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ABSTRACT

The ability to assess the robustness of image classifiers to a diverse set of ma-
nipulations is essential to their deployment in the real world. Recently, semantic
manipulations of real images have been considered for this purpose, as they may
not arise using standard adversarial settings. However, such semantic manipu-
lations are often limited to style, color or attribute changes. While expressive,
these manipulations do not consider the full capacity of a pretrained generator to
affect adversarial image manipulations. In this work, we aim at leveraging the
full capacity of a pretrained image generator to generate highly detailed, diverse
and photorealistic image manipulations. Inspired by recent GAN-based image in-
version methods, we propose a method called Adversarial Pivotal Tuning (APT).
APT first finds a pivot latent space input to a pretrained generator that best recon-
structs an input image. It then adjusts the weights of the generator to create small,
but semantic, manipulations which fool a pretrained classifier. Crucially, APT
changes both the input and the weights of the pretrained generator, while preserv-
ing its expressive latent editing capability, thus allowing the use of its full capacity
in creating semantic adversarial manipulations. We demonstrate that APT gener-
ates a variety of semantic image manipulations, which preserve the input image
class, but which fool a variety of pretrained classifiers. We further demonstrate
that classifiers trained to be robust to other robustness benchmarks, are not robust
to our generated manipulations and propose an approach to improve the robustness
towards our generated manipulations.

1 INTRODUCTION

Significant progress has been made in developing classifiers that work reliably in a broad range of
data distributions Akhtar et al. (2021) and which are robust to corruption methods. To assess those
classifiers, several benchmarks have been proposed. A large body of work considers robustness
against adversarial lp-bounded pixel-space perturbations. Since such perturbations act on raw pixels,
they do not result in semantic manipulations such as changes in lighting conditions.

Recently, a new generation of models that can generate highly expressive and photorealistic images
has gotten much attention, these include DALL-E-2 Ramesh et al. (2022), RQ-VAE Lee et al. (2022),
Stable-Diffusion Rombach et al. (2021), among others. In particular, these models can be used to
manipulate existing images with a high degree of detail and expressivity. In the context of neural
network robustness, a recent line of work considers the ability to use generative models to generate
class-preserving semantic adversarial manipulations Song et al. (2018); Xu et al. (2020); Poursaeed
et al. (2021); Gowal et al. (2020), overcoming the limitations of the abovementioned pixel-space
perturbations. However, such manipulations are often restricted to specific style or color changes.
While such manipulations are challenging, they fall short of covering the entire space of possible
class-preserving semantic manipulations.

In this paper, we aim to address this shortcoming by asking the following research question: can we
leverage the full expressive power of a pretrained image generator to perform more general, highly
detailed, photorealistic image manipulations for assessing the robustness of image classifiers? Given
a pretrained classifier C and a pretrained generator G, we wish to perform manipulations on a given
set of images such that: (i) the resulting images are within the original dataset distribution, (ii) the
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Figure 1: Generated manipulations. Row 1 shows the input images. Row 2 shows the images resulting from
our manipulations. Row 3 shows the result of Lin et al. (2020), using pixel-space adversarial manipulations
applied to StyleGAN-XL’s reconstructions. Row 4 shows the result of Lin et al. (2020) with latent space
manipulates applied using StyleGAN-XL. Our method manipulates images in a non-trivial but class-preserving
manner, using the full capacity of a pretrained StyleGAN generator. For example, it removes the eye of the
mantis (second column), changes the type of race car (third column), changes the color of the crab tail (fifth
column), removes the text in a spaceship (seventh column) and removes some of the ropes (eighth column). All
of these are class-preserving examples that fool a pretrained PRIME-ResNet50 Modas et al. (2021) classifier.
In contrast, Lin et al. (2020) either generates noisy and less realistic images (row 3) or images which differ
significantly semantically and which do not preserve the input class (row 4).

manipulations are class-preserving, (iii) they fool the target classifier C, and (iv) they are highly
expressive, i.e., the full capacity of the generator G is used to perform such manipulations.

