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ABSTRACT

As AI-generated content features more prominently in our lives, it becomes im-
portant to develop methods for tracing their origin. Watermarking is a promising
approach, but a clear categorization of existing techniques is lacking. We propose
a simple taxonomy of watermarking methods for generative AI based on where
they are applied in the deployment of the models: (1) post-hoc watermarking,
adding watermarks after content generation; (2) out-of-model watermarking, em-
bedding watermarks during generation without modifying the model; (3) in-model
watermarking, integrating watermarks directly into the model’s parameters. By
providing a structured overview of existing techniques across image, audio, and
text domains, this taxonomy aims to help researchers, policymakers, and regula-
tors make informed decisions about which approach best fits their needs, acknowl-
edging that no single method is universally superior and that different approaches
may be suited to specific use cases and requirements.

1 INTRODUCTION

The internet has become a playground for generative AI models, which are developed and adopted at
an unprecedented pace. In text generation, ChatGPT reached 100 million users in just two months,
and has had a significant impact on the way people interact with AI since then. It has counterparts
in image generation with DALL·E (Ramesh et al., 2021) and Midjourney; video with Sora and
Kling; and audio with Suno and Udio. Closed models are generally followed by open-weights
alternatives of the same quality in less than a year, with e.g., Llama (Touvron et al., 2023) or Stable
Diffusion (Rombach et al., 2022).

The use of generative models to create online content has increased rapidly in recent years, increas-
ing volumes of content produced overall and, in some instances, replacing traditional content cre-
ation methods. By late 2023, they had already produced as many images as photographers had taken
in 150 years of photography (Valyaeva, 2023). The emergence of generative models, and their out-
puts has prompted concern from parts of the media and creative industries, as well as governments
due to concerns about the potential for misinformation, fraud, and impersonation. There have been
instances of generative models allegedly being used to create scam books sold on Amazon (Knibbs,
2024) to influence campaigns (Goldstein et al., 2023) or to create deepfakes and impersonate public
figures (Harris, 2018; Shen et al., 2019). These risks linked to AI-generated content are height-
ened because it is difficult to detect and attribute such content to models that generated them. A
study by Nightingale & Farid (2022) notably found that human participants exhibited a relatively
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Figure 1: Methods for tracing AI-generated content and when they intervene in models’ deployment.
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low accuracy rate in distinguishing between authentic and artificially generated facial images, with
an average accuracy of 48.2% (i.e., AI-generated faces were deemed most trustworthy). The same
finding applies to text (Spitale et al., 2023).

As shown in Figure 1, there are several approaches to trace AI-generated content. Digital forensics
detects AI-generated content by analyzing artifacts, but becomes less reliable as models improve.
Fingerprinting enables content retrieval but requires storing signatures in databases, which is hard at
scale and may lead to privacy concerns. Metadata provides cryptographic proof of origin but is often
stripped during sharing. Watermarking is an important technique for tracing content from generative
models since providers have control over the model’s outputs. In this context, it is put forward by
most of the regulations on AI (USA, 2023; Chi, 2023; Eur, 2023) to allow for a better transparency.
The idea is to watermark the content during or after the generation to embed a proof that it is AI-
generated, or an identifier of the specific model that generated it. It can be applied post-hoc, after
generation; at generation time outside the model (out-of-model) by changing the way it generates
the content, which usually offers better robustness or imperceptibility; or by modifying the model’s
weights (in-model), which gives an additional layer of protection in case of open-weights models or
leaks, at the cost of additional implementation complexity.

Recent surveys on watermarking usually focus only on single domains, e.g., image or text water-
marking (Wan et al., 2022; Liu et al., 2024), or categorize watermarking methods based on the
watermark properties, e.g., the number of bits of information stored in the watermark (Boenisch,
2021). More recently, Zhao et al. (2024) gave a good overview of the terminology and threat models
for watermarking AI-generated content. However, their taxonomy does not provide clear definitions
of terms such as semantic watermarking or in-processing watermarking. It also does not capture all
nuances needed to understand the level of protection offered by these types of watermarking meth-
ods. A case in point is watermarking for large language models (LLMs), which Zhao et al. call both
semantic and in-processing, although it is unsuitable for open-weights models since the watermark
is only applied at decoding time. This lack of clarity is problematic, especially for policymakers and
regulators who need to understand the different methods and their implications.

Therefore, this paper aims to introduce: (1) A comprehensive cross-modal taxonomy of watermark-
ing approaches for AI-generated content that clearly delineates methods based on when and how
they intervene in the generation pipeline; (2) A detailed analysis of the trade-offs between differ-
ent watermarking approaches to guide policymakers and regulators in understanding the technical
capabilities and limitations of different watermarking methods.

2 TAXONOMY

This section provides an overview of watermarking techniques developed across the image, audio
and text domains. It categorizes them into: (2.1) post-hoc watermarking that applies the con-
tent after generation; (2.2) out-of-model watermarking, which embeds the watermark during the
generation process but requires no change to the original model weights; and (2.3) in-model water-
marking, which embeds the watermark in the model itself by modifying the model weights.

