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Abstract

Chinese essay writing and its evaluation are
critical in educational contexts, yet the capa-
bilities of Large Language Models (LLMs) in
this domain remain largely underexplored. Ex-
isting benchmarks often rely on coarse-grained
text quality metrics, largely overlooking the
structural and rhetorical complexities of Chi-
nese essays, particularly across diverse genres.
To address this gap, we propose ESSAYBENCH,
a multi-genre benchmark specifically designed
for Chinese essay writing across four major
genres: Argumentative, Narrative, Descriptive,
and Expository. We curate and refine a total
of 728 real-world prompts to ensure authentic-
ity and meticulously categorize them into the
Open-Ended and Constrained sets to capture
diverse writing scenarios. To reliably evaluate
generated essays, we develop a fine-grained,
genre-specific scoring framework that hierar-
chically aggregates scores. We further vali-
date our evaluation protocol through a com-
prehensive human agreement study. Finally,
we benchmark 15 large-sized LLMs, analyz-
ing their strengths and limitations across genres
and instruction types. With ESSAYBENCH!, we
aim to advance LLM-based Chinese essay eval-
uation and inspire future research on improving
essay generation in educational settings.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Touvron et al., 2023; Team., 2023; Team,
2023) have achieved impressive results in text
generation, with growing applications in educa-
tion, including automated writing support and feed-
back (Gao et al., 2024). Among these tasks, essay
writing plays a central role in language learning
and assessment (Venkatraman et al., 2025; Miura
et al., 2025; Wen et al., 2025). However, the lack of
robust evaluation frameworks for generated essays
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Figure 1: Comparison between coarse-grained evalua-
tion methods (a) and our fine-grained and genre-oriented
framework for ESSAYBENCH (b).

limits the development and deployment of LLMs in
real-world educational settings (Kim et al., 2025).

As shown in Figure 1, current predominant
LLM-as-a-judge strategies (Zheng et al., 2023; Li
et al., 2025) for assessing texts mainly fall into two
paradigms. One relies on meta-evaluation to judge
response quality in terms of fluency, relevancy, co-
herency, readability, and hallucination (Liu et al.,
2023; Chen et al., 2023; Hashemi et al., 2024; Fu
et al., 2024), while the other employs downstream
tasks (e.g., question-answering) as proxies for mea-
suring informational richness and accuracy (Tan
et al., 2024; Que et al., 2024; Lee et al., 2025). Al-
though these methods yield valuable insights, they
exhibit two fundamental weaknesses. First, the
evaluation criteria remain overly coarse-grained,
i.e., current LLMs consistently achieve high scores
in fluency, relevancy, and coherency (Gu et al.,
2025), making it difficult to reveal failure modes or
specific weaknesses. Second, existing evaluation
methods fail to capture the unique characteristics



Dataset Composition Evaluation Method

Benchmark Num. . . . .

Domain Language Constraints | LLM FE.G. Traits  Scoring
C-Eval (Huang et al., 2023) 13,948 | General Tasks ZH X X X -
AlignBench (Liu et al., 2024b) 683 General Tasks ZH X v X Direct
LongBench-Write (Bai et al., 2024) 120 | General Writing ZH&EN X v X Direct
HelloBench (Que et al., 2024) 647 General Tasks EN X v X Weighted
WritingBench (Wu et al., 2025) 1239 | General Writing ZH&EN v v X Direct
ESSAYBENCH (Ours) 728 ‘ Essay Writing ZH v v v Weighted

Table 1: Comparison of ESSAYBENCH with other benchmarks in terms of size, composition, and evaluations.

of essays like logographic characters, complex con-
structions, and rhetorical traditions, although sev-
eral benchmarks like AlignBench (Liu et al., 2024b)
and WritingBench (Wu et al., 2025) have turned
attention to evaluating general Chinese writing.

Moreover, Chinese literary and expository prac-
tices differ markedly across genres: argumenta-
tive essays demand logical structure and persua-
sive rhetoric (Wachsmuth et al., 2017); narratives
require compelling plot development and charac-
ter voice (Somasundaran et al., 2018); descrip-
tive writings emphasize vivid imagery and sen-
sory detail (McCarthy, 1998); and expository pas-
sages call for clarity, organization and factual preci-
sion (Balepur et al., 2023). However, existing eval-
uation frameworks largely overlook genre-specific
criteria, limiting their ability to reflect the nuanced
demands of Chinese essay writing. This motivates
our central research question as follows:

How can we reliably assess the quality of LLM-
generated Chinese essays in ways that truly
reflect genre-specific conventions?

In this paper, we introduce ESSAYBENCH, a fine-
grained and multi-genre benchmark tailored for
Chinese essay writing. ESSAYBENCH covers four
widely recognized genres in Chinese education:
Argumentative, Narrative, Descriptive, and Exposi-
tory writing. To ensure alignment with real-world
educational scenarios, we collect and manually re-
fine a total of 728 essay prompts. These prompts
are further categorized into two types based on their
instruction style: Open-Ended and Constrained, al-
lowing us to examine LLMs’ behavior under differ-
ent writing conditions, as introduced in Section 2.
Additionally, to overcome the limitations of exist-
ing evaluation methods for Chinese essay writing,
we propose a fine-grained and genre-oriented eval-
uation framework, as shown in Figure 1. We define

multiple evaluation traits with hierarchical depen-
dencies based on their complexity, ranging from ba-
sic to advanced requirements for each essay genre.
For each trait, we design targeted sub-questions that
reflect genre-specific writing expectations at differ-
ent levels. To account for the hierarchical nature
of these traits, we further introduce a dependency-
weighted score aggregation strategy to better cap-
ture the writing quality, as introduced in Section 3.

We conduct two key experiments to validate the
proposed framework. First, to assess its effective-
ness and robustness, we perform a comprehensive
human agreement study and a quality sensitivity
analysis. The results demonstrate that our eval-
uation protocol aligns closely with human judg-
ments, especially when applied to more advanced
LLMs. More importantly, it significantly improves
the ability to distinguish essay quality across high-,
medium-, and low-level responses (See Section 4).
Second, we benchmark 15 large-scale LLMs on
the Chinese essay writing using our framework, of-
fering detailed comparisons of their capabilities in
writing Chinese essays (See Section 5).

In Table 1, we highlight the key differences be-
tween our work and existing approaches. In sum-
mary, our main contributions are as follows:

* We present ESSAYBENCH, a multi-genre bench-
mark tailored for Chinese essay writing, cover-
ing Argumentative, Narrative, Descriptive, and
Expository genres. The benchmark is curated
from real-world scenarios and is suitable for
practical use in educational applications.

* We propose an effective and robust evaluation
protocol for Chinese essays that aligns closely
with human judgments and greatly improves the
ability to distinguish essays of varying quality.

* We benchmark 15 widely used large-scale LLMs
to evaluate their strengths and weaknesses in
Chinese essay writing, and highlight areas for
future improvement.
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Figure 2: Overview of the ESSAYBENCH dataset curation, representative prompts, and the evaluation framework.

2 ESSAYBENCH Dataset

ESSAYBENCH originally contributes to develop-
ing the datasets specifically tailored for Chinese
Essay Writing. While prior benchmarks (Wu et al.,
2025) have largely provided queries on creative
writing tasks in general domains, they do not ad-
equately capture the structure, purpose, and con-
straints of formal essays, particularly within educa-
tional and academic contexts. To effectively bench-
mark the essay generation abilities, ESSAYBENCH
introduces a comprehensive set of essay prompts
that span four major and widely recognized genres
in Chinese writing instruction (Chadbourne, 1983):
Argumentative, Narrative, Descriptive, and Expos-
itory essays, which cover the majority of Chinese
prose compositions in educational settings. Fur-
thermore, to support comprehensive evaluation, we
categorize prompts into two distinct sets based on
their multiple constraints. In this section, we de-
scribe the essay prompt construction process in
detail, including data collection and quality control,
and the two-phase query categorization procedures.

2.1 Prompt Collection

As shown in Figure 2, to reflect real-world usage
and align with educational settings, we choose to
collect prompts from practical and authentic re-
sources. Specifically, we collect data from two pri-
mary resources, namely 1) real-world user queries
obtained through online chatbot interactions, re-

flecting informal and user-generated prompts in tu-
toring or self-study contexts. 2) educational exami-
nation materials, including official Chinese essay
prompts, represent standardized and curriculum-
aligned writing tasks used in formal assessments.

2.2 Prompt Filtering

Building on the collected prompts from these two
sources, we construct a broad candidate pool con-
taining several thousand raw entries. To ensure the
quality and representativeness of the datasets, we
implement a multi-step filtering pipeline. First, we
apply heuristic-based rules to remove irrelevant and
low-quality prompts. We then employ clustering
methods (e.g., K-means (Hastie et al., 2009) with
elbow method) to detect and eliminate duplicate or
near-duplicate entries. To further enhance prompt
diversity, we compute pairwise ROUGE-L scores
between prompts and retain only those pairs with
a similarity score below 0.7 (Jiang et al., 2024).
In this stage, we get over 1000 relative prompts
covering essay writing.

