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Abstract
Many federated learning scenarios encounter la-
bel noises in the client-side datasets. The resulting
degradation in global model performance raises
the urgent need to address label noise. This pa-
per proposes FedClean – a novel general robust
label noise correction for federated learning. Fed-
Clean first uses the local centralized noisy label
learning to select clean samples to train a global
model. Then, it employs a two-stage correction
scheme to correct the noisy labels from two dis-
tinct perspectives of local noisy label learning
and the global model. FedClean also proposes a
novel model aggregation method, further reduc-
ing the impact of label noises. FedClean neither
assumes the existence of clean clients nor the spe-
cific noise distributions, showing the maximum
versatility. Extensive experimental results show
that FedClean effectively identifies and rectifies
label noises even if all clients exhibit label noises,
which outperforms the state-of-the-art noise-label
learning methods for federated learning.

1. Introduction
Federated learning (FL) has emerged as a powerful frame-
work for decentralized machine learning (Liu et al., 2022),
enabling multiple clients to collaboratively train models
without sharing raw data, thus preserving privacy (Wen
et al., 2023; Huang et al., 2023). This learning paradigm is
especially valuable in privacy-sensitive domains (Nevrataki
et al., 2023) such as healthcare (Rani et al., 2023; Thum-
misetti & Atluri, 2024), finance (Li & Wen, 2023; Awosika
et al., 2024), and IoT (Yadav et al., 2022; Rjoub et al., 2024),
where data privacy regulations like GDPR (Zaeem & Bar-
ber, 2020) are imposed to protect user information strictly.
Since there is no centralized entity to preprocess the whole
training data, the presence of label noise in client datasets
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(Fang & Ye, 2022) becomes a critical challenge in feder-
ated learning, which significantly degrades the performance
of global models (Zeng et al., 2023). Therefore, federated
learning still has an urgent need to deal with label noise.

Label noise issue has been extensively studied within the
context of centralized learning (CL), leading to the devel-
opment of numerous advanced methods (Song et al., 2022).
However, these CL-based methods cannot be directly ap-
plied to FL due to its inherent privacy constraints, which
prohibit sharing data between clients or with a global server.
As a result, the restricted size and insufficient diversity of
the local datasets in clients dramatically degrade the effec-
tiveness of noise processing methods. For example, Xu et al.
(2022) have demonstrated that even the most sophisticated
label noise correction methods for CL (Li et al., 2020a;
Tanaka et al., 2018), when applied to client datasets, are
insufficient to alleviate performance degradation in FL.

Therefore, recent studies have begun to address the label
noise issue within the FL framework. Some methods at-
tempt to mitigate label noise by discarding (Xu & Lyu,
2020) or re-weighting (Wan & Chen, 2021; Fu et al., 2021;
Chen et al., 2020) the model updates in the clients that are
least similar to those in other clients. They treat the dis-
carded or re-weighted clients as malicious ones, which is
obviously too radical. Many clients may simply have some
label noises in their local datasets, which, with proper cor-
rection, could still contribute valuable information to the
global model. To this end, latest methods were proposed to
distinguish between clean (where all labels of local train-
ing data are correct) and noisy clients and then use models
trained from clean clients to correct noisy labels in noisy
clients (Xu et al., 2022; Wu et al., 2023; Jiang et al., 2024).

However, all existing label noise correction methods (Xu
et al., 2022; Wu et al., 2023; Jiang et al., 2024) for FL are
based on an idealized assumption that some clean clients
exist, which unfortunately does not always hold in real-
ity. For example, federated crowdsourcing learning (Guo
et al., 2020) recruits non-expert workers from the Internet
to collect data and train local models, where each client
is probably imperfect. In other scenarios when clients are
maliciously attacked, data are contaminated, or devices are
compromised (Sharma & Marchang, 2024), the assump-
tion also breaks up. Moreover, these methods distinguish
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between clean and noisy clients for different processing,
potentially exposing client privacy. For instance, an attacker
can infer from the communication patterns between clients
and the server whether a client is noisy or clean (Bai et al.,
2024). However, in real-world FL scenarios, clients are usu-
ally unwilling to disclose whether their data is noisy, as it
may lower their reputation, or clean, as it may expose them
to malicious attacks. What’s more, some further assume
specific noise distributions (class-conditional noise (Ji et al.,
2024; Wu et al., 2023), instance-dependent noise (Wang
et al., 2023)), further narrowing their application scope.

To address the challenges outlined above, we propose Fed-
Clean, a general-purposed robust noise correction frame-
work for FL. FedClean first uses the local centralized noisy
label learning (CNLL) to select clean samples for global
model training. Then, its two-stage correction scheme uses
the information obtained from the local CNLL and the
global model to correct the noisy labels. FedClean also
proposes a novel adaptive sample size-weighted aggrega-
tion method (ASSA) to reduce the impact of label noise
and further improve the performance of the global model.
FedClean neither assumes the existence of clean clients nor
the specific noise distributions. As such, FedClean shows
outstanding robustness when the ratio of noisy clients is very
high. Even if all clients are noisy, FedClean also performs
well. The contributions of this study are three-fold:

1) We propose a novel general robust label noise correction
for federated learning, where a two-stage label correction
scheme is proposed to identify and rectify noisy labels
from two distinct perspectives – local noisy label learn-
ing and global FL models. The framework also intro-
duces a novel collaborative per-sample loss to assess the
confidence in label corrections, which helps reduce the
likelihood of false correction.

2) We propose a novel adaptive sample size-weighted aggre-
gation (ASSA) method for FL that adjusts client influence
based on clean sample sizes to reduce noisy label impact,
while incorporating zkCor (Wang et al., 2024) for secure
label correction.

3) Extensive experiments on datasets with synthetic label
noises and a real-world dataset consistently demonstrate
that the proposed FedClean effectively identifies and rec-
tifies label noises hence mitigating the performance degra-
dation of FL models, even if all the clients are affected
by label noises, which outperforms the state-of-the-art
noise-label learning methods for FL.

2. Related Work
2.1. Centralized Noisy Label Learning (CNLL)

In centralized learning, noisy label correction has been ex-
plored through various techniques. Sample selection meth-

ods like Co-teaching (Han et al., 2018) and Co-teaching+
(Yu et al., 2019) use two peer networks to exchange sam-
ples, with those having lower loss values assumed to be
more reliable. Robust loss functions such as Symmetric
CE (Wang et al., 2019) integrate model predictions into
the loss function, while Joint Optim (Tanaka et al., 2018)
refines labels by averaging model predictions over epochs.
SELFIE (Song et al., 2019) focuses on robustly identify-
ing potential noisy samples and gradually incorporating
them into the training process. DivideMix (Li et al., 2020a)
combines Co-teaching, MixUp (Zhang et al., 2018), and
MixMatch (Berthelot et al., 2019) for more robust noise
handling. These CNLL methods can be adapted to FL by in-
tegrating with standard aggregation techniques like FedAvg
(McMahan et al., 2016).

2.2. Federated Noisy Label Learning (FNLL)

Label noise in FL has led to several strategies, primarily
focusing on reweighting/discarding noisy data, leveraging
clean datasets, and distinguishing between clean and noisy
clients: i) Reweighting and discarding noisy data. Meth-
ods like Client Confidence Reweighting (CCR) (Fang &
Ye, 2022) assign adaptive weights to clients based on data
quality. FedNoiL (Wang et al., 2022) selects clients with
fewer noisy labels and discards noisy samples, while RFFL
(Xu & Lyu, 2020) uses reputation-based client evaluation
to exclude unreliable clients. These methods may discard
valuable data and fail to fully leverage noisy samples. ii)
Leveraging additional clean datasets. Techniques like FO-
CUS (Chen et al., 2020) use benchmark datasets on the
server side to assess client data credibility and adjust client
weights accordingly. Client selection algorithms (Yang et al.,
2021) identify clients with low noise using clean validation
datasets. However, these methods rely on the availability of
clean datasets, which may not always be feasible. iii) Distin-
guishing between clean and noisy clients. More advanced
methods dynamically distinguish between clean and noisy
clients. FedCorr (Xu et al., 2022) uses model prediction sub-
spaces to identify noisy clients, while FedNoRo (Wu et al.,
2023) applies Gaussian mixture models and knowledge dis-
tillation for more robust aggregation. FedELC (Jiang et al.,
2024) detects noisy clients and corrects their labels via back-
propagation. However, these methods assume the existence
of clean clients and struggle when such clients are absent or
noisy labels are pervasive.