We focus on the robustness of ImageNet classifiers and use the recently proposed StyleGAN-
XL (Sauer et al., 2022) generator, as it offers the ability to effectively manipulate style and content
semantically. Our approach, Adversarial Pivotal Tuning (APT), is inspired by Pivotal Tuning Inver-
sion (PTI), a recent GAN inversion approach proposed by Roich et al. (2021). Given an input image
x, we first perform latent optimization to find the input pivot latent vector wp that results in the clos-
est (but imperfect) reconstruction to x. We subsequently optimize the StyleGAN weights with the
following objectives: (1) reconstructing image x, (2) fooling the classifier C, and (3) ensuring the
generated image appears real to the pretrained StyleGAN discriminator, so that the generated image
remains within the real image distribution. To ensure that the manipulations are class-preserving, we
bound the maximum distance between input and generated image and stop the optimization when
this distance is reached.

Our method enjoys a number of advantages: First, by generating images which are close to input
images and which appear realistic to a pretrained discriminator D, they are likely to be of high qual-
ity and fidelity as well as class-preserving. Second, by using objective (2), images are likely to fool
the classifier. Third, and most importantly, our manipulations are optimized over the entire space of
StyleGAN parameters (both in the latent space and in its weights). By applying this optimization
after an initial latent optimization stage, we ensure that the editing capabilities of StyleGAN are
preserved, thus allowing for fully expressive manipulations.

We use our generated manipulations to assess the robustness of a variety of pretrained classifiers
with a diverse range of architectures, as well as classifiers specifically trained to be robust against
common corruptions and perturbations. Our results show a significant performance drop on our
image manipulations, and that these adversarial manipulations are transferable, indicating that the
tested classifiers are not robust to them. Visually (see Fig. 1), we observe a wide variety of image
manipulations going beyond style transfer or changes in specific attributes. We subsequently con-
sider an approach to improve the robustness to our manipulations through adversarial training on
images that have been manipulated using our approach.
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2 RELATED WORK

Semantic Adversarial Robustness. The majority of current literature considers adversarial ro-
bustness to pixel-space manipulations where the lp norm is bounded Szegedy et al. (2013); Fletcher
(2013). For a comprehensive review, see Akhtar et al. (2021). We focus on approaches that seman-
tically manipulate the input image, resulting in a naturally looking adversarial manipulation.

One set of works considers a specific class of semantic manipulations. These include geometric
changes Xiao et al. (2018); Alaifari et al. (2018); Engstrom et al. (2017), view changes Alcorn et al.
(2018), manipulating intermediate classifier features Dunn et al. (2020); Laidlaw et al. (2020); Xu
et al. (2020), and inserting patches Brown et al. (2017). Hendrycks et al. (2021) consider an image
filtering approach of natural images. Other works consider manipulation of style, texture or color
statistics, where the structure of the image is fixed. Hosseini & Poovendran (2018) convert images to
HSV and change the hue and saturation. Bhattad et al. (2019) consider unrestricted image perturba-
tions by either manipulating the image color or texture in an adversarial manner. Shamsabadi et al.
(2020) selectively modify the image’s color within a chosen range that appears natural to humans.

Another set of works considers adversarial manipulation of facial attributes. Joshi et al. (2019) con-
trol a binary attribute such as glasses. Qiu et al. (2020) propose an attribute-conditional generative
model producing adversarial examples which differ from the input image by one attribute. One can
also consider deepfakes Tolosana et al. (2020) as class-preserving semantic manipulations.

Another line of work considers the use of pretrained generative models. Song et al. (2018) search the
latent space of a pretrained AC-GAN to find inputs that fool a given classifier. Unlike our method,
they do not manipulate real images, resulting in less realistic generations and less faithful matching
of the real image distribution—a result of AC-GAN’s mode-dropping. Xu et al. (2020) consider an
autoencoder-based manipulation of real images, but it is restricted to style changes.

