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Discovering Genetic Modulators of the Protein
Homeostasis System through Multilevel Analysis
Vishal Sarsania,∗, Berent Aldikactib,∗, Tingting Zhaoc,d, Shai Hea, Peter Chienb, and Patrick Flahertya,#

Every protein progresses through a natural lifecycle from birth to maturation to death; this
process is coordinated by the protein homeostasis system. Environmental or physiological
conditions trigger pathways that maintain the homeostasis of the proteome. An open question
is how these pathways are modulated to respond to the many stresses that an organism
encounters during its lifetime. To address this question, we tested how the fitness landscape
changes in response to environmental and genetic perturbations using directed and massively
parallel transposon mutagenesis in Caulobacter crescentus. We developed a general
computational pipeline for the analysis of gene-by-environment interactions in transposon
mutagenesis experiments. This pipeline uses a combination of general linear models (GLMs),
statistical knockoffs, and a nonparametric Bayesian statistical model to identify essential
genetic network components that are shared across environmental perturbations. This
analysis allows us to quantify the similarity of proteotoxic environmental perturbations
from the perspective of the fitness landscape. We find that essential genes vary more
by genetic background than by environmental conditions, with limited overlap among mutant
strains targeting different facets of the protein homeostasis system. We also identified
146 unique fitness determinants across different strains, with 19 genes common to at least
two strains, showing varying resilience to proteotoxic stresses. Experiments exposing
cells to a combination of genetic perturbations and dual environmental stressors show that
perturbations that are quantitatively dissimilar from the perspective of the fitness landscape
are likely to have a synergistic effect on the growth defect.

proteotoxic stress | transposon mutagenesis | fitness | conditionally essential networks

Protein homeostasis is the maintenance of the balance of protein synthesis,
protein folding, trafficking, and degradation within a cell. The protein quality control
system primarily contains a collection of chaperones and proteases that maintain
the homeostatic balance of folding and degradation. Changes in environment, age,
or stress can cause imbalances in the healthy proteome. Dysfunction in proteome
homeostasis impacts the onset of various metabolic, oncological, cardiovascular, and
neurodegenerative diseases (1–3). Understanding the components and pathways in
dysregulated proteostasis is critical for developing novel drug development strategies.
The proteomes in bacteria are much smaller and less complex than those of humans.
Still, most proteostasis network components, like chaperones and proteases, are
conserved during billion years of evolution (4). Notably, research on Caulobacter
crescentus underscores the dynamic roles of these networks in regulating both the
cell cycle and stress responses (5).

Large-scale genome-wide screening can link genes to phenotypes on a comprehen-
sive level. The recent decade has seen the advent of several high-throughput
technologies for gene disruption and interaction discovery in microorganisms,
enabling the functional annotation of microbial genomes and discovering intricate
biological pathways. These approaches include CRISPR-based methods for gene
knockdowns (6) and transposon-insertion sequencing (TIS), which was initially
proposed as a highly reliable and sensitive technique for detecting modifications in
mutant fitness with adequate density across all regions in a genome (7). Random
barcode transposon-site sequencing (RB-Tn-Seq) overcomes the cost and scale
of the multistep library preparations in the traditional TIS experiments (8) by
faster screening via one-step PCR barcode amplification and tracking of mutant
frequencies. Despite the advances, identifying essential genes using TIS is still
challenging due to variations in experimental parameters such as the transposon
used, experimental conditions, and library complexity (9, 10). Studying shared
patterns of essentiality across environments or understanding the conserved patterns
of essential genes across multiple conditions is critical for understanding complex
systems like protein homeostasis.
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Fig. 1. A schematic pipeline for identifying genetic modulators of protein homeostasis system in Caulobacter crescentus. A. A schematic representation of the
Caulobacter crescentus proteostasis network and some key regulators. DnaK assists proteins in folding into their functional native state. Lon and ClpAP degrade and eliminate
the unfolded and misfolded proteins. ClpB mediates the disaggregation of misfolded and aggregated proteins. B. Transposon insertion sequencing is used to investigate
the gene fitness landscape changes in response to proteotoxic stresses in the context of disruptions of protein homeostasis system components. Transposon libraries are
constructed in wild-type Caulobacter crescentus and strains deficient in specific chaperone or protease genes responsible for protein homeostasis. These libraries were
subjected to three different proteotoxic stresses (Canavanine, Heat, and Oxidative) at three different levels. C. The transposon insertion count data is corrected for batch effects,
and a regularized negative binomial GLM model is fit. Significant changes in insertion counts due to changes in stress conditions are identified with local false discovery rate
control to identify conditionally beneficial and detrimental genes. D. Genes that are important for discriminating between proteotoxic stresses in each background strain are
identified by a model-Y knockoffs procedure (12). A Bayesian nonparametric Gamma-Poisson model is used to identify commonalities and differences in the network of genes
that are important across stresses.