Other approaches to FNLL include Robust FL (Yang et al.,
2022), which aligns client data via class-wise centroids, and
FedLSR (Jiang et al., 2022), which employs self-distillation
for local regularization to enhance privacy. FedRN (Kim
et al., 2022) increases communication overhead by main-
taining reliable neighbor models, while FedFixer (Ji et al.,
2024) uses personalized models to mitigate the impact of
noisy labels but is dependent on specific noise distributions.
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Figure 1. Framework of FedClean. Algorithm steps are numbered accordingly.

3. The Proposed Method
3.1. Preliminaries

We consider a federated learning system consisting of N
clients N = {1, ..., N} and their local dataset {Dk}Nk=1,
where Dk = {(xi

k, y
i
k)}

nk

i=1 denotes the local dataset for
client k ∈ N , yik represents the annotation label for the
sample xi

k. At the conclusion of the t-round communication,
wt

k is defined as the local model weight of client k, while
wt represents the weight of the aggregated global model
θtG. And N t ⊆ N is the subset of selected clients in round
t. This process of federated training closely resembles that
of the usual FL (FedAvg), with two key differences: the
integration of the Mixup technique and adaptive sample
size-weighted aggregation.

Mixup. Mixup (Zhang et al., 2018) is a data augmentation
technique exhibiting strong robustness to label noise. Given
two samples (xi

k, y
i
k) ∈ and (xj

k, y
j
k) in dataset Dc

k, it gen-
erates a new sample (x̃k, ỹk) by linearly combining the two
original samples with a random weight. Specifically, the
new sample x̃k and its corresponding label ỹk are given by:

x̃k = λ · xi
k + (1− λ) · xj

k, (1)

ỹk = λ · yik + (1− λ) · yjk, (2)

where λ is a random hyperparameter drawn from the Beta
distribution β(α, α), and α is a parameter that controls the
shape of the distribution. In our experiments, we set α = 1.
Mixup effectively mitigates the negative impact of noisy
labels by smoothing the labels and is robust to label noise.
Suppose yik represents a noisy label and yjk is the true label.
According to the Mixup formulation Eq (2), the new label
ỹk is a weighted combination of the two original labels yik
and yjk. Specifically, when λ is small, ỹk will be closer to
the true label yjk, thus diminishing the influence of the noisy
label yik. This label smoothing property of Mixup reduces
the negative effects of label noise, making the model more
robust to such noise.

3.2. Framework of FedClean

We propose FedClean, a general robust label noise correc-
tion method for FL. The framework of FedClean is shown
in Figure 1, which has two key stages. In the preprocess-
ing stage, FedClean enables each client to perform local
CNLL, generating inferred labels for each sample and ini-
tially screening clean samples to train a global model. Dur-
ing the label noise correction stage, we propose a two-stage
correction scheme that integrates inferred labeling with the
global model to accurately identify and correct noisy la-
bels. Within this inferred label-based correction process,
we define a collaborative per-sample loss function to eval-
uate the confidence of the label corrections. To enhance
the robustness of federated training against label noise, we
incorporate the Mixup and the proposed Adaptive Sam-
ple Size-weighted Aggregation (ASSA). Notably, FedClean
does not distinguish between “clean” and “noisy” clients, ef-
fectively correcting label noise in client data while adhering
to the privacy constraints of FL.

Adaptive Sample Size-weighted Aggregation (ASSA). The
proposed ASSA appears at steps 4⃝, 7⃝ and 10⃝ in Figure 1,
where the weight coefficients for each client in the global
model update are determined by the number of samples
actually participating in the federated training, rather than
being fixed based on the size of the client’s entire dataset.
This approach ensures that only the samples actively in-
volved in the federated learning process influence the global
model’s weight update. ASSA demonstrates robustness to
label noise, particularly for clients with high levels of label
noise. The details of the weight update steps are presented
in the subsequent sections.

3.3. Preprocessing Stage

During the preprocessing stage, we utilize the CNLL to
identify clean samples for each client. Only the selected
clean samples are subsequently used in the federated train-
ing process of this stage.
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Add inferred labels. We first let each client k execute
CNLL locally to train local model θk. Subsequently, each
sample xi

k ∈ Dk is assigned an additional inferred label
ȳik based on the predictions of this local model. As a re-
sult, in addition to the annotation label yik, each sample
xi
k is also assigned an inferred label ȳik. At this stage,

we represent the local dataset of each client as Dk =
{(xi

k, y
i
k, ȳ

i
k)|ȳik = θk(x

i
k)}.

Select clean samples. We select the samples whose anno-
tation labels and inferred labels are identical. These samples
are considered clean and denoted by:

Dc
k = {(xi

k, y
i
k, ȳ

i
k) ∈ Dk|yik = ȳik}. (3)

The remaining samples in Dk \ Dc
k are deemed disputed

samples. Note that, in the process of selecting clean samples,
even if a sample with a noisy annotation label is mistakenly
included in the clean set ( Dc

k ) due to the wrong prediction
by the local model θk (i.e., θk’s predicted label of the exam-
ple is the same as its noisy annotation label), the impact of
this noisy label on the global model can be mitigated by the
application of Mixup.

ASSA. Finally, we train the global model over T1 rounds
using these selected clean samples {Dc

k}
N
k=1 on all clients.

The weighting coefficients in ASSA at this stage are deter-
mined by the size of the clean dataset Dc

k selected by each
client. The specific weight update is as follows:

wt ←
∑
k∈N t

|Dc
k|∑

i∈N t |Dc
i |
· wt

k. (4)

Applying ASSA at this stage exhibits strong robustness, par-
ticularly for clients with high levels of label noise. Specif-
ically, consider a client k that experiences a significant
amount of label noise, resulting in a relatively small clean
sample set (Dc

k). In ASSA, the weight of each client’s lo-
cal model in the global model update is proportional to
the size of its clean sample set. Consequently, the influ-
ence of clients with smaller clean sample sets on the global
model is correspondingly reduced. In other words, even if
the local model trained by the client on its limited clean
samples contains some degree of error, its contribution to
the global model’s weight will be relatively minor (namely

|Dc
k|∑

i∈Nt |Dc
i |
≪ 1), thereby mitigating the negative impact of

label noise on the global model.

3.4. Label Noise Correction Stage

To improve the accuracy of label correction and prevent
overcorrection, we propose a two-stage label noise correc-
tion scheme. It consists of two sub-stages that are dominated
by inferred labels and by the global model, respectively.

SUB-STAGE I: CORRECTION DOMINATED BY INFERRED
LABELS. In this sub-stage, the limited number of clean
samples selected during the preprocessing stage results in
insufficient accuracy of the trained global model. To ad-
dress this, we introduce inferred labels as supplementary
information.
Theorem 3.1. Incorporating inferred labels ȳik as prior
information refines the model’s predictions, leading to a
performance improvement bounded as:

A(ŷik, ȳik) ≥ A(ŷik) + δ, (5)

where δ quantifies the reduction in prediction error after
combining inferred labels and A indicates the prediction
accuracy.

Proof. For sample (xi
k, y

i
k, ȳ

i
k), Let ŷik be the global model

θT1

G ’s prediction and yik(true) be the true label. Using Bayes’
theorem, we update the global model’s prediction as:

P (ŷik|ȳik) =
P (ȳik|ŷik) · P (ŷik)

P (ȳik)
, (6)

This shows how incorporating the inferred label ȳik as prior
information refines the global model’s prediction. We refine
the predictions using the inferred labels as priors, expressed
through the MAP (maximum a posteriori) estimate:

ŷik(ȳ
i
k) = argmax

ŷi
k

P (ŷik|ȳik), (7)

Then, we can define the error of the global model as:

ϵ =
1

S

S∑
i=1

I(ŷik ̸= yik(true)), (8)

where I(·) is the indicator function and S is the number of
samples. After incorporating the inferred labels as priors,
the error becomes:

ϵ′ =
1

S

S∑
i=1

I(ŷik(ȳik) ̸= yik(true)), (9)

Therefore, using the inference label as ”prior information”
improves the accuracy A of the model as follows:

A(ŷik, ȳik) ≥ A(ŷik) + δ, δ = ϵ− ϵ′. (10)

To rigorously quantify the reduction in prediction errors, we
provide a detailed proof in Appendix B, linking the error
reduction to the Kullback-Leibler divergence between the
model’s prior and posterior distributions. □

For controversial samples (samples whose the annotation
labels conflict with their inferred labels), we propose a novel
collaborative per-sample loss:

Lco(y
i
k, ȳ

i
k, ŷ

i
k;θ

T1

G )=Lan(y
i
k, ŷ

i
k;θ

T1

G )−Lin(ȳ
i
k, ŷ

i
k;θ

T1

G ).
(11)
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Here, Lan(y
i
k, ŷ

i
k; θ

T1

G ) represents the annotation label loss,
measuring the discrepancy between the annotation label
of sample xi

k and the model’s prediction. This loss is
typically larger if there is noise in the annotation label.
Lin(ȳ

i
k, ŷ

i
k; θ

T1

G ) denotes the inferred label loss, quantify-
ing the misalignment between the sample’s annotation and
its assigned inferred label. When the inferred label is closer
to the true label or more consistent, this loss is smaller.