Gowal et al. (2020) demonstrate an approach for adversarial training with samples generated by
StyleGAN. However, it only manipulates a subset of the latent space variables, limiting the set
of manipulations to coarse image changes. Moreover, our approach considers higher-resolution
ImageNet samples while their approach is limited to low-resolution faces or MNIST digits. Lin
et al. (2020) project images to a pretrained StyleGAN’s latent space and adversarially manipulate
their style code. Similarly, Poursaeed et al. (2021) manipulate both the style and noise latent vectors
of StyleGAN. Our work takes a step further and manipulates not only the latent space of StyleGAN,
but also its weights while preserving its editing capabilities. We thus enable the full utilization of
StyleGAN’s capacity to create highly expressive semantic manipulations, as shown in Fig. 1.

GAN Inversion and Image Manipulation. Our work is inspired by recent pretrained GAN in-
version methods for effective manipulation of images. Some works optimize the latent space of a
pretrained GAN Lipton & Tripathi (2017); Creswell & Bharath (2018); Abdal et al. (2019); Karras
et al. (2020) or use an encoder to find the latent input for a given image, such that the input image is
effectively reconstructed Perarnau et al. (2016); Luo et al. (2017); Guan et al. (2020). In the context
of StyleGAN, Abdal et al. (2020) have shown that optimizing over StyleGAN’s latent input space
W results in unfaithful reconstructions. When considering optimization over the W+ space, latent
manipulations are inferior compared to the same manipulations over StyleGAN’s W space. To this
end, Roich et al. (2021) proposed to directly update StyleGAN’s weights, following an initial latent
optimization step. Unlike these methods, our object is not to invert an input image, but rather to fool
a classifier.

3 ADVERSARIAL PIVOTAL TUNING

We now describe our proposed approach for generating adversarial images for a pretrained classi-
fier C, utilizing the full expressive capacity of StyleGAN-XL. Given a collection of images from
ImageNet-1k, we first filter those misclassified by C. In order to fool C on a correctly classified
image, we wish to semantically manipulate it to be misclassified by C. Simple color jittering, rota-
tion, translations and semantically generated manipulations such as style, texture or specific attribute
change, can result in misclassification but remain limited in scope and realism. We therefore suggest
a new method, Adversarial Pivotal Tuning(APT), that learns non-trivial and highly non-linear image
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Figure 2: The Adversarial Pivotal Tuning (APT) framework. In the first step, we optimize a style code
wp using standard latent optimization Lo from Eq. (1), while keeping the generator G frozen. The loss is
computed between the ground-truth image xgtr and the generated image xgen. In the second step, we freeze
wp and finetune G (shown in red) using the three objectives from Eq. (8); a reconstruction objective Lrec, the
projected GAN objective using the discriminator D, LPG, and our fooling objective LCE using the classifier C.
A ∗ is used to indicate a frozen component.

manipulations, while simultaneously ensuring the generated image stays within the data manifold.
An overview of the APT method is shown in Fig. 2.

We use StyleGAN-XL Sauer et al. (2022), a generative model trained on ImageNet-1K. The gen-
erator G consists of a mapping network Gm and a synthesis network Gs. The mapping network
maps a random Gaussian latent variable z ∈ R64 along with a one-hot class label c to the style code
w ∈ R27×512 = W . The synthesis network subsequently maps w and a noise vector n to an RGB
image x̂ ∈ R3×H×W of height H = 256 and width W = 256. This generator is subsequently
trained to fool a set of discriminators {Dl} using the Projected GAN objective Sauer et al. (2021).

The first step of our method, aims at identifying a latent code w (and noise vector n) that minimizes
the reconstruction error between a generated image xgen and a given input image xgtr, for a pre-
trained generator, in a similar manner to GAN inversion methods. This is done using the process of
latent optimization over wp, n:

argmin
w,n

LLPIPS (xgtr, Gs (w, n; θ)) + λnLn(n) (1)

Here, xgen = Gs(w, n; θ) is the image produced by a pre-trained synthesis network Gs param-
eterized by weights θ. We follow Roich et al. (2021) and Karras et al. (2020) in using a noise
regularization term Ln and use λn as a hyperparameter. The optimization is performed in W space
and LLPIPS is the perceptual distance introduced in Zhang et al. (2018).

