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Abstract

Bayesian methodologies for handling count-valued time series have gained promi-1

nence due to their ability to infer interpretable latent structures and to estimate2

uncertainties, and thus are especially suitable for dealing with noisy and incomplete3

count data. Among these Bayesian models, Poisson-Gamma Dynamical Systems4

(PGDSs) are proven to be effective in capturing the evolving dynamics underlying5

observed count sequences. However, the state-of-the-art PGDS still falls short in6

capturing the time-varying transition dynamics that are commonly observed in7

real-world count time series. To mitigate this limitation, a non-stationary PGDS8

is proposed to allow the underlying transition matrices to evolve over time, and9

the evolving transition matrices are modeled by the specifically-designed Dirich-10

let Markov chains. Leveraging Dirichlet-Multinomial-Beta data augmentation11

techniques, a fully-conjugate and efficient Gibbs sampler is developed to perform12

posterior simulation. Experiments show that, in comparison with related models,13

the proposed non-stationary PGDS achieves improved predictive performance14

due to its capacity to learn non-stationary dependency structure captured by the15

time-evolving transition matrices.16

1 Introduction17

In recent years, there has been an increasing interest in modeling count time series. For instance,18

some previous works [1, 2, 3] are concerned with how to learn the evolving topics behind text19

corpus (frequencies of words) over time. Some works [4, 5, 6, 7] try to predict global immigrant20

trends underlying international population movements. Count time series are often overdispersed,21

sparse, high-dimensional, and thus can not be well modeled by widely used dynamic models such22

as linear dynamical systems [8, 9]. Recently, many works [10, 11, 12, 13, 14, 15, 16] prefer to23

choose distributions of the gamma-Poisson family to build their hierarchical Bayesian models. In24

particular, these models enjoy strong explainability and can estimate uncertainty especially when the25

observations are noisy and incomplete. Among these works, Poisson-Gamma Dynamical Systems26

(PGDSs) [13] received a lot of attention because PGDS can learn how the latent dimensions excite27

each other to capture complicated dynamics in observed count series. For instance, a very inspiring28

research paper may motivate other researchers to publish papers on related topics [17]. The outbreak29

of COVID-19 in one state, may lead to the rapid rising of COVID-19 cases in the nearby states and30

vice versa [18]. In particular, PGDS can be efficiently learned with a tractable Gibbs sampling scheme31

via Poisson-Logarithmic data augmentation and marginalization technique [11]. Due to its strong32

flexibility, PGDS achieves better performance in predicting missing entities and future observations,33

compared with related models [9, 15].34

Despite these advantages, PGDS still can not capture the time-varying transition dynamics underlying35

observed count sequences, which are commonly observed in real-world scenarios [19]. For instance,36
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during the initial stage of the COVID-19 pandemic, the worldwide counts of infectious patients were37

significantly affected by various local policies, government interventions, and emergent events [20,38

21, 22]. The cross transition dynamics among the different monitoring areas were also evolving as39

the corresponding policies and interventions changed over time. Hence, PGDS unavoidably makes a40

certain amount of approximation error in capturing the aforementioned non-stationary count time41

series, using a time-invariant transition kernel.42

To mitigate this limitation, Non-Stationary Poisson-Gamma Dynamical Systems (NS-PGDSs), a novel43

kind of Poisson-gamma dynamical systems with non-stationary transition dynamics are developed.44

More specifically, NS-PGDS captures the evolving transition dynamics by the specifically-designed45

Dirichlet Markov chains. Via the Dirichlet-Multinomial-Beta data augmentation strategy, the Non-46

Stationary Poisson-Gamma Dynamical Systems can be inferred with a conjugate-yet-efficient Gibbs47

sampler. Our contributions are summarized as follows:48

• We propose a Non-Stationary Poisson-Gamma Dynamical System (NS-PGDS), a novel49

Poisson-gamma dynamical system with time-evolving transition matrices that can well50

capture non-stationary transition dynamics underlying observed count series.51

• Three Dirichlet Markov chains are dedicated to improving the flexibility and expressiveness52

of NS-PGDSs, for capturing the complex transition dynamics behind sequential count data.53

• Fully-conjugate-yet-efficient Gibbs samplers are developed via Dirichlet-Multinomial-Beta54

augmentation techniques to perform posterior simulation for the proposed Dirichlet Markov55

chains.56

• Extensive experiments are conducted on four real-world datasets, to evaluate the performance57

of the proposed NS-PGDS in predicting missing and future unseen observations. We also58

provide exploratory analysis to demonstrate the explainable latent structure inferred by the59

proposed NS-PGDS.60

2 Preliminaries61

Let y(t) =
[
y
(t)
1 , · · · , y(t)V

]T
∈ NV be a vector of nonnegative count valued observations at time t.62

To capture the latent dynamics underlying count sequences, some previous works [23, 24] model the63

observations as64

y(t) = p
(
z(t)
)
, z(t) = f−1

(
x(t)

)
,

where p (·) is the observation likelihood function, and f (·) is an invertible link function that maps65

the parameters of observation component to continuous-valued latent variables x(t) ∈ RK . The66

latent factor x(t) evolves over time according to a linear dynamical system (LDS) given by x(t) ∼67

N (Ax(t−1),Λ−1), where A is the state transition matrix of sizeK×K, and Λ = diag (λ1, · · · , λK)68

is the inverse covariance matrix with λ−1
k determining the variance of k-th latent dimension. Han69

et al. [23] adopted the Extended Rank likelihood function to model count observations using LDS70

with time complexity O((K + V )3), which prevents it from practical applications for analyzing71

large-scale count data.72

Recently, Acharya et al. [15] and Schein et al. [13, 16] developed Poisson-gamma family models for73

sequential count observations. Gamma Process Dynamic Poisson Factor Analysis (GP-DPFA) [15]74

models count data as y(t)v ∼ Pois(
∑K
k=1 λkϕvkθ

(t)
k ), where θ(t)k represents the strength of k-th latent75

factor at time t, and ϕvk captures the involvement degree of k-th factor to v-th observed dimension.76

To ensure the model identifiability, we can impose a restriction as
∑
v ϕvk = 1, and thus place a77

Dirichlet prior over ϕk = [ϕ1k, · · · , ϕV k]T as ϕk ∼ Dir (ϵ0, · · · , ϵ0).78

To capture the underlying dynamics, the latent factor θ(t)k evolves over time according to a gamma79

Markov chain as θ(t)k ∼ Gam(θ
(t−1)
k , ct), where ct is the rate parameter of the gamma distribution to80

control the variance of the gamma Markov chains. Although GP-DPFA can well fit one-dimensional81

count sequences, it fails to learn how the latent dimensions interact with each other.82

To address this concern, Schein et al. [13] developed Poisson-gamma dynamical systems to83

capture the underlying transition dynamics. In particular, θ(t)k evolves over time as θ(t)k ∼84
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Figure 1: The graphical representation of the NS-PGDS. The time interval is divided into equally-
spaced sub-intervals. Each sub-interval contains M time steps. The transition dynamics is stationary
within a sub-interval. In particular, the transition matrices evolve over sub-intervals via Dirichlet
Markov processes while latent factors evolve over time steps via Eq.(1).

Gam(τ0
∑K
k2=1 πkk2θ

(t−1)
k2

, τ0), where πkk2 represents how k2-th latent factor excites the k-th latent85

factor at next time step, and
∑K
k=1 πkk2 = 1.86

3 Non-Stationary Poisson-Gamma Dynamical Systems87

Figure 2: An example illustrates the Poisson-gamma
dynamical systems with non-stationary transition
kernels. The three gamma dynamic processes in-
dependently evolve over time during the (i− 1)-th
interval. During i-th interval, θ(t)1 and θ(t)2 gradually
starts to interact with each other while θ(t)3 remains
independent to the other two dimensions. During
(i + 1)-th interval all the three latent components
start to interact with each other.

