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Abstract

While deep learning through empirical risk min-
imization (ERM) has succeeded at achieving
human-level performance at a variety of complex
tasks, ERM is not robust to distribution shifts or
adversarial attacks. Data augmentation followed
by empirical risk minimization (DA-ERM) is used
to improve robustness in ERM. In addition, consis-
tency regularization can be applied to further im-
prove the robustness of the model by forcing the
representation of the original sample and the aug-
mented one to be similar. However, existing con-
sistency regularization methods are not applicable
to covariant data augmentation, where the label
in the augmented sample is dependent on the aug-
mentation function. In this paper, we propose data
augmented loss invariant regularization (DAIR),
a simple form of consistency regularization that
is applied directly at the loss level rather than in-
termediate features, making it widely applicable
to both invariant and covariant data augmentation
regardless of network architecture, problem setup,
and task. We apply DAIR to real-world learning
problems involving covariant data augmentation:
robust neural task-oriented dialog state tracking
and robust visual question answering. We also
apply DAIR to tasks involving invariant data aug-
mentation: robust regression, robust classification
against adversarial attacks, and robust ImageNet
classification under distribution shift. Our experi-
ments show that DAIR consistently outperforms
ERM and DA-ERM with little marginal computa-
tional cost and sets new state-of-the-art results in
several benchmarks.
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1. Introduction
Deep neural networks are widely used in various applica-
tions ranging from computer vision to language process-
ing. While deep learning has surpassed human-level perfor-
mance in numerous tasks, neural networks fail under small
adversarial perturbations of the test samples (Goodfellow
et al., 2015) or natural shifts of distribution at deployment
time (Arjovsky et al., 2019). These issues have motivated
the research community to invest in a variety of methods for
evaluation and mitigation of robustness in deep learning.

Researchers have also proposed numerous algorithmic solu-
tions to improve robustness to distribution shift (Ganin et al.,
2016; Ghifary et al., 2015; Sagawa et al., 2019; Li et al.,
2018a; Sun & Saenko, 2016; Li et al., 2018b;c; Krueger
et al., 2021; Zhang et al., 2021; Robey et al., 2022) and ad-
versarial attacks (Madry et al., 2018; Li et al., 2020; Zheng
et al., 2020; Zhang et al., 2019; Tack et al., 2021). These
approaches are usually more complex than conventional em-
pirical risk minimization (ERM) and hence they cannot be
readily applied to involved tasks with non-trivial model ar-
chitectures. For example, in generative language modeling
imposing a constraint on the intermediate data representa-
tions is non-trivial, which is required by CORAL (Sun &
Saenko, 2016).

Data augmentation can be employed to improve the robust-
ness of ERM by curating synthetic examples that exhibit
a desired invariance/covariance. In this paper, invariant
data augmentation refers to the case where the features are
perturbed to obtain a synthetic augmented example that pre-
serves the original label. On the other hand, covariant data
augmentation refers to the case where perturbation of the
features results in the label to covary with the features.

Data augmentation techniques abound in the literature:
(Tensmeyer & Martinez, 2016) and Cutout (DeVries & Tay-
lor, 2017) curate invariant image transformations to improve
image representations. Mixup (Zhang et al., 2017) and Cut-
Mix (Yun et al., 2019) curate covariant data augmentations
via linear combination of features between different classes.
(Volpi et al., 2018; Zhou et al., 2020) perform data aug-
mentation with adversarial images to improve robustness.
Finally, (Cubuk et al., 2018; Lim et al., 2019) introduce a
procedure which automatically searches for improved data
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augmentation policies. While simple, data augmentation re-
mains an effective and universal solution to improve model
robustness.

Consistency regularization can be further applied on top
of data augmentation to enhance robustness by enforcing
the desired invariances on the model. (Engstrom et al., 2018;
Kannan et al., 2018; Zhang et al., 2019; Tack et al., 2021)
utilize consistency regularization at an embedding layer
to train robust neural networks against adversarial attacks.
Various forms of consistency regularization have been ap-
plied to unsupervised learning (Sinha & Dieng, 2021), self-
supervised learning (Chen et al., 2020; von Kügelgen et al.,
2021), and semi-supervised learning to exploit unlabeled
data (Bachman et al., 2014; Laine & Aila, 2016; Miyato
et al., 2018; Sohn et al., 2020; Xie et al., 2020). Standard
consistency regularization forces intermediate features to
be similar among all inputs variations and hence is only
applicable to invariant data augmentation, where data aug-
mentation keeps the label of the augmented sample intact.
Such consistency regularization may even hurt performance
in the face of covariant data augmentation, where the label
for the augmented sample may change. See Section 2.1 for
a more detailed explanation and Section 3 for experiments
that confirm this.