In the second step, we modify the image x, to fool the classifier C, utilizing the full capacity of
StyleGAN. We note that Gs(wp, n; θ), i.e., the initial estimate for the reconstruction of x, should
not be far from the adversarially manipulated image ŷ we wish to generate.

We first consider the reconstruction objective, as in Eq. (2), as we wish our manipulated image to be
close to the input image x. Similarly to Roich et al. (2021), the generator weights are adjusted and
regularized to restrict changes to a local region in the latent space, while the latent code wp ∈ W
and noise n are fixed, leading to better reconstruction:

θ̂ = argmin
θ

Lrec(x,Gs(wp, n; θ)), (2)

where θ̂ represents the new fine-tuned weights. The reconstruction loss is defined as follows:

Lrec = Lpt + LR (3)

LR = LLPIPS (xr, x
∗
r) + λR

L2LL2 (xr, x
∗
r) (4)

Lpt = LLPIPS
(
x, x∗

p

)
+ λP

L2LL2

(
x, x∗

p

)
(5)

where x∗
p is generated using the modified weights as Gs(wp, n; θ̂). A locality regularization term

(LR) is applied by restricting changes to a local region in the latent space. Specifically, setting
wr = wp + α

wz−wp

∥wz−wp∥2
, where, in each iteration, z is sampled from a normal distribution and wz

is obtained by applying the mapping network Gm to z and class c of the input image x and α is a
hyperparameter. We then generate xr and x∗

r using the initial and modified weights, Gs(wr, n; θ)

and Gs(wr, n; θ̂) respectively.

Secondly, we wish to fool the classifier C. That is, the cross entropy loss for the classifier’s predic-
tion on the manipulated image should be high. In practice, we observed a more stable optimization
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when minimizing the cross entropy between the classifier’s prediction and an incorrect class label
chosen at random. Lastly, we utilize StyleGAN’s pretrained discriminators {Dl} to distinguish be-
tween real and synthetic images, and enforce that the manipulated image appears real. Following
Sauer et al. (2021), we consider the following objective:

LPG =
∑
l

log (1−Dl (Gs(wp, n; θ))), (6)

where the weights of each Dl are fixed. We then finetune G’s weights θ with the following objective:

LAPT = Lrec + λCELCE(cany, C(Gs(wp, n; θ))) (7)
+ λPGLPG (8)

where cany is a randomly chosen class different from the true class, and LCE is the cross entropy
loss. As both the classifier C and discriminators {Dl} are fixed, the generated image is changed to
match the reference image as closely as possible, while deviating only slightly to change the class
predicted by the classifier. Given a desired maximum distance d, we consider generated images for
which Lpt ≤ d, where d is a hyperparameter, and stop the optimization whenever Lpt ≥ d. We note
that, unlike traditional frameworks that use a maximum lp norm to bound adversarial examples, we
consider Lpt which uses both a pixel-based distance and a perceptual distance.

3.1 IMPLEMENTATION DETAILS

For the latent optimization step (Eq. (1)), we use the hyperparameters described by Karras et al.
(2020). We run the optimization for 1k iterations. Our GAN generated images are of 2562 reso-
lution. Given a generated image, we follow Modas et al. (2021) in center cropping the image to
2242 resolution and normalizing it using standard ImageNet statistics, before being classified by
our pretrained classifier. The hyperparameters in Eq. (8) are: λP

L2 = λR
L2 = 0.1, λCE = 0.01 and

λPG = 0.005 for all experiments. For Eq. (8), we use the Adam optimizer with a learning rate of
3 · 10−4. For evaluation, we follow the official codebase of the baselines. When finetuning on APT
generated images, we follow our standard training configuration, but with learning rate of 0.001.

