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Abstract— Background subtraction forms the basis of many
safety applications in airport traffic management, such as the
visual conflict warning system. However, deep learning meth-
ods often mistakenly identify stationary aircraft as foreground,
mainly because they prioritize learning appearance over motion
features. This means that stationary aircraft with a similar
appearance to moving ones are often incorrectly classified as
foreground. To address this issue, a Motion-enhanced Back-
ground Subtraction Network (MBSNet) is proposed in this paper.
MBSNet is designed to focus more on motion information within
an encoder-decoder framework. Firstly, a Motion Augmentation
Encoder Module (MAEM) is introduced, which generates a clean
background frame without foreground from previous frames.
This module compares the background frame with the current
frame containing moving objects, indirectly enhancing the motion
component in the encoded features. Because targets on the airport
ground are relatively sparse, MAEM ensures a clean back-
ground image. Secondly, a Motion Accumulation Decoder Module
(MADM) is designed, which accumulates motion-augmented
features from the current frame and past frames based on
feature dissimilarity measurement. Since aircraft exhibit con-
sistent motion patterns, such as continuous straight travel with
occasional turns, MADM further enhances the motion component
in the accumulated feature vector. Finally, MBSNet is evaluated
on the AGVS dataset, and our experiments demonstrate the
effectiveness of the proposed method for airport background
subtraction.

Index Terms— Airport traffic safety, background subtraction,
motion and stillness distinction.

I. INTRODUCTION

ENSURING safety on the roads is a crucial aspect of
transportation [1], and this holds especially true for

airports, where safety is paramount. However, as the global
civil aviation industry continues to expand rapidly, airports are
becoming more crowded, leading to an increase in safety inci-
dents. For instance, on January 25, 2023, there was a collision
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Fig. 1. The principle of VCWS. The moving targets are first segmented
and then some feature points are detected or predicted. The subsequent task
involves computing the shortest distance between the two targets from a top
view and determining whether an alarm should be triggered.

between an aircraft and a vehicle at Narita Airport in Japan,
and on February 3, 2023, two aircraft collided at Newark
Liberty International Airport in New Jersey, USA. Background
subtraction [2] plays a vital role in many intelligent video
applications aimed at enhancing airport traffic safety. Take the
Visual Conflict Warning System (VCWS) depicted in Fig. 1,
for example. Initially, background subtraction is used to isolate
moving targets, followed by measuring the minimum distance
between these targets to determine if a warning should be
issued. It’s evident that the accuracy of background subtraction
significantly influences the overall performance of the system.

Background subtraction assumes that the background is
known a priori, and the target that has relative motion with
the background is defined as the foreground. In an airport
setting, the established reference is the airport ground, with
all ground-moving targets considered as foreground objects.
Deep learning-based background subtraction [3] has garnered
significant interest lately due to its precise segmentation capa-
bilities. However, it struggles with discerning between motion
and stillness within the airport environment. As shown in
Fig. 2, some stationary aircraft are misclassified as moving
targets. In this paper, this issue is referred to as the Motion
and Stillness Distinction (MSD) problem, which presents itself
in two distinct cases,

• Case1: MSD between different objects. A stationary
object with a resemblance to a moving one is classified
as foreground.

• Case2: MSD of the same object. That is, to judge a target
as a moving object after it stops or before the movement.

The MSD question violates the most basic goal of background
subtraction, only detecting moving objects at the current
moment. There are two reasons for the MSD problem in
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Fig. 2. The left column includes two frames extracted from the Airport
Ground Video Surveillance (AGVS) dataset. The middle column includes the
ground truth representation of moving objects. The right column includes the
background subtraction outcomes generated by the Foreground Segmentation
Network (FgSegNet) [4]. The AGVS dataset is specifically designed for airport
background subtraction tasks, while FgSegNet operates on an encoder-decoder
architecture. It’s worth noting that FgSegNet erroneously identifies stationary
aircraft (highlighted in red boxes) as foreground objects.

Fig. 2. First of all, the particularity of airport is a cause
of MSD. Aircraft in civil airports, whether stationary or in
motion, or from which aircraft manufacturing company, have
a similar appearance, which results in a lot of Case1. Aircraft
in airports often exhibit a stop-and-go motion pattern, which in
turn leads to a lot of Case2. Secondly, and more importantly,
the deep learning framework tends to learn the appearance
features rather than the motion features. In this case, as long
as the stationary object has a similar appearance to the moving
object, it may be classified as foreground.

In this paper, a Motion-enhanced Background Subtraction
Network (MBSNet) is proposed to address the MSD problem.
The principle of MBSNet is to strive to enhance the motion
component in the extracted features by the neural network,
so as to force the network to pay more attention to the motion
information for airport background subtraction. To achieve
this purpose, MBSNet presents two new modules for motion
feature augmentation and accumulation within the encoder-
decoder framework. Firstly, a Motion Augmentation Encoder
Module (MAEM) is developed where a pure background
image without foreground is generated from previous frames.
Then the background frame and the current frame is compared
in the encoder module, thus indirectly augmenting the motion
component in the encoded features. The background frame
will be updated in real-time to adapt to the background
change. Because the targets on the airport ground are rela-
tively sparse, a clean background image can be guaranteed
in MAEM through long-term observation. Secondly, a Motion
Accumulation Decoder Module (MADM) is designed, where
the motion-augmented features of the current frame and past
frames by MAEM are accumulated together based on feature
dissimilarity measurement before feature decoding. Consider-
ing the motion consistency of the aircraft, that is, continuous
straight travel with occasional turns, the motion component
will be further enhanced in the accumulated feature vector by
MADM. The final experiments are conducted on the AGVS
dataset [5] to verify the effectiveness of MBSNet. In summary,
the main contributions of this paper are,

• We clearly define two cases of the MSD problem in
background subtraction for the first time.

Fig. 3. (a) to (d): illustration of motion segmentation, automatic video object
segmentation, semi-automatic video object segmentation, video semantic
segmentation, respectively.