2.3 Prompt Categorization

To better evaluate how LLMs perform at different
levels of writing difficulty, we divide the prompts
into two subsets: Open-Ended and Constrained.
To support this categorization, we first analyze the
collected prompts and define five key factors that
influence writing complexity and reader expecta-
tions: (1) Genre Specification. Each prompt clearly



defines the target genres, including argumentative,
narrative, descriptive, or expository, which guide
the structural and rhetorical style of the expected re-
sponse. (2) Topic Specification. Prompts indicate a
central topic that the essay should focus on. For ex-
ample, an argumentative prompt may require elabo-
rating on a specific viewpoint, while an expository
prompt asks for the introduction of a particular ob-
ject or concept. (3) Content Constraints. These
constraints specify required elements or themes
within the essay. For instance, an argumentative
prompt may instruct to include a historical example.
(4) Length Requirements. Some prompts include
explicit word or paragraph limits, adding structural
constraints that impact the planning and execution
of essay writing. (5) Target Audience. Prompts
may specify the intended readership, such as mid-
dle school students or readers of a children’s lit-
erary magazine, influencing the tone, vocabulary,
and complexity of the writing. In particular, each
prompt explicitly specifies both the writing genre
and the topic, ensuring clarity in the contents.

Building on the above-mentioned factors, we cat-
egorize each prompt into the either set based on
the presence of constraints beyond the genre and
topic, i.e., prompts in the Open-Ended set include
only basic instructions (genre and topic), while
those in the Constrained set contain additional re-
quirements, such as length, content focus, or stylis-
tic constraints. To perform this classification, we
adopt a hybrid approach that combines rule-based
parsing with LLM-based analysis. Specifically,
rule-based methods are applied to identify explicit
length constraints, while LLMs are used to detect
more nuanced elements, such as topic- and content-
related restrictions. All prompts are then manually
reviewed by the authors to correct any misclassi-
fications and ensure the overall consistency and
quality of the dataset. After manual curation, we
totally get 728 prompts that capture a wide range
of topics, genres, and instructional objectives in
real-world Chinese writing tasks. The statistics of
the dataset are shown in Figure 3.

3 ESSAYBENCH Evaluation Protocol

In this section, we present the design of our eval-
uation framework for assessing Chinese essays.
Due to the open-ended and reference-free nature
of essay writing, we adopt the LLM-as-a-judge
paradigm (Chen et al., 2024; Gu et al., 2025) as our
evaluation approach. Despite its growing popular-
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Figure 3: Dataset Statistics. Note that Open denotes
Open-Ended sets, Cons. refers to Constrained sets.

ity, existing protocols for evaluating essay genera-
tion remain insufficient, particularly in the context
of Chinese writing, which involves distinct linguis-
tic features and culturally rooted rhetorical conven-
tions (Liu et al., 2024a). To meet these evaluation
needs, we propose a genre-oriented, fine-grained,
and dependency-aware evaluation framework for
ESSAYBENCH, capturing structural, linguistic, and
hierarchical aspects of Chinese essays.
Genre-Oriented Evaluation. In practical essay
evaluation, the criteria for assessing quality often
vary across genres, as different genres emphasize
distinct aspects of writing based on their inher-
ent characteristics. As a result, our framework is
adapted to different genres accordingly. Following
the principal rubrics outlined in (Blanchard et al.,
2013; Hamner et al., 2012), we refine and construct
genre-specific evaluation traits that align with Chi-
nese writing conventions. Specifically, we define
six genre-specific evaluation dimensions, each de-
signed with expectations that range from basic to
advanced requirements, as detailed in Appendix A.
This setup allows our framework to effectively cap-
ture the distinctive features of different essay types
and evaluate essays across varying quality levels.

Fine-Grained Evaluation. Existing methods to
evaluate individual dimensions typically rely on di-
rect scoring or binary questions (Que et al., 2024),
but these approaches are often limited by their
coarse granularity (Kim et al., 2025). Inspired by
the multi-trait evaluation design (Lee et al., 2024),
we introduce a set of sub-questions (g;) under each
evaluation dimension to enable more nuanced as-
sessments (See Appendix B). We adopt the Chain-
of-Thought (CoT) (Wei et al., 2023) prompting



Methods Overall Argumentative Narrative Descriptive Expository
P (A T | p T | T el T
DeepSeek-V3
Align-Score 0.674 0.599 0.744 0.674 0.635 0.559 0.656 0.580 0.656 0.578
Ours w/o WT. 0.646 0.529 0.701 0.576 0.596 0.464 0.778 0.672 0.509 0.405
Ours 0.667 0.549 0.670 0.546 0.648 0.518 0.796 0.676 0.554 0.458
GPT-40
Align-Score 0.628 0.546 0.587 0.516 0.582 0.514 0.642 0.563 0.700 0.594
Ours w/o WT. 0.706 0.596 0.747 0.643 0.747 0.645 0.688 0.576 0.643 0.520
Ours 0.733 0.627 0.754 0.662 0.773 0.658 0.700 0.594 0.707 0.601
DeepSeek-R1
Align-Score 0.749 0.667 0.745 0.667 0.764 0.695 0.709 0.617 0.778 0.686
Ours w/o WT. 0.803 0.685 0.789 0.648 0.830 0.719 0.817 0.702 0.785 0.669
Ours 0.816 0.704 0.795 0.673 0.838 0.724 0.839 0.731 0.791 0.690

Table 2: Comparison of human agreement evaluation across different scoring methods on sampled data. p refers to
Spearman’s p, 7 denotes the Kendall’s 7, while WT. represents the dependency-based weights.

technique to guide LLMs in analyzing responses
and identifying linguistic evidence in support of the
assigned scores. The final score for ¢-th dimension
S; is computed by aggregating the scores of the
corresponding sub-questions as Sy = Y g;.

(2

Dependency-Aware Evaluation. Many existing
works determine the overall response quality by
simply summing or averaging the scores of indi-
vidual dimensions. However, based on our obser-
vations and preliminary experiments, we find that
hierarchical traits contribute unequally, and treating
them independently often fails to capture nuanced
features in high-quality essays. To address this lim-
itation, we propose a dependency-aware scoring
approach inspired by (Saaty, 1980; Zizovi¢ and Pa-
mucar, 2019), which assigns weights to each trait
based on its position in the evaluation hierarchy.
For example, traits at the base level are assigned a
depth (d) of 0, while mid-level traits have a depth
of 1. The weights (W) are computed using Equa-
tion 1, with the hyperparameter o controlling the
importance of basic and advanced levels. The final
score is a weighted sum of all trait scores.

W, = a®. (1)

4 Human Agreement Evaluation

To validate the effectiveness of our evaluation pro-
tocol, we conduct a comprehensive human agree-
ment study in Chinese essays. Specifically, the
study focuses on two aspects: 1) Ranking Agree-
ment, which measures how closely the rankings
produced by our evaluation framework align with
human judgments; and 2) Sensitivity Evaluation,

which assesses the robustness of the framework in
distinguishing essays of varying quality.

4.1 Experiment Setup

Datasets. We randomly sample 80 prompts across
different categories, selecting ten prompts per
genre per difficulty level. For each prompt, we
evaluate essays generated by seven language mod-
els, including both open- and closed-source models:
LLaMA-3.1-70B-Instruct (Meta, 2024), Qwen-2.5-
72B-Instruct (Qwen, 2025), GPT-3.5-turbo (Brown
et al., 2020), Claude-3.5-Sonnet (Ouyang et al.,
2022), Deepseek-v3 (DeepSeek-Al, 2025b), Grok-
3 (xAl, 2025), and GPT-40 (OpenAl, 2024). We
then recruit 14 professional annotators with rich
backgrounds in Chinese linguistics to assess the
generated essays. To ensure reliability and consis-
tency, we adopt a pairwise comparison annotation
method (Wen et al., 2024), assigning each essay
pair to three annotators. In total, the annotation
process results in 5,040 labeled data. Finally, in
Table 4, a Fleiss’ Kappa Agreement (Fleiss, 1971)
is used to measure the agreements among three
evaluators to ensure the annotation quality.
Baselines. As the first to propose an evaluation pro-
tocol specifically tailored for Chinese essay writ-
ing, we compare our method against two baseline
approaches: (1) Align Scoring (Liu et al., 2024b)
from AlignBench, which evaluates general Chinese
writing quality, particularly, we slightly modify it
to evaluate reference-free essays; and (2) Ours
w/o Weights, which applies the same evaluation
rubrics as our method but without dependency-
based weighting.

