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ABSTRACT

Whether one person’s experience of “red” is equivalent to another’s has long been
considered unanswerable. One promising approach to resolving this fundamental
question about consciousness is the intersubjective comparison of the similarity
relations of sensory experiences, termed “qualia structures”. Conventional meth-
ods for comparing similarity relations largely sidestep the issue, assuming that
experiences elicited by the same stimuli are matched across individuals, and thus
ruling out the possibility that my “red” could be your “blue”. Here, we present
an unsupervised optimal transport method for assessing the similarity of qualia
structures without presupposing correspondences between individuals. To vali-
date and demonstrate the utility of the proposed approach, we analyzed a mas-
sive dataset of subjective color similarity judgments from color-neurotypical and
color-blind participants. We show that optimal correspondences between qualia
structures within color-neurotypical participants can be “correctly” aligned based
solely on similarity relations. In contrast, qualia structures from color-blind indi-
viduals could not be aligned with those of color-neurotypicals. Our results offer
quantitative evidence for the interindividual structural equivalence or difference of
color qualia, implying that a color-neurotypical person’s “red” is indeed another
color-neurotypical’s “red”, but not a color-blind person’s “red”, from a structural
perspective. This method is applicable across modalities, enabling general struc-
tural exploration of subjective experiences.

1 INTRODUCTION

The question of whether sensory experiences are intersubjectively equivalent is a central concern in
the study of consciousness. Some researchers consider the question impossible to answer because of
the intrinsic, ineffable, and private nature of subjective experience (1). Although direct description
of our experiences in a fashion that allows for intersubjective comparison may be impossible, in-
direct characterization of experience is empirically feasible and is considered a promising research
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program (6; 7; 2; 8; 9; 4; 10; 3; 11; 12; 5). One notable approach is to analyze reports of subjec-
tive similarities between sensory experiences (13; 14; 15; 16; 17). Relationships between sensory
experiences, such as similarity, allow for the structural investigation of phenomenal consciousness
(18; 19; 20).

Based on this idea, we formally introduce a new paradigm, which we call the “qualia structure
paradigm” (Fig. 1a). This paradigm consists of two main steps. The first step is to collect detailed
subjective reports about the relations between sensory experiences (qualia) through psychophysics
experiments (17). We then estimate the embeddings of qualia for different participants that best
explain the participants’ similarity judgements. The set of qualia embeddings is represented as
points in space (Fig. 1a) and is considered as a ’qualia structure’. Importantly, the relations of the
qualia are represented as the “distances” of the embeddings, and we can estimate the dissimilarity
matrices of the qualia based on the distance (e.g., Euclidean distance) between the embeddings.

Having obtained two qualia structures from different participants (Fig. 1a), the second step is to
compare these structures and evaluate the extent to which they are similar, without assuming a cor-
respondence between individual qualia from one structure to the other. This is in contrast to previous
analyses of two qualia structures or dissimilarity matrices, which typically assumes an “external”
correspondence at the stimulus level: my experience of “red” evoked by a red stimulus corresponds
to your experience of “red”(Fig. 1b). This type of supervised comparison between dissimilarity ma-
trices, known as Representational Similarity Analysis (RSA), has been widely used in neuroscience
to compare various similarity matrices obtained from behavioral and neural data (21; 22). However,
there is no guarantee that the same stimulus will necessarily evoke the same corresponding subjec-
tive experience in different individuals. Accordingly, when considering which stimuli evoke which
qualia for different individuals, we need to consider all possibilities of correspondence. For exam-
ple, my “red” could correspond to your “red”, “green”, “purple”, or it could lie somewhere between
your “orange” and “pink” (Fig. 1c).

1.1 UNSUPERVISED ALIGNMENT OF QUALIA STRUCTURES

To account for all possible correspondences, we propose to use an unsupervised alignment method
for quantifying the degree of similarity between qualia structures. As shown in Fig. 1d, in unsuper-
vised alignment, we do not attach any external (stimuli) labels to the qualia embeddings. Instead,
we try to find the best matching between qualia structures based only on their internal relationships
(see Methods). After finding the optimal alignment, we can use external labels, such as the iden-
tity of a color stimulus (Fig. 1e), to evaluate how the embeddings of different individuals relate to
each other. This allows us to determine which color embeddings correspond to the same color em-
beddings across individuals, and which do not. Checking the assumption that these external labels
are consistent across individuals allows us to assess the degree of inter-individual correspondences
between qualia structures obtained from different participants.

To this end, we used the Gromov-Wasserstein optimal transport (GWOT) method (23), which has
been applied with great success in various fields (25; 26; 27; 28; 24; 29)). GWOT aims to find the
optimal transportation plan Γ between two point clouds in different domains based on the distance D
(or D′) between points within each domain (Fig. 2). Importantly, the distances (or correspondences)
between points “across” different domains are not given while those “within” the same domain are
given. GWOT aligns the point clouds according to the principle that a point in one domain should
correspond to a point in the other domain that has a similar relationship to other points within its
domain (see Methods for the details). The optimal transportation plan Γ can be interpreted as the
probability of an embedding in one qualia structure corresponding to an embedding in the other
qualia structure. By using the optimal transportation plan Γ, we can evaluate the degree to which
two qualia structures match correctly.