Real-world count time sequences are often non-88

stationary because the external interventional89

environments are always changing over time.90

The stationary PGDS with a time-invariant tran-91

sition kernel fails to capture such time-varying92

transition dynamics. For instance, the tran-93

sition dynamics behind COVID-19 infectious94

processes are time-varying, and highly affected95

by various interventional policies. Hence, to96

mitigate this limitation, we model the count97

sequences as98

y(t)v ∼ Pois
(
δ(t)

∑K
k=1 ϕvkθ

(t)
k

)
,

in which, the latent factors are specified by99

θ
(t)
k ∼ Gam

(
τ0
∑K
k2=1 π

(t−1)
kk2

θ
(t−1)
k2

, τ0

)
,

(1)
where the multiplicative term δ(t) ∼100

Gam(ϵ0, ϵ0) and the transition matrices are101

time-varying as Π(t) ≡
[
π
(t)
kk2

]K
k,k2=1

. As102

shown in Figure 2, to model the time-varying103

transition dynamics, we assume the whole time104

interval can be divided into I equally-spaced sub-intervals. The transition kernel behind complicated105

dynamic counts is assumed to be static within each sub-interval, while evolving over sub-intervals,106

to capture non-stationary behaviours. In another word, the proposed model allows the latent factors107

to evolve over time steps while the transition matrices change over sub-intervals but assumed to be108

stationary within each sub-interval, as shown in Figure 1. In particular, we let each sub-interval109

contains M time steps, and the i-th interval contains time steps {t | t = (i− 1)M + 1, · · · , iM}.110

We define i (t) as the function that maps time step t to its corresponding sub-interval.111

Dirichlet-Dirichlet Markov processes. To capture how the underlying transition kernel smoothly112

evolves over sub-intervals, we first propose the Dirichlet-Dirichlet (Dir-Dir) Markov chain as113

π
(i)
k | π(i−1)

k ∼ Dir
(
ηKπ

(i−1)
1k , · · · , ηKπ(i−1)

Kk

)
, (2)

where π
(i)
k represents the k-th column of Π(i), and the prior of the scaling parameter η is given by114

η ∼ Gam(e0, f0).115
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The initial states are defined as θ
(1)
k ∼ Gam(τ0νk, τ0). The prior for the transition ker-116

nel of the first sub-interval is given by π
(1)
k ∼ Dir (ν1νk, · · · , ξνk, · · · , νKνk), where νk ∼117

Gam(γ0K , β) and ξ, β ∼ Gam(ϵ0, ϵ0). Note that the expectation and variance of the transition118

kernel at i-th sub-interval can be calculated as119

E
[
π

(i)
k | π(i−1)

k

]
= π

(i−1)
k , Var

[
π
(i)
k1k

| π(i−1)
k

]
=
π
(i−1)
k1k

(
1− π

(i−1)
k1k

)
ηK + 1

,

respectively. The transition dynamics of i-th sub-interval inherits the information of the previous120

sub-interval, and also adapts to the data observed in the current sub-interval. The scaling parameter η121

controls the variance of the transition matrices.122

The prior specification defined in Eq.(2) by rescaling the transition matrix at the previous123

sub-interval allows the transition dynamics to change smoothly, and thus might be insuffi-124

cient to capture the rapid changes observed in complicated dynamics. To further improve125

the flexibility of the transition structure, two modified Dirichlet Markov chains are studied to126

capture the correlation structure between the dimensions of the transition matrices over time.127

Figure 3: Diagrams of the proposed
Dirichlet Markov constructions. (a) is the
Dir-Dir construction. (b) is the Dir-Gam-
Dir construction which takes mutation
into account. (c) illustrates the PR-Gam-
Dir construction which adopts Poisson
randomized gamma distribution and can
be equivalently represented as Eq.(5).

Dirichlet-Gamma-Dirichlet Markov processes. We first128

introduce the Dirichlet-Gamma-Dirichlet (Dir-Gam-Dir)129

Markov chain to model the evolving transition matrices130

as131

π
(i)
k ∼ Dir

(
α
(i)
1k , · · · , α

(i)
Kk

)
,

α
(i)
k1k

∼ Gam
(
γ
(i−1)
k

∑K
k2=1 ψ

(i−1)
kk1k2

π
(i−1)
k2k

, c
(i)
k

)
, (3)

where we use ψ(i−1)
kk1k2

to capture the mutation between two132

consecutive sub-intervals, and its prior is given by133 (
ψ
(i−1)
k1k2

, · · · , ψ(i−1)
kKk2

)
∼ Dir (ϵ0, · · · , ϵ0) ,

and γ(i)k , c
(i)
k ∼ Gam(ϵ0, ϵ0). Compared with the con-134

struction defined by Eq.(2), the expectation of Dirichlet-135

Gamma-Dirichlet Markov chain is136

E
[
π

(i)
k | π(i−1)

k

]
= Ψ

(i−1)
k π

(i−1)
k .

This construction takes interactions among components of columns into account. Hence it will137

dramatically improve the flexibility of our model and thus better fit more complicated dynamics,138

compared with Dir-Dir Markov chains that only yield smoothing transition dynamics.139

Poisson-randomized-gamma-Dirichlet Markov processes. By leveraging the Poisson-randomized140

gamma distribution [25], we introduce another type of time-varying transition kernels, which also141

model the interactions among components like Dir-Gam-Dir construction but may induce different142

properties such as sparsity. The Poisson-randomized-gamma-Dirichlet (PR-Gam-Dir) Markov chain143

can be formulated as144

π
(i)
k ∼ Dir

(
α
(i)
1k , · · · , α

(i)
Kk

)
, α

(i)
k1k

∼ RG1
(
ϵα, γ

(i−1)
k

∑K
k2=1 ψ

(i−1)
kk1k2

π
(i−1)
k2k

, c
(i)
k

)
, (4)

where RG1 (·) denotes the randomized gamma distribution of the first type. Similarly, for ψ(i−1)
kk1k2

,145

γ
(i)
k , and c(i)k , the priors are given by146 (

ψ
(i−1)
k1k2

, · · · , ψ(i−1)
kKk2

)
∼ Dir (ϵ0, · · · , ϵ0) , γ(i)k , c

(i)
k ∼ Gam(ϵ0, ϵ0) , respectively.

The diagrams of three Dirichlet Markov constructions are shown in Figure 3.147

4 Markov Chain Monte Carlo Inference148

In this section, we present the Gibbs sampler for the proposed NS-PGDS. We only illustrate the key149

points of the derivation and the details can be found in the appendix.150
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Lemma 1 If y ∼ NB(a, g (ζ)) and l ∼ CRT(y, a), where NB(·) refers to negative-binomial151

distribution, CRT(·) represents Chinese restaurant table distribution [26], and g (z) = 1−exp (−z).152

Then the joint distribution of y and l can be equivalently distributed as y ∼ SumLog (l, g (ζ)) and153

l ∼ Pois (aζ) [11], i.e.154

NB(y; a, g (ζ)) CRT (l; y, a) = SumLog (y; l, g (ζ)) Pois (l; aζ) ,

where SumLog (l, g (ζ)) =
∑l
i=1 xi and xi ∼ Log (g (ζ)) are independently and identically loga-155

rithmic distributed random variables [27].156

Lemma 2 Suppose n = (n1, · · · , nK) and

n | n ∼ DirMult (n, r1, · · · , rK) ,

where DirMult (·) refers to Dirichlet-multimonial distribution. We sample the augmented variable157

q | n ∼ Beta (n, r·), where r· =
∑K
k=1 rk. According to [28], conditioning on q, we have158

nk ∼ NB(rk, q).159

Sampling y(t)vk : Use the relationship between Poisson and multinomial distributions, we sample160 ((
y
(t)
vk

)K
k=1

| −
)

∼ Mult

y(t)v ,

(
ϕvkθ

(t)
k∑K

k=1 ϕvkθ
(t)
k

)K
k=1

 .

Sampling ϕk : Via Dirichlet-multinomial conjugacy, the posterior of ϕk is161

(ϕk | −) ∼ Dir
(
ϵ0 +

∑T
t=1 y

(t)
1k , · · · , ϵ0 +

∑T
t=1 y

(t)
V k

)
.

Sampling θ(t)k : To sample from the posterior of θ(t)k , we first sample the auxiliary variables. Setting162

l
(T+1)
·k = 0 and ζ(T+1) = 0, we sample the augmented variables backwards from t = T, · · · , 2,163 (

l
(t)
k· | −

)
∼ CRT

(
y
(t)
·k + l

(t+1)
·k , τ0

∑K
k2=1 π

i(t−1)
kk2

θ
(t−1)
k2

)
,(

l
(t)
k1 , · · · , l

(t)
kK | −

)
∼ Mult

(
l
(t)
k· ,

(
π
i(t−1)
k1 θ

(t−1)
1∑K

k2=1 π
i(t−1)
kk2

θ
(t−1)
k2

, · · · ,
π
i(t−1)
kK θ

(t−1)
K∑K

k2=1 π
i(t−1)
kk2

θ
(t−1)
k2

))
.

Let us define l(t)·k =
∑K
k1=1 l

(t)
k1k

and ζ(t) = ln(1 + δ(t)

τ0
+ ζ(t+1)). After sampling the auxiliary164

variables, then for t = 1, · · · , T , by Poisson-gamma conjugacy, we obtain165 (
θ
(t)
k | −

)
∼ Gam

(
y
(t)
·k + l

(t+1)
·k + τ0

∑K
k2=1 π

i(t−1)
kk2

θ
(t−1)
k2

, τ0 + δ(t) + ζ(t+1)τ0

)
.