Consequently, collaborative per-sample loss serves two
main purposes. On the one hand, the collaborative per-
sample loss can be interpreted as a measure of the con-
sistency and confidence between the two labels (annota-
tion label vs. inferred label). If a sample’s annotation
and inferred labels are consistent, i.e., Lan(y

i
k, ŷ

i
k; θ

T1

G ) =

Lin(ȳ
i
k, ŷ

i
k; θ

T1

G ), then Lco(y
i
k, ȳ

i
k, ŷ

i
k; θ

T1

G ) = 0, implying
that the sample has minimal label noise and both labels
are reliable. This provides a theoretical basis for classify-
ing samples with matching annotation and inferred labels
as clean samples during the preprocessing stage. On the
other hand, collaborative per-sample loss also quantifies
the degree of inconsistency between the annotation label
and the inferred label. When the annotation label is erro-
neous (i.e., contains noise), Lan(y

i
k, ŷ

i
k; θ

T1

G ) will be larger
while Lin(ȳ

i
k, ŷ

i
k; θ

T1

G ) remains relatively smaller, leading
to a larger Lco(y

i
k, ȳ

i
k, ŷ

i
k; θ

T1

G ). In conclusion, The greater
the collaborative per-sample loss (Lco(y

i
k, ȳ

i
k, ŷ

i
k; θ

T1

G ) > 0),
the larger the discrepancy between the annotation and in-
ferred labels, indicating that the annotation label is likely
incorrect and can be corrected by the inferred label. We
provide further explanation in Appendix A for choosing
per-sample loss over using labeled per-sample loss alone.

Theorem 3.2. In collaborative per-sample losses, inferred
labels provide additional stability, allowing for more accu-
rate estimates of true labels.

proof. Bayes’ theorem allows us to compute the posterior
probability of the annotation label yik given the model’s pre-
diction ŷik and the inferred label ȳik. Therefore, the posterior
probability of Eq. (11) can be written as:

P (yik|ŷik, ȳik) ∝ P (ŷik|yik)P (ȳik|yik)P (yik). (12)

For correct annotations, both P (ŷik|yik) and P (ȳik|yik) will
be high. For noisy annotations, P (ŷik|yik) will be low, but
P (ȳik|yik) will still provide a stable signal, allowing us to
better estimate the true label. This shows that the inferred
label ȳik provides additional stability when the annotation
label is noisy, allowing for a more accurate estimation of the
true label. (For more detailed stability analysis and proof,
see Appendix C.) □

Validity of model predictions consistent with inferred labels.
It is important to note that correcting annotation labels based
on collaborative per-sample loss is only meaningful if the

model’s prediction is consistent with the inferred label. This
is because: i) If the model’s predicted label aligns with the
inferred label, it indicates that the model has effectively
learned the pattern of the inferred label. The inferred label
likely represents the true class of the sample or is closer
to it. ii) If the collaborative per-sample loss is large under
these conditions, it indicates a significant mismatch between
the annotation and inferred labels, suggesting that the an-
notation label is likely incorrect and should be corrected
by the inferred label. Conversely, if the model’s prediction
conflicts with the inferred label, then the inferred label may
not be reliable, and correcting the annotation label based on
it could lead to errors. Thus, the collaborative per-sample
loss should only be used to guide label correction when
the model’s prediction aligns with the inferred label. The
specific steps for Sub-stage I are as follows:

Calculate the collaborative per-sample loss. To opti-
mize computational efficiency, we calculate collaborative
per-sample losses only for those samples where the global
model’s prediction matches the inferred label. For each
client, these samples are recorded as the set:

D̃n
k = {(xi

k, y
i
k, ȳ

i
k) ∈ Dk \ Dc

k|ȳik = ŷik}. (13)

Then, each client locally computes a Gaussian Mixture
Model (GMM) on the collaborative per-sample loss val-
ues for all samples in the set D̃n

k to partition the set into
two subsets: a subset D̃n1

k that can be corrected by inferred
labels and a disputed subset D̃n2

k .

Filter samples for correction. To avoid overcorrection,
we apply the correction only to those samples identified
as having a high-confidence inferred label. We introduce
a correction rate σ1 , where for client k, we select the top
σ1-percent of samples from D̃n1

k that have the highest col-
laborative per-sample loss. These samples are then relabeled
using the inferred label ȳik . The subset of samples to be
relabeled is denoted by:

D̃n
k

′
= arg max

D̃⊆D̃n1
k

|D̃|=σ1·|D̃
n1
k |

Lco(D̃; θT1

G ). (14)

ASSA. Finally, the global model is improved using the
corrected samples by updating the parameter over T2 rounds.
In this stage of federated training, the global model θT1

G

updates its weights wt using ASSA as follows:

wt ←
∑
k∈N t

|Dc
k|+ |D̃n

k

′
|∑

i∈N t(|Dc
i |+ |D̃n

k

′
|)
· wt

k. (15)

The weight
∑

k∈N t

|Dc
k|+|D̃n

k

′|∑
i∈Nt (|Dc

i |+|D̃n
k

′|)
represents the cumu-

lative impact of client k on the global model, thereby further
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Algorithm 1 FedClean
1: Input: N (number of clients), T1, T2, T3 (number of rounds

of communication), D = {Dk}Nk=1 (dataset), θ0G ((initialized
global model).

2: Output: Global model θG.
//Preprocessing stage.

3: for k = 1 to N do
4: Train model θk on Dk by CNLL;
5: Add the inferred label ȳj

k = θk(x
i
k) to sample xi

k,
∀(xi

k, y
i
k) ∈ Dk;

6: Select clean samples via Eq. (3);
7: end for
8: for t = 1 to T1 do
9: Train global model θtG on {Dc

k}Nk=1 via Eq. (4);
10: end for

//Label correction stage.
//Sub-stage I: Correction stage dominated by inferred labels.

11: for k = 1 to N do
12: Put (xi

k, y
i
k, ȳ

i
k) into the set D̃n

k via Eq. (13);
13: Calculate Lco(y

i
k, ȳ

i
k, ŷ

i
k; θ

T1
G ) via Eq. (11),

∀(xi
k, y

i
k, ȳ

i
k) ∈ D̃n

k ;
14: Divide D̃n

k into D̃n1
k and D̃n2

k based on
Lco(y

i
k, ȳ

i
k, ŷ

i
k; θ

T1
G ) via GMM;

15: yi
k → ȳi

k, ∀(xi
k, y

i
k, ȳ

i
k) ∈ D̃n

k

′
via Eq. (14);

16: end for
17: for t = T1 + 1 to T1 + T2 do
18: Train global model θtG on {D̃n

k

′
}
N

k=1
via Eq. (15);

19: end for
//Sub-stage II: Correction stage dominated by global model.

20: for k = 1 to N do
21: Calculate Lan(y

i
k, ŷ

i
k; θ

T1+T2
G ), ∀(xi

k, y
i
k) ∈ Dn

k =

{(xi
k, y

i
k)|(xi

k, y
i
k, ȳ

i
k) ∈ Dk \ (Ds

k ∪ D̃n
k

′
)};

22: Divide Dn
k into Dn1

k and Dn2
k based on

Lan(y
i
k, ŷ

i
k; θ

T1+T2
G ) via GMM;

23: Put (xi
k, y

i
k) into the set D̂n

k via Eq. (16);
24: yi

k → ŷi
k, ∀(xi

k, y
i
k) ∈ D̂n

k

′
via Eq. (17);

25: end for
26: for t = T1 + T2 + 1 to T1 + T2 + T3 do
27: Train global model θtG on {D̂n

k

′
}
N

k=1
via Eq. (18);

28: end for
29: Return θG = θT1+T2+T3

G .

mitigating the negative effects of noise correction errors at
this stage. For client k, if D̃n

k

′
= ∅, then wt

k ← wT1

k .