2.1 POST-HOC WATERMARKING

Image. Traditional image watermarking methods are usually classified into two categories de-
pending on the space on which the watermark is embedded. In spatial domain, the watermark is
encoded by directly modifying pixels, such as flipping low-order bits of selected pixels (Van Schyn-
del et al., 1994). For example, Nikolaidis & Pitas (1998) slightly modify the intensity of randomly
selected image pixels while taking into account properties of the human visual system, robustly to
JPEG compression and low-pass filtering. Bas et al. (2002) create content descriptors defined by
salient points and embeds the watermark by adding a pattern on triangles formed by the tessellation
of these points. Ni et al. (2006) use the zero or the minimum points of the histogram of an image
and slightly modifies the pixel grayscale values to embed data into the image. The second cate-
gory is frequency domain watermarking, which usually spreads a pseudo-random noise sequence
across the entire frequency spectrum of the host signal, and provides better robustness (Cox et al.,
1997). The first step is a transformation that computes the frequency coefficients. The watermark is
then added to these coefficients taking into account the human visual system. The coefficients are
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mapped back onto the original pixel space through the inverse transformation to generate the wa-
termarked image. The transform domains include Discrete Fourier Transform (DFT) (Urvoy et al.,
2014), Quaternion Fourier Transform (QFT) (Bas et al., 2003; Ouyang et al., 2015), Discrete Cosine
Transform (DCT) (Bors & Pitas, 1996; Piva et al., 1997; Barni et al., 1998; Li et al., 2011), Discrete
Wavelet Transform (DWT) (Xia et al., 1998; Barni et al., 2001; Furon & Bas, 2008), both DWT and
DCT (Feng et al., 2010; Zear et al., 2018), etc.

Deep learning-based methods have recently emerged as alternatives to traditional ones. They are
often built as encoder/decoder networks: the encoder embeds the watermark in the image and the
decoder tries to extract it. They are trained end-to-end to invisibly encode information while being
resilient to transformations applied during training. This makes it easier to build robust systems and
avoids algorithms hand-crafted for specific transformations. HiDDeN (Zhu et al., 2018) is the best
example of this approach, and has been extended in several ways. Luo et al. (2020) add adversarial
training in the attack simulation, to bring robustness to unknown transformations. Zhang et al.
(2019b; 2020); Yu (2020) use an attention filter further improving imperceptibility. Ahmadi et al.
(2020) adds a circular convolutional layer that helps diffusing the watermark signal over the image.
Wen & Aydore (2019) use robust optimization with worst-case attack as if an adversary were trying
to remove the mark. Another line of works focus on steganography (Baluja, 2017; Wengrowski &
Dana, 2019; Zhang et al., 2019a; Tancik et al., 2020; Jing et al., 2021; Ma et al., 2022b), where
the goal is to hide a message in the image without being detected, rather than to robustly extract
it (e.g., against crops). Many other approaches focused on improving robustness, imperceptibility,
speed, etc. (Jia et al., 2021; Bui et al., 2023b;a; Huang et al., 2023b; Evennou et al., 2024; Pan
et al., 2024b). In parallel to the encoder/decoder architectures, Vukotić et al. (2018; 2020), followed
by Kishore et al. (2022) introduce an approach that is closer to traditional watermarking methods
and uses neural networks as a fixed transform into a latent space. Since there is no inverse transform,
the embedding is done iteratively by gradient descent over the pixels.

Audio. Given the similar nature of the signals, audio watermarking techniques are very similar to
image watermarking ones (although they lag a bit behind). Traditional methods relied on embedding
watermarks either in the time or frequency domains (Lie & Chang, 2006; Kalantari et al., 2009;
Natgunanathan et al., 2012; Xiang et al., 2018; Su et al., 2018; Liu et al., 2019; Tai & Mansour,
2019), usually including domain specific features to design the watermark and its corresponding
decoding function. To accurately extract audio watermarks, synchronization between the encoder
and decoder is crucial. However, this can be disrupted by desynchronization attacks such as time and
pitch scaling. To address this issue, various techniques have been developed. One approach is block
repetition, which repeats the watermark signal along both the time and frequency domains (Kirovski
& Malvar, 2003; Kirovski & Attias, 2003). Another method involves implanting synchronization
bits into the watermarked signal (Xiang et al., 2014). During decoding, these synchronization bits
serve to improve synchronization and mitigate the effects of de-synchronization attacks.

Most deep learning-based audio watermarking methods follow a HiDDeN-like encoder/decoder
framework (Qu et al., 2023; Pavlović et al., 2022; Liu et al., 2023b; Ren et al., 2023; Chen et al.,
2023; O’Reilly et al., 2024). The approach presented in AudioSeal (San Roman et al., 2024) is simi-
lar, but is zero-bit and allows for detection at the time-step level. Similar to the approach of Vukotić
et al. (2018) in the image domain, Wu et al. (2023); Kong & Zhang (2020) embed the watermark by
iteratively modifying the audio such that its representation lies within a certain region of the feature
space of a pre-trained network.