Sampling Π(i) : We only illustrate Gibbs sampling algorithm for PR-Gam-Dir construction, sampling166

algorithms for other constructions can be found in the appendix. We define M as the length of each167

sub-interval, and I as the number of intervals. For i = I, · · · , 2, because (l
(i)
1k , · · · , l

(i)
Kk) and168

(g
(i+1)
·1k , · · · , g(i+1)

·Kk ) are multinomially distributed, where l(i)k1k =
∑iM

(i−1)M+1 l
(t)
k1k

refers to the169

summation of l(t)k1k over i-th sub-interval and same notation for other variables. By the definition170

of Dirichlet-multinomial distribution and Lemma 2, defining g(I+1)
k1k

= 0, we sample the auxiliary171

variables as (q(i)k | −) ∼ Beta(l
(i)
·k + g

(i+1)
·k , α

(i)
·k ), then we have (l

(i)
k1k

+ g
(i+1)
·k1k ) ∼ NB(α

(i)
k1k

, q
(i)
k ).172

Then we further sample (h
(i)
k1k

| −) ∼ CRT(l
(i)
k1k

+ g
(i+1)
·k1k , α

(i)
k1k

). Via Lemma 1, we obtain h(i)k1k ∼173

Pois(−α(i)
k1k

ln(1− q
(i)
k )). For Dirichlet-Randomized-Gamma-Dirichlet Markov construction defined174

by Eq.(4), we can equivalently represent it as175

α
(i)
k1k

∼ Gam
(
g
(i)
k1k

+ ϵα, c
(i)
k

)
, g

(i)
k1k

= Pois
(
γ(i−1)∑K

k2=1 ψ
(i−1)
kk1k2

π
(i−1)
k2k

)
. (5)

We define λ(i−1)
k1k

≜ γ
(i−1)
k

∑K
k2=1 ψ

(i−1)
kk1k2

π
(i−1)
k2k

for notation conciseness. By Poisson-gamma176

conjugacy, we have (α
(i)
k1k

| −) ∼ Gam(g
(i)
k1k

+ ϵα + h
(i)
k1k

, c
(i)
k − ln(1 − q

(i)
k )). If ϵα > 0, we can177
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sample the posterior of g(i)k1k via (g
(i)
k1k

| −) ∼ Bessel(ϵα − 1, 2
√
α
(i)
k1k

c
(i)
k λ

(i−1)
k1k

), where Bessel (·)178

denotes Bessel distribution. If ϵα = 0, we sample g(i)k1k via179

(
g
(i)
k1k

| −
)
∼


Pois

(
c
(i)
k λ

(i−1)
k1k

c
(i)
k −ln

(
1−q(i)k

)) if h
(i)
k1k

= 0

SCH

(
h
(i)
k1k

,
c
(i)
k λ

(i−1)
k1k

c
(i)
k −ln

(
1−q(i)k

)) otherwise,

where SCH (·) denotes the shifted confluent hypergeometric distribution [16]. Defining g(i)k1k =180

g
(i)
k1·k =

∑K
k2=1 g

(i)
k1k2k

, we first augment181 (
g
(i)
k11k

, · · · , g(i)k1Kk
)
∼ Mult

(
g
(i)
k1k

,
(
ψ
(i−1)
kk1k2

π
(i−1)
k2k

)K
k2=1

)
,

then we obtain g(i)k1k2k ∼ Pois(γ(i−1)ψ
(i−1)
kk1k2

π
(i−1)
k2k

). By Dirichlet-multinomial conjugacy, we have182 ((
ψ
(i−1)
k1k2

, · · · , ψ(i−1)
kKk2

)
| −
)
∼ Dir

(
ϵ0 + g

(i)
1k2k

, · · · , ϵ0 + g
(i)
Kk2k

)
, and(

π
(i−1)
k | −

)
∼ Dir

(
α
(i−1)
1k + l

(i−1)
1k + g

(i)
·1k, · · · , α

(i−1)
Kk + l

(i−1)
Kk + g

(i)
·Kk

)
.

Specifically, we have α(1)
k1k

= νk1νk, if k1 ̸= k, and α(1)
k1k

= ξνk, if k1 = k.183

5 Related Work184

Modeling count time sequences has been receiving increasing attentions in statistical and machine185

learning communities. Han et al. [23] adopted linear dynamical systems to capture the underlying186

dynamics of the data and leveraged Extended Rank likelihood function to model count observations.187

Some Poisson-gamma models assume that the count vector at each time step is modeled by Poisson188

factor analysis (PFA) [11] and leverage special stochastic processes to model the temporal dependen-189

cies of latent factors. For example, gamma process dynamic Poisson factor analysis (GP-DPFA) [15]190

adopts gamma Markov chains which assumes the latent factor of the next time step is drawn from191

a gamma distribution with the shape parameter be the latent factor of the current time step. Schein192

et al. [13] proposed Poisson-gamma dynamical systems (PGDSs), which take the interactions among193

latent dimensions into account and use a transition matrix to capture the interactions. Deep dynamic194

Poisson factor analysis (DDPFA) [29] adopts recurrent neural networks (RNNs) to capture the com-195

plex long-term dependencies of latent factors. Yang and Koeppl [30] applied Poisson-gamma count196

model to analyze relational data arising from longitudinal networks, which can capture the evolution197

of individual node-group memberships over time. Many modifications of PGDS have been proposed198

in recent years. Guo et al. [31] proposed deep Poisson-gamma dynamical systems which aim to199

capture the long-range temporal dependencies. Schein et al. [16] employed Poisson-randomized200

gamma distribution to build a new transition process of latent factors. Chen et al. [32] proposed201

Switching Poisson-gamma dynamical systems (SPGDS), allowing PGDS to select from several tran-202

sition matrices, and thus can better adapt to nonlinear dynamics. In contrast to SPGDS, the number203

of transition matrices of the proposed NS-PGDS is not limited and thus can be adopted to analyze204

various complicated non-stationary count sequences. Filstroff et al. [33] extensively analyzed many205

gamma Markov chains for non-negative matrix factorization and introduced new gamma Markov206

chains with well-defined stationary distribution (BGAR).207

6 Experiments208

We conducted experiments for both predictive and exploratory analysis to demonstrate the ability of209

the proposed model in capturing non-stationary count time sequences. The baseline models included210

in the experiments are: 1) Gamma process dynamic Poisson factor analysis (GP-DPFA) [15].211

GP-DPFA models the evolution of latent components as θ(t)k ∼ Gam(θ
(t−1)
k , ct), in which each212

component evolves independently of the other components. 2) Gamma Markov chains on the213

rate parameter of gamma distribution (GMC-RATE) [33]. GMC-RATE adopts gamma Markov214

chains defined via the rate parameter of the gamma distribution to model the evolution of θ(t)k215
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GP-DPFA GMC-RATE GMC-HIER BGAR PGDS NS-PGDS
(Dir-Dir)

NS-PGDS
(Dir-Gam-Dir)

NS-PGDS
(PR-Gam-Dir)

ICEWS MAE S 0.259 ±0.005 0.258 ±0.005 0.256 ±0.006 0.264 ±0.006 0.215 ±0.007 0.215 ±0.008 0.214 ±0.008 0.215 ±0.008

F 0.176 ±0.005 0.187 ±0.003 0.185 ±0.016 0.222 ±0.043 0.185 ±0.003 0.167 ±0.009 0.169 ±0.006 0.169 ±0.009

MRE S 0.125 ±0.003 0.124 ±0.002 0.122 ±0.003 0.130 ±0.004 0.102 ±0.005 0.101 ±0.005 0.101 ±0.005 0.102 ±0.005

F 0.099 ±0.006 0.114 ±0.003 0.111 ±0.018 0.142 ±0.036 0.108 ±0.001 0.094 ±0.005 0.097 ±0.004 0.097 ±0.008

NIPS MAE S 18.299 ±6.545 17.105 ±6.449 17.098 ±6.441 17.935 ±6.450 14.706 ±4.414 14.032 ±4.401 14.026 ±4.405 14.014 ±4.387