In this work, we propose a systematic multilevel analysis
approach to dissect the genetic modulators of protein home-
ostasis in Caulobacter crescentus. Our primary objective is
to investigate how the fitness landscape changes in response
to environmental and genetic perturbations by combining
proteotoxic stresses and functional inactivation of protein
homeostasis genes using massively parallel transposon mu-
tagenesis in Caulobacter crescentus. Sequencing is utilized
to quantify the frequency of transposon-induced mutations
and identify a set of conditionally essential, beneficial,
or detrimental genes for each environment by applying
a regularized negative binomial regression combined with
local False Discovery Rate (FDR) testing within a general
linear model (GLM) framework. While determining the
overall fitness contribution under selective depletion or
stress can be achieved through the number of conditionally
essential, beneficial, or detrimental genes, assessing the
marginal contribution of a specific gene to overall fitness
remains challenging. To address this challenge, we employ
the statistical knockoffs methodology (11, 12) to identify
important fitness determinants while controlling for the
overall false discovery rate. Finally, we apply a nonparametric
Bayesian model (13) to understand the associations among
a strain’s most predictive fitness determinants. The utility
of our analysis is highlighted by experiments that reveal
strain-specific interactions between proteotoxic stresses, using
growth curves to probe the adaptability of the protein
homeostasis network.

Results

Genome-wide analysis of conditional essentiality. We focused
on proteotoxic stresses and those genes responsible for
maintaining protein homeostasis as major players in this
stress response are well characterized. Heat stress causes
general protein misfolding and thermal denaturation (14),
hydrogen peroxide induced oxidative stress modifies ligands
and proteins to induce protein misfolding (15), and as an
uncharged analog of arginine, canavanine causes protein
misfolding upon incorporation into translated polypeptides
(16). Proteases responsible for degradation of misfolded
proteins (17, 18) and unfoldases that rescue aggregated
proteins (ClpB (19) and ClpA) were targeted for deletion in
this current study. Chaperones play a crucial role in folding
proteins en route to the native state and are upregulated
upon proteotoxic stress. Because the Hsp70 chaperone DnaK
is essential in Caulobacter (20), we took advantage of a non-
stress inducible (dnaK-NI) variant to generate sufficient DnaK
protein for viability, but this construct is incapable of normal
stress induced upregulation.

Our genome-wide profiling reveals higher median unique
insertion counts across all genes in wild-type and ∆lon
strains compared to ∆clpA, ∆clpB, and dnaKJ-NI (SI
Appendix, Fig. S2-S3, Table. S2). To analyze gene
dependency in the system, we assess the proportion of
essential genes under varying stress conditions within different
strains. Figure 2A shows a tabulation of the counts of genes
that are conditionally essential, beneficial, or detrimental for
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each gene-by-environment condition. These counts, adjusted
relative to each strain’s genetic background, isolate the
effects of environmental perturbations and align with the
generalized linear model structure employed in our analysis.
The dnaKJ-NI strain exhibits a higher average number
of conditionally essential genes across all environmental
perturbations compared to all other strains. In contrast,
the wild-type strain shows the lowest average number of
such genes. This suggests that the dnaKJ-NI strain may be
more sensitive to environmental changes, requiring a greater
number of essential genes for survival, while the wild-type
strain appears to be more robust, relying on fewer essential
genes. The combination of ∆lon and high oxidative stress led
to the most significant changes in the count of conditionally
essential genes, highlighting the heightened sensitivity of
the protein homeostasis system in the ∆lon background
to oxidative stress. We also observed that a gene may be
conditionally beneficial under a particular condition but may
change its essentiality under a different proteotoxic stress
or stress level (SI Appendix, Fig. S4-S10). In Figure 2B,
we assess the degree of overlap in essential genes between
various gene-by-environment conditions. Interestingly, within
each strain background, environmental perturbations show
a high degree of overlap (SI Appendix, Fig. S10-S12). This
suggests that genetic background has a stronger influence on
the essential gene profile than the environmental conditions
themselves. Notably, the highest degree of overlap was
observed between the ∆clpA and wild-type strains, while
the other strains exhibited minimal overlap. Recall that
our genetic perturbations were designed to target different
facets of the protein homeostasis system (see Figure 1).
Therefore, these results suggest the involvement of a unique
set of proteins specific to different aspects of the protein
homeostasis system.