Judges. To verify how well the proposed eval-



DeepSeek-V3

GPT-40 DeepSeek-R1

Meth
ethod U, MDyat | Uyt MDyat | Uyt MDgyq t
high&medium
Align—Score 0.56<0405 0-170.62 0.56:0‘14 0~250.84 0.64:1,43 0.420,77
Ours 0.57<0.10 0.24¢.74 0.66<0.05 0.451 05 0.79.0.05 0.700.79
medium&low
Align-Score 0.90-0.05 1.421 26 0.87<0.05 2.161 .48 0.93<0.05 1.981.05
Ours O.78<0_05 1.961_41 0.93<0A05 2.461_42 0.97<0A05 2.79132
high&low
Align-Score 0.92<0,05 1.661,41 O.93<0,05 2.411‘35 0.97<0A05 2-411.06
Ours 0.82<0405 2.131‘42 0.98<0.05 2.901,41 0.99<0.05 3.491,37

Table 3: Comparison of sensitivity analysis results between baselines and our proposed evaluation method, with the
best-performing scores highlighted in bold. p denotes statistical significance, and std indicates standard deviation.

Pair-Wise Kappa Score

Overall | Argumentative | Narrative | Descriptive | Expository

0469 | 0477 | 0457 | 0464 | 0475

Table 4: Fleiss’ Kappa Agreement on pairwise annota-
tions. A score between 0.41 to 0.60 indicates moderate
inter-annotator agreement (Qin et al., 2024).

vation method works, we employ three LLMs
as judges, including DeepSeek-V3 (DeepSeek-Al,
2025b), DeepSeek-R1 (DeepSeek-Al, 2025a) and
GPT-40 (OpenAl, 2024) to assign scores 1~10
to each sub-question within every evaluation trait.
Each model analyzes all sub-questions in a single
turn. Specifically, we convert annotated pairwise
comparisons into model rankings using a voting-
based scoring approach to facilitate more effective
comparisons. In all experiments, the temperature
is set to 0.2, and the parameter « is fixed to 3.

4.2 Ranking Agreement

To assess the ranking agreement, we use Spear-
man’s Rank Correlation (Spearman, 1904) and
Kendall’s 7 (Kendall, 1938), which capture mono-
tonic relationships between rankings. As shown in
Table 2, our fine-grained and genre-oriented evalu-
ation framework shows strong alignment with hu-
man judgments (Shen et al., 2023), achieving high
correlations in both Spearman’s p and Kendall’s
7. From these results, we draw three key conclu-
sions: (1) Our protocol performs better with
stronger LLMs. Our method crafts dimension-
specific sub-questions and uses the CoT strategy to
analyze the text and then assign all scores in a sin-
gle turn. More powerful models exhibit a superior
understanding of this complex and fine-grained pro-
cess. Notably, DeepSeek-R1 achieves an almost

perfect alignment with human annotations, with
p = 0.816 and 7 = 0.704. (2) Dependency-based
score aggregation improves performance by ap-
proximately 2%. Incorporating trait-level weights
consistently improves alignment across different
judges and essay genres, indicating that when as-
sessing essays, the higher-level dimensions con-
tribute more significantly to accurate evaluation.
(3) Our framework achieves higher alignment
in Narrative and Descriptive genres. Unlike ar-
gumentative and expository essays that emphasize
logical structure and coherence and are effectively
handled by general text evaluation method, narra-
tive and descriptive writing focus on vivid imagery,
rhetorical richness, and lexical complexity, which
benefit more from our evaluation approach.

4.3 Sensitivity Analysis

Accurately determining an LLM’s proficiency in
specific capabilities is essential for identifying its
limitations and guiding improvements (Kim et al.,
2025). Therefore, it is crucial that the evaluation
protocol reliably reflects both high- and low-quality
output. To this end, we conduct a sensitivity analy-
sis to examine how effectively our evaluation pro-
tocol distinguishes essays of varying quality.
Accordingly, we categorize the essays into three
quality tiers: high-, medium-, and low-quality
based on the top-ranked, median-ranked, and
bottom-ranked essays from the manually annotated
data. Then we apply Mann-Whitney U test (Mann
and Whitney, 1947) and compute the Mean Differ-
ence (M D) to assess the robustness of the methods,
as shown in Table 3. Take the high&medium set as
an example. The U score indicates the proportion
of cases in which high-quality data receive a higher
score than medium-quality data. The mean differ-
ence reflects the average score difference between



Argumentative Narrative Descriptive Expository
Models Overall Open  Cons. | Open Cons. | Open Cons. | Open Cons.
‘ English Language Models
Claude-3.7-sonnet (Anthropic, 2025) 76.6 77.7 78.8 75.7 75.3 74.6 73.6 71.5 79.0
Claud-3.5-sonnet (Anthropic, 2024) 75.4 73.4 73.8 753 73.6 74.8 734 77.1 80.4
Grok-2 (xAl, 2024) 75.3 75.6 78.5 71.5 73.6 70.2 73.5 75.1 79.3
Grok-3 (xAl, 2025) 74.6 74.9 78.1 73.6 72.8 73.1 72.0 73.3 76.4
GPT-40 (OpenAl, 2024) 74.2 74.8 76.9 72.8 72.4 70.5 71.7 75.8 76.7
GPT-40-mini (OpenAl, 2024) 71.7 72.0 74.1 71.6 68.4 69.9 65.9 72.8 76.7
GPT-3.5-turbo (Brown et al., 2020) 51.5 494 51.4 56.5 53.1 51.1 46.8 50.0 52.9
Gemini-2.0-flash (Gemini., 2025) 72.9 74.5 76.3 71.5 71.1 68.4 67.6 76.7 75.4
LLaMa-3.3-70B (Meta, 2024) 61.4 61.2 64.1 62.3 60.3 56.2 53.8 63.2 67.1
LLaMa-3.1-70B (Meta, 2024) 40.5 37.6 46.6 35.1 28.6 45.0 422 39.6 44.8
‘ Chinese Language Models
Qwen-Max (Qwen, 2025) 75.6 74.5 78.7 73.5 74.7 74.1 72.6 77.1 77.6
Qwen?2.5-72B-Instruct (Qwen, 2025) 72.7 73.1 75.2 71.7 71.4 68.8 68.8 74.5 75.5
DeepSeek-V3 (DeepSeek-Al, 2025b) 75.1 77.2 77.9 71.2 71.8 72.7 67.8 80.4 79.4
Doubao-1.5 (Doubao Team, 2025) 73.3 75.1 76.2 72.4 70.8 70.8 69.5 75.4 75.1
ChatGLM-turbo (GLM, 2024) 71.2 70.0 70.8 70.0 69.6 69.2 68.7 74.2 75.8

Table 5: Benchmarking Results on Chinese Essay Writing. In each column, the highest and the second highest
performance is highlighted in bold and is underlined. Open denotes Open-Ended and Cons. denotes Constrained.

the high- and medium-quality data.

The sensitivity analysis in Table 3 shows that
our evaluation method is effective at distinguish-
ing essays of varying quality compared to the
baseline. Notably, our method shows significantly
better performance in the high- and medium-quality
essay classification, with an improvement ranging
from approximately 2% to 10%. Furthermore, it
yields a larger mean difference, suggesting that
the score distributions between quality levels are
more distinguishable. These trends hold consis-
tently across all judge models, highlighting the
robustness and sensitivity of our framework when
evaluating outputs from strong LLMs. Overall, R1
emerges as the top-performing model, achieving
the highest U score and exhibiting a pronounced
distinction across all quality levels.

5 Benchmarking

5.1 Experiment Setup

Baselines. To explore how current state-of-the-
art LLMs perform in Chinese essay writing, we
meticulously select 15 popular large-scale LLMs
for evaluation, including English language models
and Chinese language models. We access propri-
etary LLMs via their official APIs and open-source
LLMs through their public repositories. During
writing, we set the temperature to 0.8 to encourage
creativity in generation.

Metrics. Considering the inference time cost and
overall performance, we adopt GPT-40 as the eval-
uation judge model. The temperature is set to 0.2 to
ensure deterministic output, while all other param-
eters remain in their default settings. To facilitate
fair comparison across models, we normalize the
aggregated scores to a 100-point scale.

Main Results. The benchmark results are pre-
sented in Table 5. Notably, state-of-the-art propri-
etary models achieve strong performance on the
Chinese essay writing task, with Claude-3.7-sonnet
attaining the highest overall score. Moreover, most
newer versions outperform their predecessors, with
the exception of Grok, as Grok-3 places greater
emphasis on reasoning. It is worth highlighting
that Chinese LLM families also perform competi-
tively: Qwen-max ranks as the second-best model,
DeepSeek surpasses Grok-3 and GPT-40 on this
task, and Qwen-2.5-72B-Instruct outperforms both
the GPT-40-mini and its similarly sized counterpart,
LLaMA-3.1-70B-Instruct.