F 48.355 ±1.461 46.234 ±1.629 102.506 ±39.932 62.449 ±14.463 51.562 ±0.679 45.979 ±1.342 46.710 ±1.152 46.582 ±1.196

MRE S 0.729 ±0.412 0.684 ±0.316 0.664 ±0.315 0.769 ±0.366 0.590 ±0.097 0.581 ±0.090 0.581 ±0.090 0.580 ±0.090

F 0.415 ±0.016 0.387 ±0.023 0.580 ±0.148 0.465 ±0.049 0.459 ±0.006 0.399 ±0.003 0.395 ±0.006 0.397 ±0.003

USEI MAE S 4.681 ±0.564 4.931 ±0.872 4.748 ±0.829 5.244 ±0.939 4.703 ±0.538 4.600 ±0.542 4.608 ±0.541 4.596 ±0.562

F 11.665 ±0.367 9.454 ±0.809 12.423 ±1.060 21.948 ±0.133 11.118 ±0.220 7.973 ±1.222 7.168 ±1.221 7.296 ±1.127

MRE S 1.458 ±0.177 1.128 ±0.189 1.088 ±0.162 1.941 ±0.209 1.279 ±0.257 1.309 ±0.220 1.298 ±0.236 1.301 ±0.229

F 7.473 ±0.623 6.508 ±0.571 8.929 ±2.514 13.706 ±1.268 4.238 ±0.325 2.602 ±0.455 2.577 ±0.331 2.685 ±0.366

COVID-19 MAE S 7.935 ±0.751 7.144 ±1.159 7.240 ±0.848 7.819 ±1.348 7.566 ±1.095 6.969 ±1.107 6.988 ±1.056 6.981 ±1.022

F 9.137 ±1.102 9.600 ±1.257 10.409 ±1.910 12.550 ±2.156 9.314 ±0.236 8.799 ±0.706 8.770 ±0.438 9.033 ±0.477

MRE S 0.564 ±0.126 0.493 ±0.136 0.504 ±0.109 0.769 ±0.169 0.558 ±0.130 0.523 ±0.125 0.525 ±0.124 0.526 ±0.123

F 0.627 ±0.106 0.556 ±0.052 0.585 ±0.067 0.759 ±0.150 0.585 ±0.007 0.523 ±0.028 0.519 ±0.017 0.513 ±0.014

Table 1: Results of predictive analysis. "S" means data smoothing and "F" means data forecasting.

as θ(t)k ∼ Gam(α, β/θ
(t−1)
k ). 3) Gamma Markov chains on the rate parameter with hierarchical216

auxiliary variable (GMC-HIER) [33]. GMC-HIER models the evolution of latent components with217

an auxiliary variables as z(t)k ∼ Gam(αz, βzθ
(t−1)
k ) and θ(t)k ∼ Gam(aθ, βθz

(t)
k ). 4) Autogressive218

beta-gamma procecss (BGAR) [34, 33]. BGAR is also a gamma Markov model. In contrast to219

the above models, there is a well-defined stationary distribution for BGAR. 5) Poisson-gamma220

dynamical system (PGDS) [13] takes interactions among latent dimensions into account, and models221

the evolution of θ(t)k as θ(t)k ∼ Gam(τ0
∑K
k2=1 πkk2θ

(t−1)
k2

, τ0).222

The real-world datasets used in the experiments are: 1) Integrated Crisis Early Warning System223

(ICEWS): ICEWS is an international relations event dataset, comprising interaction events between224

countries extracted from news corpora. For ICEWS dataset, we have T = 365 time steps and225

V = 6197 dimensions, and we set M = 30. 2) NIPS: NIPS dataset contains the papers published in226

the NeurIPS conference from 1987 to 2015. We have T = 28 time steps and V = 2000 dimensions227

for NIPS dataset and we set M = 5. 3) U.S. Earthquake Intensity (USEI): USEI contains a228

collection of damage and felt reports for U.S. (and a few other countries) earthquakes. We use the229

monthly reports from 1957-1986 and have T = 348, V = 64 and set M = 34. 4) COVID-19: This230

dataset contains daily death cases data for states in the United States, spanning from March 2020 to231

June 2020. For this dataset, we have V = 51 dimensions and T = 90 time steps and set M = 20.232

6.1 Predictive Analysis233

To compare the predictive performance of the proposed model with the baselines, we considered two234

standard tasks: data smoothing and forecasting. For data smoothing task, our objective is to predict235

y(t) given the remaining data observation Y \y(t). To this end, we randomly masked 10 percents of236

the observed data over non-adjacent time steps, and predicted the masked values. For forecasting task,237

we held out data of the last S time steps, and predicted y(T+1), · · · ,y(T+S) given y(1), · · · ,y(T ). In238

this experiment we set S = 2. We ran the baseline models including GP-DPFA, PGDS, GMC-RATE,239

GMC-HIER, BGAR, using their default settings as provided in [15, 13, 33]. For the NS-PGDS, we set240

K = 100 for ICEWS, K = 10 for other datasets, and set τ0 = 1, γ0 = 50, ϵ0 = 0.1. We performed241

4000 Gibbs sampling iterations. In the experiments, we found that the Gibbs sampler started to242

converge after 1000 iterations, and thus we set the burn-in time be 2000 iterations. We retained243

every hundredth sample, and averaged the predictions over the samples. Mean relative error (MRE)244

and mean absolute error (MAE) are adopted to evaluate the model’s predictive capability, which245

are defined as MRE = 1
TV

∑
t

∑
v

|y(t)v −ŷ(t)v |
1+y

(t)
v

and MAE = 1
TV

∑
t

∑
v | y(t)v − ŷ

(t)
v | respectively,246

where y(t)v indicates the true count and ŷ(t)v is the prediction.247

As the experiment results shown in Table 1, the NS-PGDS exhibits improved performance in both248

data smoothing and forecasting tasks. We attribute this enhanced capability to the time-varying249

transition kernels, which effectively adapt to the non-stationary environment, and thus achieve250

improved predictive performance. For some datasets (e.g. ICEWS) and tasks, the effectiveness of the251

Dir-Gam-Dir and Pr-Gam-Dir constructions does not be exhibited in the numerical results. However,252

these two constructions indeed induce more informative patterns compared with Dir-Dir construction,253

as shown in the exploratory analysis.254
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6.2 Exploratory Analysis255

Figure 4: The latent factors inferred by the NS-PGDS. (a) and (b) illustrate the top 2 latent factors
inferred from ICEWS dataset, (a) corresponds to Iraq war and (b) corresponds to the Six-Party Talks.
(c) illustrates the evolving trends of the top 5 latent factors inferred from NIPS dataset.

We used ICEWS and NIPS datasets for exploratory analysis, and chose the NS-PGDS with Dirichlet-256

Dirichlet Markov chains for illustration. Figure 4(a) and Figure 4(b) demonstrate the top 2 latent257

factors inferred by NS-PGDS from ICEWS dataset. From Figure 4(a) we can see that the main labels258

are “Iraq (IRQ)–United States (USA)", “Iraq (IRQ)–United Kingdom (UK)", “Russia (RUS)–United259

States (USA)", and so on. This latent factor probably corresponds to the topic about Iraq war. Besides,260

in Figure 4(a), there is a peak around March, 2003, and we know that the Iraq war broke out exactly on261

20 March, 2003. In addition, the most dominant labels shown in Figure 4(b) are “Japan (JPN)–United262

States (USA)", “China (CHN)–United States (USA)", “North Korea (PRK)–United States (USA)",263

“South Korea (KOR)–United States (USA)", and so on. We can infer that this latent factor corresponds264

to “Six-Party Talks" and other accidents about it.265

Figure 4(c) demonstrates the evolving trends of the top 5 latent factors inferred by the NS-PGDS266

from NIPS dataset, and the legend indicates the representative words of the corresponding latent267

factors. Clearly, the green and blue lines correspond to the latent factors of neural network re-268

search which started to decline from the 1990s. From the 1990s we see that the latent factors269

about statistical and probabilistic methods began to dominate the NeurIPS conference. In addi-270

tion, the NS-PGDS also captured the revival of neural networks (blue line) from the 2010s. The271

above observations from the latent structure inferred by the NS-PGDS match our prior knowledge.272

Figure 5: Transition matrices inferred from NIPS dataset. (a)
illustrates the transition matrix inferred by the PGDS. (b)-(f)
illustrate the time-varying transition matrices inferred by the
NS-PGDS.