To assess the validity and utility of the qualia structure paradigm, we apply this framework to a
similarity judgment data-set involving 93 colors as a representative and tractable case study. The
relatively large number of colors enables us to investigate complex and nuanced qualia structures
of colors, which is less feasible with previous datasets examining a smaller number of colors (13;
15; 16; 17). In addition, the large number of colors necessitates the computational efficiency of our
method, as a brute-force search method considering all possible correspondences used in previous
studies (e.g. (30)) would not be practical.
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Figure 1: Schematics of concepts in the qualia structure paradigm. (a) Two steps in the qualia
structure paradigm. The first step is to collect subjective reports through relational judgments be-
tween stimuli that enable estimation of the relational structure of sensory experiences, i.e., qualia
structure. The second step is to align qualia structures from different individuals in an unsupervised
manner to quantify the degree of similarity of their qualia structures. (b) Supervised alignment of
color qualia structures, which assumes correspondence between qualia evoked by the same external
stimuli across different individuals. (c) Unsupervised alignment of color qualia structures, which
does not assume correspondence between qualia across different individuals. All possible corre-
spondences are taken into consideration. A particular color quale for an individual may not have an
exact correspondence to a particular quale of another individual, as indicated by the dotted circle. (d)
Aligning qualia structures of different individuals in an unsupervised manner without any external
labels, solely based on the internal relationships of the embeddings. (e) Evaluation of unsupervised
alignment using external labels.

In this study, using data from both color-neurotypical participants and color-atypical participants, we
address two questions: (1) whether color qualia structures can be aligned within color-neurotypical
and color-atypical participant groups, separately, and (2) whether color qualia structures can be
aligned across color-neurotypical and color-atypical participant groups. The first analysis is neces-
sary to determine whether there are structures that are sufficiently common across participants to be
alignable within color-neurotypical participants or within color-atypical participants. These cases
also serve as a positive control, where we should be able to align two qualia structures, using our
unsupervised alignment method, which relies only on the internal relationships. After establishing
the validity of our methods, we quantified the degree to which the qualia structures of these two
populations can be aligned.
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Figure 2: Schematic of Gromov-Wasssersetin optimal transport. The elements of matrices D
and D′ are the distances between the embeddings. Γ is the transportation matrix indicating the
probability of an embedding in one qualia structure corresponding to an embedding in the other
qualia structure.

2 RESULTS

2.1 MASSIVE ONLINE EXPERIMENT OF COLOR SIMILARITY JUDGEMENT

We collected similarity judgments between 93 colors from 426 color-neurotypical and 257 color-
atypical participants using an online cloud sourcing service. 257 color-atypical participants self-
reported as color blind. Their reports were verified by a modified online Ishihara test (see Methods).
Each participant provided pairwise dissimilarity judgments for a randomly assigned subset of the
4,371 possible color pairs (including the same color pairs).

In this study, we considered the alignment between the color similarity structures on a participant
group basis by aggregating the similarity judgments of many participants to estimate a group-level
color similarity structure. This is because the number of color pairs reported by each participant was
only 162 at most, which is too small to reliably estimate the entire color similarity structure of 93
colors. As described below, we first considered alignment within color-neurotypical groups, then
within color-atypical groups, and then finally between these participant groups.

2.2 UNSUPERVISED ALIGNMENT OF COLOR QUALIA STRUCTURES

2.2.1 UNSUPERVISED ALIGNMENT BETWEEN COLOR-NEUROTYPICAL PARTICIPANTS

First, we considered the alignment within color-neurotypical participants (between subgroups of
color-neurotypical participants). We aggregated the similarity judgment responses of 128 randomly
selected color-neurotypical participants out of the total 426 color-neurotypical participants and cre-
ated a pair of non-overlapping participant groups, each consisting of 128 participants. We repeated
this random sampling 20 times. We show the results of one of the 20 samples in Figs. 3a-e, and all
the results of the 20 different samples in Fig. 3f.

As a demonstration, we show the embeddings of 93 colors for a certain random pair of groups,
denoted as Group T1 and T2 in Fig. 3a. For each group, we estimated the embeddings that best
explained the experimentally obtained similarity responses, based on the procedure described in
detail in Methods. We then applied principal component analysis (PCA) to reduce the dimensions
of the embeddings to 3 for visualization (Fig. 3a). From the estimated embeddings, we obtained the
dissimilarity matrices D by computing the Euclidian distances between the estimated embeddings
(Fig. 3b), where the entry, Dij , represents the subjective dissimilarity between the two experiences
of the i-th and j-th colors.

We then compared the two qualia structures by performing an unsupervised alignment based on
entropic GWOT (Eq. 10) on the estimated dissimilarity matrices (Fig. 3b). Since entropic GWOT is
a non-convex optimization problem involving hyperparameter search of ϵ, which controls the degree
of entropy reguralization, we performed a total of 200 optimization iterations with different ϵ values
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Figure 3: Unsupervised alignment between qualia structures of color-neurotypical partici-
pants groups (a) Estimated embeddings of 93 colors from two color-neurotypical participant groups
(Group T1 and T2). (b) Dissimilarity matrices of 93 colors from Group T1 and T2 obtained from the
embeddings. (c) The optimization results over 200 iterations with different ϵ values. GWD values of
local minima represented by points are shown with respect to ϵ. Colors represent the top-1 matching
rate of unsupervised alignment. (d) Optimal transportation plan Γ between the dissimilarity matrices
of Group T1 and T2. (e) Aligned embeddings of Group T1 and T2 plotted in the embedded space of
Group T1. (f) The top-k matching rate of unsupervised alignment for 20 random pairs of participant
groups. The chance levels are indicated by the dotted lines.

and initializations of transportation plans to search for a global optimum. The points in Fig. 3c
correspond to the local minimum found in each iteration of the optimization performed on different
ϵ values. We selected the local minimum with the lowest GWD as the optimal solution (shown in
the red circle in Fig. 3c).