In this paper, we propose a simple form of consistency
regularization, called data augmented loss invariant regu-
larization (DAIR), that is directly applied at the loss level.
While existing consistency regularization methods can only
be applied to invariant data augmentation, DAIR is appli-
cable to both invariant/covariant data augmentation when
a pair of data samples expecting consistent performance.
We empirically evaluate DAIR on covariant tasks: neural
task-oriented dialog modeling and visual question answer-
ing in Section 3. We also apply DAIR on invariant tasks
ranging from training robust neural network against adver-
sarial attacks to ImageNet-9 background challenge in Ap-
pendix F. Our experiments show that DAIR is competitive
with state-of-the-art algorithms specifically designed for
these problems. Finally, we provide theoretical analysis
in Appendices A to D.

2. DAIR: Data Augmented Loss Invariant
Regularization

For a data sample z = (x, y), let ℓ(z; θ) be its parametric
loss function, where θ is the set of model parameters (e.g.,
network weights). The popular Empirical Risk Minimiza-
tion (ERM) framework trains the model by minimizing the
expected value of the following loss over the training data:

fERM(z; θ) = ℓ(z; θ). (ERM)

We assume that we have access to a (potentially randomized)

data augmenter function A(·). Examples for A include (ran-
dom) rotation, change of background, or change of entity
names. Such augmenters aim at capturing the transforma-
tions against which we wish to be invariant. Given a sample
z, let z̃ = (x̃, ỹ) = A(z) denote an augmented sample.
Previous work has used both original and augmented exam-
ples during training, which leads to the following standard
objective function, called Data Augmented Empirical Risk
Minimization (DA-ERM):

fDA-ERM(z, z̃; θ) =
1

2
ℓ(z; θ) +

1

2
ℓ(z̃; θ). (DA-ERM)

While DA-ERM has been successful in many applications,
one natural question is whether we can further improve
upon it using the knowledge that the performance on aug-
mented samples should be consistent with the original
ones. Consistency regularization further penalizes DA-
ERM for any such inconsistency at the feature/loss level:
fConsistency,D,λ(z, z̃; θ) = fDA-ERM(z, z̃; θ) + λD(z, z̃; θ),
where D(z, z̃; θ) is a proper divergence between the original
sample representation and the augmented sample represen-
tation, and where the goal of the regularizer applied at some
intermediate feature space is to maintain the performance of
the model on z and z̃ consistent. In this paper, we focus on
a specific type of such regularization, called data augmented
loss invariant regularization (DAIR):

fDAIR,R,λ(z, z̃; θ) = fDA-ERM(z, z̃; θ) + λD(z, z̃; θ)

=
1

2
ℓ(z; θ) +

1

2
ℓ(z̃; θ) + λR(ℓ(z; θ), ℓ(z̃; θ)), (DAIR)

where the regularization is directly applied to the loss. The
idea behind DAIR is to simply promote ℓ(z; θ) ≈ ℓ(z̃; θ),
and ignore the features or even the rest of the possible
outcomes of y and simply focus on the current sample’s
loss. Hence, DAIR is a relatively weak form of consis-
tency regularization only enforcing an original sample and
an augmented one to be equally likely under the learned
model assuming loss is a log-likelihood function, i.e.,
p(ỹ|x̃; θ) ≈ p(y|x; θ). This weaker form of consistency
is suitable for problems where feature consistency may not
be conceptually meaningful (See Section 2.1 for a more de-
tailed discussion). For instance, in language modeling when
a pair of sentences differ in their corresponding named enti-
ties, it is not clear why we should enforce their embeddings
to be similar, however, loss consistency is still meaningful
promoting the probability of label given input to be the same
on the original and the augmented samples.