273

Next, we explored the time-varying274

transition matrices inferred by the275

NS-PGDS. We chose NIPS dataset276

for illustratiuon, and setK = 10 and277

the interval length M to be 5. The278

time-varying transition matrices are279

shown from Figure 5(b) to Figure280

5(f). At the beginning, matrices281

shown in Figure 5(b) and Figure282

5(c) are close to identity matrices.283

Then the transition matrices tend284

to become block diagonal matrices285

with 2 blocks, as shown in Figure286

5(d)-5(f). The representative words287

for latent factors in the first block288

are “state-linear-classification",289

“network-neural-networks", “kernel-290

image-space", “network-neural-291

networks", “neural-networks-state".292

The representative words for latent factors in the second block are “image-sparse-matrix", “kernel-293

supervised-random", “matrix-sample-random", “inference-prior-latent", “state-policy-gamma". The294

first block primarily captured the correlations among the research topics about neural networks.295

The second block reflects that, from the 1990s, statistical learning and Bayesian methods began to296

dominate, and these topics are highly correlated. Figure 5(a) illustrates the transition matrix inferred297

8



by the PGDS, which is averaged over all time steps. Compared with the NS-PGDS, the PGDS can298

not capture the informative time-varying transition dynamics. We also analyzed the features of the299

proposed Dirichlet Markov chains. The left column of Figure 6 demonstrates transition matrices300

of the first four sub-intervals of ICEWS dataset inferred by the NS-PGDS (Dir-Dir). Because of301

the Dir-Dir construction, the consecutive transition matrices smoothly change over time and thus302

the NS-PGDS may lack sufficient flexibility to capture rapid dynamics. The middle column of303

Figure 6 illustrates the transition matrices inferred by the NS-PGDS (Dir-Gam-Dir), which takes304

mutations among latent components into account and captured more complicated patterns. Transition305

matrices inferred by the PR-Gam-Dir construction are shown in the right column of Figure 6, these306

matrices not only exhibited sufficient flexibility but also captured sparser patterns compared with the307

Dir-Gam-Dir construction.

Figure 6: From top to bottom are the first four transition matrices inferred by different Dirichlet
Markov chains from ICEWS dataset. Top row: Matrices inferred by the Dir-Dir construction. Middle
row: Matrices inferred by the Dir-Gam-Dir construction. Bottom row: Matrices inferred by the
PR-Gam-Dir construction.308

7 Conclusion309

The Poisson-gamma dynamical systems with time-varying transition matrices, have been proposed to310

capture complicated dynamics observed in non-stationary count sequences. In particular, Dirichlet311

Markov chains are constructed to allow the underlying transition matrices to evolve over time.312

Although the Dirichlet Markov processes lack conjugacy, we have developed tractable-but-efficient313

Gibbs sampling algorithms to perform posterior simulation. The experiment results demonstrate the314

improved performance of the proposed NS-PGDS in data smoothing and forecasting tasks, compared315

with the PGDS with a stationary transition kernel. Moreover, the experimental results on several316

real-world data sets show the explainable structures inferred by the proposed NS-PGDS. For the317

future work, we plan to design a method that can find the point of change and thus the length of each318

sub-interval can be determined automatically instead of a constant. We also consider to generalize319

Dirichlet belief networks by incorporating the proposed Dirichlet Markov chain constructions, which320

allow the hierarchical topics to mutate across layers, and thus can generate more rich text information.321

And we also consider to capture non-stationary interaction dynamics among individuals over online322

social networks in the future research.323
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A MCMC Inference414

Notation. When expressing the full conditionals for Gibbs sampling, we use the shorthand “–” to415

denote all other variables. We use “·” as an index summation shorthand, e.g., x·j =
∑
i xij .416

In this section, we present a fully-conjugate and efficient Gibbs sampler for the proposed NS-PGDS.417

The sampling algorithms depend on several key technical results, which we will repeatedly exploit,418

thus we list them below.419

Negative-binomial Distribution. Let y ∼ Pois (cλ), and λ ∼ Gam(a, b). If we marginalize420

over λ, then y ∼ NB
(
a, c

b+c

)
is a negative-binomial distributed random variable. We can further421

parameterize it as y ∼ NB(a, g (ζ)), where g (z) = 1− exp (−z) and ζ = ln
(
1 + c

b

)
.422

Lemma 1. If y ∼ NB(a, g (ζ)) and l ∼ CRT(y, a), where CRT(·) represents Chinese restaurant
table distribution [26], then the joint distribution of y and l can be equivalently distributed as
y ∼ SumLog (l, g (ζ)) and l ∼ Pois (aζ) [11], i.e.

NB(y; a, g (ζ)) CRT (l; y, a) = SumLog (y; l, g (ζ)) Pois (l; aζ) ,

where SumLog (l, g (ζ)) =
∑l
i=1 xi and xi ∼ Log (g (ζ)) are independently and identically loga-423

rithmic distributed random variables [27].424

Lemma 2. Suppose n = (n1, · · · , nK) and n | n ∼ DirMult (n, r1, · · · , rK) , where DirMult (·)425

refers to Dirichlet-multimonial distribution. We sample the augmented variable q | n ∼ Beta (n, r·),426

where r· =
∑K
k=1 rk. According to [28], conditioning on q, we have nk ∼ NB(rk, q).427

Lemma 3. If y· =
∑S
s=1 ys, and ys

i.i.d∼ Pois(λs), s = 1, · · · , S. Then y· ∼ Pois(
∑S
s=1 λs) and428

(y1, · · · , yS) ∼ Mult(y·, (
λ1∑S

s=1 λs
, · · · , λS∑S

s=1 λs
)), where Mult (·) represents multinomial distribu-429

tion [35].430

Sampling y(t)vk : Use the relationship between Poisson and multinomial distributions as described by431

Lemma 3, given observed counts and latent parameters, we sample432 ((
y
(t)
vk

)K
k=1

| −
)

∼ Mult

y(t)v ,

(
ϕvkθ

(t)
k∑K

k=1 ϕvkθ
(t)
k

)K
k=1

 . (6)

Then the distribution of y(t)vk is y(t)vk ∼ Pois(δ(t)ϕvkθ
(t)
k ).433

Sampling ϕk: Via Dirichlet-multinomial conjugacy, the posterior of ϕk is434

(ϕk | −) ∼ Dir

(
ϵ0 +

T∑
t=1

y
(t)
1k , · · · , ϵ0 +

T∑
t=1

y
(t)
V k

)
. (7)

Marginalizing over θ(t)k : Note that y(t)v = y
(t)
v· =

∑K
k=1 y

(t)
vk and y(t)vk ∼ Pois(δ(t)ϕvkθ

(t)
k ). Then435

we define y(t)·k =
∑V
v=1 y

(t)
vk . Because

∑V
v=1 ϕvk = 1, we obtain y(t)·k ∼ Pois(δ(t)θ

(t)
k ).436

We start by marginalizing over θ(T )
k , using the definition of negative-binomial distribution, we obtain437

y
(T )
·k ∼ NB

(
τ0

K∑
k2=1

π
i(T−1)
kk2

θ
(T−1)
k2

, g
(
ζ(T )

))
,

where ζ(T ) = ln(1 + δ(T )

τ0
). Next, we further marginalize over θ(T−1)

k . To this end, we first sample438

auxiliary variables439

l
(T )
k ∼ CRT

(
y
(T )
·k , τ0

K∑
k2=1

π
i(T−1)
kk2

θ
(T−1)
k2

)
.

By Lemma 1, the joint distribution of y(T )
·k and l(T )

k can be expressed as440

y
(T )
·k ∼ SumLog

(
l
(T )
k , g

(
ζ(T )

))
and l

(T )
k ∼ Pois

(
ζ(T )τ0

K∑
k2=1

π
i(T−1)
kk2

θ
(T−1)
k2

)
.
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Via Lemma 3, we re-express the auxiliary variables as441

l
(T )
k = l

(T )
k· =

K∑
k2=1

l
(T )
kk2

, and obtain l
(T )
kk2

∼ Pois
(
ζ(T )τ0π

i(T−1)
kk2

θ
(T−1)
k2

)
.

Then we define l(T )
·k =

∑K
k1=1 l

(T )
k1k

. Leveraging Lemma 3 and
∑K
k1=1 π

i(T−1)
k1k

= 1, we obtain442

l
(T )
·k ∼ Pois

(
ζ(T )τ0θ

(T−1)
k

)
and

(
l
(T )
1k , · · · , l

(T )
Kk

)
∼ Mult

(
l
(T )
·k ,

(
π
i(T−1)
1k , · · · , πi(T−1)

Kk

))
.

Next, note that y(T−1)
·k ∼ Pois(δ(T−1)θ

(T−1)
k ), if we introduce m(T−1)

k = y
(T−1)
·k + l

(T )
·k , then we443

have444

m
(T−1)
k ∼ Pois

(
θ
(T−1)
k

(
δ(T−1) + ζ(T )τ0

))
.