Text. Watermarking text is commonly thought as more challenging than images or audio, since its
discrete nature makes it harder to modify without altering its meaning.

The earliest works address watermarking for documents by altering text characteristics such as char-
acters or spacing (Brassil et al., 1995), which is not very robust since this may be changed directly on
a text editor. Text watermarking methods traditionally modify the grammatical or syntactical struc-
ture of the text with pre-established rules that embed watermarks without significantly altering its
meaning (Topkara et al., 2005). For instance, Topkara et al. (2006c) embed information through syn-
onym substitution, while Topkara et al. (2006b;a); Meral et al. (2009) use word reordering through
passivization, preposing, topicalization, etc. Steganography methods have also been developed for
text, working on the same principles (Winstein, 1998; Chapman et al., 2001; Bolshakov, 2004;
Shirali-Shahreza & Shirali-Shahreza, 2008; Chang & Clark, 2014; Xiang et al., 2017). These edit-
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based systems suffer from low robustness to text modifications, and low payload, e.g., 1 or 2 bits
per sentence as in CoverTweet (Wilson & Ker, 2016). Similar to other media, deep learning-based
methods have been developed more recently. These methods either use pre-trained masked language
models (Ueoka et al., 2021) or end-to-end encoder/decoder networks (Abdelnabi & Fritz, 2021).

2.2 OUT-OF-MODEL WATERMARKING

Out-of-model watermarking modifies the generation process but does not alter the model’s param-
eters. This method is easier to implement because it does not require retraining or fine-tuning the
model. However, once the model is released, users may disable the watermarking step, and the wa-
termarking technique becomes known which would lead to potential vulnerabilities or exploitation.

Image. A prominent approach in diffusion models involves modifying the initial noise to embed
a watermark. For instance, Tree-Ring (Wen et al., 2023) adds tree-ring-shaped patterns to the initial
noise and later extracts the watermark by inverting the diffusion process. Subsequent works improve
this technique: Hong et al. (2024) refine the inversion process, Ci et al. (2024b) extend the method
for multi-bit watermarking, and Lei et al. (2024) propose an encoder-decoder framework to embed
and extract watermarks within the initial noise.

Another approach is to use adapters, as done by Ci et al. (2024a) and Rezaei et al. (2024), taking the
secret message as input. These methods operate out-of-model, since a user may choose to remove
the adapters or change the message before generating the content.

Audio. To the best of our knowledge, contrary to image watermarking, no work has explored
out-of-model watermarking for audio generation, except for Zhou et al. (2024), which embeds wa-
termarks in the latent space of a speech synthesis model.

Text. For text generated by Large Language Models (LLMs), early watermarking techniques
emerged shortly after the release of ChatGPT. These methods typically use a secret key and a hash
of previous tokens to modify token generation. Kirchenbauer et al. (2023) modify the probability
distribution by biasing a subset of vocabulary tokens, while Aaronson & Kirchner (2023) use the
Gumbel trick to alter the sampling process. Follow-up research improves these techniques: Fernan-
dez et al. (2023a) refine statistical detection methods, while Yoo et al. (2023b;a); Qu et al. (2024)
develop multi-bit watermarking techniques. Christ et al. (2023); Kuditipudi et al. (2023) introduce
position-based pseudo-randomness to enhance detectability. Other works (Huang et al., 2023a; Gi-
boulot & Furon, 2024) improve detection algorithms by embedding watermarks in high-entropy
text segments. Further methods incorporate semantic information from previous tokens to increase
robustness to text modifications (Liu et al., 2023a; Liu & Bu, 2024; Fu et al., 2024; Hou et al.,
2023; 2024). To facilitate benchmarking, Piet et al. (2023); Pan et al. (2024a) develop toolkits for
evaluating watermark robustness.

2.3 IN-MODEL WATERMARKING

In contrast to out-of-model watermarking, in-model watermarking embeds the watermark within the
model’s parameters. This approach enables open-sourcing models without revealing the watermark-
ing method. However, it usually requires training or fine-tuning the model, making implementation
more complex.

Image. Early techniques embedded watermarks by modifying the training set (Wu et al., 2020; Yu
et al., 2021; Zhao et al., 2023), though these methods are computationally expensive and difficult
to scale. Alternative methods integrate watermarking objectives into the training process. Fei et al.
(2022; 2024) incorporate additional loss terms in Generative Adversarial Networks (GANs) so that
generated images inherently contain watermarks. For diffusion models, Stable Signature (Fernandez
et al., 2023b) fine-tunes the latent decoder to embed a watermark, while Feng et al. (2024) fine-
tune the U-Net responsible for noise prediction. Yu et al. (2022); Fei et al. (2023) propose hyper-
network-based watermarking techniques, eliminating the need to fine-tune models for individual
users. Similarly, Kim et al. (2024) adapt Stable Signature to generate the watermarked LDM decoder
weights on-the-fly which is faster than with fine-tuning.
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Table 1: Watermarking approaches, their pros and cons, and suitable use cases.