From the optimization process, we finally obtained the optimal transportation plan Γ between Group
T1 and T2 (Fig. 3d). As shown in Fig. 3d, most of the diagonal elements in Γ have high values,
indicating that most of the colors in one group correspond with a high probability to the same colors
in the other group. To quantitatively assess the degree of correspondence, we computed the top-1
matching rate of the 93 colors (see Methods for details), which was 38 %. As can be seen in Fig.
3c, the local minima with low GWD (in the y-axis) tend to yield a high matching rate (points with
yellowish color), which is necessary for unsupervised alignment to achieve a high matching rate.

After applying GWOT, we performed an alignment of the two sets of embeddings, which is visual-
ized in Fig. 3e. Although the optimized transportation plan Γ provides the rough correspondence
between the embeddings of the qualia structures, we can find a more detailed mapping in the orig-
inal space of the embeddings. As described in Methods, we aligned the embeddings of Group T1
(denoted by X) with those of Group T2 (denoted by Y ) by finding the orthonormal rotation matrix
Q using the optimized transportation plan Γ obtained by GWOT. In Fig. 3e, we plotted the embed-
dings of group T1, X , and the aligned embeddings of group N2, QY . This visualization clearly
demonstrates that the embeddings of similar colors from both groups are closely located to each
other, indicating that similar colors are “correctly” aligned by the unsupervised alignment. Note that
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Figure 4: Unsupervised alignment between qualia structures of color-atypical participants
groups (a) Estimated embeddings of 93 colors from two color-atypical participant groups (Group
A1 and A2). (b) Dissimilarity matrices of 93 colors from Group A1 and A2 obtained from the em-
beddings. (c) The optimization results over 200 iterations with different ϵ values (x-axis). GWD
values (y-axis) of local minima represented by points are shown with respect to ϵ. Colors represent
the top-1 matching rate of unsupervised alignment. (d) Optimal transportation plan Γ between the
dissimilarity matrices of Group A1 and A2. (e) Aligned embeddings of Group A1 and A2 plotted
in the embedded space of Group A1. (f) The top-k matching rate of unsupervised alignment for
20 random pairs of participant groups. The red arrows indicate the matching rates for the example
shown in a-e. The dotted lines indicate the chance levels.

although the colors in Fig. 3e are used for evaluation purposes only, the entire alignment process
was performed in a purely unsupervised manner, without relying on the color labels.

By performing the same analysis for all 20 random pairs of participant groups, we obtained the top-k
matching rate of the 20 random samples (Fig. 3f). The results of the particular example shown in
Fig. 3d are highlighted by the red arrows. The averages of the top 1, 3, and 5 matching rate over
20 random samples are 51%, 83%, and 94%, respectively. Importantly, all values of the match-
ing rates from 20 random samples are well above the respective chance level (1.1%, 3.2%, 5.4%).
This suggests that there are sufficiently common structures among color-neurotypical participants
to enable their alignment in an unsupervised manner. This result validates the effectiveness of our
unsupervised alignment method based on GWOT, which relies solely on the internal relationships
of color similarity structures, and demonstrates its effectiveness in scenarios where it is expected to
work.

2.2.2 UNUSUPERVISED ALIGNMENT BETWEEN COLOR-ATYPICAL PARTICIPANTS

Next, we considered the alignment between different color-atypical participant groups (see Methods
and Supplementary Fig. S1 for screening details). Most of these participants are likely to have
red-green color vision deficiencies , as further detailed in Supplementary Fig.1.
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We investigated whether the qualia structures of color-atypical participant subgroups could be
aligned similarly to those of color-neurotypical participants. To this end, we replicated the anal-
ysis performed with color-neurotypical participants, in which pairs of participant groups consisting
of randomly selected 128 participants were formed 20 times. The results for one particular pair of
color-atypical groups, Group A1 and A2, are presented in several figures: Fig. 4a shows the embed-
dings, Fig. 4b shows the dissimilarity matrices , and Fig. 4c details the GWOT optimization results
over 200 iterations, all in a format similar to the previous analysis. Fig. 4d shows the optimal trans-
portation plan Γ for Group A1 and A2. We can see that most of the diagonal elements in Γ have high
values, resulting in a top-1 matching rate of 59%. In Fig. 4e, the embeddings of group A1 and the
aligned embeddings of group A2 are plotted, demonstrating the effectiveness of the unsupervised
alignment, as evidenced by the close placement of similar colors from both groups.

The top-k matching rate of the 20 random samples (Fig. 4f) further confirms the validity of our
methods. The average of the top 1, 3, and 5 matching rate over 20 random samples is 57%, 87%,
and 95%, respectively. All values of the matching rates significantly exceed their corresponding
chance levels, which are 1.1%, 3.2%, and 5.4%. This result suggests that at the group level, there
are sufficient common structures among color-atypical participants that they can be aligned in an
unsupervised manner, even though the degree of red-green color deficiency varies among individual
participants.