SUB-STAGE II: CORRECTION DOMINATED BY GLOBAL
LABELS. In the first sub-stage, we perform preliminary la-
bel corrections using a strategy led by the inferred label and
assisted by the global model, which improves the accuracy
of the global model. However, since the global model may
not be fully optimized during the initial training phase, there
may still be a small number of samples that are not effec-
tively corrected. To address this, in the second sub-stage,
we employ a global model-led label correction method to
further enhance label accuracy. The primary objective of
this sub-stage is to refine the sample labels using the glob-
ally trained model. Specifically, we calculate the loss for

each sample using the global model, identify those with
higher loss values, and replace their annotation labels with
the model’s predicted labels, thereby correcting the labels.
The specific steps for Sub-stage II are as follows:

Calculate the per-sample loss. We first compute the
per-sample loss for each sample in the remaining dataset
Dn

k = {(xi
k, y

i
k)|(xi

k, y
i
k, ȳ

i
k) ∈ Dk \ (Dc

k ∪ D̃n
k

′
)}, where

the loss for each sample, denoted by Lan(Dn
k ; θ

T1+T2

G ), rep-
resents the discrepancy between the model θT1+T2

G ’s predic-
tion and the annotation label. The aim is to correct the noisy
annotation labels, and thus the loss is calculated relative to
the annotation label. Then, each client locally computes a
GMM on the per-sample loss values for all samples in the
set Dn

k to partition the set into two subsets: a noisy subset
Dn1

k and a clean subset Dn2

k .

Table 1. List of datasets used in our experiments.
Dataset CIFAR-10 CIFAR-100 Clothing1M
Size 50000 50000 1000000
# Classes 10 100 14
# Clients 50 50 300
# Rounds T1/T2/T3 100/150/150 100/150/150 50/100/100
Learning rate 0.01 0.01 0.03
Batch size 10 10 20
Architecture ResNet-18 ResNet-34 ResNet-50

Select samples for correction. For all samples in noisy
subset Dn1

k , we identify and select only those samples with
high loss values, which are likely to contain label noise.
To prevent overcorrection, we introduce two parameters –
the correction rate σ2 and the confidence threshold ε. (At
this correction sub-stage, the only reference available is the
global model, which is not fully reliable. To enhance its reli-
ability, a confidence threshold is applied. In the sub-stage I,
noise labels are corrected using both the inferred label and
the inferred model, which has proven reliable enough in the-
orem 3.1 to not require an additional confidence threshold.)
Specifically, for client k, we first identify the top σ2-percent
of samples from Dn1

k that have the highest collaborative
per-sample loss, denoted by:

D̂n
k = arg max

D̂⊆Dn1
k

|D̂|=σ2·|D
n1
k |

Lan(D̂; θT1+T2

G ). (16)

Next, we compute the prediction vector θG2
(D̂n

k ) from the
global model and select the sample for re-labeling only if
the maximum value in θG2(D̂n

k ) exceeds the confidence
threshold ε. Thus, the subset of samples to be re-labeled is
denoted by:

D̂n
k

′
={(xi

k, y
i
k)∈D̂n

k |max(θT1+T2

G (xi
k))≥ε}. (17)

Finally, we use the global model θT1+T2

G ’s predicted labels
(ŷiks) to correct the annotation labels (yiks) of the samples in

the subset D̂n
k

′
.

6



LABEL NOISE CORRECTION FOR FEDERATED LEARNING

Table 2. Average (5 trials) accuracies (%) of various methods on CIFAR-10 dataset with IID and non-IID settings at different noise levels
(ρ: ratio of noisy clients, τ : lower bound of client noise level). The best results are highlighted in bold.

Methods
IID non-IID

ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1
τ = 0 τ = 0.3 τ = 0.5 τ = 0 τ = 0.3 τ = 0.5

FedAvg 91.74 ± 0.19 83.16 ± 0.31 38.36 ± 2.21 90.04 ± 0.17 82.61 ± 0.26 34.65 ± 1.53
FedProx 91.52 ± 0.22 82.45 ± 0.27 35.21 ± 1.75 90.82 ± 0.18 81.76 ± 0.22 32.84 ± 1.65
FedCorr 91.83 ± 0.21 91.12 ± 0.30 47.49 ± 1.98 90.21 ± 0.16 89.11 ± 0.25 39.40 ± 1.51
FedNoRo 90.05 ± 0.19 88.48 ± 0.24 32.18 ± 1.89 88.91 ± 0.20 86.99 ± 0.21 30.21 ± 1.72
FedBeat 89.28 ± 0.23 85.92 ± 0.28 36.13 ± 2.03 89.55 ± 0.19 83.92 ± 0.24 33.20 ± 1.62
FedELC 85.62 ± 0.20 87.60 ± 0.29 35.72 ± 2.10 89.90 ± 0.17 83.75 ± 0.23 31.95 ± 1.80
FedFixer 90.72 ± 0.47 87.06 ± 0.30 62.87 ± 0.17 89.76 ± 0.32 87.82 ± 0.22 59.01 ± 0.55
FedClean1 88.77 ± 0.17 85.25 ± 0.29 81.68 ± 2.10 87.79 ± 0.20 86.53 ± 0.25 77.12 ± 1.95
FedClean2 91.14 ± 0.19 88.41 ± 0.27 83.75 ± 2.03 89.34 ± 0.21 86.79 ± 0.23 80.55 ± 1.82

ASSA. After correcting the annotation labels in the second
stage, we train the global model over T3 rounds using the
these corrected labels and the clean samples in Dn2

k . We
continue to leverage the cumulative impact of clients on the
global model in ASSA as follows:

wt←
∑
k∈N t

|Dc
k|+|D̃n

k

′
|+|D̂n

k

′
|+|Dn2

k |∑
i∈N t(|Dc

i |+|D̃n
k

′
|+|D̂n

k

′
|+|Dn2

k |)
· wt

k.

(18)

For client k, if D̂n
k

′
∪ Dn2

k = ∅, then wt
k ← wT1+T2

k .

3.5. Algorithm

The pseudo-code of the FedClean method is shown in Algo-
rithm 1, which is easily mapped into the technical content in
preprocessing stage (lines 3-10) and label correction stage
(Sub-stage I: lines 11-19. Sub-stage II: lines 20-29).

4. Experiments
We first conduct experiments on benchmark datasets with
varying label noise settings to make comprehensive com-
parisons with state-of-the-art methods. Then, we design
ablation studies to show the features of FedClean.

4.1. Experimental Setup

Methods in comparison. We compared the proposed
FedClean method with two baseline approaches, FedAvg
(McMahan et al., 2016), FedProx (Li et al., 2020b), as
well as five state-of-the-art methods: FedCorr (Xu et al.,
2022), FedNoRo (Wu et al., 2023), FedBeat (Wang et al.,
2023), FedFixer (Ji et al., 2024), FedELC (Jiang et al.,
2024). For the CNLL employed in FedClean, we selected
one representative method from each of the two key ap-
proaches discussed in Subsection 2.1: Co-teaching (Han
et al., 2018) (FedClean1) and Joint Optim (Tanaka et al.,
2018) (FedClean2).

Implementation details. We evaluated different approaches
under both IID (Independent and Identically Distributed)
(CIFAR-10/100 (Krizhevsky, 2009)) and non-IID (non-
Independent and Identically Distributed (Ma et al., 2022))
(CIFAR-10, Clothing1M (Xiao et al., 2015)) data settings.

Table 3. Average (5 trials) accuracies (%) of various methods on
CIFAR-100 dataset with IID setting at different noise levels (ρ:
ratio of noisy clients, τ : lower bound of client noise level). The
best results are highlighted in bold.

Methods ρ = 0 ρ = 0.5 ρ = 1
τ = 0 τ = 0.3 τ = 0.5

FedAvg 72.36 ± 0.19 62.12 ± 0.25 31.34 ± 0.91
FedProx 72.04 ± 0.12 63.53 ± 0.20 32.51 ± 0.88
FedCorr 72.33 ± 0.16 72.40 ± 0.19 40.92 ± 0.79
FedNoRo 71.78 ± 0.22 67.02 ± 0.24 38.12 ± 0.85
FedBeat 70.82 ± 0.28 68.01 ± 0.26 30.74 ± 0.92
FedELC 71.82 ± 0.18 70.16 ± 0.22 31.45 ± 0.93
FedClean1 69.86 ± 0.33 68.75 ± 0.21 63.11 ± 0.92
FedClean2 70.94 ± 0.25 71.20 ± 0.18 66.54 ± 0.84

The evaluation encompassed specific experimental param-
eters, including the number of rounds, model architecture,
total number of clients, proportion of selected clients per
dataset, batch size, and learning rate, as detailed in Table 1.
For optimization, we employed an SGD optimizer with a
momentum of 0.5 and a cross-entropy loss function on the
client side. The data partitioning and noise model followed
the approach in FedCorr (Xu et al., 2022), where p ∈ (0, 1)
denotes the class sampling probability of clients, ρ ∈ [0, 1]
denotes the proportion of noisy clients (with ρ = 1 indicat-
ing all clients are noisy), and τ ∈ [0, 1] represents the lower
bound of the noise level for noisy clients.