Identification of perturbation predictors in the protein home-
ostasis system. Using the Model-Y knockoff framework (12),
we identified sets of perturbation predictors for each strain:
20 genes in wild-type, 33 in ∆lon, 39 in ∆clpA, 44 in
∆clpB, and 38 in dnaKJ-NI, totaling 146 unique genes
(Figure 3, SI Appendix, Fig. S13-S17, Table S3-4). Of
these, 19 genes (excluding CCNA 00375) were common
across at least two strains. Among the genes without prior
functional characterization, the predicted acetyltransferase
CCNA 02154 was found to be a consistent predictor across
all strains. Its specific sensitivity to canavanine stress,
without substantial impact on heat or oxidative stresses,
suggests a role for this enzyme in specifically blocking
the toxic effect of canavanine, likely by modifying this
unnatural amino acid (SI Appendix, Fig. S18). Similarly,
CCNA 03861 was identified as a significant gene in ∆clpA,
∆clpB, and dnaKJ-NI, potentially involved in pyridoxal
phosphate homeostasis. Considering genes with known
functions, as expected, ClpB (CCNA 00922) was identified
as a perturbation predictor in multiple strains. Additionally,
the catalase KatG (CCNA 03138), which plays a role in
the hydrogen peroxide detoxification process, and OxyR
(CCNA 03811), a transcription factor known to be important
for the oxidative stress response, were also identified as key
perturbation predictor in several strains. Across strains,
the fitness values of these predictors remained consistent
under proteotoxic stresses, including Heat, Oxidative, and

Canavanine. However, differences were observed based on the
stress severity. When homeostasis components were deleted,
these predictors demonstrated resilience to stress conditions,
with some still showing sensitivity to stress levels.

Predicting in vivo growth in combinatorial perturbations from
single perturbation transposon insertion sequencing data..
Given transposon insertion sequencing data from a single
environmental perturbation, we asked whether it is possible
to predict the effect of multiple perturbations on growth
rate. Double perturbations have the potential to overwhelm
the compensatory mechanisms in the protein homeostasis
system. Our hypothesis was that perturbations that have
highly differentiated conditionally essential profiles will yield
a synergistic effect on the inhibition of growth.

To quantify the distance between two conditionally es-
sential profiles, we used Earth Mover’s Distance (EMD)
between both total and unique insertion count distributions
of genes identified by the GLM framework. In the ∆clpB
strain, the EMD between heat and oxidative stress levels for
both total and unique counts are notably consistent and low
(Figures 4(A-B),SI Appendix, Fig. S19, Table. S5 ). This
suggests that a combination of heat and oxidative stress will
have a limited or perhaps additive effect on growth in cells
lacking the ClpB disaggregase. In contrast, the EMD between
heat and high oxidative stress in the ∆clpA is high in both
total and unique count data, suggesting that the effect of
the combination of the stresses on growth is synergistic if
the hypothesis is true. Likewise, the EMD between heat and
high oxidative stress in the wild-type background is high in
unique count data but moderate in total count data. We
sought to validate these predictions using individual growth
curve measurements in gene-by-environment perturbations
with double environmental stress conditions.

We subjected wild-type, ∆clpA, and ∆clpB strains to
heat shock and subsequent exposures to varying hydrogen
peroxide concentrations using optical density (OD 600) to
measure cell density during a 24-hour growth period. As
illustrated in Figures 4(C-E), the wild-type strain tolerates
low heat and moderate oxidative stress well on its own,
but combining low heat with high oxidative stress results
in a substantial fitness defect compared to these stresses
in isolation. Similarly, the ∆clpA strain shows synergistic
declines in growth with low heat and high oxidative stress,
although, for this strain, it is even more striking as individual
low heat stress treatment improves growth, as we reported
previously (21). By contrast, the ∆clpB strain consistently
demonstrates a lack of synergistic growth defects when
combined with heat and oxidative stress, supporting the
predictions drawn from the analysis of the single-perturbation
TIS data.