2.2.3 UNSUPERVISED ALIGNMENT BETWEEN COLOR-NEUROTYPICAL AND
COLOR-ATYPICAL PARTICIPANTS

Finally, we investigated to what extent the similarity structures of color-neurotypical and color-
atypical participants could be aligned. For this purpose, we separately sampled 128 participants from
both color-neurotypical and color-atypical participants and paired a color-neurotypical participant
group with a color-atypical participant group. This procedure was repeated 20 times, resulting in
20 pairs, each consisting of a group of the color-neurotypical participants and a group of the color-
atypical participants. As an illustrative case among these 20 random pairs, we show the estimated
embeddings (Fig. 5a) and the dissimilarity matrices of a color-neurotypical and a color-atypical
participant group (Fig. 5b), labeled as Group T1 and A1, respectively. Upon visual inspection
of the embeddings of the color-neurotypical and atypical group in Fig. 5a, we can see that while
the overall structures of the color-neurotypical and atypical group are similar, there are distinct
differences. In particular, greenish and reddish colors are close in the embedding space of the
color-atypical participants, as highlighted by the red circle in Fig. 5a, while they appear distant
in the space of the color-neurotypical participants. Despite these differences, the two dissimilarity
matrices in Fig. 5b show a significant degree of similarity. This is quantitatively supported by the
Pearson’s correlation coefficient of 0.66 between the dissimilarity matrices of Group T1 and Group
A1. While this coefficient is somewhat lower than the Pearson’s correlation coefficient between
the dissimilarity matrices of the color-neurotypical groups (Group T1 and T2 in Fig. 3b, with ρ =
0.88), and between the color-atypical groups (Group A1 and A2 in Fig. 4b, with ρ = 0.91), it still
represents a substantial correlation.

Using the dissimilarity matrices, we performed the unsupervised alignment based on GWOT be-
tween the color-neurotypical participant group and the color-atypical participant group. We per-
formed a total of 200 optimization iterations on different ϵ values and selected the local minimum
with the lowest GWD as the optimal solution (highlighted by the red circle in Fig. 5c). In Fig.
5c, we observe that local minima with low values of GWD have low matching rates, leading to un-
successful alignment. As can be seen in Fig. 5d, the optimal transportation plan Γ is not lined up
diagonally (the diagonal elements of Γ are very small), unlike the optimal transportation plan be-
tween the color-neurotypical participant groups shown in Fig. 3d or that between the color-atypical
participant groups shown in Fig. 4d. The optimal solution with the lowest GWD has a top-1 match-
ing rate of 1.1%, which is close to the chance level (1.1%). In Fig. 5e, we plotted the embeddings of
Group T1 and the aligned embeddings of Group A1. Unlike the results seen in Fig. 3e and in Fig.
4e, here the embeddings of similar colors from the two groups are not positioned closely, indicating
that similar colors are not correctly aligned by the unsupervised alignment.

By performing the same analysis for all 20 random pairs of the participant group, we obtained the
top-k matching rate of the 20 random samples (Fig. 5f). The averages of the top 1, 3, and 5 matching
rates over 20 random samples are 3.8%, 8.3%, 11.7%, respectively, which are slightly higher but
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Figure 5: Unsupervised alignment between qualia structures of color-neurotypical and atypical
participant groups (a) Estimated embeddings of 93 colors from one color-neurotypical participant
group and one color-atypical participant group (Group T1 and A1). (b) Dissimilarity matrices of 93
colors from Group T1 and A1 obtained from the embeddings. (c) The optimization results over 200
iterations with different ϵ values. GWD values of local minima represented by points are shown with
respect to ϵ. Colors represent the top-1 matching rate of unsupervised alignment. (d) Optimal trans-
portation plan Γ between the dissimilarity matrices of Group T1 and A1. (e) Aligned embeddings
of Group T1 and A1 plotted in the embedded space of Group T1. (f) The top-k matching rate of
unsupervised alignment for 20 random pairs of participant groups. The chance levels are indicated
by the dotted lines.

close to the respective chance levels (1.1%, 3.2%, 5.4%). Almost all values of the matching rates
from 20 random samples are close to the chance levels, with a few exceptions with a matching rate
above the chance level.

3 DISCUSSION

For a long time, assessing the similarity of subjective experiences across participants has been pri-
marily considered as a philosophical question, rather than an empirical problem to be tackled sci-
entifically (33; 34; 31; 32). While many previous studies have employed multidimensional scaling
(MDS) to analyse structural aspects of dissimilarity judgments between perceptual experiences, they
have invariably refrained from investigating whether qualia can be uniquely identified by their rela-
tional properties alone (18; 19; 20). To address this problem, we have proposed the “qualia structure”
paradigm.