Approach Method description Pros and cons Suitable for

Post-hoc Separate watermark-
ing models from gen-
erative AI models

+ Flexible, model-agnostic, easy to
implement

+ Allows smooth improvements

− Limited in open-source scenarios

− Can be bypassed easily

Online-hosted mod-
els, APIs, protecting
content after creation

Generation-time
Out-of-model

Alters sampling or in-
ference process with-
out changing the un-
derlying model

+ Improved runtime performance

+ Easy to implement

− Easily bypassed in open-source

Scenarios for which
the generation speed
matters, image when
detection speed is not
important, LLM wa-
termarking

Generation-time
In-model

Embeds watermark
within generative
model’s weights

+ Better protection

+ Suitable for open-source

− Requires model modification

− Computationally expensive, hinders
security updates

Models deployed
on device or open-
sourced, requiring
strong protection

Audio. The literature on audio generation-based watermarking is also still emerging. San Roman
et al. (2025) introduce a method that embeds watermarks robust to audio tokenization. Juvela &
Wang (2023) propose a GAN-like approach where a generator and a collaborator co-train, ensuring
that watermarks appear in generated speech but not in real speech.

Text. Fewer methods exist for in-model text watermarking compared to out-of-model approaches.
Gu et al. (2023) train language models to generate watermarked text by distilling existing water-
marking methods into the model’s parameters. Xu et al. (2024) use reinforcement learning to embed
watermarks, leveraging techniques similar to instruction fine-tuning (Ouyang et al., 2022) with a
paired language model detector as the reward model.

2.4 SUMMARY OF THE PROS AND CONS

Each watermarking approach presents a trade-off between flexibility, robustness, security, and ease
of implementation.

Post-hoc watermarking, allows for the separated development of watermarking models from gen-
erative AI models, enabling continuous improvement of watermarking techniques (e.g., add secu-
rity patches against known attacks) without hindering the progress of generative model research.
Furthermore, post-hoc watermarking is model-agnostic, meaning any watermarking model can be
paired with any generative model, providing flexibility and versatility. This approach is particularly
well-suited for protecting online-hosted models and APIs. Additionally, post-hoc watermarking
enables the post-processing of watermarks before integration with generated content, allowing for
enhancements such as imperceptibility, localized watermarking (San Roman et al., 2024; Sander
et al., 2025), and tamper localization (Zhang et al., 2024) to be designed independently of content
generation, thereby strengthening the overall robustness of the watermarking scheme.

Having said that, post-hoc watermarking has its limitations particularly in open-source or open-
weights scenarios. In such cases, the watermark can sometimes be easily bypassed as simply as
by commenting out one single line of code, as exemplified by the Stable Diffusion repository1. To
mitigate this, code obfuscation techniques can be employed (Zhou et al., 2023). These methods
conceal critical model details – such as structure, parameters, and attributes – through techniques
like renaming, parameter encapsulation, and neural structure obfuscation.

1https://github.com/CompVis/stable-diffusion
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Table 2: Categorization of image, audio and text watermarking techniques from the above taxonomy. In partic-
ular, post-hoc watermarking methods are very popular, especially for image and audio, while generation-time
out-of-model is more popular for text with the branch of LLM watermarking at decoding time. In comparison,
in-model watermarking is still at an early stage.

Category Domain References

Post-hoc
Image (Van Schyndel et al., 1994; Nikolaidis & Pitas, 1998; Bas et al., 2002; Ni

et al., 2006; Cox et al., 1997; Zhu et al., 2018; Luo et al., 2020; Zhang
et al., 2019b; 2020; Yu, 2020; Ahmadi et al., 2020; Wen & Aydore, 2019;
Baluja, 2017; Wengrowski & Dana, 2019; Zhang et al., 2019a; Tancik
et al., 2020; Jing et al., 2021; Ma et al., 2022b; Jia et al., 2021; Bui et al.,
2023b;a; Huang et al., 2023b; Evennou et al., 2024; Pan et al., 2024b;
Vukotić et al., 2018; 2020; Kishore et al., 2022)

Audio (Qu et al., 2023; Pavlović et al., 2022; Liu et al., 2023b; Ren et al., 2023;
Chen et al., 2023; O’Reilly et al., 2024; San Roman et al., 2024)

Text (Brassil et al., 1995; Topkara et al., 2005; 2006c;b; Meral et al.,
2009; Winstein, 1998; Chapman et al., 2001; Bolshakov, 2004; Shirali-
Shahreza & Shirali-Shahreza, 2008; Chang & Clark, 2014; Xiang et al.,
2017; Ueoka et al., 2021; Abdelnabi & Fritz, 2021)

Generation-time
Out-of-Model

Image (Wen et al., 2023; Hong et al., 2024; Ci et al., 2024b; Lei et al., 2024;
Yu et al., 2022; Ci et al., 2024a; Rezaei et al., 2024)

Audio (Zhou et al., 2024)