• We propose a method to solve the MSD problem in
airport background subtraction based on some airport-
specific prior information.

The rest of the paper is organized as follows. Section II
introduces the related work, the details of MBSNet are
described in Section III, the experimental results are shown
in Section IV, and conclusion is in Section V.

II. RELATED WORK

We initially delved into spatial-temporal segmentation,
which encompasses background subtraction, motion segmenta-
tion, video object segmentation, video semantic segmentation,
among others. Unlike background subtraction, where there’s a
known or implied background prior, other research directions
lack this context, leading to distinct segmentation outcomes.
For instance, motion segmentation may yield results termed
moving objects, but these are actually a collection of layers or
objects with varied motion characteristics (Fig. 3(a)), rather
than a single moving entity relative to a static background.
Automatic video object segmentation might produce dominant
or general object segments (Fig. 3(b)), while semi-automatic
video object segmentation involves manually specifying tar-
gets (Fig. 3(c)), which differ from the concept of moving
objects in background subtraction. Video semantic segmen-
tation aims to identify objects within predefined semantic
categories (Fig. 3(d)), which also differ from moving objects.
We briefly surveyed a few papers employing traditional or deep
learning methods. For an in-depth exploration of background
subtraction, consulting other referenced papers [6], [7] is
recommended.

A. Traditional Method

Most traditional methods rely on statistical modeling [8],
where statistical distributions are employed to match the
changes in each pixel. Statistical modeling generally falls
into two categories: parametric modeling and nonparametric
modeling. Two critical considerations in statistical modeling
are selecting relevant features and addressing variations in the
background.

Parametric modeling tends to be more efficient but may not
accurately capture the background distribution as effectively
as nonparametric modeling since the probability distribution
is predetermined. The most classic work of parametric mod-
eling is the Gaussian Mixture Model (GMM) [9]. Stauffer
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and Grimson employed a mix of Gaussian distributions to
model the probability that each pixel corresponds to either
the foreground or the background. Several enhanced GMMs
were later proposed to bridge the gap between the specified
distribution and the underlying distribution, such as using
adaptive update strategies [10].

When it comes to nonparametric methods, let’s start with
Kernel Density Estimates (KDE) [11], [12], where the proba-
bility distribution is directly estimated from samples without
specifying a particular distribution model. Kim et al. pro-
posed a method which clusters pixels into codewords to
represent the background [13]. Barnich and Droogenbroeck
developed Visual Background Extractor (ViBe) [14], which
selects samples through the diffusion of adjacent pixels to
capture fast-moving objects. Binary features are utilized in
SuBSENSE [15] to detect subtle local changes, especially in
cases where foreground and background have similar colors.
St-Charles et al. proposed a nonparametric approach named
PAWCS [16], which combines color intensities and texture
features for modeling. Hybrid approaches like IUTIS [17]
were also introduced to combine multiple models for more
effective background subtraction, especially in challenging
environments.

Commonly used features in statistical modeling are color,
texture, motion or saliency descriptors [18], etc. There have
also been some recent studies on background variations. Isik
et al. presented a new background model in SWCD [19]
by sliding window with dynamic parameters to adapt to
background changes. Lee et al. proposed WisenetMD [20] to
search for dynamic background region and then select sam-
ples with high confidence for background modeling. Besides
statistical modeling, there are some other traditional methods
like the Robust Principal Component Analysis (RPCA) [21]
and subspace learning [22] based solutions.

B. Deep Learning Based Method

The deep learning approach outperforms the traditional
method by a significant margin in terms of segmentation
accuracy. Braham and Droogenbroeck [23] suggested a tech-
nique where Convolutional Neural Networks (CNNs) are
employed to learn spatial features from image patches, which
are subsequently utilized for background modeling. Wang
et al. [24] presented a cascade structure of deep networks
for background subtraction. The output of the first level was
concatenated with the original frame and fed to the second
level to refine the segmentation result. As stated in [24], such a
cascade structure can be used to enforce the spatial coherence
constraint so that better results can be obtained with more
cascaded levels. The FgSegNet [4] had a triplet CNN for
encoding and a transposed network for decoding. The triplet
CNN operated in three different scales in parallel to get richer
features. In the upgraded version FgSegNet2 [25], feature
fusion is incorporated to boost the effectiveness of multi-scale
features. Patil et al. [26] introduced an edge extraction method
within the encoder-decoder framework to capture multi-scale
foreground edge details for background subtraction.

It has been proven that the background subtraction per-
formance under some challenges like camouflage can be

improved by combining semantic information [32]. However,
the production of high-quality semantic mask is time consum-
ing. RT-SBS [33] attempted to request semantic information at
a lower frequency, request incomplete semantic information,
or reuse the previous semantic information to reduce the
computation load due to semantic segmentation. Some other
methods used Generative Adversarial Network [34] or Multi-
scale Network [35] to capture appearance cues for background
subtraction. In addition, scholars also discussed the gener-
alization problem of background subtraction based on deep
learning, and tried to propose universal methods that can be
used in any test scenario [36].

To address the challenge of unseen videos in background
subtraction, Tezcan et al. [27] presented a fully-convolutional
neural network based method, where the input consisted of
two reference backgrounds at different time scales along with
the semantic information. A key feature of this method is
that the training and test sets were composed of frames from
different videos. Later, spatial-temporal data augmentation is
presented in [28] to replace the data augmentation step in [27].
This data augmentation method could mimic more challenges
in background subtraction, e.g. Pan-Tilt-Zoom (PTZ) camera
and camera jitter. Mandal et al. [29] presented a completely
end-to-end spatio-temporal network 3DCD for simultaneous
background estimation and other tasks, e.g. saliency detection.
Multiple cues are employed in MU-Net [30] for background
subtraction, including tensor-based motion estimation and
GMM based background subtraction. Reference [31] is the
early version of this paper, where both appearance and motion
features are combined to identify general moving targets with-
out considering airport prior information. The above methods
all recognize to some extent that deep learning-based methods
have difficulties in detecting moving objects, and they are
more or less effective in solving this problem. However, they
do not clearly define MSD, nor do they consider using prior
information in specific scenarios to solve the MSD problem.
This paper clearly defines MSD for the first time and proposes
a method based on airport-specific prior information to solve
the MSD problem in airport background subtraction.