By using the proposed unsupervised alignment method, we were able to obtain qualitatively different
results from those that would be obtained by the conventional supervised alignment method, such as
representational similarity analysis (21). First, we showed that the qualia structures of colors within
color-neurotypical or color-atypical participants can be aligned based only on the way the qualia
are structurally related to each other, without using any external labels. One might think that these
results are almost obvious, since the correlation between the dissimilarity matrices (Fig. 3b and Fig.
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4b) are very high. However, in simulations, it is easy to create examples where the two structures are
not correctly aligned, even when the correlation coefficient between two structures is very high (e.g.,
ρ = 0.9) (see Fig. 3 in (29)). In general, we cannot tell whether two structures are similar enough
to align in unsupervised manner based on supervised measures of similarity such as the correlation
coefficient alone.

In addition, we also showed that we could not unsupervisedly align the qualia structures of colors
between color-neurotypical and color-atypical participants, even though the correlation coefficient
between the dissimilarity matrices is reasonably high. Given the high correlation coefficient, the
failure of the unsupervised alignment is not entirely expected. The unsupervised alignment proba-
bly failed because of the local structural difference, i.e., greenish colors and reddish colors are close
in the embedding space of color-atypical participants (Fig. 5a), even though the overall structures
are similar. Intriguingly, our results suggest that individuals with color-atypical vision may have a
different structure of their color experiences, rather than just failing to experience a certain subset
of colors. Longstanding thought experiments that challenge the feasibility of inter-subjective color
comparisons, such as individuals with color qualia inversion (33; 34; 31; 35; 36), can be further
constrained with our relational unsupervised approach. Beyond traditional measures such as Pear-
son’s correlation coefficient, our method provides a more fundamental structural characterization of
how two structures are similar or different, which will be crucial for future investigations of qualia
structures across psychological, neuroscientific, and computational fields.

Although in this paper, we only considered group-based alignment because the number of trials ob-
tained from each participant was insufficient for reliable unsupervised alignment (see Supplemen-
tary Fig. S2), it is interesting to consider individual-based alignment and assess the degree of the
individual difference even for color-neurotypical participants. To obtain statistically reliable results,
we would estimate from Supplementary Fig. S2 that at least more than 4,000 trials of similarity
judgments are needed for each individual participant, which is almost same as the total number of
pairs of 93 colors. We will conduct such experiments as future work.

While we focused only on color similarity, our method has the potential to be applied to a wide
range of subjective experiences and different modalities (e.g. natural objects (37; 38), emotions
(39; 40; 41), semantic concepts (30; 42), etc.). Our approach offers a novel and powerful tool
for assessing the intersubjective correspondence of various qualia structures. If we rely only on
our languages as the way to communicate our experiences, we are limited in understanding the
consciousness of others. With the relational and structural approaches, we believe that we can
construct an alternative and a more quantitative way to understand the sameness or difference in the
consciousness experiences of others.
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APPENDIX

EXPERIMENTAL DETAILS OF COLOR SIMILARITY JUDGMENTS

ETHICS

Experimental procedures were approved by the Monash University Human Research Ethics
Committee (Project ID: 17674). Participants were provided electronically with written consent
forms prior to the commencement of the experiment and provided electronic consent to par-
ticipate. Participants were compensated for their time at a rate of £5.27 for an experimental
duration of approximately 40 minutes.

DESIGN

Participants Participants were recruited remotely through Prolific, an online participant re-
cruitment platform. Participants accessed the experiment and provided data using their own
personal computers. Only English native speakers were recruited. We recruited 488 general-
population (color-neurotypical; (Group T)) and 548 self-identified color-atypical (Group A)
participants prior to data cleaning.

Exclusion - Color Typical Participants who failed to meet the inclusion criteria were ex-
cluded from the analysis. Firstly, we removed participants who failed to complete the exper-
iment. Secondly, we excluded participants with a catch score (see below) of < 77%. Catch
trials were included to ensure participant attention and scattered randomly among the main
trials. Lastly, the experiment was designed as a ‘double-pass paradigm’, meaning participants
performed each sequence of main trials twice. Participants whose responses across the two
passes were correlated < 0.5 were excluded, as low ‘double-pass’ correlation is indicative
of inattentive or neglectful responding (16; 17). 62 out of 488 color-neurotypical participants
were excluded, leaving 426 (87%) for the main analysis.

Exclusion - Color Atypical We collected a cohort of 548 participants who self-identified as
color blind. In addition to the general exclusion criteria, these participants were also screened
using a modified online Ishihara test. Participants viewed a set of 28 Ishihara color plates and
were asked to report the number they observed. 16 of the plates were standard and used as
a positive control, with participants excluded if they correctly identified > 80% of the plates
(i.e. made fewer than three errors) (43). 12 plates consisted of standard Ishihara plates that
were red-shifted or blue-shifted so that the number should be correctly identifiable by partic-
ipants with red-green color deficiencies (44)). These plates were used to detect participants
who falsely identified as red-green color blind, with participants excluded if they correctly
identified < 80%. After these additional exclusion criteria, 257 of 548 (47%) participants who
self-identified as color blind were used for the main analysis (Supplementary Fig. S1). As the
vast majority of individuals with colour vision deficiencies possess some form of red-green
colour blindness (deuteranomaly or deuteranopia), and because the Ishihara plates we selected
did not screen for blue-yellow colour blindness (protanomaly or protanopia), it is probable that
the included participants overwhelmingly possess some degree of red-green colour blindness
(45). Our detailed analysis of the individual responses in Supplementary Fig. S1 supports this
interpretation that our colorblind participants are largely uniform in their deficiency.