Text (Venugopal et al., 2011; Kirchenbauer et al., 2023; Aaronson & Kirch-
ner, 2023; Fernandez et al., 2023a; Yoo et al., 2023b;a; Qu et al., 2024;
Christ et al., 2023; Kuditipudi et al., 2023; Huang et al., 2023a; Lee et al.,
2023; Liu et al., 2023a; Liu & Bu, 2024; Fu et al., 2024; Hou et al., 2023;
2024; Giboulot & Furon, 2024; Piet et al., 2023; Pan et al., 2024a)

Generation-time
In-Model

Image (Wu et al., 2020; Yu et al., 2021; Zhao et al., 2023; Fei et al., 2022; 2024;
Fernandez et al., 2023b; Fei et al., 2023; Kim et al., 2024; Feng et al.,
2024)

Audio (San Roman et al., 2025; Juvela & Wang, 2023)

Text (Gu et al., 2023; Xu et al., 2024)

Generation-time watermarking seamlessly integrates a watermark into AI-generated content dur-
ing its creation process. Generation-time methods are further divided into out-of-model and in-
model approaches as follows.

• Out-of-model watermarking alters the sampling or inference process without changing the un-
derlying model. This approach offers several advantages, including improved runtime perfor-
mance (which is particularly relevant for video watermarking), ease of implementation (particu-
larly for text), and better robustness or imperceptibility. Despite the advantages of this approach,
it does not provide better safety for open-sourcing code and weights than post-hoc watermark-
ing. The inference process can be easily replaced by the standard inference process, rendering the
watermark ineffective. For example, in LLM watermarking (Kirchenbauer et al., 2023; Aaron-
son & Kirchner, 2023), the watermarking technique can be replaced by a standard decoding (like
top-p sampling) if the model’s weights are released. Similarly, nothing enforces the users of any
image diffusion model to sample from it using the Tree-Ring (Wen et al., 2023) or Gaussian Shad-
ing (Yang et al., 2024) watermarking methods. For the specific case of these last two methods,
another drawback is that the watermark detection process is slow.

• In-model watermarking, on the other hand, embeds the watermark within some of the generative
model’s weights. This approach offers stronger protection against watermark removal or tamper-
ing, particularly for open-weight models. However, it comes with certain limitations. Implement-
ing in-model watermarking typically requires full or partial fine-tuning, which can be computa-
tionally expensive, time-consuming, and challenging for version control. Moreover, many meth-
ods, such as Stable Signature (Fernandez et al., 2023b), apply watermarking within the decoders
of generative models – components responsible for transforming latent or quantized representa-
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tions back into pixel or waveform space. While image model decoders are rarely fine-tuned or
altered by users, the same does not hold true in the audio domain, where vocoders are frequently
fine-tuned, open-sourced, and repurposed across various projects. As a result, embedding wa-
termarking techniques in these models may not be sufficient to ensure protection in open-source
environments, as these components can be easily swapped out for alternatives.

3 RELATED WORK ON CONTENT TRACING

Tracing the origin of digital content is a problem that is traditionally approached passively, through
copy detection or digital forensics. We provide an overview of the literature on these two approaches,
and across image, audio and text modalities, with a particular focus on AI-generated content. We
also summarize their pros and cons in Tab. 3.

3.1 DIGITAL FORENSICS (OR PASSIVE DETECTION)

More specific to the context of AI-generated content, digital forensics methods aim to detect if a
piece of content has been generated or altered by an AI model. These methods are commonly
referred to as passive detection in recent literature, as they enable identification of AI-generated
content without requiring any prior intervention or modification, such as watermarking, or pre-
registration in a database. Instead, passive detection allows for post-hoc analysis, where investiga-
tors can examine the content itself to determine whether it has been generated or manipulated by
an AI model. Most methods spot imperceptible hidden traces of generated content, such as vari-
ation in words probabilities (Mitchell et al., 2023), odd frequencies in images (Corvi et al., 2023)
or voice synthesizer artifacts (Le et al., 2023). Relying on these traces makes the detectors very
brittle to shifts in the distribution of content, and makes them fall short in effectiveness compared
to watermarking techniques (Sadasivan et al., 2023; Saberi et al., 2024). As a key example, one
state-of-the-art detection method (Wang et al., 2023b) is fooled to random chance levels simply by
compressing generated images with JPEG (Grommelt et al., 2024), because all natural images in
their training dataset were in the JPEG format. Besides, these detectors are likely to get worse as
generative models get better and as their artifacts disappear.

Image. Detection of synthetic/manipulated images has a long history (Farid, 2009; Barni et al.,
2023). It is now very active in the context of deep-fake detection (Guarnera et al., 2020; Zhao
et al., 2021). Many works focus on the detection of GAN-generated images (Chai et al., 2020;
Gragnaniello et al., 2021; Wang et al., 2020; Zhang et al., 2019c). One approach is to detect in-
consistencies in generated images via lights (Farid, 2022a), perspective (Farid, 2022b; Sarkar et al.,
2024), physical objects (Ma et al., 2022a) or faces (Li & Lyu, 2018; Wang et al., 2019; Boháček
& Farid, 2023). These approaches are restricted to photo-realistic images or faces, artworks not in-
tended to be physically correct are not covered. Other approaches track traces left by the generators
in the spatial (Marra et al., 2019; Yu et al., 2019) or frequency (Frank et al., 2020; Zhang et al.,
2019c) domains. There are extensions to diffusion model in recent works (Corvi et al., 2022; Sha
et al., 2022; Epstein et al., 2023) that show encouraging results.