Genre-based Performance. LLMs demon-
strate stronger capabilities in writing argumen-
tative and expository essays, while they fall short
in narrative and descriptive genres. This dispar-
ity likely stems from the inherent characteristics of
these genres: argumentative and expository essays
emphasize structural coherence, logical reasoning,
and clear topic development, where LLMs typi-
cally excel. In contrast, narrative and descriptive
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essays require creativity, emotional nuance, and
context-aware storytelling. These challenges are
further amplified in Chinese writing, where expres-
sive richness, metaphorical language, and cultural
context play a more significant role, especially in
narrative and descriptive forms. Such features are
difficult to model with LLMs, leading to degraded
performance in these genres.

Open-Ended versus Constrained. Interestingly,
LLM:s perform better in constrained sets than open-
ended sets, as shown in Figure 4. This is likely
because constrained prompts provide more explicit
requirements and clearer guidance, which help the
models organize content, maintain relevance, and
follow a well-defined structure. In contrast, open-
ended prompts offer greater flexibility but less di-
rection, placing higher demands on the model’s
ability to plan, generate diverse content, and main-
tain coherence without external constraints.

6 Related Work

LLM Generation Evaluation. The rapid progress
of LLMs prompts the need for a comprehensive
evaluation of their text generation (Liu et al., 2023;
Kim et al., 2025). Existing frameworks are often
task-specific: instruction-following is assessed via
diverse prompts and constraint scenarios (Qin et al.,
2024; Wen et al., 2024; Jiang et al., 2024), while
reasoning is tested through multi-hop question an-
swering (Krishna et al., 2024; Ling et al., 2025).
In this work, we turn our attention to the issue
of generated text quality evaluation. Previous re-
search has addressed quality assessment in specific
contexts: e.g., summarization (Liu et al., 2024c), fi-
nancial content (Islam et al., 2023; Xie et al., 2024),
Wikipedia-style writing (Gao et al., 2024; Zhang
et al., 2025), and long-form text (Tan et al., 2024;
Que et al., 2024). In contrast, we address the under-

explored challenge of evaluating Chinese writing
across literary genres, offering a systematic frame-
work for multilingual LLM assessment.
Automatic Essay Evaluation. Automated Essay
Scoring (AES) uses computer systems to assess
written text in educational settings (Dikli, 2006;
Attali and Burstein, 2006). While datasets like
ASAP (Hamner et al., 2012) and TOEFL11 (Blan-
chard et al., 2013) provide valuable English essay
prompts, they are limited in scale and unsuitable
for assessing LLM-generated essays, especially
in non-English contexts. AES methods have pro-
gressed from hand-crafted features (Yannakoudakis
et al., 2011; Persing and Ng, 2013) to neural, trait-
specific models (Taghipour and Ng, 2016; Uto
et al., 2020), and recently to LLM-based evalu-
ation (Lee et al., 2024; Chu et al., 2025). These
typically score coarse-grained aspects like gram-
mar, coherence, content, and creativity (Li and Ng,
2024), but remain English-centric and overlook
the rhetorical and cultural complexities of Chinese
writing. In addition, although recent frameworks
like WritingBench (Wu et al., 2025) and BigGen
Bench (Kim et al., 2025) offer fine-grained eval-
uation strategies through prompt-specific assess-
ment instances, they fall short in covering a broader
range of writing prompts, limiting their applicabil-
ity to various essay tasks.

7 Conclusion

In this work, we present ESSAYBENCH, the first
comprehensive benchmark for evaluating the ca-
pabilities of LLMs in the Chinese essay writing
and evaluation across four distinct literary gen-
res. To address the challenges of analytic and ac-
curate essay evaluation, ESSAYBENCH adopts a
genre-oriented, hierarchical multi-trait evaluation
approach that enables fine-grained scoring. Specif-
ically, we introduce a dependency-based aggrega-
tion strategy to compute the final scores. Our com-
prehensive human agreement study and sensitivity
analysis demonstrate that the framework achieves
high alignment with human judgment and effec-
tively distinguishes essays of varying quality. Fur-
thermore, we benchmark 15 large-size LLMs on
Chinese essay writing, revealing notable limitations
in descriptive and narrative essays, particularly for
open-ended prompts. Overall, ESSAYBENCH of-
fers a diverse dataset and a robust evaluation frame-
work for Chinese essay, with practical implications
for educational applications and future research.



Limitations

Despite the contributions presented in our work,

several minor limitations remain:

¢ First, the datasets and evaluation dimensions
used in this study are primarily based on Chi-
nese essay prompts. While the widely adopted
essay categorization framework can be applied
to other languages such as English and Japanese,
the current work focuses on Chinese essay writ-
ing. This is due to the significant differences
in idioms, linguistic conventions, and cultural
expressions across languages. Nonetheless, the
framework has the potential to be translated and
extended to multilingual settings in future work.

* Second, although this work proposes a more
fine-grained evaluation method for Chinese es-
says, the designed evaluation traits primarily fo-
cus on overall expression and structural aspects,
such as paragraph organization and comprehen-
sive performance of the essays from multiple
perspectives. However, it overlooks more gran-
ular analyses at the lexical and sentence levels.
Future research could incorporate finer-grained
evaluations that consider sentence-level coher-
ence and word-level richness

* Third, ESSAYBENCH primarily focuses on eval-
uating the overall quality of essays, while over-
looking instruction-following abilities. For ex-
ample, whether the generated essays adhere
strictly to the prompt requirements has not been
thoroughly assessed. To enable a more com-
prehensive evaluation, future research could ad-
dress this gap by incorporating the essay prompt
following ability as an explicit evaluation dimen-
sion.

Ethics Statement

To mitigate potential ethical concerns, all essay
prompts were carefully reviewed and filtered by
manual inspection. We ensured that none of the
prompts contained offensive, gender-biased, harm-
ful, or otherwise ethically inappropriate content.
In addition, all participants involved in the human
agreement study were professional annotators who
were fairly compensated for their contributions.
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A Hierarchical Traits Design

We developed a comprehensive, genre-specific
multi-trait evaluation framework tailored explicitly
to the distinctive features, objectives, and contexts
of each essay genre. This system aligns closely
with educational standards and requirements, en-
suring a precise and relevant assessment approach.

A.1 Argumentative Essays

For Argumentative essays, we focus on:

* Argument (d = 0): Clarity, precision, and rele-
vance of the central viewpoint.

* Evidence (d = 1): Strength, appropriateness,
and reliability of supporting details and exam-
ples.

¢ Argumentation Methods (d = 2): Effective

use of logical strategies such as comparison,

causality, and deduction.

Logical Development (d = 2): Coherent and

logically sequenced progression of ideas.

Expression (d = 3): Clarity, precision, and

stylistic appropriateness of language.

Endings (d = 3): Ability to summarize argu-

ments effectively and deliver a compelling con-

clusion.

A.2 Narrative Essays

For Narrative essays, we emphasize:

» Language and Style (d = 0): Effectiveness of
vocabulary, tone, and stylistic choices in story-
telling.

Structural Layer and Narrative Techniques
(d = 0): Sophisticated use of narrative struc-
tures and literary techniques.

Theme and Emotional Expression (d = 1):
Depth of thematic content and authenticity of
emotional portrayal.

Overall Structure and Plot Development (d =
2): Clear progression, effective pacing, and co-
hesive plot structure.

Characterization and Detail (d = 2): Rich,
vivid portrayal of characters and setting details.
Choice of Material (d = 3): Originality, rele-
vance, and effectiveness in selecting narrative
content.

A.3 Descriptive Essays

For Descriptive essays, we highlight:

* Clarity of Subject and Central Theme (d =
0): Distinct and clearly communicated central
image or idea.
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* Rhythm and Overall Fluency (d = 1): Smooth
flow and harmonious pacing throughout the es-
say.

* Content and Unique Perspective (d = 1):
Original insights and distinctive angles in the
descriptions.

* Structure and Organization (d = 2): Effective
and logical arrangement enhancing readability.

* Emotional Expression and Atmosphere De-
scription (d = 2): Authentic depiction of the
atmosphere and emotional tone.

* Sensory Details (d = 3): Use of vivid and
engaging sensory imagery.

A.4 Expository Essays

Finally, for Expository essays, we prioritize:

* Clarity of Topic and Purpose (d = 0): Clearly
defined subject matter and objectives.

» Practicality and Relevance (¢ = 0): Real-
world applicability and pertinence of the pro-
vided information.

* Scientific Accuracy and Credibility of Con-
tent (d = 0): Validity and trustworthiness of the
facts and data presented.

* Logical Structure and Coherence (d = 1):
Systematic and logically sound organization of
ideas.

* Clarity and Appropriateness of Language
(d = 2): Use of a clear, accessible, and ap-
propriate academic language.

* Diversity and Appropriateness of Explana-
tory Methods (d = 3): Variety and suitability
of explanatory techniques, enhancing compre-
hension and reader engagement.

B Evaluation Prompt

B.1 CoT Prompting

In our evaluation method, we implement the Chain-
of-Thought (CoT) prompting strategy, which first
guides the large language models (LLMs) to sys-
tematically analyze essays before assigning scores.
This structured analytical step provides LLMs with
robust reasoning and clear justifications, facilitat-
ing accurate scoring decisions. In addition, the
detailed CoT reasoning process serves as a valu-
able reference, allowing evaluators and users to
better understand and verify the rationale behind
each assigned score. The specific prompts used for
the CoT strategy are illustrated in Figure 5.