C. Motion Segmentation and Video Object Segmentation

Motion segmentation aims to segment each frame into
regions with different motion parameters [51]. Motion segmen-
tation generally relies on dense optical flow [52]. However,
Yue et al. [53] proposed a method that combines deep learning
and geometric reasoning, eliminating the need for optical flow.
Siam et al. [54] introduced a method that integrates motion
and appearance cues for joint motion segmentation and object
detection. This technique was further improved in [55] by
explicitly modeling vehicle motion. Mariotti and Eising [56]
considered four types of geometric constraints for motion
segmentation using fisheye cameras.

There is a large number of video object segmentation
papers. A big family of automatic video object segmentation
is built upon two-stream networks [37]. Some automatic
video object segmentation algorithms not only separated the
foreground from background, but also discriminated different
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Fig. 4. An overview of MBSNet. Firstly the current frame Ct and the background frame Bt from the Background Image Estimation step are compared in the
Motion Augmentation Encoder Module (MAEM) to augment the motion component. Secondly, in the Motion Accumulation Decoder Module (MADM), the
encoded feature Ft are accumulated with stored features from previous frames by the Motion Accumulation step to further enhance the motion component.
Finally, the decoded motion probability map Ot is thresholded to generate the output mask.

object instances [38]. There were also methods learn to
perform automatic video object segmentation from unlabeled
or weakly labeled data [39]. Semi-automatic video object
segmentation algorithms involve limited human inspection.
Oh et al. [40] utilized the given mask of the first frame as
a template and match the pixel-level feature embeddings in
new frames. The ranking attention mechanism was leveraged
in RANet [41] to construct pixel-wise similarity maps.

III. PROPOSED METHOD

Since the original deep learning network tends to learn
appearance features, the stationary aircraft with a similar
appearance to the moving aircraft may be misclassified as
foreground. An obvious line of thought is that if more motion
features can be utilized, the classification accuracy will be
improved. This problem is easy to solve for traditional meth-
ods by using or developing motion features for modeling.
However, because of the interpretability of deep learning,
we cannot determine which features learned by the network
belong to motion features and which belong to appearance
features, and hence it is infeasible to conduct motion modeling
directly as the traditional background subtraction.

Our idea is to indirectly enhance the motion component
in the learned features to force the network to pay more
attention to motion for MSD. MBSNet is illustrated in Fig. 4,
which has two modules, Motion Augmentation Encoder Mod-
ule (MAEM) and Motion Accumulation Decoder Module
(MADM). A clean background image is estimated in MAEM
by the weighted summation of previous frames with the pre-
dicted motion probability as the weights. Next, the background
image and the current frame are used as the input of encoder
operation for feature extraction. Given a specific task and the
inputs, the deep learning network will automatically learn the
required features from inputs. For background subtraction,
if the inputs are images with and without moving objects
as in Fig. 4, the network tends to learn various features of
the moving object, which must include motion information.
In other words, the motion component in the encoded features
is indirectly augmented by MAEM.

The motion component will be further enhanced by MADM.
For the appearance component in the encoded features,
it changes little between adjacent frames for both foreground
and background, unless the object deformation is large. For
the motion component reflecting the position attributes, it is
different for foreground and background. The position change
of background object in video surveillance generally is small
and hence the background motion component between adja-
cent frames should be similar. On the contrary, the foreground
position along with the corresponding motion features between
adjacent frames are always changing because the foreground
object is always moving. Therefore, if the similarity of
encoded features between adjacent frames is measured, the
feature values with small similarity degrees are likely to belong
to the foreground motion component. Based on this fact,
the MADM accumulates the encoded features of previous
frames to the current frame based on feature dissimilarity
measurement. Because the accumulation principle is negative
accumulation when similar and positive accumulation when
dissimilar, the result is that the foreground motion component
is enhanced. After decoder operation, the accumulated features
will be retrieved to the original resolution, generating a pixel-
wise map of motion probability, and moving objects can be
segmented by thresholding the probability map.

A. Motion Augmentation Encoder Module

1) Background Image Estimation: An intuitive idea to aug-
ment the motion component in learned features is to compare
images with and without moving objects. A background image
estimation step is necessary to achieve this goal. The com-
monly used method to estimate a background image is the
temporal mean background model [42],

p̂i, j,r =
1
N

N∑
t=1

pi, j,t , (1)

where r is the current time instant, t is the frame index, N
is the number of images evolved in computation, p represents
the pixel value at spatial location (i, j), and p̂ is the estimated
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Fig. 5. The scheme of Background Image Estimation. The background image is set up by averaging the initial frames with empty motion probability maps.
Then, the sample set is updated in (b) with incoming frames and their associated motion probability maps. Lastly, a new background image is calculated
through weighted summation in (c).

pixel value. This method is very simple and brings some prob-
lems. Specifically, sometimes there will be ghosts or shadows
in the estimated background image, resulting in hollows in the
final segmentation results. The reason for this phenomenon
is the presence of foreground pixels in training samples.
If the samples used for modeling include both foreground and
background pixels, the simple mean operation can not remove
the foreground pixels, and hence it is difficult to generate a
clean background image.

