undersc0re/flight-delay-and-causes.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Hewen Wang, Renchi Yang, Keke Huang, and Xiaokui Xiao. Efficient and effective edge-
wise graph representation learning. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’23, page 2326–2336. Association for
Computing Machinery, 2023. URL https://doi.org/10.1145/3580305.3599321.

21

https://openreview.net/forum?id=1GVpwr2Tfdg
https://openreview.net/forum?id=1GVpwr2Tfdg
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
https://doi.org/10.1145/3543507.3583476
https://www.kaggle.com/datasets/undersc0re/flight-delay-and-causes
https://www.kaggle.com/datasets/undersc0re/flight-delay-and-causes
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3580305.3599321


Temporal Edge Regression

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive repre-
sentation learning in temporal networks via causal anonymous walks. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?

id=KYPz4YsCPj.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in
recommender systems: a survey. ACM Computing Surveys (CSUR), 55(5):1–37, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.
A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks and
Learning Systems, 32(1):4–24, 2020.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng.
Graph neural networks for automated de novo drug design. Drug Discovery Today, 26
(6):1382–1393, 2021.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rJeW1yHYwH.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph
transformer networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/

paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf.

Ge Zhang, Zhao Li, Jiaming Huang, Jia Wu, Chuan Zhou, Jian Yang, and Jianliang Gao.
efraudcom: An e-commerce fraud detection system via competitive graph neural net-
works. ACM Trans. Information Systems (TOIS), 40(3):1–29, 2022.

Liang Zhang, Jingqun Li, Bin Zhou, and Yan Jia. Rumor detection based on sagnn: Sim-
plified aggregation graph neural networks. Machine Learning and Knowledge Extraction,
3(1):84–94, 2021.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis.
Tgl: a general framework for temporal gnn training on billion-scale graphs. Proc. VLDB
Endow., 15(8):1572–1580, 2022. URL https://doi.org/10.14778/3529337.3529342.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods
and applications. AI open, 1:57–81, 2020.

Patrick Zippenfenig. Open-meteo.com weather api, 2023. URL https://open-meteo.com/.

22

https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=rJeW1yHYwH
https://proceedings.neurips.cc/paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://doi.org/10.14778/3529337.3529342
https://open-meteo.com/


Temporal Edge Regression

Appendix A. Preprocessing Details

A.1 Epic Games

Each critic record is composed of following fields:

• company – company name that rated the game: generated an identification number
that is different from any value in game id for each sample in the set of unique values,
used as source node.

• author – author comment about the game: not used because of missing values.

• game id - identification of game, used as destination node.

• date – date of critic: converted to timestamp, used as edge time.

• rating – rating of game (out of 100): normalized to [0, 1], used as edge target.

• comment – author comment about the game: not used because observed after date.

• top critic – verify if is a top critic (authors with verdict): not used because observed
after date.

Each game record is composed of following fields:

• id – identification of game.

• name – name of game, game slug – short name of game, and description –description
of game: concatenated and vectorized to TF-IDF features with a vocabulary size of
512, and maximum word frequency of 0.8, used as node feature.

• price – price of game: normalized to [0, 1], used as node feature.

• platform – platforms that the game is available: converted to categorical data with
0/1 indicator.

• genres – genres of game: converted to categorical data with 0/1 indicator, used as
node feature.

• release date – release date of game: converted to timestamp, used as node feature.

• developer – company that developed the game: unused.

• publisher – company that published the game: unused.

A.2 Air Traffic

The flight records are composed of following fields:

• Origin – origin IATA (International Air Transport Association) airport code: used
as source node.

• Dest – destination IATA code: used as destination node.

23



Temporal Edge Regression

• Date – scheduled date: used as edge time.

• ArrTime – actual arrival time: used to calculate edge target such that y = (ArrTime
- CRSArrTime) / (CRSArrTime - CRSDepTime).

• CRSArrTime – scheduled arrival time: used to calculate edge target such that y =
(ArrTime - CRSArrTime) / (CRSArrTime - CRSDepTime).

• CRSDepTime – scheduled departure time: used to calculate edge target such that y =
(ArrTime - CRSArrTime) / (CRSArrTime - CRSDepTime).