B.2 Trait-based sub-questions

For each hierarchically designed trait, we carefully
develop a series of detailed, targeted evaluation
questions, addressing multiple dimensions and per-
spectives relevant to each trait. These questions
are crafted to comprehensively assess the specific
characteristics and nuances inherent in each genre
of essays. The specific questions tailored for Argu-
mentative, Narrative, Descriptive, and Expository
essays are illustrated in Figures 6, 7, 8, and 9, re-
spectively.

C Human Annotation

For our human agreement study, we recruited 14
professional annotators with strong backgrounds in
Chinese linguistics and language education. Each
annotator was assigned approximately 70 data sam-
ples per day, working within an 8-hour schedule.
The complete annotation of 5,040 data items was
completed over five days. This rigorous process
ensured consistency, reliability, and high-quality
annotations across the dataset. The comprehensive
annotation guidelines provided to annotators are
illustrated in Figure 10.

D Case Study

In this section, we conduct a qualitative case study
of essays across different quality levels, using out-
puts from various LLMs. Specifically, we exam-
ine high-quality essays generated by DeepSeek
Chat (score: 8.7), median-quality essays by GPT-
3.5-turbo (score: 7.0), and low-quality essays by
Llama-3.1-70B-Instruct (score: 6.3), as shown in
Figures 11, 12, and 13. These scores are derived
from the evaluations conducted by DeepSeek-R1.
We observe that the evaluator provides detailed and
consistent analyses across essays of varying quality,
highlighting both strengths and weaknesses. This
type of evaluative feedback demonstrates strong
interpretability and reliability, making it valuable
for future educational applications such as forma-
tive writing assessment and personalized feedback
generation.
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Chain-of-though Evaluation Prompt (Chinese)

RE-MEKINXARENETR, AFTEWATITEAIBTF X AR TR EX A E 2
RE. BRENTIENRAE, SBFHEE#TITE,

AN RIBIERYE I TR iR

-1-29> EFZE (ZRREARITEIRA)

-3~45r BRE (BOBERINE EFEREDR)

-5~6%: % (BEEANFEENEIGARE)

- 7~89>: BUF (kﬁﬂﬁa\/ﬁih/ﬁ Rfﬁ"\gl\lcﬂzﬂ)

- 9-104>: HhF (EEFFE MHEARRAE )
AR
- AEXAFEEREAFNES THEREXEENEEAFNERZRESESETE,
- RAEE- IR ER, SN0 DI SURKIE;
LJ}%E’J?MJ\WEEE\'T RPN, MAEERE - SOREESFERRMTS, HN EEENE
FEVLER;
- WA RN RIS, SMENSZITDSZEE THHE B HNTSE, it
HERIENEENIEE

# AT = E

</@ B Fia>

{Essay Prompt}

</BHER>

# AT REXER:

</BEFiE>

{Essay Prompt}
HR>

# LU RIS
(e 3 e &
Chain-of-though Evaluation Prompt (English Translation Version)

You are an expert skilled in evaluating text quality, responsible for objectively and impartially
assessing the quality of an Al assistant's responses to users regarding argumentative
essays.

Please evaluate the assistant's responses based on the following criteria. For each question,
provide a score according to the following grading scale:

- 1~2 points: Very poor (completely fails to meet expected standards)

- 3~4 points: Poor (partially meets expected standards but has significant issues)

- 5~6 points: Average (meets basic standards but still has room for improvement)

- 7~8 points: Good (mostly meets standards with only minor issues)

- 9~10 points: Excellent (fully meets or exceeds expected standards)

Evaluation principles:

- Responses must adhere to the user's instructions, especially ensuring the target audience

and applicable scenarios for the essay response align with the instructions.

- Adopt an "evidence-inference" model—each score must be supported by textual evidence.

- Your scoring must be as strict as possible and well-justified.

- Each question requires a score accompanied by a brief explanation.

- Provide an explanation and score for each question. The final score for each dimension is
the average of all question scores under that dimension. Calculate the score for each
dimension accordingly.

# The following is the essay prompt:
</Prompt Start>
{Essay Prompt}
</Prompt End>

# The following is the argumentative essay:
</Essay Start>

{Essay}

</Essay End>

The following is the evaluation rubrics:
{Sub-questions of Argumentative Essays}

Figure 5: CoT Prompt Strategy for Evaluation.
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Argument

1. Is the central thesis clearly articulated?

2. Is the thesis easy to extract and summarize?

3. Does the essay state its thesis explicitly at the very beginning?

4. Does the argument engage with deeper social, cultural, or philosophical
issues?

5. Does the thesis demonstrate original insight and depth of understanding?

Evidence

1. Are the pieces of evidence closely tied to the thesis?

2. Is the amount of evidence sufficient?

3. Is the evidence presented in enough detail?

Is the evidence representative of the points being made?
Are cited data, sources, and examples credible and reliable?

Argumentation Methods

1. Does the essay employ a variety of reasoning techniques
(e.g. exemplification, comparison, citation, cause—effect,
induction/deduction) effectively?
2. When using statistics or others’ opinions, are they accompanied by clear
explanation and analysis?
3. Are opposing viewpoints analyzed and critiqued objectively?
4. Does the essay consider multiple perspectives to strengthen its
persuasiveness?

Logical Development

1. Are the sub-arguments in each paragraph coherent with the central thesis?
2. Do the sub-arguments form a clear, progressive logical chain?

3. Does each paragraph’s sub-argument have appropriate supporting
evidence?

4. Are there smooth transitions and logical connections between paragraphs?

Expression

1. Is the word choice appropriate and precise?
2. Is the language logically coherent?
3. Are sentence structures and tones varied and engaging?

Endings

1. Does the conclusion echo the issues or claims raised in the introduction to
form a cohesive whole?

2. Does it summarize the essay’s main theme rather than merely restating
the thesis?

3. Does it synthesize the arguments from multiple angles?

4. Does it offer meaningful insights or a call to action that guides the reader’s
further reflection or behaviour?

HIME R

1L XERLYURRBBMXE

2L RRE 5 TGS
SNBRABEFREEAFHBEL TIRR?
AXBUSEERARN TRERMRS . XURBEZBE?

5 XEN AR BEYLH BT BRI MR
wHE

1 RESERINXHKEERE?

2. FrEANRERE RS

3. FfE MM HEEEFR?

4. FrE A ERBAFREMN?

5. S| AR, XK. LHIRERFLTE?

WIETT&

1RERBZEMT HGIRIE. MR, SIMRIE. BRIRIE. BWRES
ZIRIETF %

2. MREAT Gt BIRSE AR
BTN IWURREFUDTAIHH?
AT FRERMARY R, ATEINEARA?

ERESRBEMDT

IXENNMERRESFOERRFER?

2 MERZIEEEWESENERBIHAIZEER?
3 BNBRENMERRE AN MR

4 BEZBALREMNILIRSKE?

1.XEREEEEY]. BH?
2. XBEEEREAFEEMN?

3. XEAX. BRREFESH

XELRE

EREBVN XEF T AR RS ILHT, EXERREE?
ZRETRETXELE, MM THANEREIER?

LZREEX P ZA A EAIRIER AN B E R &2
ZRETRETANENRTNETF, MNsISRESERT? £LA
BEFEMABENIERE

Figure 6: Multi-traits and sub-questions of Argumentative Essay.
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Theme & Emotional Expression

1.Does the essay present a clear central idea or core theme?

2.Does the narrative effectively convey the author’s intended emotion or
attitude (e.g., love, longing, nostalgia, awe)?

3.1s the theme thought-provoking or inspiring reflection?

4.Are the emotions expressed naturally, avoiding excessive sentimentality or
contrivance?

5.Does the piece resonate emotionally, allowing readers to feel its warmth
and human insight?

Overall Structure & Plot Development

1.Does the story unfold organically with a clear beginning, middle, and end?
2.Does the introduction capture readers’ attention, and does the conclusion
effectively wrap up and echo the theme?

3.Are there key plot twists or climaxes that enhance readability?

4.Does the use of vivid detail and emotional pacing lend unity to the events
themselves?

Characterization & Detail

1.Are characters portrayed vividly—through appearance, dialogue, actions,
inner thoughts, and expressions?

2.Do characters’ words and behaviors align logically with their personalities?
3.Are settings, events, and moods described with appropriate richness?
4.Does the environment reinforce characters’ emotions, advance the plot, or
highlight the theme?

5.Are distinctive details selected to lend authenticity and emotional impact?
6.Are details handled deftly, without distracting from the main narrative?

Language & Style

1.Are literary devices (simile, personification, parallelism, etc.) used
appropriately to enhance readability?