Conditionally essential components shared among the pro-
teotoxic stresses. We hypothesized that some clusters of con-
ditionally essential genes could be shared across proteotoxic
stress conditions within each genetic background. These co-
essential clusters may lead to insights into the underlying
structure of the protein homeostasis system. To identify these
clusters, we fit a nonparametric Bayesian model based on a
Gamma-Poisson model analogous to topic models like Latent
Dirichlet Allocation (22, 23). The posterior distribution
of the latent variables H and θijk captures the clusters of
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Fig. 2. Genome-wide essentiality profiling in Caulobacter crescentus. A. Each portion inside a single bar represents the number of conditionally beneficial, detrimental,
and essential components across various protein homeostasis components subjected to proteotoxic stresses of different levels. The ∆lon strain has a large number of
conditionally essential genes in high oxidative stress compared to high canavanine, indicating that the homeostasis system is significantly sensitized to that proteotoxic stress.
B. The pair-wise overlap of essentiality profiles between stress conditions. A larger overlap of essentiality profiles is seen in wild type and dnaKJ-NI compared to strains
deficient in ClpA, Lon, or ClpB.

essential genes and their relevance in each stress condition,
respectively. In the wild-type (WT) strain, our findings
show that the heat stress perturbations are characterized
by the essentiality of CCNA 00922 and CCNA 00001, and
the oxidative stress perturbations are characterized by the
essentiality of CCNA 03811, CCNA 03138, CCNA 02646,
and CCNA 00375 (SI Appendix, Fig. S20). On the other
hand, CCNA 00708 is essential to all three stress conditions
for the dnaKJ − NI strain, but CCNA 03811, CCNA 00293,
and CCNA 00292 are essential only in oxidative stress
conditions (SI Appendix, Fig. S21). Results for the remaining
genetic perturbations are shown in SI Appendix, Fig. S22-24.
This model-based representation of the TIS data enables
a more thorough investigation of the overall changes in
the pattern of essential genes induced by different stress
conditions.

Discussion

Understanding how bacteria handle stress is critical for devel-
oping novel antibacterial therapeutics and for understanding
the fundamental mechanisms of robust and evolutionarily
conserved systems. Our study examines the determinants
of growth under combinations of genetic and environmental
perturbations to the protein homeostasis system to better
understand synergistic interactions in the system. A genome-
wide analysis of perturbation growth data revealed a low
amount of overlap among sets of essential genes across mutant
strains with functional deletions targeting diverse aspects
of the protein homeostasis system. In contrast, there is a
high amount of overlap among sets of essential genes across

environmental perturbations within each genetic background.
A statistical knockoff strategy revealed important fitness
determinants within each deletion strain. The earth-mover
distance between sets of conditionally essential genes for single
environmental perturbations was predictive of growth defect
under combinations of environmental perturbations. Finally,
a nonparametric hierarchical Bayesian model enabled the
representation of a large amount of TIS data into clusters, or
networks, of conditionally essential genes and the attribution
of each stress response to a combination of those networks.

Supporting Information Appendix (SI). The appendix is avail-
able online.

Materials and Methods

Figure 1 offers an overview of both the experimental and
computational approaches employed to investigate the protein
homeostasis system in Caulobacter crescentus.

Experimental methods. A schematic representation of experimental
data is shown in the SI Appendix, Fig. S1. Transposon mutagenesis
libraries used in this study were generated as previously described
(24). Briefly, E. coli cells containing randomly barcoded Tn5
plasmids (APA766, gift from Deutschbauer lab) are conjugated
with wild-type (wt), ∆lon, ∆clpA, ∆lon, ∆clpB, and dnaKJ-NI
(a non heat-inducible allele of dnaKJ) Caulobacter crescentus
cells separately. E.coli donors are kanamycin-resistant and
diaminopimelate (DAP) auxotrophs, requiring it to grow in the
media. For conjugation, E. coli donor cells and Caulobacter
strains were mixed at a 1:10 ratio overnight on a PYE agar plate
supplemented with DAP (300 µM). The next day, the conjugate
was scraped, resuspended, and spread over 14 large (150 x 15 mm)
PYE agar plates supplemented with kanamycin (25µg/ml) without
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Fig. 3. Proteotoxic stress predictors. The
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Fig. 4. In-vivo Validation of Stress-Induced Fitness Effects. Using tnseq data, we assess the fitness variations under low heat and oxidative peroxide stress in WT, ∆clpA,
and ∆clpB strains. Differences are quantified using EMD (Earth Mover’s Distance) based on both total (A) and unique(B) insertion counts. Bubble size corresponds to the
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DAP per strain. In this culture, the donor cells will not survive
due to no DAP, and acceptor Caulobacter cells will be selected
for the Tn5 plasmid due to kanamycin selection. After 5 days of
growth, the colonies were scraped, pooled, and frozen in PYE +
10% glycerol in 1 ml aliquots. For stress condition experiments, 1