4.2. Overall Comparison Results

We compared the predictive performance of FedClean with
the aforementioned methods under label noise conditions,
evaluating both IID and non-IID distributions on CIFAR-10,
as well as IID distribution on CIFAR-100. The results are
summarized in Tables 2 and 3, respectively. In both IID and
non-IID settings, when all clients are noise-free, all methods
exhibit similar strong performance. However, when noise
is introduced, the performance of these methods diverges
significantly. FedCorr performs well when not all clients
are noisy, but when all clients are noisy, only our methods
(FedClean1 and FedClean2) maintain good performance.
Other methods show a marked decline in performance under
this condition. This supports our earlier claim that FedClean
does not rely on the presence of clean clients, demonstrating
robust performance even with a high proportion of noisy
clients, as further discussed in Subsection 4.3. Additionally,
although the performance of FedClean is not optimal when
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Table 4. Accuracies (%) of various methods on Clothing1M with non-IID setting.
Methods FedAvg FedProx FedCorr FedNoRo FedBeat FedELC FedFixer FedClean1 FedClean2

Acc 68.63 69.15 69.02 69.21 67.05 69.24 70.52 70.17 72.39

not all clients are noisy, the difference between FedClean
and the optimal performance is minimal. We attribute this
slight performance gap to the use of relatively basic CNNL
methods in our implementation. With more sophisticated
CNNL approaches, we believe FedClean has significant
potential for further improvement. We also conducted ex-
periments in a non-IID setting using the real-world dataset
Clothing1M. Notably, we did not introduce synthetic label
noise, as the dataset already contains inherent tag noise,
with all clients being noisy clients (i.e., ρ = 1). The experi-
mental results, presented in Table 4, show that the proposed
method FedClean2 achieves the highest accuracy.

4.3. Robustness When All clients Are Noisy
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Figure 2. Accuracy (%) variations of various methods on the
CIFAR-10 dataset as the ratio of noisy clients (ρ) increases under
IID (with τ = 0.5) and non-IID (with τ = 0.3) settings.

Figure 2 illustrates the performance variations of various
methods on the CIFAR-10 dataset as the ratio of noisy
clients ρ increases, with fixed lower bounds for the noise
level under both IID and non-IID settings. The results show
that when ρ < 1, all FNLL methods perform significantly
better than the baseline, with FedCorr consistently achiev-
ing the best performance. However, when ρ = 1 (i.e., when
all clients are noisy), only the FedClean methods main-
tains strong performance, while the performance of all other
methods deteriorates sharply. Furthermore, the trend of per-
formance decline reveals that the FedClean method exhibits
the slowest decline, particularly when ρ increases from 0.8
to 1. This highlights the robustness of FedClean, demon-
strating its resilience against high ratio of noisy clients in
FL, even in the absence of clean clients.
Table 5. Ablation study results (average and standard deviation of
5 trials) on CIFAR-10 of FedClean2.

Methods
IID non-IID

ρ = 0.5 ρ = 1 ρ = 0.5 ρ = 1
τ = 0.3 τ = 0.5 τ = 0.3 τ = 0.5

Ours 88.41 83.75 86.79 80.55
Ours w/o CNLL 77.52 47.74 71.30 40.11
Ours w/o correction 81.02 76.45 77.71 73.94
Ours w/o correction I 86.83 82.58 84.37 79.19
Ours w/o correction II 84.61 79.85 82.31 77.01
Ours w/o ASSA 87.77 82.91 85.98 79.28
Ours w/o Mixup 88.12 83.55 86.18 80.00

4.4. Ablation Study

Table 5 outlines the impact of the components in FedClean.
We summarize key insights into FedClean’s effectiveness: i)
All components contribute to improved accuracy. ii) CNLL
has the greatest influence. During the preprocessing phase,
CNLL is essential for accurately selecting clean samples;
only when clean samples are correctly identified can subse-
quent corrections be effective. iii) The robustness of Fed-
Clean to FL with a high proportion of noisy clients is pri-
marily achieved through the local CNLL applied at clients.

5. Extension of ASSA
ASSA can be seamlessly extended to strengthen privacy pro-
tection. Inspired by ideas from zkCor (Wang et al., 2024),
we employ the zero-knowledge proofs (ZKP) (Sun et al.,
2021) for secure label noise correction in our FedClean.
By requiring each client to provide a computation integrity
proof, zkCor ensures the correctness of the label correction
process while preserving privacy. This integration adds a
layer of privacy protection, preventing malicious clients
from affecting the global model with erroneous or tampered
labels. Additionally, zkCor introduces a batch ZKP protocol
that enhances verification efficiency. By allowing proofs to
be verified in batches, we reduce the computational load on
the aggregator, improving scalability. This batch verifica-
tion is incorporated into ASSA, alleviating the aggregator’s
verification burden. zkCor is detailed in the Appendix D.
(Notably, zkCor is an extension of ASSA designed to meet
enhanced privacy requirements.)

6. Conclusion
In this paper, we introduced FedClean, a robust label noise
correction method for FL that does not rely on the presence
of clean clients. FedClean employs a two-stage framework
to identify and correct noisy labels, leveraging a collabo-
rative per-sample loss function to assess the confidence of
label corrections. Additionally, we proposed ASSA to opti-
mize the influence of each client during federated training,
based on their contribution to the dataset size. Our exper-
imental validation on the CIFAR-10/100 and Clothing1M
datasets under both IID and non-IID conditions demon-
strates the effectiveness of FedClean in mitigating label
noise without compromising privacy.

While promising, our approach leaves room for exploration,
particularly in refining the local CNLL model and address-
ing its complexity. Future work will optimize the CNLL
process for clients and explore advanced techniques to en-
hance label noise correction in federated settings.
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APPENDIX
Supplemental Information for FedClean

A. Why Choose Collaborative Per-sample Loss ?
We explain our choice to measure the confidence of noisy labels using cooperative per-sample loss, rather than relying solely
on annotation label per-sample loss, from the following perspectives:

• Noise in Annotation Labels: If there is noise in the annotation label, Lan(y
i
k, ŷ

i
k; θ

T1

G ) will typically be large. The loss
Lin(ȳ

i
k, ŷ

i
k; θ

T1

G ), which reflects the consistency of the inferred label with the true category of the sample, is generally
smaller when the inferred labels are more consistent and accurate, as inferred labels are formed by grouping similar
samples together.

• Increase in Collaborative Loss: If Lan(y
i
k, ŷ

i
k; θ

T1

G ) exceeds Lin(ȳ
i
k, ŷ

i
k; θ

T1

G ), the collaborative per-sample loss
Lco(y

i
k, ȳ

i
k, ŷ

i
k; θ

T1

G ) will be larger, indicating that the annotation label is likely noisy. This increases the likelihood that
the inferred label can provide a more accurate correction.

• Correction Potential: When the collaborative per-sample loss is large, the difference between the annotation label
and inferred label is significant, suggesting that the sample can be corrected by the inferred label. Therefore, a larger
collaborative per-sample loss implies a stronger correction effect of the inferred label on the sample.

B. Extended Proof of Theorem 3.1
Theorem 3.1. Incorporating inferred labels ȳik as prior information refines the model’s predictions, leading to a performance
improvement bounded as:

A(ŷik, ȳik) ≥ A(ŷik) + δ, (19)

where δ quantifies the reduction in prediction error after combining inferred labels.

Proof. Let (xi
k, y

i
k, ȳ

i
k) be the i-th sample in the k-th client, where xi

k is the input feature, yik(true) is the true label, and ȳik is
the inferred label (or prior information). Let the global model ŷik = θT1

G (xi
k) represent the prediction made by the unrefined

model.

We aim to refine the prediction by incorporating ȳik as a prior. The process of updating the model’s prediction based on this
prior is grounded in Bayesian inference. Specifically, we update the posterior distribution of the model’s prediction given
the inferred label using Bayes’ Theorem:

P (ŷik|ȳik) =
P (ȳik|ŷik) · P (ŷik)

P (ȳik)
, (20)

where:

• P (ŷik|ȳik) is the posterior probability of the prediction given the inferred label;

• P (ȳik|ŷik) is the likelihood of observing ȳik given the prediction ŷik;

• P (ŷik) is the prior probability of the prediction ŷik from the global model;

• P (ȳik) is the normalizing constant ensuring that the posterior sums to 1.

12
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The update process refines the global model’s prediction using the inferred labels as priors. The refined prediction is obtained
by maximizing the posterior:

ŷik(ȳ
i
k) = argmax

ŷi
k

P (ŷik|ȳik), (21)

which is equivalent to MAP (performing Maximum A Posteriori) estimation.

To analyze the model’s error, we define the error rate of the global model before incorporating the inferred labels as:

ϵ =
1

S

S∑
i=1

I(ŷik ̸= yik(true)), (22)

where I(·) is the indicator function and S is the total number of samples.