2.Is the language both accessible and elegant, reflecting literary flair?
3.Do sentences and paragraphs flow smoothly, avoiding abrupt jumps or
unnecessary padding?

4.Are transitional or linking words used to maintain clarity and coherence?

Choice of Material

1.Are the selected events or scenes typical and representative?
2.Can a single small incident illuminate deeper life, social, or emotional
themes?
3.Is the angle or material fresh and inventive, avoiding clichés?
5.Can familiar subjects be presented from a unique perspective or with a new
twist?
6.Is the material tightly connected to the theme, avoiding interesting but
irrelevant details?
7.Is real, meaningful life experience used to support the essay’s purpose and
emotion?

Structural Layers & Narrative Techniques

1.Are techniques like chronological order, flashback, or interwoven
narratives used effectively?

2.Does clever sequencing help readers immerse themselves or build
suspense?

3.Is the chosen point of view (first-person, third-person, multiple
perspectives) consistent and effective for the theme?

4.Are paragraphs organized to help readers focus on key events and
emotions?

Is the balance of long and short paragraphs appropriate, avoiding reader
fatigue from overly dense text?

TR RBSERFIE

IXERBRHMNPORE, WHIR?
2XBRBENEP AU EL B EBFBVERANBRASE, tLmhE.
B&. MESHRE?

SUBRAEFREN, ANTRIBLIAE?
AXEERRBERRE, BRIOEREIFRERE?
5EERSIERENHBRLL, LRERIEIXZMEES AMIIE?

BRSNS ET R

I\ XEZRREARE, RBEATNAFHRITHE?

2 XEFFLREDIUEERE, HRETHIRRIFREM?
SREFEBRE T XBNETHRFTNSH, BRI THEM?
AXERBFETHEERMD, LFHASERFTNEGE—M?

AR SBTHHHS

12T, BE. AE LDIER. WESESHAIREEAY, iLF
KEIASIIA?

2ANMETHERERE—5. A28
SRAMMELAEMNEMF. S, FEBTIRAFLANES?

4. NEHSRAMIEAYIBE. BV RRIRE XEEA?

5 ERMERARBZT AT, IEXEEEEAREMELRN

6. APUBREERY, RERBILIERTE?

1 REBEBEMNERTE (b, HIA. HES) e

2 BERABMRHEMXAAXR, RUXFEM [AFZE. BEZEE
BEEERRY, BREFBERS A RER?

3 REEBIZEMLEEZKKE, ILTXFR. EXEM?

EATRISEN M S B

1 TEEGSSRERRAANARM, AN

2 EARBE— M NERTHHERBEROANE, HRFIEREA?
SEEMHAAEERMARD, BETE—E?

4. FENIMESHRENAARSE, STUHFNZR? CEMSTHETE
BER, BREMBERBESEABRT?

5. ERRAETFALAEARXMEN, IEXENIESHRE?

ZMRRSFATR

1EIEIGR. B, R MRESHFERRSEEM?

2. ERBUTTYNEHLRZILLE B b \NEHRUERE L7
3. RAE AR, E=ARISUARERTRRENTOLEEH?
4 XERERIRAETRERETIREDSBRY

5. KERENFRELZEERY, BRBRARNTSBRER

Figure 7: Multi-traits and sub-questions of Narrative Essay.
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Clarity of Subject and Central Theme

1.Is the central theme or key image prominently highlighted?
2. Is the essay’s main purpose or emotional tone clearly conveyed?

Sensory Detail

1. Does the writing employ multiple senses—visual, auditory, tactile,
gustatory, etc.—to portray the subject’s details?

2. Does it create an immersive, “you-are-there” experience rather than
remaining at a superficial or generic level?

3. Are word choices precise and evocative, capturing the subject’s
characteristics with vivid language?

Structure and Organization

1.Is the overall structure logical, using spatial or chronological order to guide
the reader’s experience?

2.Is there an appropriate balance between elaboration and brevity, with
major elements described in depth and minor ones summarized?

3.Are transitions between paragraphs smooth and natural?

4.Do the focal descriptions stay tightly aligned with the theme and the
author’s intended emotion?

Emotional Expression and Atmosphere

1. Does the essay seamlessly integrate the author’s emotions (e.g., affection,

longing, nostalgia, wonder) into the descriptive details?

2. Does it evoke a distinct mood or ambiance—such as tranquility, liveliness,

mystery, or solemnity?
3. Do the environmental descriptions resonate with the author’s feelings,
offering readers a unified internal-external aesthetic experience?

Content and Unique Perspective

1. Does the writer uncover new insights in familiar subjects, using a fresh
angle or dimension of thought?

2. Does it avoid clichéd phrasing or formulaic techniques?

3. Does it draw on personal experience or reflection to add warmth and
emotional impact?

4. Does the chosen subject carry real-world relevance or cultural resonance
that fosters reader empathy?

Rhythm and Overall Fluency

1. Does the author vary sentence length to reflect the subject’s
characteristics or emotional pacing?

2. Are short, simple sentences and longer parallel constructions used
judiciously to create rhythm and flow?

3. Are rhetorical devices—such as metaphor, personification, parallelism,
and synesthesia—employed effectively to bring language to life?

4. Are these devices used fittingly and naturally, without feeling forced or
over-embellished?

EEXNREEEANS B

1LHROERSLFOBRIEARE?
2XESHENEERFEREFEZTEM?

1. REBEIE. TR, fs. RESFSHEEREANRIAET
2. EEMEEA NGRS, MIEREEERET. ESRHNHEA?
3. REAREARREE, SEENROBEREHNEITRESR?

ZEMHERSEAR

BEEE

1. XELWERRE, DRI =EIRFHENEIRFHARTRIRE
M%ﬁ%%%ﬂ%%ﬁiﬁAﬁ%?

BHBEY, TESYSHERES, RBEHNHES, FEFRZER
?\ JEE'] Eepl?
SXERGEEMEE. UERARHER? DRAEARBENER, H5
EENBRETEAFR?

PR,

EHRENSEMEE, tLmsg, il Wi, EE?
SHEEERAALE, EBILEEREHAIE — W ER

1RNE) BRMRT AT
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A SEME SR A
1 ITEEM S SRR RRAREM. AR
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)= ?

FHRSEGRGE
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Figure 8: Multi-traits and sub-questions of Descriptive Essay.
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Clarity of Topic and Purpose

1. Is the topic of the expository essay clearly identifiable and distinct?
2. Does the essay explicitly introduce the subject or principle it seeks to
explain at the beginning or clearly throughout, helping readers grasp the
primary purpose?

Scientific Accuracy and Credibility of Content

Are the data, facts, and theories cited accurate, and are their sources reliable?

Does the essay systematically introduce the subject, covering essential background
information and primary aspects?

If the essay uses classification or step-by-step explanations, does it include all core points
without omitting critical information?

Are professional or abstract concepts sufficiently explained or simplified to be easily
understandable by readers?

Does the essay maintain academic rigor without becoming overly obscure or difficult to
comprehend?

Logical Structure and Coherence

1. Is the structure (e.g., chronological, spatial, logical, categorical) chosen appropriately for
the content?

2. Are transitions between paragraphs and sections smooth and logical?

3. Does the essay highlight key points clearly, adequately summarizing or briefly
addressing secondary details?

4. Are explanations presented progressively from simple to complex, or from general to
specific, facilitating deeper

5. understanding as readers acquire foundational information?

6. For complex processes or procedures, are they presented in a logical order that
enhances practicality and memorability?

Clarity and Appropriateness of Language

1.Given that the core aim of expository writing is efficient information delivery,
is the language concise, avoiding unnecessary embellishments or overly
decorative phrasing?

2. Are sentence structures clear and easily understood, avoiding overly
complex or lengthy sentences?

3. Is word choice precise, avoiding ambiguity, overly casual expressions, or
colloquial language?

4. Are technical terms or concepts sufficiently explained, ensuring clarity and
preventing reader confusion?

Practicality and Relevance

1.Does the essay appropriately use various explanatory methods (e.g., definition,
classification, examples, numerical illustration, comparison)?

2.Do different explanatory methods complement one another effectively?

3.Does the essay transform abstract concepts or complex techniques into understandable
forms through concrete examples or relatable analogies?

4.Does the essay avoid using irrelevant or forced examples that might confuse or distract
readers?

5.Does the essay appropriately cite authoritative sources, data, or expert opinions, clearly
indicating the source or providing simple annotations to ensure transparency?

Rhythm and Overall Fluency

1.Do the content and language of the essay align with the knowledge level and
interests of the intended audience?

2.If the essay is meant as popular science, instructions, or user guidelines, can
readers readily practice, perform experiments, or directly apply the instructions?
For purely theoretical content, does it provide sufficient examples or application
scenarios to enhance comprehension or memorability?

3.Is the content closely connected with real-life contexts or societal needs,
enabling readers to appreciate its practical significance?