aliquot per replicate per strain was thawed in 3.5 ml of PYE or
PYE+0.2% xylose and recovered overnight in a 30◦C shaker. For
all dnaKJ-NI experiments, cells were recovered at saturating xylose
concentrations (PYE+ 0.2% xylose), and the stress experiments
were done at minimal xylose concentrations. (PYE+0.002%) All
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conditions were performed in quadruplicates, and optical density
(OD) measurements were taken at 600nm. Experiments were done
in multiple batches.

Control environment. Libraries were back diluted to OD 0.008
into 7 ml of PYE or PYE+0.002% xylose and grown overnight
until they reached saturation at OD ∼1.6.

Heat stress. Libraries diluted to OD of 1 and heat-stressed at
low, medium, or high (37, 42, 43.8◦C, respectively) for 45 minutes
in a Biorad Thermocycler. After 45 minutes, cells diluted back to
a final OD of 0.008 in 7 ml media for 24-hour growth.

Oxidative stress. Libraries were directly diluted back to OD of
0.008 in 7 ml media that contains low, medium, or high (0.025mM,
0.05mM, 0.1mM) level hydrogen peroxide. Cells were grown for 24
hours in these chronic stress conditions.

Canavanine stress. Libraries were directly diluted back to OD of
0.008 in 7 ml media that contains low, medium, or high (25ug/ml,
50ug/ml, 100ug/ml) levels of L-canavanine. Cells were grown for
24 hours in these chronic stress conditions.

Library preparation. Following overnight growth, 1 ml of satu-
rated culture from each Tn library was pelleted at 8000xg for 2
minutes. Genomic DNA was extracted by Monarch Genomics DNA
Preparation Kit (NEB) according to the manufacturer’s protocol.
Sequencing libraries were prepared for Next-generation sequencing
via a custom three-step PCR protocol. Indexed libraries were
pooled and sequenced on a NextSeq 500 device (Illumina) in the
University of Massachusetts Amherst Genomics Core Facility.

Computational methods. For more detailed descriptions of the com-
putational methods, please refer to the SI Appendix, Supporting
Text 1.1-1.7.

Read mapping and preprocessing. Mapping and preprocessing
of the TIS raw data was done as described previously with
some modifications (25). Samples were de-multiplexed, and
unique molecular identifiers (UMIs) were added during PCR steps
removed using Je (26). The clipped reads were mapped to the
Caulobacter crescentus NA1000 genome (NCBI Reference Sequence:
NC011916.1) using bwa and sorted with samtools (27, 28). Dupli-
cate transposon reads removed by Je and indexed with samtools.
Genome positions are assigned to the 5′ position of transposon
insertions using bedtools genomecov (29). Subsequently, the
bedtools map is used to count either the total number of
transposon insertions per gene using the bedtools map -o sum
argument or the unique number of insertions using the bedtools
map -o count argument.

Batch correction. We apply ComBat-seq (30) to estimate batch
effects and perform library size correction. The unique insertion
count data from the transposon insertion sequencing data is used
as a response, and the adjusted data, which is integer-valued, is
obtained by mapping the quantiles of the empirical distributions
of data to the batch-free distributions.

Classification of fitness effects. Based on the unique insertion
counts, the genes are classified as essential, conditionally essential,
conditionally beneficial, conditionally detrimental, or conditionally
neutral as described previously (21) except median counts were
used to increase robustness to outlying values.

Generalized linear model with local false discovery control. We
fit a regularized negative binomial regression model to unique
counts to estimate the environmental and genetic fitness effects
as done previously (21). We define a regression model for each
gene or locus tag in the Caulobacter crescentus NA1000 genome.
Let the batch-effect adjusted unique insertion count value for gene
locus l, condition i, and replicate j be denoted yijl. We assume
that yijl follows a negative binomial distribution NB(µil, ϕil)
independently for each l. The condition indexed by i is equivalent to
the combination of the genetic background, g ∈ G; the proteotoxic
stress, e ∈ E; and stress level, s ∈ S. The model for transposon
insertion counts of gene l across experiments is:

log µi = β0 + xgβg + xe|gβe|g + xs|e|gβs|e|g

where β0 is the logarithm of expected counts for control samples.
The vector xg is an indicator vector that selects the genetic
background associated with condition i, and the parameter βg

is the average effect of genetic background g on the log transposon
counts for gene l. The vectors xe|g and xs|e|g , and the parameters
βe|g and βs|e|g have a similar interpretation for the stress type and
stress level. The parameters for the regularized regression model
are estimated by the coordinate descent algorithm as implemented
in the glmnet package (31). Then, we used the local false discovery
rate to control the proportion of false positives in the set of called
beneficial/detrimental genes under the assumption that a majority
of the genes are non-essential (32).