Because the prior of θ(T−1)
k is gamma distributed, by the definition of negative-binomial distribution,445

we can again marginalize over θ(T−1)
k to obtain446

m
(T−1)
k ∼ NB

(
τ0

K∑
k2=1

π
i(T−2)
kk2

θ
(T−2)
k2

, g
(
ζ(T−1)

))
,

where ζ(T−1) = ln(1 + δ(T−1)

τ0
+ ζ(T )). Then we introduce auxiliary variables447

l
(T−1)
k ∼ CRT

(
m

(T−1)
k , τ0

K∑
k2=1

π
i(T−2)
kk2

θ
(T−2)
k2

)
.

And similar to the case for t = T , we can obtain448

l
(T−1)
·k ∼ Pois

(
ζ(T−1)τ0θ

(T−2)
k

)
and m

(T−2)
k ∼ NB

(
τ0

K∑
k2=1

π
i(T−3)
kk2

θ
(T−3)
k2

, g
(
ζ(T−2)

))
.

Thus we have marginalized over θ(T−2)
k . Note that we can repeat this marginalization process449

recursively until t = 1 with ζ(t) = ln(1 + δ(t)

τ0
+ ζ(t+1)) and m(T )

k = y
(T )
·k to maginalize over all the450

θ
(t)
k .451

Sampling θ(t)k : Via the above marginalization process, to sample from the posterior of θ(t)k , we452

first sample the auxiliary variables. Setting l(T+1)
·k = 0 and ζ(T+1) = 0, we sample the augmented453

variables backwards from t = T, · · · , 2,454 (
l
(t)
k· | −

)
∼ CRT

(
y
(t)
·k + l

(t+1)
·k , τ0

K∑
k2=1

π
i(t−1)
kk2

θ
(t−1)
k2

)
, (8)

(
l
(t)
k1 , · · · , l

(t)
kK | −

)
∼ Mult

(
l
(t)
k· ,

(
π
i(t−1)
k1 θ

(t−1)
1∑K

k2=1 π
i(t−1)
kk2

θ
(t−1)
k2

, · · · ,
π
i(t−1)
kK θ

(t−1)
K∑K

k2=1 π
i(t−1)
kk2

θ
(t−1)
k2

))
. (9)

And via Lemma 3, we obtain455 (
l
(t)
1k , · · · , l

(t)
Kk

)
∼ Mult

(
l
(t)
·k , π

i(t−1)
1k , · · · , πi(t−1)

Kk

)
(10)

We compute ζ(t) recursively via456

ζ(t) = ln

(
1 +

δ(t)

τ0
+ ζ(t+1)

)
. (11)

After sampling the auxiliary variables, then for t = 1, · · · , T , by Poisson-gamma conjugacy, we457

obtain458 (
θ
(1)
k | −

)
∼ Gam

(
y
(1)
·k + l

(2)
·k + τ0νk, τ0 + δ(1) + ζ(2)τ0

)
, (12)(

θ
(t)
k | −

)
∼ Gam

(
y
(t)
·k + l

(t+1)
·k + τ0

K∑
k2=1

π
i(t−1)
kk2

θ
(t−1)
k2

, τ0 + δ(t) + ζ(t+1)τ0

)
. (13)
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459

Sampling Π(i) : We define M as the length of each sub-interval, and I as the number of intervals.460

For i = I , by Eq.(10), (l(I)1k , · · · , l
(I)
Kk) is multinomial distributed. Thus by multinomial-Dirichlet461

conjugacy, we obtain462 (
π

(I)
k | −

)
∼ Dir

(
α
(I)
1k + l

(I)
1k , · · · , α

(I)
Kk + l

(I)
Kk

)
, (14)

where l(I)k1k indicates the summation of l(t)k1k over I-th sub-interval, i.e. l(I)k1k =
∑T
t=(I−1)M+1 l

(t)
k1k

.463

Inference for Dirichlet-Dirichlet Markov chains. For Dirichlet-Dirichlet Markov chains, α(i)
k1k

=464

ηKπ
(i−1)
k1k

. By Eq.(10), (l(i)1k , · · · , l
(i)
Kk) is multinomial distributed. If we marginalize (π(i)

1k , · · · , π
(i)
Kk),465

(l
(i)
1k , · · · , l

(i)
Kk) will be Dirichlet-multinomial distributed. Thus by Lemma 2, for i = I , we first sample466

the auxiliary variables as467 (
q
(I)
k | −

)
∼ Beta

(
l
(I)
·k , ηK

)
and

(
h
(I)
k1k

| −
)
∼ CRT

(
l
(I)
k1k

, ηKπ
(I−1)
k1k

)
. (15)

Similarly, by Eq.(18), (h(i)1k , · · · , h
(i)
Kk) is also Dirichlet-multinomial distributed. Thus for i =468

I − 1, · · · , 2, we sample the auxiliary variables as469 (
q
(i)
k | −

)
∼ Beta

(
l
(i)
·k + h

(i+1)
·k , ηK

)
and

(
h
(i)
k1k

| −
)
∼ CRT

(
l
(i)
k1k

+ h
(i+1)
k1k

, ηKπ
(i−1)
k1k

)
,

(16)

where l(i)k1k =
∑iM

(i−1)M+1 l
(t)
k1k

refers to the summation of l(t)k1k over i-th interval. Via Lemma 2,470

conditioning on q(i)k , we have471 (
l
(i)
k1k

+ h
(i+1)
k1k

)
∼ NB

(
ηKπ

(i−1)
k1k

, q
(i)
k

)
.

Then via Lemma 1, we obtain472

h
(i)
k1k

∼ Pois
(
−ηKπ(i−1)

k1k
ln
(
1− q

(i)
k

))
. (17)

Note that by Eq.(17), h(i)k1k is Poisson distributed and by Lemma 3, we obtain473 (
h
(i)
1k , · · · , h

(i)
Kk

)
∼ Mult

(
h
(i)
·k ,
(
π
(i−1)
1k , · · · , π(i−1)

Kk

))
. (18)

In addition, note that474 (
l
(i−1)
1k , · · · , l(i−1)

Kk

)
∼ Mult

(
l
(i−1)
·k ,

(
π
(i−1)
1k , · · · , π(i−1)

Kk

))
,

via Dirichlet-multinomial conjugacy, for i = I − 1, · · · , 2, we obtain475 (
π

(i)
k | −

)
∼ Dir

(
ηKπ

(i−1)
1k + l

(i)
1k + h

(i+1)
1k , · · · , ηKπ(i−1)

Kk + l
(i)
Kk + h

(i+1)
Kk

)
. (19)

Specifically, for i = 1, we have476 (
π

(1)
k | −

)
∼ Dir

(
ν1νk + l

(1)
1k + h

(2)
1k , · · · , ξνk + l

(1)
kk + h

(2)
kk , · · · , νKνk + l

(1)
Kk + h

(2)
Kk

)
. (20)

For sampling η, note that (h(i)k1k | −) ∼ Pois(−ηKπ(i−1)
k1k

ln
(
1− q

(i)
k

)
), i = I, · · · , 2. Given the477

prior η ∼ Gam(e0, f0), via Poisson-gamma conjugacy, we obtain478

(η | −) ∼ Gam

(
e0 +

I∑
i=2

K∑
k1=1

K∑
k2=1

h
(i)
k1k2

, f0 −K

I∑
i=2

K∑
k=1

ln
(
1− q

(i)
k

))
. (21)

Inference for Dirichlet-Gamma-Dirichlet Markov chains. For Dirichlet-Gamma-Dirichlet Markov479

chains480

α
(i)
k1k

∼ Gam

(
γ
(i−1)
k

K∑
k2=1

ψ
(i−1)
kk1k2

π
(i−1)
k2k

, c
(i)
k

)
.
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By Eq.(10), (l
(i)
1k , · · · , l

(i)
Kk) is multinomial distributed. If we marginalize (π

(i)
1k , · · · , π

(i)
Kk),481

(l
(i)
1k , · · · , l

(i)
Kk) will be Dirichlet-multinomial distributed. Thus by Lemma 2, for i = I , we first482

sample the auxiliary variables as483 (
q
(I)
k | −

)
∼ Beta

(
l
(I)
·k , α

(I)
·k

)
and

(
h
(I)
k1k

| −
)
∼ CRT

(
l
(I)
k1k

, α
(I)
k1k

)
. (22)

Similarly, by Eq.(27), (g(i)·1k, · · · , g
(i)
·Kk) is also Dirichlet-multinomial distributed. Thus for i =484

I − 1, · · · , 2, we sample the auxiliary variables as485 (
q
(i)
k | −

)
∼ Beta

(
l
(i)
·k + g

(i+1)
·k , α

(i)
·k

)
and

(
h
(i)
k1k

| −
)
∼ CRT

(
l
(i)
k1k

+ g
(i+1)
·k1k , α

(i)
k1k

)
. (23)

Via Lemma 2, conditioning on q(i)k , we have486 (
l
(i)
k1k

+ g
(i+1)
·k1k

)
∼ NB

(
α
(i)
k1k

, q
(i)
k

)
.