4. |s the content insightful or extendable, suggesting directions for further learning
or practical application?
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%Eéﬂ@?ﬁﬁﬁ\ﬁﬁﬁﬁ%mﬁ,#ﬁﬁ%&ﬁﬁﬁﬁﬁ$ﬁﬁ,ﬁﬁ
ERIERE?

KRS Htx

LRAXHHARTIES Z2E 5 BREEROMIRKT, XBIATE?
2. RZRE . BEISEREMRE, EERRURBEXARITRSE, L
BRI MRFAMRMMNIEE, RERMT EBNEFIHREA
IR E A IR SICIZ?
&W?%é%ﬂiiﬁﬁﬁ%ﬁ*%%%%,ﬁ&%&%ﬁ%@ﬂﬁiﬁ
X7

4 NBERBABAMSTRREY, GHE—FFIIYAHTTE?

Figure 9: Multi-traits and sub-questions of Expository Essay.
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Annotation Guideline (Chinese)

HIEtREIES XEREIEE

—. HuEikiA

BE T FBREEIRE

1. query: {EHERHIR

2. writing_1: S#—BIFEBXE

3. writing 2: FEZRBFLERE

4. score: BEEMIESILRESR (1/2/tie)

. HEES

ETqueryBIRAHEXR, REGtbRwriting_1Fwriting 20X ARE, ¥
1. BHES (IFRTwriting 1E 3, 2R mwriting 284, tieR~REHAY)
2. B AT IER

=. REHLTRAE

(—) EREX

1 FEMEKR:

s Blaquery P MIERABER . XEMEH BfREE/I5

o FEER KT

2. Rk, 1RBBIURE S TR

« WX (argumentative)

« IR (narrative)

« #5 X/ (descriptive)

« AAX (expository)

ERE 1 WA XAETqueryWBEEEX 2. BHIGBHFEPLEE, REXEE
F= 3 ARER

Annotation Guideline (English Translation Version)

|. Data Description
The data file contains the following fields:
query: Description of task requirements
writing_1: First article to be compared
writing_2: Second article to be compared
score: Comparison result (1/2/tie)
1. Evaluation Task
Based on the specific requirements in the query, systematically compare the text quality
of writing_1 and writing_2, and:
Provide a rating (1 = writing_1 is better, 2 = writing_2 is better, tie = equal quality)
Briefly explain the rationale for the rating
Ill. Quality Evaluation Criteria
(1) Basic Requirements
Compliance Requirements:
Follow the content requirements, writing style norms, and target
audience/scenario specified in the query
Approximate word count estimation
Genre Classification (Evaluate based on stylistic characteristics):
Argumentative (persuasive essays)
Narrative (storytelling)
Descriptive (vivid depictions/prose)
Expository (informative/explanatory writing)
Key Notes:
Ratings must be based on the specific requirements in the query
Explanations should be concise, highlighting key differences
Ignore formatting issues (focus on content quality only)

Figure 10: Annotation Guideline for Human Agreement Study.
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Essay from Llama-3.1-70B-Instruct

Prompt : LA A S —F3800-1200F MBGESC, #RW ANERE L. PhiMRF i, EHmPEEsE, EREARENE
B BB, SIEN, 255 BRI =0,

Writing: NER—HRBHRRSVBMRE, BNEIABESHIHBEAENEN. AENBXERA? BMUEANA?
REEMZE? MHILBBIEH? SPANAENBXEETRNERIER, Rf, TRBNMEAEXAENEX, B
B HEF Z ARERAERBERATRENFIATE, \n\n AEMBBETARE, ABMNEEFS BERERESHTEN
ER, HVRARE. FIME . BRAKE), MAMERESTRILRMNSZIVAERMLE, Al E2XEHRK, ERNES
EAESRMMAA . FATT AR PRI, TEEMFEMB . BT UNRIFTRH B, REEMBERIET.
ANERBE R RN, 2RMNTMEENIN T, \WnAERNEGTZ LEHESAER, E£FEFHT—IBEE, &4
EEFN. —MHEARENTR, —PENRRNRER, —IOESHRT, —REENKE, BEAEZFILNGR. A
ERRFZAAURETAE, BEETHED. BT UN—AMEEAS5 P2 HATFRERE, A—RFBHIMRHER
FRAAIRA, N—EWHEEPRIZIKBRIET. AENEFLARBAMNERZNFN, SEABTHTIE. \n\n A
ERRXEMA? BERETENAROHER, TREMNWFAEXANENTEX, PEFMEFABLERNERE R AT
R ATE. TATUMBE PR ESEMBBMAR, TUNEFZ AR RBIEFNH NI, NER—TIRE, TG
PMAHZECTHEA. IERNBFEESHE, BEE— N XFNERE, HIETAESHAEREX.

Formatted Evaluation Example from DeepSeek-R1 Total Score: 6.3

XERORSB AR, REAERXEWREK. KFHEX, ERBHAE=FXR NPRROEMEXEX) |, FEEMNT
PR RTINS NEBXETRESEFHE, BENIRTRES, REREINOHE)
SISBRBRESIHIER, ERELRMER RTRRAWATR BHIINFTE, RIEABHRHANER M
REBEURKEAEE, RENFAEN. HEEARFALAABMGIN, N BRI WRIPRERZ
N ENEUAH N EFERNNRERRS, RONERIER" RUTH FH A BEEE

WIS PRI R KA MBI AT T M KBR B, (B BRI S0 F 510 B BERRS
REMEMNZUBIE (FIEN. RITF) , RERGAY)/FHLEMHETIEZE

R AREEBBO FER ARG AR MILRE, RIS K AT R R ZALH

SHRAEFEERG, ROBXH (RLERH) REAK (0 CEE) ) FRKRMENE

10. REHHBIRSH XIS A, AU TERIEHELES

11 RIERERTIAGLR, ROZFARR, HERG. XFABELTRE

12. EAZEIGIE (PIHE. BH%) MERRIE GkE—R58) | BREXNIBIE GUIRBvsERALE) 5 BIsIE
13. EWPHELERIC, REEERGER K= Ea 1 AR IEsES

14. GtHBiEREHRE, MARNKMBREE BN FZiERED

15, KRR ZRENENUNR, RZAEEBE

16. BAEFRIFRGF SHRMIER N, RITEE IR TR RN AEZ I

17. BPISERIIER BIAT, R B R BI—BRAHLH - = X2 fHhEIRIE

18. EEFN B 5 KHF B NMERIIRS 2R R, BE=BBETROER £ MRS

19. Bk 2] R4 R FILEH, AR K2 E R R F B B R

20. SNBREINF2-3NPNEXE, BEEFIEZEAHEM (ENRIXLE)

21, A, ERXEMRS.ETREAFR, (EEERRDS MU " EERN R FilitERR

22. MERRIERFER D", BRARXMETNEREASIENEIRIEELR

23. "BV SR Y), B ENARNRRE FREHEXZ, SWIRHERENR

24, "BATT M. RREZE. b AR E, BN SR AR HIEERE (Fit/ELTR)

25. BRREGEERLI0IN £, B RIE) REFRE.) FAXER

26. REEATWAIE, FFEEHENFKFE

27. HtbEEHER SRS, BT A FERARRRUIIDRE

28. HEER IR ERFATHER", 55IFRIEAERAR

29, RFHEE"BXETEMESHIAA, SBRERRANEE

©OND G RWN =

Figure 11: Low-quality Essay and Evaluation Example.
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Essay from GPT-3.5-turbo

Prompt: UANADN MG —RUGE S0, WP NERE . Bz, Eamih AR, EREAREKIE S A 71t
¥, SRNEW, NEIE . ERMSHE =50,

Writing: NAE, R KHIIREE, FEWHHECHIE L. PSR 24k, EXMEA B, A ABEARIHER T4 5 OfF
RIS A BRI AIPE, RN MR RS RS A MIBEAl . \n\n5| F\n\o \E, BE—BHDHER, 1
NHEBFEIXAHRAE T TR H CHITT I BATRBIXAER b, AMUSUR N TS, BRN TET I AN OIRERE L. 21X
MRt FATZBRZFERA, ERSEHFS RGN 2. NERESG e TRATIA R PhAR, AL
EKhfo \n\nEE\\o NERF S, AT RAT A K TTRRAIE N . A AHA B QIR RS T, T DU IR AN S ok
SR . TN — BRI E G, BREON S ERFKONERTAIE R, A AHRAT LUE EH CRSUR B RE
AL TR, NERESG BETRAIGEGRE A QR Mlidr, 5505 A B \n\n NAEF Rk, RIATBAM
BEP ML . RTINS AR, FRATS ARG TN B 8. BT LR BATA L AE, LERATBRE T, AE
INEFE AR LR E BRI AL, BATA REAN RS A CRRIR, SKBlE CRIME. NAERPER, 1B 5 Nk
SEANE JiEE e \n\n NEFISEEF, BEGBEEIRRRGR . MUK, BRI U008, #REER TR .
SRIFA—ERHEBRAOET, T AT LU IRIEAUES) . AIRA T2 AiE i — AR, IR RIS A o4k
HISEEF IR . NSRS, BAE T RATEA AR IR AT AR PR . \n\nZ5 i \n\n N4, R—I778i 8 L. BREAN LT
WA AERXANRAET, AT MR, BBV GG R RS . TR o NS R 2 3248, AT E S S
—ANBEE], 257789 0 OB, BOYRBARAERES, RIS REABALERIIERE L, Stz a. BN A
REAEIX IR 4R B T 1 LA SE AR A e

Formatted Evaluation Example from DeepSeek-R1 Total Score: 7.0

1-%ﬁ¢bmﬁﬁ%%%,@iﬁ%ﬁii,%%A%N%EE%OWWJAE%%XE?ﬁﬁﬁﬁﬁﬁ%?Wﬁﬁiﬁ
TR,

2. P RS TREA NENBEXET A, REERABK. EFETARE, BETER, BZH=.

3. FEEERAREF LR, HESIERHEX,

4, (EBENANMERT, RIRMGFEEX. EEENFREER, R XQRRE.