Display apparatus Due to the nature of online experimentation, participants used their own
computer screen to perform the experiment. The stimuli for the current study were based on
the color swatches used by (46). This 93-color set was selected by (46) from the Practical color
Co-ordinate System (PCCS). All stimuli were presented as solid colored circles 120 pixels in
diameter on a grey (#7F7F7F) background.

Procedure After recruitment through Prolific, participants were directed to the experiment
hosted on Pavlovia. The first page of the experiment was a consent form that they could elec-
tronically sign by pressing the spacebar. Participants were informed that the data collection
process was anonymous and that they could quit the experiment at any time. Following con-
sent, participants were provided written instructions on how to complete the experiment. This
was followed by 9 practice trials, seven of which were color similarity judgments and the rest
were catch trials.
Main trials for color-neurotypical participants proceeded as follows. First, a fixation cross was
presented in the centre of the screen for 250 ms. Following this, the two stimuli were presented
as solid-colored circles for 250 ms. Considering the centre of the screen as the midpoint, each
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stimulus was presented 180° apart and at a radius of 8% of the width of their screen. The stimuli
were randomly assigned to a position within ±30° of horizontal meridian in order to prevent
retinal adaptation between trials. Lastly, the participants were presented with a response screen
and were directed to select a specified value from 0 (most similar) to 7 (most dissimilar). After
responding, participants were asked to click on the centre of the screen to initiate the next trial.
Atypical participants were presented with a slightly updated version of the same task. Instead
of stimuli being presented randomly within ±30° of horizontal meridian, they were presented
randomly in two out of four possible locations equidistant from the centre of the screen and
maximally spaced from each other. Additionally, participants reported using values from −4
to +4 (with zero excluded) instead of 0 to 7. All other parameters remained the same.
Catch trials involved no presentation of colored stimuli patches. Instead, participants were
shown a response screen where they were prompted to click a specific number. All other aspects
of the response screen were the same.
During practice trials, participants were provided feedback on what selection they made, con-
sisting of both the value they selected and the text ‘Very Similar’, ‘Similar’, ‘Different’ or
‘Very Different’ for selections of 0/1, 2/3, 4/5, 6/7 respectively for the color-neurotypical par-
ticipants, or −4/−3, −2/−1, 1/2, 3/4 for the color-atypical participants. At the cessation of
these practice trials they were asked to press the SPACE button to proceed to the main trial set.
Following the practice trials, participants completed the main task. As with the practice tri-
als, catch trials were randomly inserted among the main trials. Each participant was randomly
allocated a set of color pairs out of the total 4371 unique pairs of 93 colors (including pairs
of the same color), which were presented in a random sequence. Color-neurotypical partic-
ipants were allocated 162 color pairs. After providing a response for each color pair once,
color-neurotypical participants performed a repeat of the first 162 trials, identical in stimuli
and sequence (double-pass). In total, this comprised of 324 main trials and 20 randomly inter-
spersed catch trials. Color-atypical participants were allocated 81 color pairs, which were also
presented in a double pass manner for a total of 162 main trials and 10 catch trials.

ESTIMATION OF EMBEDDINGS AND DISSIMILARITY MATRICES AT THE GROUP LEVEL

Aggregating similarity judgements To estimate embeddings at the group level, we aggre-
gated similarity ratings from multiple participants. We fixed the number of similarity ratings
taken from each participant to 75, which corresponds to the minimum number of unique color
pairs judged among all color-neurotypical and color-atypical participants. We randomly chose
75 similarity ratings without replacement from each participant. Then, we aggregated the simi-
larity responses from the fixed number of participants Z and made a group of participants. The
participants were chosen randomly from the entire participants (426 for color-typical partici-
pants, 257 for color-atypical participants).
To assess how many trials of similarity judgments are needed to reliably determine whether two
similarity structures are aligned in an unsupervised manner, we varied the number of partici-
pants in a group, Z = 16, 32, 64, 128. As we can see in Supplementary Fig. S2, we found that
Z = 128 (9600 trials) is necessary to obtain an accuracy of unsupervised alignment that is un-
questionably higher than the chance level for any random samples. Based on this analysis, we
only showed the results of the alignment when Z = 128 in the main text. See Supplementary
Fig. S2 for the other cases.

Estimation of embeddings based on the similarity judgements Based on the aggregated
similarity judgement responses, we estimated the embeddings of 93 colors. The embeddings
are estimated by training a one-layer linear neural network model with the similarity judgment
data by using pytorch. The procedure is as follows.
First, the initial embedding of each color denoted by ei is given by a one-hot vector of 93
dimensions. Second, the initial embeddings are linearly transformed into 20 dimensional em-
beddings as

xi = Wei, (1)

where xi is the embedding of the i-th color, W is the weights of the neural network that need
to be learned so that the loss function defined below is minimized. We set the embeddings of
dimensions large enough to capture the similarity structure of 93 colors. Note that to avoid
over-fitting, the number of dimensions set here is effectively reduced by the hyperparameter
tuning of the L1 regularization term through the usual cross-validation procedure.
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The similarity ratings between the pair of colors are given by the Euclidean distance
Dij = ∥xi − xj∥2. (2)

Then, by using the empirically obtained similarity rating Sij for the color pair i and j, the loss
function to minimize is defined as

L =

ntrain∑
(i,j)

∥Dij − Sij∥2 + λ

m∑
i=1

∥xi∥1 . (3)

where the summation of the first term is taken over all the color pairs (i, j) in the training
dataset, ntrain is the total number of color combinations in the training dataset, m is the num-
ber of the colors, ∥ · ∥1 denotes the L1 norm ∥z∥1 =

∑
i|zi|, and λ is a hyperparameter

that determines the strength of the L1 regularization. The loss function was optimized by the
Adam algorithm with a fixed number of 100 epochs using pytorch. The hyperparameter λ was
optimized by 5-fold cross-validation.