4 EXPERIMENTS

We begin by assessing the degree to which our generated images (i) are within the ImageNet dis-
tribution, (ii) represent the same class as the corresponding input images (i.e., the manipulation is
class-preserving), (iii) fool a target classifier, i.e., the classifier misclassifies the generated images,
and (iv) exhibit a wide variety of semantic changes.

To this end, we consider a collection of pretrained classifiers including those specifically trained to be
robust to different robustness benchmark datasets such as ImageNet-C, ImageNet-A, and ImageNet-
R. More specifically, we consider PRIME-ResNet50 Modas et al. (2021) which is trained using
new augmentation techniques for enhanced robustness, and FAN-VIT Zhou et al. (2022), a Vision
Transformer with no MLP layers that is highly robust to unseen natural images.

Additionally, to test transferability, we use the adversarially generated samples using PRIME-
ResNet50 and FAN-VIT as classifiers, and test them on other architectures: (1) ResNet50 He et al.
(2015), (2) MAE He et al. (2021), a generalizable and scalable asymmetric encoder-decoder archi-
tecture, (3) RegNet-Y Goyal et al. (2022), a ResNet-type model with a regulatory model to extract
complementary features, and (4) data2vec Baevski et al. (2022), a self-supervised transformer that
predicts contextualized latent representations in a self-distillation setup for any modality. We then
explore a training regime for improving model robustness to our APT manipulations. Lastly, we
conduct an ablation study, illustrating the necessity of the different components for generating our
samples, and investigating the effect of different hyperparameters.

4.1 ADVERSARIALLY GENERATED MANIPULATIONS

We evaluate our generated samples with respect to properties (i)-(iv) above.
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Table 1: User studies. (Q2). We conduct a user study to determine, for a real and generated samples, if the
majority of 25 annotators considered the class to have changed or not. Similarly, for the pretrained classifier
(Classif), we consider if its classification changed. We consider 40 such samples from the ImageNet-1k valida-
tion set extracted using a pretrained PRIME-ResNet50 classifier. (Q3). For our generated samples, real images
and those of Lin et al. (2020), we display each image and ask the user to assign the corresponding label. The
percentage of correct responses corresponding to the real image’s class is shown.

Classif (same cl.) Classif (diff cl.)

Human (same cl.) 25 13
Human (diff cl.) 1 1

(Q2)

dual-L dual-P Ours Real

12.5% 42.5% 90.0% 95.0%
(Q3)

Table 2: Accuracy (Acc) and mean softmax probability of the labeled class (Conf) on the ImageNet validation
set (Real) and corresponding Generated images with APT using PRIME-ResNet50 Modas et al. (2021) and
FAN-VIT Zhou et al. (2022) as classifiers respectively. Each model is evaluated on the generated images for
which it was also used as the classifier in the APT generation.

Model Real Real APT APT
(Acc) (Conf) (Acc) (Conf)

PRIME Resnet-50 77.1% 69.7 54.0% 23.4
FAN-VIT 83.6% 62.4 62.0% 44.7

Table 3: Transferability of APT generated samples. For the ImageNet-1k validation set, we consider samples
generated to fool a PRIME-Resnet50 Modas et al. (2021) (PRIME) and a FAN-VIT Zhou et al. (2022) (FAN)
pretrained classifier. We then test the accuracy (Acc) and mean softmax probability of the labelled class (Conf)
on those samples. The left column indicates the classifier on which we tested the accuracy of real or generated
samples. ∗ indicates the accuracy and confidence for samples generated and tested using the same classifier.

