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Abstract

Human activity recognition (HAR) has advanced significantly with the availability
of diverse datasets, yet the field remains constrained by the scarcity of resources fo-
cusing on contextualizable two-person, or “dyadic” interactions. Existing datasets
primarily aim to help improve the recognition of physical coordination in single-
person settings, overlooking the intricate dynamics and kinesics present in interac-
tions between two individuals. To address this gap, we introduce the Dyadic User
EngagemenT (DUET), a comprehensive dataset designed to enhance the under-
standing and recognition of interactions. DUET comprises 12 interactions adopted
from a taxonomy rooted in psychology to distill social semantics embedded in
bodily movements. The marriage of HAR and social context dependencies sets the
stage for refining recognition accuracy, improving the authenticity of telepresence
avatar, automating sociological and psychological examinations, and many more.
To support applications with different purposes and constraints, every sample spans
across four modalities: RGB, depth, infrared, and 3D skeleton joints. Besides, the
dataset was collected at three locations, including an open indoor space, a confined
indoor space, and an open outdoor space. The variety of data collection locations
helps improve the resilience against background variation and investigate the effect
ambient environment imposes on HAR algorithms. In total, we collected 14,400
samples utilizing a novel technique that captures interactions from multiple views
with a single camera. The technique diversifies how interactions are observed and
yields the highest sample-class ratio known to date. We benchmark six state-of-the-
art HAR algorithms on DUET, demonstrating the dataset’s complexity and current
model’s limitations in recognizing dyadic interactions. DUET is publicly available
at DUET repository, providing a valuable resource for the research community to
advance HAR in dyadic settings.

1 Introduction

Human activity recognition (HAR), a prominent and rapidly advancing field of artificial intelligence,
has achieved significant success across numerous domains [10]. Its ability to analyze and decipher
the underlying structure of high-dimensional data and infer patterns in previously unseen samples has
achieved many economic goals (e.g., performance, safety). The success of HAR can be attributed
to many factors, including publicly available datasets that help refine data-driven deep learning
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Table 1: A comparison of existing dyadic datasets. Note: The number of views represents different
orientations of the interaction being captured by the sensor, the variation of which adds diversity to
how interactions are captured.

Dataset Modalities #Videos #Classes #Videos/
#Classes #Locations #Views Year

UT Interaction [1] RGB 160 6 26.7 2 1 2010
SBU Kinect [2] RGB+D+J 300 8 37.5 1 1 2012
K3HI [3] D 320 6 53.3 1 1 2013
JPL Interaction [4] RGB 399 7 57 5 1 2013
G3Di [5] RGB+D+J 168 14 12 1 1 2015
M2I [6] RGB+D+J 1,760 9 195.6 1 2 2015
ShakeFive 2 [7] RGB+J 153 8 19.1 1 1 2016
NTU RGB+D 120 [8] RGB+D+J+IR 24,828 26 954.9 - 155 2019
Air Act2Act [9] RGB+D+J 5,000 10 500 2 3 2020

DUET (our dataset) RGB+D+J+IR 14,400 12 1,200 3 360 2024

algorithms across contexts. While there are an abundance of datasets already available, the majority
of datasets pertain to single-person—or monadic—activities, and they focus primarily on refining
the recognition of physical movements. This disproportionate effort biased towards monadic HAR
overlooks the increased complexity of spatial and temporal coordination between two subjects.
The work of Lin et al. [11] revealed that monadic algorithms that have outstanding benchmarking
records for single-person activities do not perform nearly as well for dyadic interactions, highlighting
the disparity between monadic and dyadic activities. Additionally, another understudied aspect
of dyadic activities is kinesics. Similar to paralinguistics, kinesics explores beyond the physical
movements of body parts—it interprets the nonverbal channel of human communication, along
with the expanded variety of expressive and cultural messages in dyadic activities [12]. Not only
does the integration of kinesics enhance the performance of HAR [13], it opens the doors to a wide
array of downstream applications. For instance, an application inspired by Jupalle et al.’s work
[14] is to identify emotions by extracting the emotional dependencies embedded in human activities.
It can also serve as a pedagogical tool instructors leverage to observe, understand, evaluate, and
encourage student collaborations [15]. The contextual comprehension of dyadic activities refines
the understanding between stroke survivors and caregivers in healthcare and rehabilitation facilities
to improve quality of life [16]. Interactions with humanoid robots are beneficial to the social and
cognitive development of autistic children, and the study of social embeddings in human interactions
improves the authenticity of the robots [17]. Also, positive interactions between salesmen and
customers contribute to the desire of customers to make purchases, and contextualization deepens the
understanding of interactions to assess and improve customer services [18]. Despite the identified
advantages of kinesics, the few existing dyadic datasets—listed in Table 1—fall short in supporting
the extraction of the kinesics. Some of these datasets focus on healthcare activities, while others
focus on the mere tracking of bodily movements within their respective specific action categories. A
dyadic dataset that is contextualizable is still absent in the research community.