Speech. In the forensics community, the detection of synthetic speech is traditionally done by
building features and exploiting statistical differences between fake and real. These features can
be hand-crafted from the analysis of waveforms, spectrograms or formants (Sahidullah et al.,
2015; Janicki, 2015; AlBadawy et al., 2019; Borrelli et al., 2021; Cuccovillo et al., 2024) and/or
learned (Müller et al., 2022; Barrington et al., 2023). The approach of most audio generation pa-
pers (Borsos et al., 2022; Kharitonov et al., 2023; Borsos et al., 2023; Le et al., 2023) is to train
end-to-end deep learning classifiers on what their models generate, similarly as Zhang et al. (2017);
Tak et al. (2021b;a); Jung et al. (2022). These networks primarily focus on non-vocal spectrogram
regions (Salvi et al., 2023; 2024), which explains why they are sensitive to the addition or removal
of audio artifacts.

Text. Detection of LLM-generated text is a relatively new field. Similarly to images and audio,
it either relies on hand-crafted textual features or on models trained for detection. However, con-
trary to images and audio, the former approach is more popular since training and running LLMs is
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computationally expensive and cumbersome. The features are for instance based on n-gram analy-
sis (Yang et al., 2023), on the probability and rank of the observed tokens (Gehrmann et al., 2019;
Ippolito et al., 2019), on the perplexity of the text observed by the LLM under scrutiny or a surrogate
model (Vasilatos et al., 2023; Wang et al., 2023a), on several of them (Hans et al., 2024), or on its
curvature (Mitchell et al., 2023). The other class of methods trains classifiers (Bhattacharjee et al.,
2024) or other language models, often by fine-tuning the model to detect itself (Solaiman et al.,
2019; Zellers et al., 2019). Similarly to images and audios, these detection methods are often brittle
to shifts in the text distribution and not very reliable (Sadasivan et al., 2023).

3.2 FINGERPRINTING AND RETRIEVAL (OR COPY DETECTION)

Fingerprinting involves creating a unique identifier for a piece of digital content, called hash or
fingerprint in reference to the uniqueness of human fingerprints. This fingerprint can then be used
to identify the content even if it has been modified or compressed, but does not allow to reconstruct
the original content. Copy detection, on the other hand, involves comparing two pieces of digital
content to determine if they are identical or similar. This is often done using indexing algorithms
that store the fingerprints of all the content in a database, and then compare the hash of the queried
content to the hashes in the database to determine if it is a copy.

These hashes are vector representations that can be binary or real-valued (∈ {0, 1}k or Rk).
They were traditionally hand-crafted with color histograms, GIST descriptors, constellation maps,
etc. (Swain & Ballard, 1991; Oliva & Torralba, 2001; Wang et al., 2003; Perronnin et al., 2010),
but are now usually generated from self-supervised feature extractors (Chen et al., 2020; Oquab
et al., 2024; Devlin et al., 2018; Hsu et al., 2021; Raffel et al., 2020). The feature extractors are not
perfectly robust to content modifications. In other words, the hashes are not perfectly invariant to
transformations, e.g., an audio and its ×1.25 speed-up version may have different ones. Besides,
storing the hashes is cumbersome and reverse search, i.e., finding the content that has a given hash,
must be approximate to be tractable at scale. Therefore, the hashes are often stored using methods
like locality-sensitive hashing (LSH) (Charikar, 2002; Datar et al., 2004) or product quantization
(PQ) (Jegou et al., 2010). These indexing structures have a dual role of compressing the hashes and
enabling fast approximate search. See FAISS (Douze et al., 2024) for a review and efficient imple-
mentations of these algorithms. The two above factors result in errors especially in an adversarial
setting (Douze et al., 2021; Papakipos et al., 2022; Wang et al., 2022). More recently Active index-
ing (Fernandez et al., 2023c) aims to reduce these errors by actively modifying images before their
release, in a similar way to watermarking, Krishna et al. (2023) demonstrate the use of retrieval in
the context of AI-generated text and Défossez et al. (2024) in the context of a speech LLM produc-
tion environment. Another downside is the need of storing the hashes in a database, which makes it
harder to share and impossible for open content moderation systems.

3.3 CRYPTOGRAPHIC METADATA

In the context of origin tracing, cryptographic metadata is digital information associated with a
piece of content to provide evidence of its authenticity and/or provenance. The Coalition for Con-
tent Provenance and Authenticity (C2PA) and the International Press Telecommunications Council
(IPTC) have recently proposed two standards. The upside is that forging fake cryptographic signa-
tures is extremely hard, however the metadata are often removed during re-uploads or screenshots.
For instance, a study by Imatag (2018) shows that only 3% of images on the internet come with
copyright metadata. It is therefore particularly suited for authenticating real content, for which the
creators want the content to be traced back to them, but less for tracing origin of AI-generated con-
tent in the wild. Besides, they are more a subject of standardization bodies than research, because
all actors of the content production chain must adhere to the same protocol for it to be effective.