Hence, we present a new background image estimation
solution to address the above problem, as shown in Fig. 5.
We consider using the predicted pixel-wise motion probability
map by the network as the weights of the weighting summation
of previous frames. If a pixel has a small motion probability
value, it is more likely to be a background pixel and it
should contribute more to the background image estimation,
and vice versa. The scheme of the background estimation
includes three steps, corresponding to (a-c) in Fig. 5. Firstly,
the background image is initialized by the average summation
of several previous frames with empty motion probability
maps. At this time, the model is similar to the temporal
mean background model. Secondly, the sample set is updated
with the First-In-First-Out (FIFO) rule, that is, to delete the
frame furthest from the current time, and insert the newly-
arriving frame and its motion probability map. Finally, new
background image is estimated by weighted summation as
follows,

p̂i, j,r =
1

ε +
∑N

t=1 wi, j,t

N∑
t=1

wi, j,t pi, j,t , (2)

where r is the current time instant, t is the frame index, N
is the number of previous frames involved in computation,
pi, j,t is the pixel value of frame t at the spatial location
(i, j), and p̂i, j,r is the estimated background pixel value.
The weight wi, j,t is computed as wi, j,t = 1 − oi, j,t , where
oi, j,t just is the predicted motion probability of pixel pi, j,t . ε

is a small constant scalar to avoid zero denominator. It can
be seen that the larger the motion probability oi, j,t , the
smaller the contribution of pi, j,t to the background image

Fig. 6. Illustration of the airport flight area and apron during crowded hours.
It can be seen that even at crowded moments, the targets in the airport are
relatively sparse, which ensures that a clean background image can always be
obtained based on long-term observation.

estimation. In this way, the negative impact of moving object
pixels in the training frames can be reduced. As shown in
Fig. 5(d), a better background image can be obtained by our
method compared with the temporal mean. The generation
of the motion probability map will be described in Motion
Accumulation Decoder Module.

The premise of our background image estimation method
is that there are not too many moving objects in the scene.
The airport scenario fits this requirement. Two examples of
crowded airport are shown in Fig. 6. It can be seen that the
number of aircraft in the airport flight zone and apron area is
limited even at crowded moments. This is because aircraft are
massive objects and must be separated by sufficient distance
to ensure safety. Therefore, based on long-term observation,
we can always get a clean background image.

2) Encoder Operation: In the framework of deep learning,
the network will automatically learn suitable features from
the input to accomplish the established goal of the network.
As shown in Fig. 4, the estimated background image and the
current frame are used as the input of the proposed network.
In this case, what the network learns must be various features
of the moving object, such as appearance features, motion
features, and so on. In this way, the motion information will
be indirectly enhanced in the encoded features by MBSNet.
However, due to the interpretability of deep learning, currently,
we can not judge which features represent motion information,
appearance, or other information. The interpretability problem
is still an open question in deep learning.
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We use Resnet50 [43] as a backbone in our encoder module.
The encoder takes a pair of RGB images (the current frame
and estimated background) as input (I ∈ R6×H×W ) in a
manner of concatenation, where H and W are the height and
width of an input image and the 6 represents the number
of channels. Layers 1-4 of Resnet50 are utilized to extract
multi-scale features and sent to different stages of the decoder,
and there are three stages in the decoder for upsampling
correspondingly. We take the output of layer-4 of Resnet50
as encoding feature map (F ∈ R1024×H/16×W/16). The feature
map will be matched with past frame features in the Motion
Accumulation Module and then sent to the decoder.

B. Motion Accumulation Decoder Module

1) Motion Accumulation: A straightforward idea is whether
the multi-frame features by the MAEM module can be added
up to further highlight the motion component? The premise
of such accumulation is motion consistency, otherwise the
accumulated features are chaotic. The motion consistency
means that the motion pattern remains unchanged as much as
possible. The aircraft has good motion consistency. Because
the aircraft is a huge object, it cannot move arbitrarily, but
must travel at a constant speed along a straight runway or
taxiway. At this time, the motion pattern of the aircraft,
including direction and speed, remains unchanged. However,
when the aircraft turns, the motion consistency is destroyed.
At the turning stage, the direction of the aircraft, and even the
appearance pattern, changes drastically.

We find that the motion pattern of the aircraft on the
ground is simple and predictable, that is, straight ahead with
occasional turns. This allows us to manually label the turning
areas in the scene and then perform motion accumulation
only in non-turning areas. Before the algorithm runs, it is
easy to distinguish where the turning area is by observing
the structure of the airport ground. Of course, other methods
can also be used to mark the turning area. For example, when
calculating the motion direction vector based on the object
tracking trajectory, the area where the motion direction vector
significantly changes is the turning area. Because the algorithm
is designed for practical application in airport surveillance
systems, such as the conflict warning system, it should be
simple and efficient, so we finally use the manual annotation
solution. Manual annotation is shown in Fig. 7, where the
turning area is represented by simple lines. Before the current
frame is segmented, it is not known whether the target to be
segmented falls in the turning area or not, so it is obtained by
judging the past frames to be accumulated. If any pixel of a
target in the past frame to be accumulated falls in the turning
area, i.e. overlapping with the annotation line, this target will
not be accumulated.

In the non-turning area, the position of the moving aircraft
is always changing between adjacent frames. On the contrary,
in video surveillance with a fixed camera, the background
object usually does not move or has only weak motion. This
is reflected in the encoded features, that is, the dissimilarity
between the encoded features of adjacent frames generally is
where the foreground motion features are. We can make use
of this phenomenon to further enhance the motion component

Fig. 7. Illustration of manually annotated turning areas in the flight zone
and apron. When the aircraft passes through a turning area, the motion
pattern, especially the direction, will change dramatically, while there is good
motion consistency in the non-turning area. Therefore, only performing motion
accumulation in the non-turning area can ensure the effectiveness of the
accumulated features.

of the encoded features after MAEM. To achieve this goal,
we develop the Motion Accumulation in MADM by referring
to the attention mechanism [44], as shown in Fig. 8. The accu-
mulation principle is the negative accumulation when similar
and positive accumulation when dissimilar. The Motion Accu-
mulation includes two steps, dissimilarity measurement and
feature accumulation. The dissimilarity of encoded features
between adjacent frames is measured in the first step, which
is then used to accumulate past frame features to the current
frame in the second step.