Model Real (Acc) Real (Conf) PRIME (Acc) PRIME (Conf) FAN (Acc) FAN (Conf)

PRIME 77.1% 69.7 54.0%∗ 23.4∗ 60.1% 52.3
FAN-VIT 83.6% 62.4 70.9% 52.0 62.0%∗ 44.7∗

Resnet-50 75.3% 68.6 60.9% 48.3 59.7% 51.5
MAE-ViT-B 83.2% 76.7 70.4% 62.6 61.2% 56.8
MAE-ViT-L 86.0% 78.8 71.8% 64.4 62.2% 58.1
MAE-ViT-H 87.0% 80.1 73.8% 65.4 62.3% 58.4
Regnet-320 83.1% 83.7 62.1% 63.8 54.5% 60.6
Regnet-1280 83.7% 77.2 61.3% 64.5 53.0% 61.3
data2vec 83.5% 77.7 70.6% 65.0 61.6% 59.1

Figure 3: Generated manipulations. The top row shows input images, the middle row shows APT manipu-
lations for a ResNet-50 classifier, and the bottom row shows APT manipulations from a FAN-VIT classifier.
Column 1-4+7 illustrates similar manipulations for both classifiers, column 5-6 shows texture and spatial ma-
nipulations, the last column showcase a fooling image without a clear APT manipulation.
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Fidelity and Diversity. To measure (i), i.e., whether samples lie on the ImageNet manifold, we
are interested in measuring both Fidelity—whether the generated samples are high quality—and
Diversity—whether the generated samples capture the diversity of the original real dataset. To this
end, we consider the FID score Heusel et al. (2017), which was introduced as a metric to capture
both Fidelity and Diversity. For a pretrained PRIME-ResNet50 classifier Modas et al. (2021), we
consider three groups of images: (1) 3k images chosen at random from the ImageNet validation
set, (2) their corresponding adversarial manipulations generated using APT, (3) 3k images chosen
at random from the ImageNet training set. First, we evaluate the FID score between (1) and (2).
As can be seen in Table 4, the value is lower than the other groups, indicating that the distributions
are close. To evaluate the FID against non-matching groups of real images, we consider the FID
between (1) and (3) and between (2) and (3).

Table 4: Top three rows: FID scores using a
PRIME-Resnet50 for our generated manipula-
tions in comparison to manipulations generated
by Lin et al. (2020) using pixel space manipu-
lations (dual-P) on StyleGAN-XL’s reconstruc-
tions or latent-space manipulations (dual-L).
The same set of input images is used. Fourth
row: FID scores for our generated samples us-
ing a FAN-VIT classifier. The FID score be-
tween real validation and training images from
ImageNet ((1) & (3)) is 25.99.

(1) & (2) (2) & (3)

Ours (PRIME) 19.87 23.72
dual-P (PRIME) 63.63 92.86
dual-L (PRIME) 50.94 61.62

Ours (FAN-VIT) 20.01 24.24

As can be seen in Table 4, the FID value between
(2) and (3) is only slightly higher than that of (1) and
(3), indicating that our generated distribution matches
the training image distribution in only a slightly worse
manner than real validation images. We note that the
trace of the covariance matrices contributes to the vast
majority of the score, likely due to the low number of
samples available for the validation set. To convince
ourselves that this is the case, we also report the FID
between the training set and their corresponding ad-
versarial manipulations (43k) to be 6.62 indicating that
the real and generated images are similar.

As a point of comparison, we consider the generated
manipulations (2) on the same set of images using
Lin et al. (2020), either using pixel-space adversarial
manipulations applied on StyleGAN-XL’s reconstruc-
tions (Lin et al. (2020) dual-P) or with latent-space ma-
nipulates applied using StyleGAN-XL (Lin et al. (2020)-L). As can be seen, the generated samples
are of a much worse FID score in comparison to our samples, indicating that they are of much lower
generation quality and do not match ImageNet’s real image distribution.

Class Preservation. To measure (ii), we consider, for a pretrained PRIME-ResNet50 classifier,
whether generated samples are class-preserving. We conduct user studies consisting of 25 users and
40 samples from ImageNet’s validation set and their corresponding samples generated with APT
(Q1-3) and Lin et al. (2020) dual-P/L (Q3). We then conduct the following assessments:

• Q1: We display each generated sample in isolation, and ask how realistic it is, on a Likert
scale of 1 (strongly disagree) to 5 (strongly agree).

• Q2: For each generated sample, we first display the real image and the associated class to the
user. We then display the generated sample and ask whether the class is preserved. Addition-
ally, we consider if the pretrained classifier misclassifies the generated image.