After incorporating the inferred labels as priors, the error rate becomes:

ϵ′ =
1

S

S∑
i=1

I(ŷik(ȳik) ̸= yik(true)), (23)

where ŷik(ȳ
i
k) is the refined prediction after updating with the inferred label ȳik.

Now, let us express the accuracy of the model before and after incorporating the inferred labels. The accuracy without the
prior is:

A(ŷik) = 1− ϵ, (24)

and the accuracy after incorporating the inferred labels is:

A(ŷik, ȳik) = 1− ϵ′. (25)

Thus, the improvement in accuracy is:

δ = ϵ− ϵ′ =
1

S

S∑
i=1

[
I(ŷik ̸= yik(true))− I(ŷik(ȳik) ̸= yik(true))

]
. (26)

We are guaranteed that δ ≥ 0, since incorporating prior information cannot worsen the model’s prediction.

In order to quantify the reduction in prediction error more rigorously, we can relate the error reduction to the KL (Kullback-
Leibler) divergence between the model’s prior and posterior distributions.

The KL divergence between the prior and posterior distributions of the prediction ŷik given the inferred label ȳik is defined as:

DKL(P (ŷik|ȳik)||P (ŷik)) = EP (ŷi
k|ȳ

i
k)

[
log

P (ŷik|ȳik)
P (ŷik)

]
. (27)

This measures the informational difference between the prior and posterior distributions. A smaller KL divergence indicates
that incorporating the inferred labels has effectively refined the model’s predictions.

Thus, we can use the following bound on the improvement in accuracy:

δ ≈ − 1

S

S∑
i=1

DKL(P (ŷik|ȳik)||P (ŷik)), (28)

where the approximation assumes that the reduction in error is closely related to the KL divergence between the prior and
posterior distributions.

This formulation provides a more nuanced view of the improvement in prediction accuracy by leveraging the Bayesian
framework. Specifically, the reduction in error is not just a simple difference in prediction success, but is linked to the
information gain obtained from the inferred labels.

13
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Therefore, incorporating inferred labels ȳik as prior information refines the global model’s predictions and leads to an
improvement in accuracy bounded as:

A(ŷik, ȳik) ≥ A(ŷik) + δ, δ = ϵ− ϵ′ and δ ≈ − 1

S

S∑
i=1

DKL(P (ŷik|ȳik)||P (ŷik)). (29)

The accuracy improvement is hence driven by the Bayesian updating process, and the reduction in prediction error is
quantitatively related to the information gain through the KL divergence between the prior and posterior distributions. □

C. Extended Proof of Theorem 3.2
Theorem 3.2. In collaborative per-sample losses, inferred labels provide additional stability, allowing for more accurate
estimates of true labels.

Proof. We aim to compute the posterior distribution P (yik|ŷik, ȳik), which represents the belief about the annotation label yik
given the model’s prediction ŷik and the inferred label ȳik.

By Bayes’ theorem, we can express the posterior distribution as:

P (yik|ŷik, ȳik) ∝ P (ŷik|yik)P (ȳik|yik)P (yik), (30)

where:

• P (ŷik|yik) is the likelihood of observing the model’s prediction given the annotation label;

• P (ȳik|yik) is the likelihood of observing the inferred label given the annotation label;

• P (yik) is the prior.

Now, let us analyze how the inferred labels provide stability. We introduce the Bayesian evidence in the form of the marginal
likelihood of the inferred label ȳik by marginalizing out yik:

P (ȳik|ŷik) =
∑
yi
k

P (ȳik|yik)P (yik|ŷik), (31)

which can be interpreted as the expected likelihood of ȳik, accounting for all possible true labels weighted by their posterior
probability given ŷik. The inferred label ȳik plays a crucial role in stabilizing the model’s estimates, particularly in scenarios
where annotations are noisy. When the likelihood P (ŷik|yik) is low due to noise, the presence of a reliable inferred label ȳik
can compensate for this uncertainty and improve the overall estimate quality.

To quantify this stability, we introduce the expected log-likelihood as a measure of model uncertainty:

Lstability = EP (yi
k|ŷ

i
k,ȳ

i
k)
[logP (yik|ŷik, ȳik)]. (32)

This quantity reflects the model’s confidence in its estimates of yik, and a higher value indicates greater stability. When
P (ŷik|yik) is low (due to noisy annotations), the inferred label ȳik increases the likelihood of the annotation label yik, thus
increasing the stability of the model’s predictions.

We can also formalize the stability improvement using the KL divergence, which measures the difference between the
posterior distribution and the prior distribution:

DKL(P (yik|ŷik, ȳik)||P (yik)) = EP (yi
k|ŷ

i
k,ȳ

i
k)

[
log

P (yik|ŷik, ȳik)
P (yik)

]
. (33)

The reduction in KL divergence after incorporating ȳik reflects the improvement in the model’s stability and accuracy.
A smaller KL divergence implies that the model’s posterior has become closer to the true distribution of yik, due to the
stabilizing effect of ȳik.
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Protocol 1 (zkCor*): Let  be the security parameter.

 Step 1: Given the security parameter λ, the public parameters pp are generated.  

 Step 2: For each client k , the private dataset    is committed using the Dataset Commitment protocol 
described in Subsection D.1.

 Step 3:   

 Step 4: The aggregator performs Batch Verification (Subsection D.3) using the proofs     , commitments       
cm, arithmetic circuit   , value , and public parameter pp. If the verification succeeds, it outputs 1 and 
accepts the value; otherwise, it rejects the results and aborts.

Each client performs FedClean on dataset   to generate the arithmetic circuit   and 
corresponding wire values as witnesses     .
Each client performs Proof Generation (Subsection D . 3 ) with the private dataset   , 
witnesses    , arithmetic circuit   , and public parameter pp, producing the proof π and the 
value needed in ASSA.

(1)

(2)

k

k 

kw

k
kw

k
kcm 

Figure 3. The zkCor* protocol for FedClean.

Thus, we can conclude that incorporating inferred labels into the model’s decision-making process leads to an improvement
in stability, especially when annotations are noisy. This results in a more accurate estimate of the annotation label yik, as the
inferred label ȳik provides additional information that counteracts the effects of noise.

P (yik|ŷik, ȳik) ≥ P (yik|ŷik), where δ = DKL(P (yik|ŷik, ȳik)||P (yik)) ≥ 0. (34)

□

D. zkCor in ASSA
We incorporate zkCor into our ASSA, and since we modified the arithmetic circuit in zkCor to align with our ASSA
algorithm, the resulting protocol, referred to as zkCor*, is illustrated in Figure 3.

D.1. Dataset Commitment

For each client k ∈ N , it commits to the private dataset Dk using the randomness rk and the public parameter pp, generating
the commitment cmk (Kate et al., 2010). Specifically, for the item a

(k)
xy in the x-th row and y-th column,

fDk
(z) = a(k)xy where z = n(x− 1) + y, (35)

where n is the number of columns in the dataset, the client k applies the Kate polynomial commitment scheme to generate
cmk.

D.2. Noise Correction

Our proposed FedClean noise correction scheme requires clients to upload the number of local samples involved in model
updates during each training iteration. The aggregator then updates the global model using the ASSA aggregation scheme,
while clients must prove the computational integrity of their local label noise correction. To accomplish this, both the client
and aggregator generate three arithmetic circuits C(1), C(2), C(3) for calculating the number of locally selected samples in
Eqs (4), (15), and (18) as public information. FedClean can calculate the dataset sizes for the three ASSAs as follows:

|Dc
k| =

nk∑
i=1

I(yik = ȳik), (36)

|D̃n
k

′
| =

nk∑
i=1

I(yik = ȳik)− |Dc
k|, (37)
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|D̂n
k

′
|+ |Dn2

k | = nk −
nk∑
i=1

I(yik ̸= ŷik)− |Dc
k| − |D̃n

k

′
|. (38)

In Eq 38, ŷik represents the prediction label for the global model θT1+T2

G .

To verify the integrity of each client’s local computation in each iteration, it suffices to validate the correctness of the values
|Dc

k|, |D̃n
k

′
|, and |D̂n

k

′
|+ |Dn2

k | (which are updated after each local processing.) by converting Eqs (36), (37), and (38) as
follows:

|Dc
k|+

{
−

[
nk∑
i=1

I(yik = ȳik)

]}
= 0, (39)

|D̃n
k

′
|+

{
−

[
nk∑
i=1

I(yik = ȳik)− |Dc
k|

]}
= 0, (40)

|D̂n
k

′
|+ |Dn2

k |+

{
−

[
nk −

nk∑
i=1

I(yik ̸= ŷik)− |Dc
k| − |D̃n

k

′
|

]}
= 0. (41)

The above arithmetic can be expressed in the ZKP arithmetic circuit. To facilitate the operation of the counter I(·), we define
the nk-dimensional vectors I(1)k and I

(2)
k :

I
(1)
k [i] =

{
1 if yik = ȳik,

0 if yik ̸= ȳik,
0 ≤ i < nk.