Then via Lemma 1, we obtain487

h
(i)
k1k

∼ Pois
(
−α(i)

k1k
ln
(
1− q

(i)
k

))
.

Thus via Poisson-gamma conjugacy, we obtain488 (
α
(i)
k1k

| −
)
∼ Gam

(
γ
(i−1)
k

K∑
k2=1

ψ
(i−1)
kk1k2

π
(i−1)
k2k

+ h
(i)
k1k

, c
(i)
k − ln

(
1− q

(i)
k

))
. (24)

Marginalizing over α(i)
k1k

, and via the definition of negative-binomial distribution, we have489

h
(i)
k1k

∼ NB

γ(i−1)
k

K∑
k2=1

ψ
(i−1)
kk1k2

π
(i−1)
k2k

,
−ln

(
1− q

(i)
k

)
c
(i)
k − ln

(
1− q

(i)
k

)
 .

Then using Lemma 1, we sample490 (
g
(i)
k1k

| −
)
∼ CRT

(
h
(i)
k1k

, γ
(i−1)
k

K∑
k2=1

ψ
(i−1)
kk1k2

π
(i−1)
k2k

)
, (25)

and obtain491

g
(i)
k1k

∼ Pois

(
γ
(i−1)
k

K∑
k2=1

ψ
(i−1)
kk1k2

π
(i−1)
k2k

ln
(
1− ln

(
1− q

(i)
k

)/
c
(i)
k

))
.

If we define g(i)k1k = g
(i)
k1·k =

∑K
k2=1 g

(i)
k1k2k

, and augment492 (
g
(i)
k11k

, · · · , g(i)k1Kk
)
∼ Mult

(
g
(i)
k1k

,
(
ψ
(i−1)
kk1k2

π
(i−1)
k2k

)K
k2=1

)
. (26)

By Lemma 3, we have493

g
(i)
k1k2k

∼ Pois
(
γ(i−1)ψ

(i−1)
kk1k2

π
(i−1)
k2k

ln
(
1− ln

(
1− q

(i)
k

)/
c
(i)
k

))
.

Using Lemma 3 and
∑K
k1
ψ
(i−1)
kk1k2

= 1, we have,494 (
g
(i)
·1k, · · · , g

(i)
·Kk

)
∼ Mult

(
g
(i)
·k ,
(
π
(i−1)
k1k

)K
k1=1

)
, (27)

495 (
g
(i)
1k2k

, · · · , g(i)Kk2k
)
∼ Mult

(
g
(i)
·k2k,

(
ψ
(i−1)
kk1k2

)K
k1=1

)
.

Thus by Dirichlet-multinomial conjugacy, for i = I, · · · , 2, we can obtain496 ((
ψ
(i−1)
k1k2

, · · · , ψ(i−1)
kKk2

)
| −
)
∼ Dir

(
ϵ0 + g

(i)
1k2k

, · · · , ϵ0 + g
(i)
Kk2k

)
, (28)(

π
(i−1)
k | −

)
∼ Dir

(
α
(i−1)
1k + l

(i−1)
1k + g

(i)
·1k, · · · , α

(i−1)
Kk + l

(i−1)
Kk + g

(i)
·Kk

)
. (29)
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For sampling γ(i−1)
k , note that by Eq.(26) and

∑K
k1
ψ
(i−1)
kk1k2

= 1, we have497

g
(i)
·k =

K∑
k1=1

g
(i)
k1k

and g
(i)
·k ∼ Pois

(
γ
(i−1)
k ln

(
1− ln

(
1− q

(i)
k

)/
c
(i)
k

))
. (30)

Thus via Poisson-gamma conjugacy, we obtain498 (
γ
(i−1)
k | −

)
∼ Gam

(
ϵ0 + g

(i)
·k , ϵ0 + ln

(
1− ln

(
1− q

(i)
k

)))
. (31)

By gamma-gamma conjugacy, we have499 (
c
(i)
k | −

)
∼ Gam

(
ϵ0 + γ

(i−1)
k , ϵ0 +

K∑
k1=1

α
(i)
k1k

)
. (32)

Inference for Dirichlet-Randomized-Gamma-Dirichlet Markov chains. For Dirichlet-500

Randomized-Gamma-Dirichlet Markov chains,501

α
(i)
k1k

∼ RG1

(
ϵα, γ(i−1)

K∑
k2=1

ψ
(i−1)
kk1k2

π
(i−1)
k2k

, c
(i)
k

)
,

which can be equivalently represented as502

α
(i)
k1k

∼ Gam
(
g
(i)
k1k

+ ϵα, c
(i)
k

)
, and g

(i)
k1k

= Pois

(
γ(i−1)

K∑
k2=1

ψ
(i−1)
kk1k2

π
(i−1)
k2k

)
.

By Eq.(10), (l
(i)
1k , · · · , l

(i)
Kk) is multinomial distributed. If we marginalize (π

(i)
1k , · · · , π

(i)
Kk),503

(l
(i)
1k , · · · , l

(i)
Kk) will be Dirichlet-multinomial distributed. Thus by Lemma 2, for i = I , we first504

sample the auxiliary variables as505 (
q
(I)
k | −

)
∼ Beta

(
l
(I)
·k , α

(I)
·k

)
and

(
h
(I)
k1k

| −
)
∼ CRT

(
l
(I)
k1k

, α
(I)
k1k

)
. (33)

Similarly, by Eq.(39), (g(i)·1k, · · · , g
(i)
·Kk) is also Dirichlet-multinomial distributed. Thus for i =506

I − 1, · · · , 2, we sample the auxiliary variables as507 (
q
(i)
k | −

)
∼ Beta

(
l
(i)
·k + g

(i+1)
·k , α

(i)
·k

)
and

(
h
(i)
k1k

| −
)
∼ CRT

(
l
(i)
k1k

++g
(i+1)
·k1k , α

(i)
k1k

)
. (34)

Via Lemma 2, conditioning on q(i)k , we have508 (
l
(i)
k1k

+ g
(i+1)
·k1k

)
∼ NB

(
α
(i)
k1k

, q
(i)
k

)
.

Then via Lemma 1, we obtain509

h
(i)
k1k

∼ Pois
(
−α(i)

k1k
ln
(
1− q

(i)
k

))
.

Via Poisson-gamma conjugacy, we first sample510 (
α
(i)
k1k

| −
)
∼ Gam

(
g
(i)
k1k

+ ϵα + h
(i)
k1k

, c
(i)
k − ln

(
1− q

(i)
k

))
. (35)

If ϵα > 0, we can sample the posterior of g(i)k1k via511

(
g
(i)
k1k

| −
)
∼ Bessel

ϵα − 1, 2

√√√√α
(i)
k1k

c
(i)
k γ

(i−1)
k

K∑
k2=1

ψ
(i−1)
kk1k2

π
(i−1)
k2k

 , (36)

where Bessel (·) denotes Bessel distribution. If ϵα = 0, we sample g(i)k1k via512

(
g
(i)
k1k

| −
)
∼


Pois

(
c
(i)
k γ

(i−1)
k

∑K
k2=1 ψ

(i−1)
kk1k2

π
(i−1)
k2k

c
(i)
k −ln

(
1−q(i)k

) )
if h

(i)
k1k

= 0

SCH

(
h
(i)
k1k

,
c
(i)
k γ

(i−1)
k

∑K
k2=1 ψ

(i−1)
kk1k2

π
(i−1)
k2k

c
(i)
k −ln

(
1−q(i)k

) )
otherwise,

(37)
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where SCH (·) denotes the shifted confluent hypergeometric distribution [16].513

Defining g(i)k1k = g
(i)
k1·k =

∑K
k2=1 g

(i)
k1k2k

, we first augment514 (
g
(i)
k11k

, · · · , g(i)k1Kk
)
∼ Mult

(
g
(i)
k1k

,
(
ψ
(i−1)
kk1k2

π
(i−1)
k2k

)K
k2=1

)
. (38)

By Lemma 3, we have515

g
(i)
k1k2k

∼ Pois
(
γ(i−1)ψ

(i−1)
kk1k2

π
(i−1)
k2k

)
,

and because
∑K
k1
ψ
(i−1)
kk1k2

= 1, we have516 (
g
(i)
·1k, · · · , g

(i)
·Kk

)
∼ Mult

(
g
(i)
·k ,
(
π
(i−1)
k1k

)K
k1=1

)
, and (39)(

g
(i)
1k2k

, · · · , g(i)Kk2k
)
∼ Mult

(
g
(i)
·k2k,

(
ψ
(i−1)
kk1k2

)K
k1=1

)
.