• Q3: We display each image and ask the user to assign a corresponding label. The label is
considered correct if it corresponds to the real image’s ground truth label. This is performed
separately for real images, for our generates samples and for those generated by Lin et al.
(2020).

For Q1, we report the mean score on the Likert-scale to be 3.55. For Q2, as seen in Table 1(a), user
almost always state that the class is preserved, except in 5% of the cases, whereas 32.5% of these
images fool the classifier. For Q3, as can be seen in Table 1(b), the generated samples by Song et al.
(2018)-L/P exhibit significant loss of class identity. For APT and the real images, the users correctly
predict 90% and 95% of the images respectively, suggesting that our method yields realistic and
class-preserving images.

Classifier Fooling. To test the degree to which a target classifier is fooled, we measure its
accuracy on 3k images from the ImageNet1k validation set and on the corresponding images gen-
erated by APT. Each class contains 3 randomly sampled images from the validation set. Addi-
tionally, we measure the average decrease of the softmax probability for the real class, to as-
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Table 6: ImageNet-C (CC) accuracy for PRIME-Resnet50 before and after finetuning.

Method CC Noise Blur Weather Digital
Gauss. Shot Impulse Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

Before 54.5 59.7 58.6 58.0 47.6 39.0 48.4 46.0 47.0 50.3 53.8 71.5 58.2 56.3 59.5 62.2
After 54.4 59.4 58.4 58.6 48.4 38.8 50.5 49.3 44.7 48.6 60.5 71.2 58.7 55.6 55.3 58.4

sess the decrease in confidence of the classifier on the real class. As shown in Table 2, the ac-
curacy drops by as much as 23.1%, down to a level comparable to the ImageNet-C accuracy.
Similarly, in Table 3 we assess whether our APT samples are transferable. That is, whether im-
ages generated by APT using PRIME-ResNet50 and FAN-VIT classifiers fool other classifiers.

Table 5: Average accuracy and confi-
dence on APT samples using PRIME-
ResNet50 before and after fine-tuning.

Accuracy Confidence
Before 54.0 23.4
After 57.5 42.0

Our fooling samples are transferable and the performance on
different classifiers also drops. We observe that the accuracy
on FAN-VIT APT images drops further and that in general
higher confidence leads to larger drops of confidence on the
generated images.

Diversity of Manipulations. In addition to our diverse
manipulations shown in Fig. 1, in Fig. 3, we show for the same
images, model-dependent APT manipulations which fool either a ResNet50 or a FAN-VIT classifier.
Interestingly, for FAN-VIT, other manipulations like texture or spatial transformations (column 5-
6) are more present, in addition to more prevalent versions of the same manipulation as for the
ResNet50 classifier (column 1-4), or no clear manipulation (column 8).

4.2 IMPROVING ROBUSTNESS TO GENERATES SAMPLES

We now consider whether APT can be used to improve robustness. To this end, for a PRIME-
ResNet50 classifier C, we use APT to manipulate 50k images from the ImageNet training set, fine-
tune the classifier on these resulting images, resulting in classifier Cfinetune. We then consider 3k
images from the ImageNet validation set, and generate APT samples for both C and Cfinetune. In
Table 5, we observe that accuracy on APT generated images increases by 3.7% after fine-tuning.

Performance on Corruption Benchmarks. We consider the performance of our APT-based
fine-tuning on previously proposed corruption-based robustness benchmarks. We consider the stan-
dard robustness benchmark of ImageNet-C Hendrycks & Dietterich (2019) which is generated by
applying simple corruptions to ImageNet, such as color jittering, noise, and blurring. While fine-
tuning improves robustness to APT samples, as can be seen in Table 6, the performance remains
almost the same on ImageNet-C. We note however that some corruptions such as Fog, Motion, and
zoom blur have improved, while noise and digital transformations did not. This is likely due to the
fact that APT manipulations do not include these types of manipulations.