I
(2)
k [i] =

{
1 if yik = ŷik,

0 if yik ̸= ŷik,
0 ≤ i < nk.

(42)

Using the arithmetic circuits C(1)k , C(2)k , C(3)k computed from |Dc
k|, |D̃n

k

′
|, and |D̂n

k

′
|+ |Dn2

k |, the client could generate the
proofs π(t)

k , as described in the following subsection.

D.3. Proof Generation

In the proposed FedClean scenario, proofs from each client use the same arithmetic circuits C(1), C(2), C(3), derived from
subsection D.2. To prevent the aggregator from repeatedly verifying each proof, a new batch ZKP protocol is introduced in
zkCor, allowing the aggregator to verify all proofs in a single process.

High-level Idea of Batch ZKP. Let
{
P(t)
k

}q

k=1
denote the set of clients (provers) participating in the round t parameter

update of FedClean, where q = Fraction×N (with Fraction representing the proportion of clients involved in FL training).
In the FedClean algorithm, the C(1) arithmetic circuit is used for 1 ≤ t ≤ T1, the C(2) circuit for T1 + 1 ≤ t < T1 + T2, and
the C(3) circuit for T1 + T2 + 1 ≤ t ≤ T1 + T2 + T3. The batch ZKP protocol requires a distinct Lagrange basis set for{
P(t)
k

}q

k=1
when interpolating polynomials. Assuming a subgroup H of order qn, the highest polynomial order in the ZKP

protocol is qn − 1. P(t)
k ∈

{
P(t)
k

}q

k=1
is restricted to ues

(
L
(t)
(k−1)×qn−1+1, L

(t)
(k−1)×qn−1+2, ..., L

(t)
k×qn−1

)
, where Li is the

i-th Lagrange base.

Suppose
{
P(t)
k

}q

k=1
have witnesses vectors

{
a
(t)
k

}q

k=1
. Their corresponding interpolation polynomials are

{
f
(t)
k (X)

}q

k=1
.

By applying Kate polynomial commitment (Kate et al., 2010), there are commitments
{[

f
(t)
k (X)

]
1

}q

k=1
. The verifier

(aggregator, the server in FedClean.) is able to compute[
f (t)(X)

]
1
=

q∑
k=1

[
f
(t)
k (X)

]
1
. (43)

Let the vector that is corresponding to the polynomial f (t)(X) be a, which is the concatenation of
{
a
(t)
k

}q

k=1
. For any

random challenge r ∈ F (F is the finite field.) chosen by the verifier,
{
P(t)
k

}q

k=1
provide their openings at the random point
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r as
{
f
(t)
k (r)

}q

k=1
:

f (t)(r) =

q∑
k=1

f
(t)
k (r),

h(t)(X) =

q∑
k=1

h
(t)
k (X),

(44)

where
{
h
(t)
k (X)

}q

k=1
and h(t)(X) are defined as

h
(t)
k (X) =

f
(t)
k (X)− f

(t)
k (r)

X − r
, k = 1, ..., q,

h(t)(X) =
f (t)(X)− f (t)(r)

X − r
.

(45)

As long as
{
P(t)
k

}q

k=1
follow the protocol and compute their polynomials using the correct Lagrange basis, their witnesses

can be combined without introducing new random numbers, allowing the verifier to validate them together. To ensure proper

use of the specified Lagrange basis, the verifier defines the vector
{
s
(t)
k

}q

k=1
, where s

(t)
k = (0, ..., 0, 1..., 1, 0, ..., 0) with

qn−1 ones spanning form s
(t)
k [(k − 1)× qn−1 + 1] to s

(t)
k [k × qn−1] and the (q − 1)× qn−1 zeros for the rest. The verifier

would require all
{
P(t)
k

}q

k=1
to demonstrate

f
(t)
k (X) = S

(t)
k (x) · f (t)

k (X), k = 1, ..., q, (46)

where
{
S
(t)
k (X)

}q

k=1
is the degree qn polynomial corresponding to

{
s
(t)
k

}q

k=1
, where X ∈ [1, qn]. Eq (46) is called the

interpolation constraints.

Algorithm Description. All q provers preserves the wire values of the arithmetic circuits C(1), C(2), C(3) as witnesses.

Specifically, suppose the provers
{
P(t)
k

}q

k=1
have the witnesses

{(
a
(t)
k ,b

(t)
k , c

(t)
k

)}q

k=1
. The provers first rearrange their

witnesses as (wki)
3η
i=1, which is the concatenated witnesses of a(t)k , b(t)

k and c
(t)
k .

Suppose the order of subgroup H is qn . The degrees of all the polynomials in the Plonk protocol are lower than m

(m < q(n−1)). The parties agree that
{
P(t)
k

}q

k=1
use non-coincident Lagrange interpolation bases. Besides, all provers will

add the randomnesses when constructing the polynomials to guarantee the property for zero-knowledge:

a
(t)
k (X) = (bk1X + bk2) · ZH(X) +

qn−1∑
i=1

wkiLi+(k−1)×qn−1(X),

b
(t)
k (X) = (bk3X + bk4) · ZH(X) +

qn−1∑
i=1

wk(η+i)Li+(k−1)×qn−1(X),

c
(t)
k (X) = (bk5X + bk6) · ZH(X) +

qn−1∑
i=1

wk(2η+i)Li+(k−1)×qn−1(X),

(47)

where wki, i ∈ [1, 6] are the random numbers chosen by P(t)
k . These randomness are used to mask the secret polynomials of

each prover. ZH(X) is the zero polynomial, which is defined as ZH(X) = Xη − 1. And H is the multiplicative subgroup
with ω as the η-th root of unity and the generator of the subgroup, such that H = {1, ω, ..., ωη−1}.

The verifier chooses β, γ
$←Fp to all of the provers (β, γ $←Fp denotes random sampling, where α and β are uniformly
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selected from the finite field Fp of prime order p.), who will compute the permutation polynomial
{
z
(t)
k (X)

}q

k=1
as follows:

z
(t)
k (X) = (bk7X

2 + bk8X + bk9) · ZH(X) + L1+(k−1)×qn−1(X)

+

η−1∑
i=1

Li+1+(k−1)×qn−1(X)

i∏
j=1

2∏
l=0

wk(ηl+j) + βξlω
j−1 + γ

wk(ηl+j) + βσ(ηl + j) + γ

 , k = 1, ..., q,
(48)

where ξ0 is defined to be 0 and bkj , k ∈ [1, q], j ∈ [7, 9] are randomnesses chosen by P(t)
k .

{
z
(t)
k (X)

}q

k=1
are represented

as permutation polynomials to encode permutation constraints in a thPlonk constraint system. σ(·) is a permutation defined
on the field H′ of size [3η], such that σ : [3η] → [3η]. The field H′ is defined as H′ := H ∪ (ξ1 · H) ∪ (ξ2 · H), where
ξ1, ξ2 ∈ F are chosen such that H, ξ1 ·H, and ξ2 ·H are distinct cosets of H, ensuring H′ contains 3η distinct elements.

After computing the permutation polynomials,
{
P(t)
k

}q

k=1
assign them individually. The verifier selects α $←Fp and sends it

to the provers, who then compute the quotient polynomials
{
t
(t)
k (X)

}q

k=1
:

t
(t)
k (X) =

1

ZH(X)
·
(
(z

(t)
k (X)− 1)L1+(k−1)×qn−1(X)α2 + a

(t)
k (X)(1− S

(t)
k (X))α3

+ a
(t)
k (X)b

(t)
k (X)qM (X) + a

(t)
k (X)qL(X) + b

(t)
k (X)qR(X) + c

(t)
k (X)qO(X)

+ α(a
(t)
k (X) + βX + γ)(c

(t)
k (X) + βξ2X + γ)(a

(t)
k (X) + βX + γ)z

(t)
k (X)

− αz
(t)
k (Xω)(a

(t)
k (X) + βSσ1(X) + γ)(b

(t)
k (X) + βSσ2(X) + γ)

· (c(t)k (X) + βSσ3(X) + γ) + PI(X) + qC(X)), k = 1, ..., q,

(49)

P(t)
k splits the quotient polynomial t(t)k (X) into two polynomials, t(t)i lo(X) and t

(t)
i mi(X), each of degree less than η, and a

polynomial t(t)i hi(X) of degree at most η + 5:

t
(t)
k (X) = t

(t)′

k lo(X) +Xη · t(t)
′

k mid(X) +X2η · t(t)
′

k hi(X), k = 1, ...q. (50)

The provers mask these polynomials with random integers bk10, bk11 ∈ Fp and define:

t
(t)
k lo(X) : = t

(t)′

k lo(X) + bk10X
η,

t
(t)
k mi(X) : = t

(t)′

k mi(X)− bk10 + bk11X
η,

t
(t)
k hi(X) : = t

(t)′

k mi(X)− bk11, k = 1, ..., q.