The weather conditions are summarized by following parameters for each flight:

• dest temperature 2m max – maximum daily air temperature at 2 meters above ground
at destination: used as edge feature.

• dest temperature 2m min – minimum daily air temperature at 2 meters above ground
at destination: used as edge feature.

• dest temperature 2m mean – mean daily air temperature at 2 meters above ground
at destination: used as edge feature.

• dest precipitation sum – sum of daily precipitation at destination (including rain,
showers and snowfall): used as edge feature.

• dest rain sum – sum of daily rain at destination: used as edge feature.

• dest snowfall sum – sum of daily snowfall at destination: used as edge feature.

• dest wind speed 10m max – maximum wind gusts at destination: used as edge fea-
ture.

• dest wind gusts 10m max – maximum wind speed at destination: used as edge fea-
ture.

• dest wind direction 10m dominant – dominant wind direction at destination: used
as edge feature.

• origin temperature 2m max – maximum daily air temperature at 2 meters above
ground at origin: used as edge feature.

• origin temperature 2m min – minimum daily air temperature at 2 meters above
ground at origin: used as edge feature.

• origin temperature 2m mean – mean daily air temperature at 2 meters above ground
at origin: used as edge feature.

• origin precipitation sum – sum of daily precipitation at origin (including rain,
showers and snowfall): used as edge feature.

• origin rain sum – sum of daily rain at origin: used as edge feature.

24



Temporal Edge Regression

• origin snowfall sum – sum of daily snowfall at origin: used as edge feature.

• origin wind speed 10m max – maximum wind gusts at origin: used as edge feature.

• origin wind gusts 10m max – maximum wind speed at origin: used as edge feature.

• origin wind direction 10m dominant – dominant wind direction at origin: used as
edge feature.

A.3 Open Sea

Transaction records involve following fields:

• seller account – address of the NFT seller: used as source node.

• winner account – address of the NFT buyer: used as destination node.

• tx timestamp – timestamp of the transaction: used as edge time.

• token – token type used to pay the transaction: converted to categorical data with
0/1 indicator, used as edge feature.

• chain – blockchain where the transaction occurs: converted to categorical data with
0/1 indicator, used as edge feature.

• token type – schema of the token, i.e., ERC721 or ERC1155: converted to categorical
data with 0/1 indicator, used as edge feature.

• asset contract type – asset typology, i.e., non-fungible or semi-fungible: converted
to categorical data with 0/1 indicator, used as edge feature.

• asset type – whether the asset was involved in a simple or bundle transaction: con-
verted to categorical data with 0/1 indicator, used as edge feature.

• to eth – conversion rate to convert tokens into Ethereum at the current timestamp:
normalized to [0, 1], used as edge feature.

• to usd – conversion rate to convert tokens into US dollars (USD) at the current
timestamp: normalized to [0, 1], used as edge feature.

• created date – date of creation of the contract: converted to timestamp, used as
edge feature.

• token id – id of the NFT collection name – id for accessing the collection name:
token id is unique within the same collection, so these two are used to identify unique
item identification item id

• usd price – price of the transaction expressed in US dollars (USD): used to calculate
edge target such that y = (usd price - NEXT[usd gain]) / usd price where NEXT[.]
refers to subsequent transaction of item id.

• usd gain – difference between the price and the fees expressed in US dollars (USD):
used to calculate edge target such that y = (usd price - NEXT[usd gain]) / usd price
where NEXT[.] refers to subsequent transaction of item id.

25



Temporal Edge Regression

Appendix B. Hyperparameter Tuning

In this section, we present the selected set of hyperparameters for each dataset and method.
We performed 100 steps of hyperparameters optimization to optimize the hyperparameters
of all models using the software packageOptuna (Akiba et al., 2019). The hyperparameters
were tuned on a validation set based on the best performance in terms of Mean Absolute
Error (MAE).