UNSUPERVISED ALIGNMENT USING GROMOV-WASSERSTEIN DISTANCE

In this section, we provide an overview of unsupervised alignment methods for aligning two
qualia structures (two sets of embeddings) by using Gromov-Wasserstein optimal transport.
With this method, we can quantify the degree of similarity between the qualia structures. Also,
the results from this analysis can inform us in what way those are similar or different, which
can be examined by detailed analysis of the correspondence between the embeddings of the
two qualia structures.

GENERAL PROBLEM SETTING

We consider the problem of aligning two sets of embeddings X and Y , which in our case
correspond to the embeddings of the color qualia structures. X and Y are d × n matrices
where n is the number of embeddings and d is the dimension of embedding vectors.

X =

x1 x2 · · · xn

 , Y =

y1 y2 · · · yn

 . (4)

Here, xi and yi are column vectors, which are the embeddings of the ith-color quale of X and
Y , respectively.
The general problem setting in this study is to find the optimal alignment between X and Y
without assuming any correspondence by solving the following problem:

min
P

min
Q

∥X −QY P∥2F , (5)

where ∥ · ∥F is the Frobenius norm ∥A∥F =
√∑

i,j a
2
ij , P is the n × n assignment ma-

trix that establishes correspondence between the column vectors of X and those of Y (i.e.,
xj

∑
i Pijyi), and Q is the d × d orthogonal matrix that rotates Y to fit into X . If we only

allow one element in each column of P to be 1 and set the other elements to 0, the problem
becomes finding a one-to-one correspondence between the columns of X and Y , or equiva-
lently, finding the optimal permutation of the column indexes of X . In this study, we examine
a more general scenario where the elements of matrix P can take on a real number between
0 and 1. These values represent the degree of correspondence between the i-th column of ma-
trix X and the j-th column of matrix Y . This more flexible approach allows us to model the
correspondences between the columns of X and Y in a more comprehensive manner.

SUPERVISED ALIGNMENT

When the assignment matrix P is given, the optimization problem becomes the well-known
Procrustes problem (47), which has a closed form solution. For instance, if we simply assume
that the column indexes of X match those of Y , and therefore P is the identity matrix, the
optimization problem is given by

min
Q

∥X −QY ∥2F . (6)

Given the singular value decomposition UΣV ⊤ of XY ⊤, the solution to the Procrustes prob-
lem is given by Q∗ = UV ⊤.
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UNSUPERVISED ALIGNMENT

In this study, we consider the scenario where the assignment matrix P is not given. In this case,
we need to jointly optimize P and Q in Eq. 5, which is a non-convex optimization problem
without a closed-form solution. To address this, we first find an optimal assignment matrix P
using Gromov-Wasserstein optimal transport (GWOT) in an unsupervised manner. We then
compute the Procrustes solution Q∗ based on the assignment matrix obtained from the GWOT
analysis. This approach has been effective in unsupervised language translation tasks (25; 48).
Denoting the optimal transportation plan (the assignment matrix) by Γ∗, the problem to solve
becomes

min
Q

∥X −QY Γ∗∥2F . (7)

The solution can be found by the singular value decomposition of X(Y Γ∗)⊤.

GROMOV-WASSERSTEIN OPTIMAL TRANSPORT

To obtain the assignment matrix P , which establishes the correspondence between the em-
beddings (the column vectors) of X with the embeddings of Y , we use Gromov-Wasserstein
optimal transport (GWOT) (23). GWOT is an unsupervised alignment technique that can find
correspondence between two point clouds (embeddings) in different domains based on internal
distances within each domain. Unlike classic optimal transport problems, the points in the two
domains do not necessarily reside in the same metric space and any information about corre-
spondences or distances between points “across” different domains is not given. In this study,
the internal distances within the domains are represented by two different n × n dissimilarity
matrices Dij and D′

ij obtained from different participant groups, where n is the number of
colors and Dij denotes the subjective rating of dissimilarity between the i-th and j-th color.
The goal of Gromov-Wasserstein optimal transport problem is to find the optimal way to trans-
port the distribution of resources (e.g., a pile of sand) from one domain to the other. There is a
certain amount of the pile on each point in one domain. The distribution of the pile is given by
p where pi is the amount of the pile at the i-th point in the source domain. We wish to transport
the piles onto the points in the other domain so that the distribution of the pile matches with
the target distribution q where qi is the amount of the pile at the i-th point in the target domain.
With this setting, we wish to find the optimal transport plan that minimizes a certain trans-
portation cost. The transportation cost considered in GWOT is given by

min
Γ

∑
i,j,k,l

(Dij −D′
kl)

2ΓikΓjl. (8)

Note that a transportation plan Γ needs to satisfy the following constraints:
∑

j Γij = pi,∑
i Γij = qj and

∑
ij Γij = 1. Under this constraint, the matrix Γ is considered as a joint

probability distribution with the marginal distributions being p and q. We set p and q to be
the uniform distributions, i.e., pi = qi = 1/n. Each entry Γij describes how much of the pile
on the i-th point in the source domain should be transported onto the j-th point in the target
domain. The entries of the normalized row 1

pi
Γij can be interpreted as the probabilities that

the embedding xi corresponds to the embeddings yj .
With the transportation plan, the embeddings of Y are mapped to the embeddings of X as
follows

xj

n∑
i=1

Γijyi. (9)

Then, this mapping is subsequently used for finding the rotation matrix Q in Eq. 7.