Motion Accumulation of two consecutive frames is shown
in Fig. 8. In the first step of dissimilarity measurement, there
are three different 3 × 3 convolution layers that are exploited
for query, key, and value [44] feature extraction after the layer-
4 of Resnet50 [43]. The current query represents the feature
map relationship between the current frame and the previous
frame. The key is calculated and applied for future feature
matching. Value stores detailed information that we consider
as motion and other features to segment moving objects. Each
frame produces three features so that two consecutive frames
would have six features. However, only four of these features
are used when matching, namely Qc, Vc, K p, and Vp, which
represent the query and value feature of the current frame and
the key and value feature of the previous frame, respectively.
Then the query of the current frame will be multiplied by the
previous key to compute similarity in an embedding space.
It will be normalized by the softmax function two times to
obtain the dissimilarity matrix. Next, the dissimilarity matrix
is weighted to the value of the previous frame to obtain a
dissimilarity feature map that covers a potential representation
with the previous frame. The dissimilarity feature map can be
calculated as follows,

Sp = so f tmax(1/so f tmax(
K T

p · Qc
√

D
)) · Vp, (3)

where Q, K and V represent query, key and value of features
(Q ∈ RC/8×H×W , K ∈ RC/8×H×W , V ∈ RC/2×H×W ),
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Fig. 8. The scheme of Motion Accumulation. The dissimilarity between frames is first calculated, which is then used as a weight for accumulation. The
feature maps are represented in tensor form, with H , W and C denoting height, width, and channels, respectively. The blue, orange and green entities indicate
cues of the previous frame, the current frame, and the accumulated result, respectively.

D = H × W is the dimension of the dissimilarity matrix,
and the subscript c and p identify the current and previous
frame. The dissimilarity measurement shown in Eq. 3 is the
core idea of MADM, because the motion component can be
further enhanced by the dissimilarity feature map.

The dissimilarity feature map and the current frame value
are the input of the second step feature accumulation. The
goal of this step is to enhance the motion component in
the features and weaken other components. To achieve this,
we use the dissimilarity map as the weights of accumulation
by referencing the channel attention [45] and spatial attention
[46]. The basic idea of channel-wise attention is to control
the flow of information by the squeezed feature at the channel
dimension. As shown in Fig. 8, we first fuse two kinds of
features by an element-wise addition. Then, global average
pooling is used to perform spatial squeeze,

S′

squeezed = Favgpool(Sp + Vc). (4)

Next the squeezed feature is further feed into two fully con-
nected layers to generate the adaptive weight vectors Z ′

1, Z ′

2,
which are split from Z ′,

Z ′
= FFC (S′

squeezed). (5)

The channel-wise softmax function is used to generate adap-
tive weights W ′

1, W ′

2 corresponding to different level features
Z ′

1, Z ′

2 as,

W ′

i =
exp(Z ′

i )∑2
j=1 exp(Z ′

j )
, i ∈ {1, 2}, (6)

where W ′

i represents relative importance of features Z ′

i at
channel C . The weighted feature maps for two information
flows can be formulated as,

S′
= Sp ⊙ W ′

1, V ′
= Vc ⊙ W ′

2. (7)

After we obtain the channel-selected features S′, V ′, they
will be fed into the next attention operation for spatial
enhancement. Similar to channel-wise attention, we firstly fuse
two features by element-wise addition. And then, we employ

1 × 1 convolutional filters to perform the channel squeeze to
reinforce the features on the spatial dimension,

Z ′′
= Fconv(S′

+ V ′). (8)

Next, the channels are compressed into two layers, where
the feature map of each channel corresponds to the spatial
weights for each level feature (i.e. S′, V ′). After that, a softmax
function is used to rescale activations so that we can obtain
pixel-wise adaptive weights W ′′ in spatial dimension,

W ′′
= Fso f tmax (Z ′′). (9)

Then the channel-selected features (S′, V ′) are weighted by
W ′′

1 , W ′′

2 ∈ W ′′ to get spatial enhanced features,

S′′
= S′

⊙ W ′′

1 , V ′′
= V ′

⊙ W ′′

2 . (10)

At last, the accumulated features can be obtained by
the concatenation of the two enhanced features as A =

Fconcat (S′′, V ′′). The key and value of the current frame
feature will be stored in memory for the next round of
processing.

The principle of the above operations is that positive accu-
mulation when dissimilar and negative accumulation when
similar. Considering that the dissimilarity between adjacent
encoded features is where the foreground motion features lie,
the goal of further enhancement of the motion component can
be achieved by the Motion Accumulation.

Please note that Fig. 8 only illustrates two-frame accu-
mulation. Better results may be obtained by multi-frame
accumulation. For m past frames, we compute the dissimilarity
map of each past frame with the current frame, and the average
of multiple dissimilarity maps is then used as the input of the
feature accumulation step. Generally speaking, it would be
better to use multiple frames, but this is based on the premise
of motion consistency. If the motion state, e.g. the velocity
of the aircraft changes, multi-frame accumulation does not
necessarily achieve the result we want or may even cause side
effects. Therefore, m needs to be carefully set.

2) Decoder Operation: The task of decoder operation is
to generate a pixel-wise motion probability map based on
extracted features. Since the motion component in the encoded
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Fig. 9. Illustration of the decoder network. The refinement module aims
to enhance the mask encoding Mi using features Fi. It begins by reducing
the channels in Fi through a 3×3 convolutional layer followed by a ReLU
activation, generating skip features Si. Next, Fi and Si are concatenated along
the depth dimension and convolved along the spatial dimensions. Finally, the
output is upsampled using bilinear interpolation by a factor of 2, resulting in
Mi+1.

feature vector is firstly augmented by MAEM, and further
enhanced in MADM, the generated probability map is able
to more clearly show that where the moving object is located.
As a result, the MSD problem in background subtraction can
be better addressed by MBSNet.