Table 4: Selected configurations

(a) epic-games-plr

eMLP eMLP-rich eGCN eGCN-rich eGSage eGSage-rich eGAT eGAT-rich eGTransf eGTransf-rich

batch size 512 512 512 512 512 512 512 512 512 512
number of epochs 300 300 300 300 300 300 300 300 300 300
embedding size 600 600 600 600 600 600 600 600 600 600
dropout 0.5000 0.3000 0 0 0.1000 0.5000 0 0 0.1000 0.1000
loss function L1 L1 L1 L1 Huber L1 L1 L1 L1 L1
learning rate 0.0001 0.0008 0.0010 0.0009 0.0012 0.0010 0.0011 0.0016 0.0023 0.0016
weight decay 0.0000 0.0500 0.0000 0.0000 0.1000 0.0500 0.0000 0.0000 0.0500 0.1000
step size 20 100 10 10 100 100 10 20 20 20
decay factor 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

(b) air-traffic-2019-rlr

eMLP eMLP-rich eGCN eGCN-rich eGSage eGSage-rich eGAT eGAT-rich eGTransf eGTransf-rich

batch size 512 512 512 512 512 512 512 512 512 512
number of epochs 300 300 300 300 300 300 300 300 300 300
embedding size 600 600 600 600 600 600 600 600 600 600
dropout 0.1000 0.1000 0.5000 0 0.3000 0.3000 0.5000 0.3000 0.5000 0.3000
loss function L1 L1 L1 L1 L1 L1 L1 L1 L1 L1
learning rate 0.0002 0.0024 0.0003 0.0004 0.0007 0.0017 0.0003 0.0010 0.0005 0.0005
weight decay 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
step size 100 20 20 10 10 10 20 10 10 10
decay factor 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

(c) air-traffic-2015-rlr

eMLP eMLP-rich eGCN eGCN-rich eGSage eGSage-rich eGAT eGAT-rich eGTransf eGTransf-rich

batch size 512 512 512 512 512 512 512 512 512 512
number of epochs 300 300 300 300 300 300 300 300 300 300
embedding size 600 600 600 600 600 600 600 600 600 600
dropout 0.5000 0.3000 0.1000 0 0 0.3000 0.3000 0.1000 0.5000 0.5000
loss function L1 L1 L1 L1 L1 L1 L1 L1 Huber L1
learning rate 0.0026 0.0001 0.0002 0.0004 0.0002 0.0009 0.0028 0.0007 0.0017 0.0027
weight decay 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000
step size 100 100 10 10 10 10 20 10 10 10
decay factor 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

(d) open-sea-rlr

eMLP eMLP-rich eGCN eGCN-rich eGSage eGSage-rich eGAT eGAT-rich eGTransf eGTransf-rich

batch size 512 512 512 512 512 512 512 512 512 512
number of epochs 300 300 300 300 300 300 300 300 300 300
embedding size 600 600 600 600 600 600 600 600 600 600
dropout 0.5000 0 0.1000 0.1000 0 0.3000 0.5000 0.5000 0.5000 0.1000
loss function MSE Huber Huber Huber Huber L1 Huber Huber Huber L1
learning rate 0.0007 0.0001 0.0022 0.0002 0.0006 0.0003 0.0021 0.0020 0.0030 0.0002
weight decay 0.0500 0.1000 0.1000 0.1000 0.0500 0.1000 0.1000 0.0500 0.1000 0.1000
step size 10 20 20 20 20 10 20 100 20 10
decay factor 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

26



Temporal Edge Regression

Appendix C. Additional Ablation Studies

Figure 7: Kernel density estimate on MAE levels over multiple random seeds, epic-games-
plr. Each model is run over 30 random seeds using the tuned values of hyperparameters. In
general it is observed that attention based models and their variants tend to impose higher
variance in performance across different random seeds.

Figure 8: Ablation study for the impact of batch size, epic-games-plr. It is observed that
as increase in batch size leads to a decrease in the performance of the model.

27



Temporal Edge Regression

Figure 9: Ablation study for the number of layers on the epic-games-plr. It is observed
that models deeper than 2 layers has the potential to imporve performance.

28


	Introduction
	Related Work
	Problem Definition
	Datasets
	Epic Games
	Air Traffic
	Open Sea

	Methodology
	Edge Homophily
	Prediction Methods
	Loss Functions

	Experiments
	Conclusions
	Preprocessing Details
	Epic Games
	Air Traffic
	Open Sea

	Hyperparameter Tuning
	Additional Ablation Studies