As it turns out, we are particularly interested in a particular
form of the DAIR regularizer:

Rsq(z, z̃; θ) :=
(√

ℓ(z; θ)−
√
ℓ(z̃; θ)

)2

, (DAIR-SQ)
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Q: Is this a kitchen?
A: no toilet removed; A: no

Baseline Ours Baseline Ours
CL no no yes no
SAAA no no no no
SNMN no no yes no

Q: What color is the balloon?
A: red umbrellas removed; A: red

Baseline Ours Baseline Ours
CL pink red red red
SAAA pink red red red
SNMN pink red red red

Q: How many zebras are there in the picture?
A: 2 zebra removed A: 1

Baseline Ours Baseline Ours
CL 2 2 2 1
SAAA 2 2 2 1
SNMN 2 2 2 1

Figure 1: VQA models change their predictions as they ex-
ploit spurious correlations rather than causal relations based
on the evidence. Shown above are predictions of 3 VQA
models on original and synthetic images from our proposed
IV-VQA and CV-VQA datasets. ‘Ours’ denote the models
robustified with our proposed data augmentation strategy.

generated ‘complementary’ data (otherwise not available in
the dataset). While data augmentation and cyclic consist-
ency are making the VQA models more robust [18, 28, 29]
towards the natural language part, we take a step forward
to make the models consistent to semantic variations in the
images. We summarize our main contributions as follows:
• We propose a novel approach to analyze and quantify

issues of VQA models due to spurious correlation and
biases of data and models. We use synthetic data to
quantify these problems with a new metric that measures
erroneous inconsistent predictions of the model.

• We contribute methodology and a synthetic dataset 1 that
1https://rakshithshetty.github.io/CausalVQA/

complements VQA datasets by systematic variations that
are generated by our semantic manipulations. We com-
plement this dataset by a human study that validates our
approach and provides additional human annotations.

• We show how the above-mentioned issues can be reduced
by a data augmentation strategy - similar to adversarial
training. We present consistent results across a range of
questions and three state of the art VQA methods and
show improvements on synthetic as well as real data.

• While we investigate diverse question types, we pay par-
ticular attention to counting by creating an covariant ed-
ited set and show that our data augmentation technique
can also improve counting robustness in this setting.

2. Related Work

Visual Question Answering. There has been growing in-
terest in VQA [17, 31] recently, which can be attributed
to the availability of large-scale datasets [8, 16, 3, 25, 5]
and deep learning driven advances in both vision and NLP.
There has been immense progress in building VQA models
[22, 26, 24, 7] using LSTMs [11] and convolutional net-
works [20, 9] to models that span different paradigms such
as attention networks [23, 19, 32] and compositional mod-
ule networks [2, 14, 13, 15]. In our work, we pick a repres-
entative model from each of these three design philosophies
and study their robustness to semantic visual variations.
Robustness in VQA. Existing VQA models often exploit
language and contextual priors to predict the answers [33,
27, 8, 1]. To understand how much do these models actually
see and understand, various works have been proposed to
study the robustness of models under different variations in
the input modalities. [1] shows that changing the prior dis-
tributions for the answers across training and test sets signi-
ficantly degrades models’ performance. [28, 29] study the
robustness of the VQA models towards linguistic variations
in the questions. They show how different re-phrasings of
the questions can cause the model to switch their answer
predictions. In contrast, we study the robustness of VQA
models to semantic manipulations in the image and propose
a data augmentation technique to make the models robust.
Data Augmentation for VQA. Data Augmentation has
been used in VQA to improve model’s performance either
in the context of accuracy [18] or robustness against lin-
guistic variations in questions [28, 29]. [18] generated new
questions by using existing semantic annotations and a gen-
erative approach via recurrent neural network. They showed
that augmenting these questions gave a boost of around
1.5% points in accuracy. [29] propose a cyclic-consistent
training scheme where they generate different rephrasings
of question (based on answer predicted by the model) and
train the model such that answer predictions across the gen-
erated and the original question remain consistent. [28] pro-

2

Figure 1: VQA: Answer changes after augmentation. Image taken
from (Agarwal et al., 2020).

Parameter
Learning Rate 0.005 0.0005
Epochs 20 20
Batch-size 64

Table 17: Training parameter

: book me a taxi to the air-
port?

: how many people?

: it’s just for me.

DS: taxi-dest: airport
taxi-bookpeople: 1

: book me a taxi to the bus
station?

: how many people?

: it’s just for me.

DS: taxi-dest: bus station
taxi-bookpeople: 1

Table 18: Left: sample from the original MultiWOZ dataset. Right: synthetic
sample with name entities from SGD. Compare name entities in red.