To efficiently explore features in different scales, we use
the refinement module [47] as the building block of our
decoder, which is composed of several convolution layers
in the form of residuals and interpolation to expand the
resolution of the feature map. As shown in Fig. 9, each stage
of the decoder takes the output of the previous step and the
feature map from different encoder layers as inputs in the
way of skip connections. The last feature map is fed into
a 3 × 3 convolution without ReLu function, and the output
is a probability map (O ∈ RH/4×W/4) gained by a softmax
layer. This map represents an estimation of the background
and foreground motion probability. Linear interpolation is used
to retrieve the probability map to the original resolution, and
then the moving object can be detected by thresholding the
probability map.

C. Inference

Considering the imbalance in the number of foreground and
background pixels, we use joint losses, Dice loss and binary
Cross-Entropy loss, for pixel-wise classification. The joint loss
equation is as follows,

L joint = λLdice + (1 − λ)Lbce, (11)

where the λ is a weight scalar which we set 0.5 in our
experiment. The Dice loss Ldice is used for extracting the
object regions, while the Binary Cross-Entropy loss Lbce
encourages the network to get the contour of the objects. Their
formula are as follows,

Ldice = 1 −
2

∑
i qi yi + ε∑

i qi +
∑

i yi + ε
, (12)

Lbce = −

∑
i

yi logqi −

∑
i

(1 − yi )log(1 − qi ), (13)

where q is the predicted probability of pixels and y is the
groundtruth label, ε is a constant number.

The proposed network is initialized by a pre-trained model
on the ImageNet, and an Adam optimizer is used for optimiza-
tion with an initial learning rate of 5e-4 and a learning rate
reduction strategy (divided by 5 at epoch 8 and 12). We train
a total of 15 epochs with a batch size of 4, and the threshold
for the motion probability map is set to 0.5.

IV. EXPERIMENTS

A. Experimental Settings

We evaluated the performance of MBSNet on the AGVS [5]
dataset, which is currently the only dataset for airport ground
surveillance. AGVS contains 25 long video clips (S1 to S25)
captured in the airport, amounting to about 100000 frames
from 1280×720 to 1920×1080 resolution with accurate pixel-
wise groundtruth. There are multiple challenges in AGVS,
e.g. haze, camouflage, small target, special shapes, different
weather conditions, shadow and illumination changes, etc.
AGVS is a perfect MSD-type dataset. AGVS has many sta-
tionary and moving aircraft with similar appearances, so that
there are plentiful instances of Case1. Furthermore, the aircraft
in AGVS is often intermittent, resulting in many instances of
Case2.

We chose Recall (Re), Specificity (Spec), False Positive
Rate (F P R), False Negative Rate (F P R), Precision (Pr ),
F-Measure (F M) and Percentage of Wrong Classification
(PWC) as performance evaluation metrics,

Re =
T P

T P + F N
, Spec =

T N
F P + T N

,

F P R =
F P

F P + T N
,

F N R =
F N

T P + F N
, Pr =

T P
T P + F P

,

F M =
2 × Re × Pr

Re + Pr
,

PWC =
100 × (F N + F P)

T P + F N + F P + T N
,

where T P , F P , T N and F N are the numbers of true
positives, false positives, true negatives and false negatives,
respectively. Among these metrics, the F M is particularly
important since it measures the overall performance of the
algorithm. We also used Frames Per Second (F P S) to assess
the algorithm’s operational efficiency.

Six traditional methods (GMM [10], ViBe [14], PAWCS
[16], SuBSENSE [15], SWCD [19] and WisenetMD [20])
and nine deep learning methods (FgSegNet [4], Cascade CNN
[24], BSUV-net [27], RGMP [40], SegFlow [49], STA-Net
[50], 3DCD [29], MU-Net [30] and RT-SBS [33]) are used
for comparison. The complete names and abbreviations of all
comparison algorithms are provided in Tab. I for reader conve-
nience. For the first four algorithms, we utilized public codes
and default parameter settings from the BGSLibrary [57].
For the remaining algorithms, we employed the public code
and recommended experimental approaches suggested by the
respective authors. The unsupervised method was executed on
a PC equipped with an Intel i5-11600KF CPU and 32-GB
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Fig. 10. In the first column, from top to bottom, they are instances of Case1 (highlighted with green ellipses) from S2, S6, S10, S14, S16, S21 and S22
in AGVS, respectively. These instances can be distinguished by comparing the original images to the ground truth of the moving target shown in the second
column. While traditional methods like GMM [10] and SuBSENSE [15] are useful for Case1, they often yield low accuracy. With the exception of MBSNet,
deep learning approaches like FgSegNet [4] and BSUV-net [27] is prone to misclassifying stationary aircraft.

TABLE I
THE FULL NAMES AND ABBREVIATIONS OF ALL

COMPARISON ALGORITHMS

RAM, with the addition of a single NVIDIA GeForce GTX
1080Ti GPU for the deep learning-based method.

Our proposed method was assessed using a two-fold cross-
validation strategy on the AGVS dataset. This involved

dividing the dataset into two equally sized subsets, G1 and
G2, which were alternated between training and testing sets
for evaluation. The division principle for AGVS was to ensure
each group contained videos from different viewing angles.
Following this principle, videos S1-S6, S10, S11, S17, S18,
and S21 were categorized into G1, while videos S7-S9, S12-
S16, S19, S20, and S22 were placed in G2. Each subset now
comprised 11 videos. For a fair comparison with traditional
methods, PTZ (S23 to S25) were not included, since the
traditional methods are invalid for such videos.