(51)

Note that:
t
(t)
k (X) = t

(t)
k lo(X) +Xη · t(t)k mi(X) +X2η · t(t)k hi(X). (52)

The verifier selects the evaluation challenge z
$←Fp and sends it to the provers, who computes the open evaluations āk, b̄k,

c̄k, s̄σ1k, s̄σ2k, t̄k, z̄kω , and the linearized polynomial r(t)k (X), such that:

r
(t)
k (X) = āk(1− S

(t)
k (X))α3 + z

(t)
k (X)Lµ(z)α

2

+ ((āk + βkz + γk)(b̄k + βkξ1z + γk)(c̄k + βkk2z + γi)zi(X))α

− ((āi + βis̄σ1k + γi)(b̄i + βis̄σ2k + γk)βkzk(zω) · Sσ3(X))α

+ āk b̄kqM (X) + ākqL(X) + b̄kqR(X) + c̄kqO(X) + qc(X), k = 1, ..., q.

(53)

All of the provers compute the openings of
{
r
(t)
k (X)

}q

k=1
at the evaluation challenge point z.
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The verifier selects challenge z
$←Fp and sends it to the provers, who can calculate the opening polynomials W

(t)
kz (X),

W
(t)
k(zω)(X) and commit to them:

W
(t)
kz (X) =

1

X − z
·

r
(t)
k (X) + v(a

(t)
k (X)− āk) + v2(b

(t)
k (X)− b̄k)

+v3(c
(t)
k (X)− c̄k) + v4(Sσ1(X)− s̄σ1k)

+v5(Sσ2(X) − s̄σ2k),

 (54)

W
(t)
k(zω)(X) =

z
(t)
k (X)− z̄kω
X − zω

, k = 1, ..., q. (55)

The commitments to the above polynomials are denoted as
[
W

(t)
kz

]
1
:=

[
W

(t)
kz (X)

]
1

and
[
W

(t)
k(zω)

]
1
:=

[
W

(t)
k(zω)(X)

]
1
.

Finally, the verifier will receive proofs
{
π
(t)
k

}q

k=1
:

π
(t)
i =

[
a
(t)
k

]
1
,
[
b
(t)
k

]
1
,
[
c
(t)
k

]
1
,
[
z
(t)
k

]
1
,
[
t
(t)
k lo

]
1
,
[
t
(t)
k mi

]
1
,
[
t
(t)
k hi

]
1[

W
(t)
kz

]
1
,
[
W

(t)
k(zω)

]
1
, āk, b̄k, c̄k, s̄σ1k, s̄σ2k, z̄kω

 , k = 1, ..., q. (56)

D.4. Batch Verification

The verifier waits for all proofs to be provided and then performs batch validation. Specifically, the verifier first preprocesses
all public information defined by the arithmetic circuit, which is independent of both the witnesses and the public input w.
Additionally, the verifier computes polynomial commitments for the interpolation constraints to ensure that each prover uses
a distinct set of Lagrange bases: [

1− S
(t)
k

]
1
:=

(
1− S

(t)
k (X)

)
· [1]1 . (57)

Upon receiving proofs
{
π
(t)
k

}q

k=1
from each prover, the verifier combines all witnesses and then verifies the correctness of

the proofs: [
a(t)

]
1
=

q∑
k=1

[
a
(t)
k

]
1
,

[
b(t)

]
1
=

q∑
k=1

[
b
(t)
k

]
1
,

[
c(t)

]
1
=

q∑
k=1

[
c
(t)
k

]
1
,

[
z(t)

]
1
=

q∑
k=1

[
z
(t)
k

]
1
,

[
t
(t)
lo

]
1
=

q∑
k=1

[
t
(t)
klo

]
1
,

[
t
(t)
mi

]
1
=

q∑
k=1

[
t
(t)
kmi

]
1
,

[
t
(t)
hi

]
1
=

q∑
k=1

[
t
(t)
khi

]
1
,

[
W (t)

z (X)
]
1
=

q∑
k=1

[
W

(t)
kz (X)

]
1
,

[
W (t)

zω (X)
]
1
=

q∑
k=1

[
W

(t)
k(zω)(X)

]
1
, k = 1, ..., q.

(58)
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Besides, the verifier combines the evaluation values:

ā =

q∑
k=1

āk,

b̄ =

q∑
k=1

b̄k,

c̄ =

q∑
k=1

c̄k,

r̄ =

q∑
k=1

r̄k,

t̄ =

q∑
k=1

t̄k,

z̄ω =

q∑
k=1

z̄ωk, k = 1, ..., q.

(59)

Then the verifier computes the partial opening commitment [D]1:[
D(t)

]
1
:= v ·

q∑
k=1

[
r
(t)
k

]
1
+ u ·

q∑
k=1

[
z
(t)
k

]
1
. (60)

Note that in Eq (60), there are commitments for interpolating constrained polynomials, integrated by powers of a random
challenge α sent by the verifier. Based on the opening commitment, the verifier then computes the batch polynomial
commitment

[
F (t)

]
1

and the batch evaluation
[
E(t)

]
1
:[

F (t)
]
1
:=

[
D(t)

]
1
+ v ·

[
a(t)

]
1
+ v2 ·

[
b(t)

]
1
+ v3 ·

[
c(t)

]
1
+ v4 · [sσ1 ]1 + v5 · [sσ2 ]1[

E(t)
]
1
:= (−r0 + vā+ v2b̄+ v3c̄+ v4s̄σ1

+ v5s̄σ2
+ uz̄ω) · [1]1.

(61)

Finally, the verifier checks the equality of the following bilinear paring:

e(
[
W

(t)
z

]
1
+ u ·

[
W

(t)
zω

]
1
, [x]2)

?
=e(z

[
W

(t)
z

]
1
+ uzω

[
W

(t)
zω

]
1
+

[
F (t)

]
1
−

[
E(t)

]
1
, [1]2) . (62)

If Eq (62) holds, the verifier accepts all batch proofs from the provers; otherwise, the verifier rejects the protocol and aborts.

D.5. Security Analysis

Theorem D.1. The zkCor* scheme, as described in Figure 3 and Subsections D.1, D.2, D.3 and D.4, is a zero-knowledge
scheme for FedClean.

Proof. To demonstrate that zkCor* is zero-knowledge for FedClean, we address three key properties: completeness,
soundness, and zero-knowledge.

Completeness. The verification process outputs 1 if the |Dc
k|, |D̃n

k

′
|, and |D̂n

k

′
| + |Dn2

k | are correctly computed by the
clients, as per Eqs (39) (40) (41), and their committed datasets. The completeness of zkCor* follows from the correctness of
the batch ZKP protocol we propose, which is straightforward to validate.

Soundness. Let C = {C(1), C(2), C(3)} represent the arithmetic circuit defined in Subsections D.1, D.2, D.3 and D.4. By
the extractability of the polynomial commitment scheme used in the batch ZKP protocol, there exists an extractor φ that,
given the commitment cm, extracts a witness w∗ = (D∗, aux) such that cm = zkCor*.Com(D∗, r, pp) with overwhelming
probability, where aux represents the auxiliary witnesses generated during computation. If cm = zkCor*.Com(D∗, r, pp)

and zkCor*.V(π, cm, C, value, pp) = 1 (value=|Dc
k|, |D̃n

k

′
|, |D̂n

k

′
| + |Dn2

k | reps. C = C(1), C(2), C(3).), but value is
incorrect, two scenarios can arise:
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• Scenario 1: w = (D∗, aux) satisfies C. There are three possibilities:

(i) D∗ is not the committed dataset but passes the commitment verification. This is negligible in λ due to the soundness
of the polynomial commitment scheme (Kate et al., 2010).

(ii) value is incorrect but passes the batch ZKP verification. This is negligible in λ due to the soundness of the ZKP
scheme. The concatenation of commitments and allocation of distinct Lagrange bases does not compromise soundness
(Gabizon et al., 2019).

(iii) Some witnesses in aux are incorrect but satisfy the circuits C. This is negligible in λ for the same reason as in (ii).

• Scenario 2: w = (D, aux) does not satisfy C. The soundness of the proposed batch ZKP ensures that the probability of
a client generating a simulated proof that causes the aggregator to accept is negligible in λ.

Zero-Knowledge. The zero-knowledge property follows from the characteristics of PLONK (Gabizon et al., 2019). The
distribution of the Lagrange bases does not affect the original zero-knowledge property in the Plonk protocol. □
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