14

Figure 2: DST: dialog state changes after augmentation.

and we call this variant DAIR-SQ. Note that Rsq has the
same scale as the loss function ℓ, making it easier to tune λ.
Empirically we observe that the optimal λ for all the experi-
ments mentioned later in the paper falls in [0.2, 100], across
various tasks (from regression to sequence-to-sequence gen-
erative modeling).

Finally, in most (real-world) applications performance is
measured through 0-1 metrics other than the loss function.
For example, we are usually concerned with accuracy in im-
age classification while we optimize cross-entropy loss. Let
F (z; θ) ∈ {0, 1} denote a 0-1 evaluation performance met-
ric of interest, e.g., accuracy. Given the sample z (or z̃), the
model performance is captured by F (z; θ) (or F (z̃; θ)). For
any z such that F (z; θ) = 1, we define the corresponding
consistency metric as:

CM(z, z̃; θ) = I{F (z̃; θ) = 1 | F (z; θ) = 1}.
(Consistency Metric)

Notice that similarly to the original performance metric,
which is only used for model evaluation, we use the consis-
tency metric at evaluation time only.

2.1. Why DAIR at the loss level?

As discussed in Section 1, consistency regularization has
been extensively studied in the literature. However, regu-
larization at loss level has been relatively unexplored. We
propose DAIR at the loss level, making it broadly applicable
when pairing information is available. Consider the follow-
ing two examples: visual question answering (Section 3.2)
and dialog state tracking (Section 3.1) in which the labels
of the augmented examples covary with the augmented fea-
tures. In these setups, feature consistency regularization
is not conceptually meaningful as the embedding of the

image with zebra removed should not be the same as the
original image (Figure 1), or the embedding of the dialog
state with named entity changed from airport to bus station
should not remain unchanged (Figure 2). In fact, forcing the
embeddings to be the same will remove vital information
needed for performing the task and will incorrectly force
the same output for the original and augmented samples.
On the other hand, we can enforce the loss value at the
augmented sample and the original sample to be the same,
which implies p(ỹ|x̃; θ) ≈ p(y|x; θ) when loss is viewed as
a log-likelihood function.

To contextualize DAIR, consider a classification task us-
ing a function approximator (e.g., a deep neural network)
followed by a softmax layer. Let q(x, y; θ) be the out-
put of the model right before the softmax layer. Hence,
q(x, ·; θ) ∝ e−ℓ(x,·;θ) for all possible outcomes In addition
to two DAIR variants, we consider the regularizer to be any
proper divergence between the output distributions q(x, ·; θ)
and q(x̃, ·; θ), such as KL divergence, which will promote
q(x, ·; θ) ≈ q(x̃, ·; θ). In addition to DAIR-SQ, we define
the following regularizers that we use throughout the paper:

• RL1(z, z̃; θ) := |ℓ(z; θ)− ℓ(z̃; θ)|; (DAIR-L1)

• Rq
KL(z, z̃; θ) := KL(q(x, ·; θ)∥q(x̃, ·; θ)). (KL

Feature Consistency)

Notice that the KL feature consistency regularizer is obliv-
ious to ỹ, and remains the same even for covariant data
augmentation where ỹ ̸= y.

To theoretically analyze why/how DAIR-SQ works, we also
conduct a simple toy linear regression experiment in Ap-
pendix A followed by a multi-dimensional extension in Ap-
pendix B, where we provide formal proofs to show that
DAIR-SQ is guaranteed to outperform DA-ERM, even in
the regime of infinite data or when using weight decay regu-
larization. Moreover, we theoretically show the convergence
rate of DAIR-SQ in Appendix C.

3. Experiments
Thus far, we observed that DAIR-SQ is a practically stable
variant of DAIR. In the rest of the paper, when we refer to
DAIR without only postfix, we mean DAIR-SQ. As we em-
pirically evaluate the performance of DAIR, we emphasize
that the only hyperparameter that we tune for DAIR is λ
(chosen via grid search on validation set). The rest of the
hyperparameters, such as step-size, batch-size, and number
of training epochs, are only tuned for the ERM baseline
and chosen to be exactly the same for DAIR. In this sec-
tion, we continue with covariant tasks where feature-level
regularization is expected to hurt the performance.

Note we also apply DAIR to invariant tasks: ImageNet-9
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background challenge, training robust deep networks and
robust regression. DAIR achieves comparable results with
the state-of-the-art baselines specifically designed for these
tasks. The results are relegated to Appendix F.