B. Visual Analysis

Fig. 10 displays the comparative experimental outcomes
for Case1 of the MSD problem. In the second column, the
ground truth of the aircraft in motion at the present time
is illustrated. Upon comparing the original images in the
first column with the ground truth in the second column,
it’s evident that numerous aircraft remain stationary (high-
lighted with green ellipses), illustrating Case1 of the MSD
problem.
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Fig. 11. In the first column, from top to bottom, they are instances of Case2 (highlighted with green ellipses) from S4, S8, S11 and S22 in AGVS, respectively.
The detection results of MBSNet are indicated by red masks. Aircraft 1 through 6 were in motion during specific frames: frames 2000 to 3200, 200 to 450,
2500 to 3250, 2500 to 3250, 3850 to 4050, and 3600 to 3850, respectively. At other times, they remained stationary. In each of these instances, MBSNet
accurately determined the motion status of the target.

There are four comparison algorithms in Fig. 10, GMM
[10], SuBSENSE [15], FgSegNet [4] and BSUV-net [27]. The
first two are traditional methods, and the last two are deep
learning methods. FgSegNet is almost completely invalid for
Case1 of MSD, where many stationary planes were detected
as foreground, especially in S6 and S14. BSUV-net [27] which
was presented for the unseen video problem performs better
than FgSegNet, but there were still failures for Case1, e.g.
in S14 and S16. On the contrary, the traditional methods
can distinguish between motion and stillness well, completely
without misidentifying stationary aircraft as foreground. This
is because of the natural advantage of traditional methods,
which can directly model motion. However, the traditional
methods have great problems in segmentation accuracy, such
as incomplete segmentation, unsmooth segmentation, hole and
fracture (S2 and S16), false detection under bad weather
condition (S22), segmentation noise (S14), ghost (S6) and
so on. The inaccuracy phenomenon of traditional methods
can be seen in almost all examples. The segmentation results
by our method are shown in the last column of Fig. 10,
where all moving aircraft were correctly detected without
misclassification of any stationary aircraft.

Fig. 11 illustrates the results of our method in Case2 of
the MSD problem. In Case2, the moving target exhibits inter-
mittency, meaning it alternates between motion and stillness.
Figure 11 comprises four sequences (S4, S8, S11, and S22),
with each sequence demonstrating Case2 through consecutive
frames at specific intervals. In the first column of Figure 11,
intermittent targets are highlighted with green ellipses. Addi-
tionally, the foreground masks detected by our method are
directly overlaid onto the original frames to provide a visual
representation. We can see that our method is sensitive to the

motion state transition of the same object. For example, the
stationary aircraft in frames 200, 500, and 1000 is detected as
foreground when it is moving in frames 2000 and 3200 for
S4, and the moving aircraft in frames 200, 350, and 450 is
no longer detected in frame 650, 850, and 1000 after it stops
for S8. There is also motion state transition from frame 500 to
frame 3250 in S11 and from frame 3600 to frame 4100 in S22,
which are also correctly detected by MBSNet. Case2 is more
challenging than Case1 because the moving and stationary
objects have exactly the same appearance. Case2 is a great
challenge for deep learning based methods, and almost all
existing methods can not solve this problem well.

Our method also has some failure cases. In sequence S4
of Fig. 11, aircraft 1 is stationary at frame 1000, and at
frame 2000, the aircraft is in motion and can be correctly
detected by our method. However, the aircraft actually started
moving from frame 1450, and was first detected at about frame
1500. In other words, our method does not respond promptly
to aircraft that change from stationary to moving. Similar
phenomena can be seen for other aircraft, such as aircraft
3 and 4 in sequence S11. This may have two reasons. First, the
motion accumulation operation takes some time to take effect.
Second, the aircraft targets in the AGVS dataset, especially
those taxiing on the apron, move slowly, which poses a great
challenge to distinguishing between motion and stillness.

C. Quantitative Analysis

Quantitative results of all comparison algorithms on the
whole AGVS dataset are shown in Tab. II, where the F M
is used to evaluate the comprehensive performance. We can
see that except BSUV-net, STA-Net, and our method, the F M
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TABLE II
QUANTITATIVE COMPARISON OF 16 ALGORITHMS ON THE AGVS DATASET. THE FIRST SIX ALGORITHMS ARE TRADITIONAL METHODS, AND OTHERS

ARE DEEP LEARNING BASED METHODS. THE PROPOSED METHOD HAS THE BEST F − Measure VALUE

TABLE III
COMPARISON OF BSUV-NET AND MBSNET WITH THE SAME OR DIFFER-

ENT BACKBONE NETWORKS IN TERMS OF F−Measure. OUR METHOD
HAS THE BEST F − Measure VALUE IN BOTH CASES

of all supervised methods is inferior to that of traditional
methods. The reason for this phenomenon is that there is a
large number of MSD instances in AGVS, which brings great
difficulties to the deep learning methods. On other datasets,
such as CDnet2014 [48], the performance of supervised meth-
ods is much better. MBSNet has the best performance in terms
of F M , which shows that it is effective for the MSD problem.
In addition, MBSNet also achieves competitive time efficiency
in terms of F P S. The F M of BSUV-net is good, but the F P S
indicates that it has a large computational load.

Although Tab. II shows the F P S of all algorithms, it is
unfair to directly compare the F P S of unsupervised and
supervised algorithms because they use different hardware.
In addition, we note that other code versions of some algo-
rithms in Tab. II are faster. For example, the GMM algorithm
in OpenCV can achieve a speed of more than 100 frames
per second. This is because there are many optimizations in
OpenCV library. Unlike OpenCV, the algorithm implementa-
tion in BGSLibrary is very faithful to the original paper, which
is helpful for fair comparison.

The backbone network in BSUV-net is VGG while it
is ResNet-50 in MBSNet. A new experiment on AGVS is
conducted to compare BSUV-net and MBSNet with the same
backbone network, as shown in Tab. III. Tab. III indicates
that no matter which backbone network is used, the overall
performance of MBSNet is better than that of BSUV-net.

The proposed method also has limitations. First of all, this
method is specifically targeted at the airport. Although it can
also be used in other scenarios, it may not necessarily bring
performance improvement. Secondly, this algorithm has an
initialization step before running, which requires the operator
to have a certain understanding of the airport structure. For

TABLE IV
ABLATION EXPERIMENTS BY MASKING SOME STEPS IN THE MBSNET

AND USING A DIFFERENT VALUE OF m

the first limitation, we can design MSD-type dataset for other
scenarios, and then design MSD algorithms for them based on
similar ideas as the presented method.