EMD distance. To assess the fitness differences between the
two stress conditions in a given strain, we utilize the Earth
Mover’s Distance (EMD) to compare the median counts (both
total and insertion counts) of genes selected through the GLM
framework. EMD, also known as the Wasserstein metric, is a
measure that quantifies the amount of work required to transform
one distribution into another, taking into account both the weight
of the distribution that needs to be moved and the distance it has
to travel (33).

Fitness defect. Batch-adjusted unique insertion counts were used
to calculate the fitness values for subsequent model-Y knockoff
analysis. The fitness values for each strain are

Fitness = log2

( counts under a condition+1
counts under no stress time0 + 1

)
The normalized fitness values allow comparing the changes in
the relative abundance of each gene between different samples.
We perform a log transformation to transform count data to a
Gaussian distribution and add 1 to counts for all the genes before
the log transformation to eliminate the negative values or zero
denominators in the log function.

Data subsetting. For subsequent analysis, only conditionally
essential, conditionally beneficial, and conditionally detrimental
genes derived from the GLM framework were retained.

Statistical knockoffs. Let Xi encode the i-th
condition(proteotoxic stress/stress level) and let Yi encode
the fitness value measurement vector in response to the i-th
condition. For example, for three stress levels (heat, canavanine,
oxidative), Xi is an indicator vector for the proteotoxic stress over
different stress levels, and Yi is the r-dimensional fitness profile.
The roles of X and Y can be swapped while fitting a model to
perform response selection, making the original response variables
Y the features in the swapped model. The detailed procedure and
the key steps are described elsewhere (12).

Hierarchical Gamma-Poisson model. We analyze the data with
a nonparametric Bayesian model based on a Gamma-Poisson
hierarchy to identify shared essentiality patterns across conditions
within each genetic perturbation strain. Let yijl be the count
of unique transposon inserts in condition i, replicate j, and gene
locus l. The model learns k ∈ {1, . . . , K} clusters or networks of
genes. The hierarchical Gamma-Poisson model is illustrated as the
following:

hlk ∼ Binom (al) , for each l,

ρ0, τ ∼ Γ (ϵ0, ϵ0) ,

θ′′
k ∼ Γ (ρ0/K, τ) , for each k,

θ′
ik ∼ Γ

(
θ′′

k , 1
)

, for each (i, k),

θijk ∼ Γ
(

θ′
ik, 1
)

, for each (i, j, k),

yijl ∼ Pois

(
K∑

k=1

θijkϕlk

)
, for each (l, i, j),

[1]

The rate parameter in the Poisson model is the sum of K products,
denoted as θijk and ϕlk, where θijk is the propensity of component
K for sample j in condition i, and ϕlk = Tlhlk represents
the expected number of insertions for gene l in component k.
The model employs an L × 2 matrix, T , to allow for a gene-
specific threshold for calling a gene as essential or non-essential.

6 — Sarsani, Aldikacti et al.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.26.582154doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582154
http://creativecommons.org/licenses/by-nd/4.0/


DRAFT

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

The term “essential” here indicates a relative reduction in mean
insertion counts, signifying a positive fitness contribution. The
hyperparameter al indicates the prior probability that locus l
is essential. The common set of essential gene components or
networks is represented by H ∈ {0, 1}K×L, and the prior for H is
hlk ∼ Binom (1, al).

Estimation of T . The insertion count threshold for calling a gene
“essential” can vary from gene to gene. A Gaussian mixture model
with two components is fit to each gene to determine the values
for each row of the T matrix, which encodes the information
about expected reads for essential/non-essential genes. The batch-
adjusted unique insertion counts for all predictive genes for each
strain are passed as input to the GaussianMixture function in
the sklearn package in Python to estimate the parameters of the
model. We restrict the upper bound of the estimated mean of the
essential threshold to 10.

Model inference. The augment-and-marginalize method is used
to construct a full analytical steps Gibbs sampler (34). Details
can be found at (13, 35) and SI Appendix, Supporting Text 1.7.
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