To enhance the performance of HAR for dyadic activities through contextualization, we present the
Dyadic User Engagement dataseT (DUET), a dyadic dataset featuring 12 taxonomized interactions,
providing a foundation from which to bridge the gap between monadic and dyadic HAR. The
selection of interactions is adapted from a classification system rooted in psychology that identifies
five fundamental communication functions in human interactions: emblems, illustrators, affect
displays, regulators, and adaptors. This methodological choice moves beyond the tracking of bodily
movements, contributing to the deeper comprehension of kinesics. In total, 14,400 samples are
collected with a novel technique, which captures interactions from multiple views with one camera.
The variation in view observes the same interaction from different orientations, which ameliorates
the view invariance attribute of HAR algorithms. To support downstream applications with different
purposes and constraints, every sample is collected with four modalities, including RGB, depth,
infrared (IR), and 3D skeleton joints. The dataset was collected at three locations: an open indoor
space, a confined indoor space, and a open outdoor space. Not only does the variety of locations
enhance the resilience against background variation, it also helps investigate the effect ambient
environment imposes on HAR algorithms. DUET is publicly available at DUET repository [19]
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Figure 1: Sample data from 12 interactions. The modalities presented are, from top row to bottom
row: RGB, IR, depth, and 3D skeleton joints. The 12 interactions are, from left to right: waving in,
thumbs up, waving, pointing, showing measurements, nodding, drawing circles in the air, holding
one’s palms out, twirling or scratching hair, laughing, arm crossing, and hugging.

and is provided under an MIT License. The repository also contains the README.md file that
details the data acquisition process, including the selection of sensor, data modalities and data format,
data collection configurations, biometrics of the subjects, data annotation, and the data division for
cross-location and cross-subject evaluations.

The remainder of the paper is organized as follows. Section 2 details the taxonomy adopted to
classify human interactions. Following in Section 3, we benchmark six algorithms and outline their
corresponding results. Lastly, Section 4 presents key conclusions and takeaways of the work, as well
as a discussion of next steps and further development.

2 Contextualizing human interactions

Similar to paralinguistics, bodily movements in human interactions carry more than the relocation of
body parts—they also deliver social-contextual and cultural embeddings, also known as kinesics. To
study kinesics present in dyadic interactions, we propose a dataset, DUET, in this work. A total of 12
dyadic interactions are selected in the dataset, the sample frames of which are displayed in Figure
1. These interactions are adopted from a taxonomy compiled by Ekman et al. [20], categorizing
human interactions into five groups depending on their fundamental communication functions. This
classification system lays the groundwork for efficient extraction of the aforementioned embeddings.
The categories encompass emblems, illustrators, affect displays, regulators, and adaptors.

• Emblems: Emblems have direct verbal translation and can be culturally specific. The same
gesture might be interpreted differently for different cultures [21]. For instance, a thumbs up
indicates “well done” in most Western cultures, but is a derogatory sign in Greece and some
Middle Eastern countries. Interactions chosen are waving in, thumbs-up, and hand waving.

• Illustrators: Illustrators are used to clarify the conversation they accompany. Interactions
chosen are pointing and showing measurements.

• Affect displays: Affect displays are gestures that reveal one’s affective and emotional state.
Interactions chosen are hugging, laughing, and arm crossing.

• Regulators: During interactions, regulators determine the alternation of instigating and
receiving. Interactions chosen are nodding, writing circles in the air, and holding palms out.

• Adaptors: Adaptors are habitual movements that satisfy personal needs and can be used to
increase or decrease emotional stability [22]. Interactions chosen are twirling or scratching
hair.
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Table 2: Cross-location and cross-subject accuracy comparison for the three modalities considered:
RGB, depth, and 3D skeleton joints.

HAR algorithm Modality Cross-location
accuracy ( %)

Cross-subject
accuracy ( %)

DB-LSTM [23] RGB 9.65 17.85
V4D [24] RGB 8.26 7.79

DOGV-ST3D [25] Depth 13.15 18.77
DB-LSTM [23] Depth 14.94 23.18

PAM-STGCN [26] 3D skeleton joint 30.73 36.65
DR-GCN [27] 3D skeleton joint 38.17 41.57

3 Benchmarking state-of-the-art HAR algorithms

In this section, we evaluate the performance of six state-of-the-art HAR models with publicly available
code. This evaluation features two RGB-based, two depth-based, and two skeleton-based algorithms
for different modalities provided in DUET. The results of the evaluation are presented in Table 2.