D. Ablation Study

We carried out ablation experiments on the AGVS dataset
to assess the effectiveness of each component within the
proposed MBSNet. Our method comprises two main modules:
the Motion Augmentation Encoder Module (MAEM) and the
Motion Accumulation Decoder Module (MADM). However,
it’s not feasible to test one module by completely disabling
the other, as doing so would render the encoder-decoder
framework incomplete. To evaluate MADM independently,
we disabled the Background Image Estimation step (BIE) in
MAEM and solely retained the original encoder operation,
labeled as ‘MBSNet w/o BIE’ in Tab. IV. Similarly, to test
MAEM in isolation, we disabled the Motion Accumula-
tion step (MA) in MADM and solely retained the original
decoder operation, indicated as ‘MBSNet w/o MA’ in Tab. IV.
Furthermore, since the MA step comprises two sub-steps—
dissimilarity measurement and feature accumulation—we also
assessed the effectiveness of the dissimilarity measurement
sub-step by disabling the feature accumulation sub-step,
denoted as ‘MBSNet w/o Acc.’ in Tab. IV. Additionally,
we examined the complete MBSNet using different parameter
settings of m and N , as presented in Tab. IV and Fig. 12.

Comparing ‘MBSNet w/o BIE’ to the complete MBSNet
with arbitrary m, we observe that MAEM plays a crucial
role, as performance significantly diminishes without it. Sim-
ilarly, the importance of MADM becomes apparent when
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Fig. 12. The results of MBSNet on AGVS with different value of m and
N , which are the numbers of frames used for motion accumulation and
background image estimation, respectively.

comparing ‘MBSNet w/o MA’ to the complete MBSNet.
However, we can’t assert that MAEM is more critical than
MADM solely because ‘MBSNet w/o BIE’ exhibits lower
performance than ‘MBSNet w/o MA’. This is because MADM
relies on MAEM. While MAEM can function without MADM,
the reverse scenario severely hampers MADM’s effectiveness.
Upon comparing ‘MBSNet w/o MA’ to ‘MBSNet w/o Acc’,
it’s evident that the sub-step dissimilarity measurement yields
a performance enhancement of 5 to 8 percent across the
three metrics Re, Pr, and FM. Similarly, comparing ‘MBSNet
w/o Acc’ to ‘MBSNet (m=5)’ reveals that sub-step feature
accumulation also leads to a 5 to 8 percent performance boost.
Ultimately, it’s apparent that all modules and sub-steps within
the proposed method are indispensable and serve as crucial
components.

Moreover, the experimental outcomes of MBSNet with
varying values of m and N are presented in Tab. IV and
Fig. 12. Here, m denotes the number of previous frames
utilized for multi-frame accumulation, while N represents the
number of image samples employed for Background Image
Estimation (BIE). It’s noticeable that as m and N increase,
performance initially improves, but beyond a certain critical
threshold, performance gradually declines. This phenomenon
may occur because errors accumulate over multiple frame
accumulations. Once the critical threshold is surpassed, the
cumulative error outweighs the performance improvement,
leading to a degradation in algorithm performance. Based
on these experiments, we ultimately selected m = 5 and
N = 100.

A main contribution of this work is to use manual annotation
information to guide the motion accumulation in MADM. Here
we conduct an additional experiment to verify whether the
annotation information is consistent with the real trace of the
airplane, as shown in Fig. 13. An airplane taxis straight in
the upper image and middle image of Fig. 13, and then turns
in the bottom image of Fig. 13. The actual motion trace of
the aircraft is marked with yellow line, while the annotated
turning area is marked with red line. It can be seen that the
actual motion trace is consistent with the annotated result.

E. Additional Discussion

Please note that the MSD problem is different from another
challenge in background subtraction, the ghost phenomenon.

Fig. 13. Comparison between the manual annotation (red line) and the real
trace of the moving aircraft (yellow line).

Ghost means that the detected object does not actually exist
at the corresponding position in the input frame. In contrast,
a false alarm target due to MSD is actually present in the input
frame, but it is stationary rather than moving.

In fact, the MSD phenomenon is widespread. In this paper,
we only study the MSD problem in airport surveillance,
because there is a lack of MSD-type datasets for other
scenarios. The MSD-type dataset should preferably contain
a single type of moving object, so that the phenomenon of
static and moving objects sharing similar appearance may
occur frequently, so as to study MSD between different objects
(Case1). Furthermore, the moving object in MSD-type dataset
should be intermittent, so as to study MSD of the same object
(Case2). Other datasets have more or less MSD instances, e.g.
CDnet2014, but the number is small and hence they are not
MSD-type datasets.

V. CONCLUSION

The Motion and Stillness Distinction (MSD) problem in
airport background subtraction was studied in this paper.
Firstly, we analyzed the MSD phenomenon and discussed the
cause of MSD. Then MBSNet was proposed to address the
MSD problem by enhancing the motion component of learned
features to force the network to pay more attention to the
motion information for classification. There were two modules
in MBSNet, Motion Augmentation Encoder Module (MAEM)
and Motion Accumulation Decoder Module (MADM). The
motion component of the encoded features can be augmented
in MAEM based on Background Image Estimation and further
enhanced in MADM based on Motion Accumulation. The
premise of Background Image Estimation and Motion Accu-
mulation is that the aircraft on the ground are sparse and they
have good motion consistency. Experiments on AGVS dataset
showed that MBSNet was effective to both Case1 and Case2
of the MSD problem. The research of MSD needs MSD-type
datasets, and such datasets are now fewer. It is expected that
more MSD benchmarks can be made for further research.
In addition, the progress on the interpretability of deep learn-
ing should also be helpful to solve the MSD problem.
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