HYPERPARAMETER TUNING

Previously, it has been demonstrated that adding an entropy-regularization term can improve
the computational efficiency and help to find good local optimums of the Gromov-Wasserstein
optimal transport problem (28; 24).

min
Γ

∑
i,j,k,l

(Dij −D′
kl)

2ΓikΓjl + ϵH(Γ), (10)

where H(Γ) is the entropy of a transportation plan Γ and ϵ is a hyperparameter that determines
the strength of the entropy regularization.
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To find good local optimums, we conducted hyperparameter tuning on ϵ in Eq. 10 by using
the GWTune toolbox that we developed (29). This toolbox uses Optuna (49) for hyperparam-
eter tuning and Python Optimal Transport (POT) (50) for GWOT optimization. We sampled
200 different values of ϵ ranging from 0.02 to 0.2 by a Bayesian sampler called TPE (Tree-
structured Parzen Estimator) sampler (51). We chose the value of ϵ, where the optimal trans-
portation plan minimises the Gromov-Wasserstein distance without the entropy-regularisation
term (Eq. 8) following the procedure proposed by a previous study (26).

INITIALIZATION OF TRANSPORTATION PLAN

To avoid getting stuck in bad local minima, it is effective to randomly initialize the transporta-
tion plan and try many random initialization, as proposed in (29). Each element in the initial
transportation plan was sampled from the uniform distribution [0,1] and was normalized to
satisfy the following conditions:

∑
j Γij = pi,

∑
i Γij = qj and

∑
ij Γij = 1. For each value

of ϵ, the transportation plan was randomly initialized.

EVALUATION OF UNSUPERVISED ALIGNMENT

To assess the degree of similarity between the two qualia structures in the unsupervised setting,
the correct matching rate of color labels are computed between two groups based on the optimal
transportation plan. Denote the color labels in group 1 and 2 as c1 and c2 respectively. The
matching rate is calculated by comparing the transportation plan Γ with these color labels. For
each color i in group 1, denoted by c1i, the matching condition can be formalized as:

Match(i) =
{
1, if Γij = maxj∈{1,...,n}(Γij) and c1i = c2j
0, otherwise

(11)

This function indicates whether the i-th color in group 1, c1i, matches with the same color in
group 2, c2j . The matching rate is then the percentage of colors in group 1 that match with the
same colors in group 2, which can be calculated as

Matching Rate =

∑n
i=1 Match(i)

n
, (12)

where n is the total number of colors (n = 93). In this study, the row and column of Γ are
sorted in the same order of colors and thus, the matching rate corresponds to the percentage of
the diagonal elements Γii that are the largest among Γij for any j.
The matching rate defined above is top 1 matching rate. More generally, we also define top
k matching rate. For each color i in group 1, we can define a function to determine if the
probability of the i-th color corresponding to the same color in group 2 is within the top-k
probabilities:

Topk(i) =

{
1, if Γij is in the top-k for j ∈ {1, ..., n} and c1i = c2j
0, otherwise

(13)

The top-k matching rate can then be calculated as

Top-k Matching Rate =

∑n
i=1 Topk(i)

n
. (14)

A high matching rate between two color similarity matrices suggests that two different groups
have similar similarity structures of colors. Supplementary Figures S1, S2
Supplementary Movies S1, S2, S3

SUPPLEMENTARY FIGURES
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Figure S1: Screening of participants with self-reported color blindness (a) Each self-identified
color-blind participant reported the number they observed for a set of 28 Ishihara color plates. 16 of
the plates were standard and used as a positive control, while 12 plates were red- or blue-shifted so
that even participants with red-green color vision deficiencies should still have been able to correctly
identify the number visible (negative control). The performance of each participant for each plate
is plotted in each column. Participants who scored greater than 80% on the standard Ishihara plates
were excluded (left). Participants who scored less than 80% on the red- and blue-shifted Ishihara
plates were excluded (right). All other participants were included, so long as they passed the rest
of the exclusion criteria (middle). (b) Only participants who scored less than 80% on the standard
Ishihara plates, while scoring greater than or equal to 80% on the red- and blue-shifted plates, and
also passing the other exclusion criteria, were included in the main analysis.
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Figure S2: Performance of unsupervised alignment with varying the number of trials for color
similarity judgments. (a) The top-1 matching rate and (b) GWD for color-neurotypical vs. color-
neurotypical (T vs. T), represented by brown, color-atypical vs. color-atypical (A vs. A), represented
by purple, and color-neurotypical vs. color-atypical (T vs. A) alignment, represented by red when
the number of trials (or the number of participants Z) is varied. The chance level is indicated by the
dotted line.
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