5. M SMKINRBEFEANRE, BERMEIRETENNEREETNIRES,

6. WiES TEk Bk EF MR, EELE/ZAREASEFELEREERRIT,

6. (NEFERRWVEFFIHEER, BRZEAEHEEE (NSER) SCFHBEE., EERRE G FIRERITEAEERG,
FLEAE. ROEFTRIVEE, KBERE. KBSHMAEEE,

7. RE|AEAFIESR XK, EXMTERIFELZERET.

8. WIERBEMNBRNALBNE, HhZBEFRE|H,

9. FEAEMILIE (EE/ZARR) MXTLLCIE (BkikvsEdF)  BRROSIARIEE (BARE) FF%

10. R RENIEB A, B'ETE B B AITE, IR,

11 RERGITH IR AMAI R, HIARER,
12. BERRENIU R (MELEXTAERXORE)
13 BITEILIE, RAERITVR. 6 SILRIERBER M AR, Bl BEIRAIERGIRRN,

14, =AFEREA BT S, EHEEHRK 5 T4 S 2 828,
15. R AFFIEMMIERHLEN, MR B NETSEELF.

16. ENBREHERGAZIE, BEFBRIFERERE.

17. BSEE A ALy, At YmMERN.

18. R FAER L RBIRIE, SR SEEMTRERE.

19. AEMSEEF X, MEEFEARE SRR, KHEW R BRI SEEERE.
20 BAEHEGEEMT, 85T BRRARK ABRERSHIAEMER.

21. MRk AE, o RiE. HteEaR Tk,

22. RERAEWARIE, LIRAEA.,

23, BEBEAE TS MR RL 1, (BERRSZUBIE.

24, ERARE WS TE ER, SEHTE,

25 BE= DR SERFE (MEKRALKRGE) .

26 WIFH B ER| A TRE, KRELEETHES (ML52S) .

Figure 12: Median-quality Essay and Evaluation Example.
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Essay from DeepSeek-Chat

Prompt : LLAAE 9 FBE —F3800-1200F (AR 30, #RITAEMRE . BRERAMEL 2 4, EEF PANE, ZRMAMEMIES A IR, S, 28505,
EARANGE L =53

Writing:** AR, HEESREF\n\n5|F\n\n A £, ME—HEKIIRTE, TH T RASTH. BNSIABEXIRETIRETECHRN, BXEHM
ik, ANGZEIERTORG, ¥FePEms, EEAEMNXENR, BRAENEN. BRENSK. KIPEENREF, MEHTIANRK, FEIRK
AR E R INMEM . ACEMAENEN. REEXF=ATERFRNY, EEASTERM—LEREMAT. \n\n*EE\n\n*— AEFHRESC\n\n AE#
RBYXERMA? ZR—AHEMKENER, MFETEMS, XMEDBRFEELTER, BERXMEBMNEE, EBSHHRNEFBIERECT, HRARNTIE.
AENRSGHE—BAE, EBERNOBEKNZHMAMEE. ALHEEFRTELSEER, AENBXAETIERER, MERFIFHLORE, MEBELSE
NECHEETBRXBEMRSHRER. ¥TFETEMS, AENBEXIFAETRLES. RERMBK, HIACHMEMHE, HRROEFMFPES. \n\nA
ANEMBSGHERBRFIAMER. FEERMARI-NBE (FAEBHIE) PRE, AERAFMWTE CERBEENRE. EPE, RNTERKEETFH
CHEX. ¥TEFEMS, ANENBXMAET A, AHSMETH. TREBISERSES. S5, FRELENFS . ARROPAMFEE, &
AR OB AR PHRBIAENE \n\nr 2 AERGBRE\n\n AE TR T Bk, XEPRBER KR, hRBENIABRNENLEZH. WFafhE
fE, FWEN. ARKR, BRINRSEBIE DA, BYXERE, BRIOEESBIER. SEEELE. A, ERXLEHE, BIETRNOME, B
BT EMNOER. \WnXEOEERFR SAHGRY, AENRRETANERARIN, MARSANSETEFEERSMEIL. STsTEms, 2UEN
FHFRREROIE. ANEEORUIBANNTS, BNTRSBEREMNLA. A, ELBICRXERME, HNT AR BCHES, ARROEEM
AR, \n\nlbsh, ARXABESTEARNERRE. £5R%. 2IF. RANELS, BRNTESBIRE. AREEER. A, ERBSXLERZH, RiNZF
ST SMABE, WERMANESZ, MEAEEROARXRPRITER. ZEREAREDTRNLYORK, SHARRNEFTRHRIZNZE. \n\nr=
AEBEFNnREAERHF T, BHAOFRZEF2L4. STETERS, FEAGHE—MEF. EXINE, RONBBLRMEHFITEM, EBREH
BRRWR, BRSB. LRBLRE. KT, ZAEE, ERBUSSEEED. HEARE, BRNPRAESEPRIBTACHRENHAE. \n\nbbsh, AEHEE
EETHEMNEMAZBNBERKR. TRESKRA. BRERTAZENRE, MERMNEEFPATHLRA—BH . KEERCSIHHEHEY: "KEEAEDRESR
HHAYz—. "WFSPEMS, SPAZENBEIR. BRNEN, FRESBHHNELIRX, BRABMNNEBEREY. \n\nRE, AENFFEETR
MEBRERKAES . G REOPRMERE, BRHROEKOYS. BERHE L, ZNEBZHRLECH R, XUACHBE. XMRKMNEE, K532
—HREF, \n\n R\ AER—HTRRBE N, BREXFRE. NTETEMS, BRAENEN. BRENHE, ZIEFNXTF, FREHTOANRK
BREARKMNAEFEE RLARA . NEMNBXETIERER. SUARNE, RNGETAMBA, SHSMHTER. AENREERRE, BERXERKBIET
ﬁg%%ﬁifﬁTﬁm%%ﬁaAi%%ﬁm&¥%§~E@ﬁ%u&x%ﬁﬁ%ﬁﬁoEﬁ—ﬁ%¢$ﬁ%&ﬁ%ﬁﬁ¢ﬁﬂﬁ?ﬁEm%x,%ﬁﬁﬁ%&
ZRAETFNRL .

Formatted Evaluation Example from DeepSeek-R1 Total Score: 8.7

XEDOIREW, PARRNAENRN, ke, Eas5TERRE.
FORRZTIRE, SIS IR P,
FREFRNPOER, S0,

B3| BAEFYUR, BYHER. MUHREIRNRER, AINMSHREEERRNRF .
AU SO FERAKANRAEE, Bk EAMAME BEIRE.
RESRRRHKER, NTELSENTEX, SRR,
FIMEREDL—ARIE, BFVENFEHFRAEL, CIHIERZ.
BHESARERE, RKRIFFFBD.

9. SIAmMZ. MHHFRFREM.

10. BERIRESETEE,

11 RFAF, DIEZ XFEZG.

12. (ERASIAMEGNLIE, BHRZXNILILIE.

13. RIETTEERABR, NASRIIER BRI,

14, GtBEAHI, B3 BARNEEHED .

15 RAEBHINR, MANR ZREXERRAENL.

16. B—UAHRIE, KFEMARUR.

17. FTAEDERN K, WEFE50EFRIEREAE.

18. /IMERIBEZE R HIE R RTT

19. BXHRERFHITFIEN, BHERS.

20. BMBRFEANMILETE,

21. BSEREA A & fE FiLEE .

22. ZWENEERIEBRELRILREEN,

23. BiEfLE, wE BRI LR,

24 FBRER, ERMBAMFELSHE—MRFHEEN.

25 AR EHE, KIEALES.

26. tblr (NAEMGRTE) HEORERT .

27. ZRVERFECRIE L, 5.

28. RERX. k. XEmEEHREER,

29 REKEFBTHCHEX W, REKME.

ONO R WD

Figure 13: High-quality Essay and Evaluation Example.
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