Overall, cross-subject evaluation outperforms cross-location evaluation in the state-of-the-art algo-
rithms for all modalities, which can be justified for two reasons. First, RGB-based and depth-based
algorithms are prone to learning from view-dependent motion patterns. Specifically, they tend to
correlate background with motion trajectories during training. In cross-subject evaluation, the training
set contains samples collected from three locations, whereas only two locations are taken into account
during training in cross-location evaluation. These selected models fail to generalize the unseen
background during testing, which results in lower accuracy in cross-location evaluation. Second, the
difference in the number of training samples also contributes to the disparity in performance. We use
80% of our dataset for training in cross-subject evaluation, while only two-thirds of our dataset is
used as training samples in cross-location evaluation. The performance improves as more samples
are dedicated to training. These two phenomena are also present in Liu et al.’s work [8].

Another notable observation is the gradual increase in accuracy of the state-of-the-art HAR algorithms
tested in our work, progressing from RGB to depth and then to 3D skeleton joints, corresponding to
dimensional expansion. For RGB-based algorithms, the input is compressed into a 2D plane, which
induces low accuracy since human interactions comprise both 3D spatial and temporal coordination
[28]. The compression of one dimension sacrifices the spatial comprehension to identify these
interactions. The addition of depth to each pixel on an image gives us depth images, providing
another degree of information. The refinement of performance given the substitution of colors for
depth is evident, especially when we evaluate RGB and depth inputs with the same model (i.e., DB-
LSTM) separately. Despite the increase in accuracy from RGB to depth modalities, there still remains
room for improvement for both modalities. The substandard accuracy is due to both modalities
operating in Euclidean space (i.e., images), where operations are susceptible to varying views. DUET
aims to address this issue by including considerable views. Additionally, training in the Euclidean
space is easily affected by trivial features. As shown in Figure 2a and Figure 2b, RGB and depth
models are confused by common poses shared between these activities—for instance, standing is
common in all of these activities. On the other hand, skeleton-based algorithms perform HAR on a
non-Euclidean space [29], representing human interactions in a 3D world relative to the camera.

Skeleton-based algorithms outperform other modalities because the activities are captured in a 3D
world relative to the camera, which is well-suited for the spatial complexity of human interactions.
Regardless of the view, skeleton-based networks are capable of extracting the underlying motion
patterns. Additionally, 3D skeletons sparsely represent human skeletons, which prevents the network
from learning unrelated features. However, the sparsity is also detrimental to the recognition task
for our dataset. In our dataset, it contains dyadic interactions that only differ from each other on a
very small scale. For instance, both thumbs up and holding palms out (i.e., label ID 2 and 8) require
arm extension, but the former involves raising the thumb, while the latter involves holding the hand
vertically. The simplified representation of the human body might not be able to capture minute
nuances between these two activities using state-of-the-art HAR algorithms. This is evident in Figure
2c, which shows that these two actions are confused by the algorithm the most. While the nuances
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(a) RGB-based DB-LSTM [23] (b) Depth-based DB-LSTM [23] (c) Skeleton-based DR-GCN [27]

Figure 2: Representative confusion matrices for cross-subject evaluations. Note: Class labels
represent (1) waving in, (2) thumbs up ,(3) waving, (4) pointing, (5) showing measurements, (6)
nodding, (7) drawing circles in the air, (8) holding palms out, (9) twirling or scratching hair, (10)
laughing, (11) arm crossing, and (12) hugging, respectively.

are conspicuous in RGB and depth images, which is where the 3D skeletal joints are extracted from,
the state-of-the-art skeleton-based algorithms still cannot capture them.

4 Discussion and conclusion

In this work, we present DUET, a contextualizable dataset containing 12 interactions, adapted from a
psychology classification system that categorizes human interactions based on their communication
functions. The extraction of kinesics refines HAR models and sets the stage for considerable
downstream applications, such as autonomous vehicles, smart homes, urban infrastructure planning,
emotion recognition, and healthcare [30]. 14,400 samples were collected at three locations with a
novel technique that collects a considerable amount of data of different modalities (i.e., RGB, depth,
IR, and 3D skeleton joints) from various views with one camera. These strategic design decisions
improve resilience against background noise and view variations.

To provide a baseline performance for DUET, we evaluate six HAR algorithms—two RGB-based,
two depth-based, and two skeleton-based algorithms. The results demonstrate the (1) intricacy of
social interactions that has not been captured in literature and (2) the susceptibility of HAR algorithms
to changes in view and background, which are newly-found research gaps for future exploration.

Future developments stemming from this work can be broadly categorized in two ways. The
first development is the refinement of HAR algorithms across all modalities for contextualizable
dyadic interactions, limitations of which are demonstrated in Table 2. Additionally, we have laid
the groundwork for extracting the kinesics of human activities by incorporating HAR with the
psychological classification system. The next step is to refine the framework, numerically mapping
all interactions to their corresponding embedding levels, benefiting downstream applications such as
automatic sociological and psychological examination, to name a few.
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