This metadata includes various types of cryptographic information, such as timestamps, used to
record the date and time when the content was created or modified, or provenance information
about the origin of the content like its creator. All this information is encrypted with a private key,
using algorithms like RSA (Rivest et al., 1978) or ECDSA (Johnson et al., 2001), which makes it
impossible to forge without the private key but possible to verify with the public key. It can also
include content bindings, used to check the authenticity of the content and ensure that it has not been
tampered with. They are encrypted hash values representing the content which are attached to it as a
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Table 3: Content tracing approaches and their properties with respect to flexibility, robustness, and security.

Approach Flexibility Robustness Security

Passive detection High (works on any content
without prior preparation)

Medium (vulnerable to distri-
bution shifts and model im-
provements)

Medium (cannot be trivially
bypassed but detectors may be-
come obsolete)

Fingerprinting Medium (requires storing in
database, hard to scale)

Medium (somewhat robust to
modifications)

Low (privacy concerns with
centralized databases)

Metadata Medium (still requires adher-
ence to standards)

Low (metadata easily removed
during sharing)

High (cryptographically se-
cure)

Visible WM High (easy to apply to any con-
tent)

Low (easily removed or tam-
pered with)

Low (vulnerable to removal)

In
vi

si
bl

e
W

M

Post-hoc High (can be applied after gen-
eration)

High (but can be still be re-
moved by strong attackers)

Medium (can be bypassed if
open-sourced)

Generation time
Out-of-model

Medium (requires special en-
coder/decoder)

High (but can be still be re-
moved by strong attackers)

Medium (can be bypassed if
open-sourced)

Generation time
In-model

Low (needs training the gener-
ative model specifically)

High (but can be still be re-
moved by strong attackers)

High (tied to the model’s
weights)

digital signature. The bindings are categorized into two types. Hard bindings (a.k.a., , cryptographic
bindings), are computed directly from the raw bits of the content and can be used to ensure that the
manifest belongs with the asset and that the asset has not been modified. Soft bindings, on the other
hand, are computed from the digital content of an asset (as in fingerprinting) and can be used to
identify derived assets (C2PA, 2024).

3.4 VISIBLE WATERMARKING

Visible watermarks are straightforward and widely recognized. However, in addition to degrading
the quality of the content, they are also easy to remove or tamper with, making them less reliable.
For instance, a visible watermark on the left side of an image can be removed by cropping the image
or through inpainting techniques (Dekel et al., 2017). Invisible watermarks (the focus of the paper)
are imperceptibility embedded within the content itself. It makes them riskier to remove because
there is no certainty that it has been removed without access to the watermark detector or extractor.

4 CONCLUSION

This paper proposes a taxonomy of watermarking methods for generative AI, categorizing them into
post-hoc watermarking (adding watermarks after generation), out-of-model watermarking (embed-
ding during generation), and in-model watermarking (integrating into model parameters). Each ap-
proach presents trade-offs between flexibility, robustness, security, and implementation complexity.
Our discussion also highlights alternative methods like digital forensics and fingerprinting, which
complement watermarking techniques but have their own limitations. This taxonomy spans image,
audio, and text domains, providing a structured overview of existing techniques. It helps stakehold-
ers understand that no single method is universally superior, as each approach’s suitability depends
on specific use cases and requirements. These methods can be viewed as complementary tools for
addressing various challenges in AI-generated content protection.

While this taxonomy provides distinctions not present in previous work and helps understand trends
in the literature, it still has limitations. In particular, the distinction between in-model and out-
of-model watermarking does not fully capture the fundamental similarities between methods that
operate at the signal level versus those that manipulate high-level semantic features. For instance,
watermarking approaches from Zhou et al. (2024); Juvela & Wang (2023); San Roman et al. (2025)
share underlying principles in how they modify signal-level attributes, despite being categorized dif-
ferently in our taxonomy. Future work could refine this categorization to better distinguish between
methods that apply watermarks through low-level signal manipulation versus those that meaning-
fully alter the output distribution along semantic dimensions.
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Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dialogue. arXiv preprint
arXiv:2410.00037, 2024.

Tali Dekel, Michael Rubinstein, Ce Liu, and William T Freeman. On the effectiveness of visible watermarks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2146–2154, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

11

https://c2pa.org/specifications/


Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025
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Matthew Sharifi, Marco Tagliasacchi, and Neil Zeghidour. Speak, read and prompt: High-fidelity text-
to-speech with minimal supervision. ArXiv, abs/2302.03540, 2023.

Changhoon Kim, Kyle Min, Maitreya Patel, Sheng Cheng, and Yezhou Yang. Wouaf: Weight modulation
for user attribution and fingerprinting in text-to-image diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8974–8983, 2024.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A watermark
for large language models. arXiv preprint arXiv:2301.10226, 2023.