Thus by Dirichlet-multinomial conjugacy, for i = I, · · · , 2, we have517 ((
ψ
(i−1)
k1k2

, · · · , ψ(i−1)
kKk2

)
| −
)
∼ Dir

(
ϵ0 + g

(i)
1k2k

, · · · , ϵ0 + g
(i)
Kk2k

)
, (40)

518 (
π

(i−1)
k | −

)
∼ Dir

(
α
(i−1)
1k + l

(i−1)
1k + g

(i)
·1k, · · · , α

(i−1)
Kk + l

(i−1)
Kk + g

(i)
·Kk

)
. (41)

Via Poisson-gamma conjugacy, we obtain519 (
γ
(i−1)
k | −

)
∼ Gam

(
ϵ0 + g

(i)
·k , ϵ0 + 1

)
. (42)

By gamma-gamma conjugacy, we have520 (
c
(i)
k | −

)
∼ Gam

(
ϵ0 + γ

(i−1)
k , ϵ0 +

K∑
k1=1

α
(i)
k1k

)
. (43)

Specifically, for i = 1, we have α(1)
k1k

= νk1νk, if k1 ̸= k. And α(1)
k1k

= ξνk, if k1 = k.521

Sampling νk and ξ : As we sample Π(i), by the definition of Dirichlet-multinomial distribution, we522

obtain523 (
l
(1)
1k + g

(2)
·1k, · · · , l

(1)
Kk + g

(2)
·Kk
)
∼ DirMult (ν1νK , · · · , ξνk, · · · , νKνk) ,

where l(1)k1k =
∑M
t=1 l

(t)
k1k

. In particular, with a little abuse of notation here, for Dir-Dir construction,524

we take g(2)·k1k = h
(2)
k1k

. We first sample525

(
h
(1)
k1k

| −
)
∼

 CRT
(
l
(1)
k1k

+ g
(2)
·k1k, νk1νk

)
k1 ̸= k

CRT
(
l
(1)
k1k

+ g
(2)
·k1k, ξνk

)
k1 = k.

(44)

Then we sample526

q
(1)
k ∼ Beta

l(1)·k + g
(2)
·k , νk

∑
k1 ̸=k

νk1 + ξ

 . (45)

We further introduce527

nk =h
(1)
kk +

∑
k1 ̸=k

h
(1)
k1k

+
∑
k2 ̸=k

h
(1)
kk2

+ l
(1)
k· , and

ρk =τ0ζ
(1) − ln

(
1− q

(1)
k

)ξ + ∑
k1 ̸=k

νk1

−
∑
k2 ̸=k

ln
(
1− q

(1)
k2

)
νk2 .
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Via Poisson-gamma conjugacy, we have528

(ξ | −) ∼ Gam

(
γ0
K

+
∑
k

h
(1)
kk , β −

∑
k

νkln
(
1− q

(1)
k

))
, (46)

(νk | −) ∼ Gam
(γ0
K

+ nk, β + ρk

)
. (47)

529

Sampling δ(t) and β : Via Poisson-gamma conjugacy530 (
δ(t) | −

)
∼ Gam

(
ϵ0 +

V∑
v=1

y(t)v , ϵ0 +

K∑
k=1

θ
(t)
k

)
. (48)

And by gamma-gamma conjugacy, we obtain531

(β | −) ∼ Gam

(
ϵ0 + γ0, ϵ0 +

K∑
k=1

νk

)
. (49)

The full procedure of our Gibbs sampling algorithms are summarized in Algorithm 1, Algorithm 2532

and Algorithm 3.533

Algorithm 1 Gibbs sampling algorithm for NS-PGDS (Dir-Dir Markov construction)

Input: observed count sequence {y(t)}Tt=1, iterations J .
Initialize the model’s rank K, hyperparameters γ0, ϵ0, e0, f0.
for iter = 1 to J do

Sample {y(t)vk }v,k via Eq.(6).
Sample {ϕk}k via Eq.(7).
Sample {δ(t)}t via Eq.(48). Update ζ(t) as
ζ(T+1) = 0, ζ(t) = ln

(
1 + δ(t)

τ0
+ ζ(t+1)

)
, t = T, · · · , 1.

Set l(T+1)
·k = 0.

for t = T to 2 do
Sample {l(t)k· }k and {l(t)kk2}k,k2 via Eq.(8) and Eq.(9) respectively.

end for
for t = 1 to T do

Sample {θ(t)k }k via Eq.(12) and Eq.(13).
end for
for i = 1 to I do

Sample {q(i)k }k and {h(i)k1k}k1,k via Eq.(16), Eq.(44) and Eq.(45).

Sample {π(i)
k }k via Eq.(14) and Eq.(19).

Sample η via Eq.(21).
end for
Sample ξ, {νk}k, β via Eq.(46), Eq.(47) and Eq.(49) respectively.

end for
Output posterior means: {θ(1:T )

k }k, {ϕk}k, {π(i)
k }k, δ(1:T ), ξ, {νk}k, β.
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Algorithm 2 Gibbs sampling algorithm for NS-PGDS (Dir-Gam-Dir Markov construction)

Input: observed count sequence {y(t)}Tt=1, iterations J .
Initialize the model’s rank K, hyperparameters γ0, ϵ0, e0, f0.
for iter = 1 to J do

Sample {y(t)vk }v,k via Eq.(6).
Sample {ϕk}k via Eq.(7).
Sample {δ(t)}t via Eq.(48). Update ζ(t) as
ζ(T+1) = 0, ζ(t) = ln

(
1 + δ(t)

τ0
+ ζ(t+1)

)
, t = T, · · · , 1.

Set l(T+1)
·k = 0.

for t = T to 2 do
Sample {l(t)k· }k and {l(t)kk2}k,k2 via Eq.(8) and Eq.(9) respectively.

end for
for t = 1 to T do

Sample {θ(t)k }k via Eq.(12) and Eq.(13).
end for
for i = 1 to I do

Sample {α(i)
k1k

}k1,k and {c(i)k }k via Eq.(24) and Eq.(32).

Sample {q(i)k }k and {h(i)k1k}k1,k via Eq.(22), Eq.(23), Eq.(44) and Eq.(45).
Sample {gk1k}k1,k and {gk1k2k}k1,k2,k via Eq.(25) and Eq.(26) respectively.
Sample {ψkk1k2}k,k1,k2 via Eq.(28).
Sample {γ(i)k }k via Eq.(31).
Sample {π(i)

k }k via Eq.(14) and Eq.(29).
end for
Sample ξ, {νk}k, β via Eq.(46), Eq.(47) and Eq.(49) respectively.

end for
Output posterior means: {θ(1:T )

k }k, {ϕk}k, {π(i)
k }k, δ(1:T ), ξ, {νk}k, β.
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Algorithm 3 Gibbs sampling algorithm for NS-PGDS (PR-Gam-Dir Markov construction)

Input: observed count sequence {y(t)}Tt=1, iterations J .
Initialize the model’s rank K, hyperparameters γ0, ϵ0, e0, f0.
for iter = 1 to J do

Sample {y(t)vk }v,k via Eq.(6).
Sample {ϕk}k via Eq.(7).
Sample {δ(t)}t via Eq.(48). Update ζ(t) as
ζ(T+1) = 0, ζ(t) = ln

(
1 + δ(t)

τ0
+ ζ(t+1)

)
, t = T, · · · , 1.

Set l(T+1)
·k = 0.

for t = T to 2 do
Sample {l(t)k· }k and {l(t)kk2}k,k2 via Eq.(8) and Eq.(9) respectively.

end for
for t = 1 to T do

Sample {θ(t)k }k via Eq.(12) and Eq.(13).
end for
for i = 1 to I do

Sample {α(i)
k1k

}k1,k and {c(i)k }k via Eq.(33) and Eq.(43).

Sample {q(i)k }k and {h(i)k1k}k1,k via Eq.(33), Eq.(34), Eq.(44) and Eq.(45).
Sample {gk1k}k1,k via Eq.(36) and Eq.(37).
Sample {gk1k2k}k1,k2,k via Eq.(38).
Sample {γ(i)k }k via Eq.(42).
Sample {ψkk1k2}k,k1,k2 via Eq.(40).
Sample {π(i)

k }k via Eq.(14), and Eq.(41).
end for
Sample ξ, {νk}k, β via Eq.(46), Eq.(47) and Eq.(49) respectively.

end for
Output posterior means: {θ(1:T )

k }k, {ϕk}k, {π(i)
k }k, δ(1:T ), ξ, {νk}k, β.
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