4.3 ABLATION STUDY

First, we consider the effect of removing each component our APT objective (Eq. (8)), using a
PRIME-ResNet50 classifier. Fig. 4 illustrates examples of generated images with one of the com-
ponents removed: Lrec (reconstruction), LPG (discriminator realness) and LCE(cany;C(Gθ(wp)))
(fooling objective). Lastly, we consider applying the optimization of Eq. (8) while modifying the
latent space and leaving the generator’s parameters fixed. When the reconstruction or the discrim-
inator realness components are removed, we observe worse image quality. To measure the effect
of each setup we record the number of images that fool the classifier, and observe that when the
fooling objective is removed, only one out of the seven shown samples fool the pretrained classifier,
whereas all seven samples fool the classifier otherwise.

Reconstruction vs. fooling trade-off. The maximum distance d allowed between the input and
generated sample before the optimization is stopped (see Section 3) is an important hyperparameter
which must be chosen carefully. Increasing this distance may allow for more expressive adversarial
manipulations, but this may also result in a change of label for the image. Empirically, we found that
d = 0.2 avoids a change of class. We investigate the effect of varying this value in {0.2, 0.3, 0.4} and
show example generations in Fig. 5. We note that the images tend to lose detail with higher values of
d, which stems from the fact the reconstruction is poorer. Nonetheless, more diverse manipulations
are possible, such as the removal of the antennae on the butterfly.

8
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Figure 4: APT sample generation ablation. The first row shows the input images. The second row shows APT
samples generated using our full objective LAPT , all of which fool the pretrained PRIME-ResNet50 classifier.
In the third row, we consider LAPT without the reconstruction loss (Lrec). In the fourth row, we consider
LAPT without the fooling objective (LCE). Without LCE , all but one sample fool the classifier. In the fifth
row, we consider LAPT without the discriminator loss (LPG). The sixth row considers LAPT where only the
latent space is optimised (generator’s parameters fixed), resulting in loss of class preservation.

Figure 5: APT generation for various distance d cutoff values. The leftmost image shows the input image.
We increase the maximum distance d to 0.2, 0.3 and 0.4 respectively, for a PRIME-ResNet50 classifier.

Figure 6: Generated samples by Song et al. (2018) using StyleGAN-XL. Our generated samples are more
realistic and class preserving.
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Randomly generated samples. We consider randomly generated samples which are not manipula-
tions of real images. To this end, we adapt the method of Song et al. (2018) to use StyleGAN-XL.
We perform latent optimization so as to fool a PRIME-Resnet50 classifier. The results are visu-
alized in Fig. 6 and the image classes are the same as in Fig. 1. We note that the images are not
class-preserving.

5 CONCLUSION

We have presented Adversarial Pivotal Tuning, a framework for generating highly expressive ad-
versarial manipulations of real images. In a sense, we break with the common assumption that
robustness benchmarks are not model specific, or in other words, allow for conducting a new type
of robustness study tailored around fooling a particular classifier specifically well. This is achieved
by leveraging the full capacity of StyleGAN-XL in generating highly detailed and diverse manipu-
lations.

We have demonstrated that current robust classifiers, be it ResNets or Vision Transformers, are
vulnerable to this new type of attack. As it turns out, it is possible to also boost performance by using
the same framework to create training images as an additional type of augmentation. We have shown
that APT can successfully be applied both as a way to fool classifiers and as a training framework to
improve robustness. We envision this setup will inspire a new line of robustness research that will
improve classifiers’ robustness to models capable of generating photo-realistic images.

10
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6 ETHICAL STATEMENT

Image manipulation methods are key to developing robust and well performing computer visions
systems. At the same time, they also have a potential for being used to circumvent automated
systems that have been deployed to catch illegal or otherwise questionable content. It is our belief
that research on this topic should be done actively in the open to ensure that the technology to
develop robust systems is widely disseminated.

7 REPRODUCIBILITY STATEMENT

We aim to make all the work presented reproducible by providing details of the architecture, in
Section 3, along with the experimental setup described in Section 4. We will publicly release the
code used along with the generated images and trained models.
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