Darko Kirovski and Hagai Attias. Audio watermark robustness to desynchronization via beat detection. In
Fabien A. P. Petitcolas (ed.), Information Hiding, pp. 160–176, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg. ISBN 978-3-540-36415-3.

Darko Kirovski and Henrique S. Malvar. Spread-spectrum watermarking of audio signals. IEEE Trans. Sig-
nal Process., 51(4):1020–1033, 2003. doi: 10.1109/TSP.2003.809384. URL https://doi.org/10.
1109/TSP.2003.809384.

Varsha Kishore, Xiangyu Chen, Yan Wang, Boyi Li, and Kilian Q Weinberger. Fixed neural network steganog-
raphy: Train the images, not the network. In International Conference on Learning Representations, 2022.

Kate Knibbs. Scammy ai-generated book rewrites are flooding amazon, 2024. URL https://www.wired.
com/story/scammy-ai-generated-books-flooding-amazon/. Accessed on Jul. 29, 2024.

Yehao Kong and Jiliang Zhang. Adversarial audio: A new information hiding method. In INTERSPEECH, pp.
2287–2291, 2020.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing evades de-
tectors of ai-generated text, but retrieval is an effective defense. Advances in Neural Information Processing
Systems, 36:27469–27500, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free watermarks
for language models. arXiv preprint arXiv:2307.15593, 2023.

Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson, Vimal
Manohar, Yossi Adi, Jay Mahadeokar, et al. Voicebox: Text-guided multilingual universal speech generation
at scale. arXiv preprint arXiv:2306.15687, 2023.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. Who wrote this code? watermarking for code generation. arXiv preprint arXiv:2305.15060, 2023.

Liangqi Lei, Keke Gai, Jing Yu, and Liehuang Zhu. Diffusetrace: A transparent and flexible watermarking
scheme for latent diffusion model. arXiv preprint arXiv:2405.02696, 2024.

Yuezun Li and Siwei Lyu. Exposing deepfake videos by detecting face warping artifacts. arXiv preprint
arXiv:1811.00656, 2018.

Zhen Li, Kim-Hui Yap, and Bai-Ying Lei. A new blind robust image watermarking scheme in svd-dct composite
domain. In ICIP, 2011.

Wen-Nung Lie and Li-Chun Chang. Robust and high-quality time-domain audio watermarking based on low-
frequency amplitude modification. IEEE Trans. Multim., 8(1):46–59, 2006. doi: 10.1109/TMM.2005.
861292. URL https://doi.org/10.1109/TMM.2005.861292.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust watermark for large
language models. arXiv preprint arXiv:2310.06356, 2023a.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui Xiong, and
Philip Yu. A survey of text watermarking in the era of large language models. ACM Computing Surveys, 57
(2):1–36, 2024.

14

https://doi.org/10.1109/TASL.2009.2019259
https://doi.org/10.1109/TASL.2009.2019259
https://doi.org/10.1109/TSP.2003.809384
https://doi.org/10.1109/TSP.2003.809384
https://www.wired.com/story/scammy-ai-generated-books-flooding-amazon/
https://www.wired.com/story/scammy-ai-generated-books-flooding-amazon/
https://doi.org/10.1109/TMM.2005.861292


Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Chang Liu, Jie Zhang, Han Fang, Zehua Ma, Weiming Zhang, and Nenghai Yu. Dear: A deep learning-based
audio re-recording resilient watermarking. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.),
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp. 13201–13209. AAAI
Press, 2023b. doi: 10.1609/aaai.v37i11.26550.

Yepeng Liu and Yuheng Bu. Adaptive text watermark for large language models. arXiv preprint
arXiv:2401.13927, 2024.

Zhenghui Liu, Yuankun Huang, and Jiwu Huang. Patchwork-based audio watermarking robust against de-
synchronization and recapturing attacks. IEEE Trans. Inf. Forensics Secur., 14(5):1171–1180, 2019. doi:
10.1109/TIFS.2018.2871748. URL https://doi.org/10.1109/TIFS.2018.2871748.

Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and Peyman Milanfar. Distortion agnostic deep water-
marking. In CVPR, 2020.

Jingwei Ma, Lucy Chai, Minyoung Huh, Tongzhou Wang, Ser-Nam Lim, Phillip Isola, and Antonio Torralba.
Totems: Physical objects for verifying visual integrity. In European Conference on Computer Vision, pp.
164–180. Springer, 2022a.

Rui Ma, Mengxi Guo, Yi Hou, Fan Yang, Yuan Li, Huizhu Jia, and Xiaodong Xie. Towards blind watermark-
ing: Combining invertible and non-invertible mechanisms. In Proceedings of the 30th ACM International
Conference on Multimedia, pp. 1532–1542, 2022b.

Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni Poggi. Do gans leave artificial finger-
prints? In 2019 IEEE conference on multimedia information processing and retrieval (MIPR), pp. 506–511.
IEEE, 2019.
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