Our code of all experiments are available here:

https://github.com/
optimization-for-data-driven-science/
DAIR/.

3.1. Neural task-oriented dialog modeling

One of the main objectives in task-oriented dialog sys-
tems is the Dialog State Tracking (DST), which refers to
keeping track of the user goals as the conversation pro-
gresses. Among task-oriented dialog datasets, MultiWOZ
(Budzianowski et al., 2018) has gained the most popularity
owing to the availability of 10k+ realistic dialogs across 8
different domains, and has been improved several times.

Recently, SimpleTOD (Hosseini-Asl et al., 2020) achieved
state-of-the-art results on MultiWOZ using a neural end-
to-end modeling approach. However, (Qian et al., 2021)
observed that the performance of SimpleTOD drops signifi-
cantly when the test set named entities (which are places in
the UK) are replaced with new ones never observed during
training (with new entities all based in the US), perhaps due
to the memorization of named entities during training. We
leverage DAIR to promote invariance of the dialog policy
to named entities in the dialog flow. More importantly, we
show that standard consistency regularization on feature
space simply does not work. Here, the data augmentation
scheme is a simple one. We replace named entities in the
training set with their randomly scrambled version. For
example, “cambridge” could be turned into “bmcedrgia.”
Details on training data, augmentation schemes and hyper-
parameters can be found in Appendix G.

MultiWOZ 2.2 Test JGA MultiWOZ 2.2 Test JGA CMw/ SGD entities

SimpleTOD (Hosseini-Asl et al., 2020) 0.5483 0.4844 0.8206
SimpleTOD + DA 0.5915 0.5311 0.8354
SimpleTOD + KL feature consistency 0.5124 0.4053 0.8298
SimpleTOD + DAIR 0.5998 0.5609 0.8902

Table 1: DAIR achieves state-of-the-art Joint Goal Accuracy
(JGA) on both the original MultiWOZ 2.2 test set (Zang et al.,
2020) and well as the MultiWOZ 2.2 test set w/ named entities
replaced with SGD (Qian et al., 2021).

The results are presented in Table 1, where performance
is measured in Joint Goal Accuracy (JGA). As can
be seen, both DA-ERM and DAIR outperform Simple-
TOD (Hosseini-Asl et al., 2020) on MultiWOZ 2.2 w/ SGD
entities (Qian et al., 2021). More surprisingly, DAIR also
outperforms SimpleTOD on the original MultiWOZ 2.2
test set with no distribution shift, which we attribute to
better robustness to the named entity memorization prob-

lem observed by (Qian et al., 2021). We also observe that
DAIR significantly improves the JGA consistency metric
compared to the DA-ERM baseline. Finally, we show that
standard consistency regulariztion (KL) results in perfor-
mance degradation (see Section 2.1 for more explanation on
why).

3.2. Invariant/Covariant Visual Question Answering

Visual Question Answering (VQA) has diverse applications
ranging from visual chatbots to assistants for the visually
impaired. Recent works (Agarwal et al., 2020; Shah et al.,
2019; Ray et al., 2019) have studied the robustness of VQA
models under linguistic and visual variations. Here, we
focus on the InVariant and Covariant VQA (IV/CV-VQA)
dataset which contains semantically edited images of the
original images from VQA v2 (Goyal et al., 2017). For
each image in this subset, IV-VQA contains one or more
edited images constructed by removing an object which is
irrelevant to answering the question. CV-VQA contains one
or more edited images constructed by removing an object
which is relevant to answering the question and leads to a
different answer than the original image. A robust model
should be invariant to such edits.

We choose the attention based SAAA (Kazemi & Elqursh,
2017) model to match the original setup from (Agarwal
et al., 2020). Using DAIR, we enforce consistency in predic-
tions between the original and edited samples. We use the
standard VQA accuracy along with the consistency metrics
proposed in (Agarwal et al., 2020) to compare our results
against the ERM setup and the DA-ERM approach discussed
in (Agarwal et al., 2020).

Algorithm CV-VQA test ↑ CM ↑
ERM (Kazemi & Elqursh, 2017) 45.89 0.5792
DA-ERM (Agarwal et al., 2020) 48.32 0.5631
KL Feature Consistency 48.20 0.3479
DAIR 49.75 0.7161

Table 2: Accuracy and Consistency metrics on CV-VQA test set

Algorithm VQA v2 val ↑ CM ↑ Predictions Flipped ↓ pos → neg ↓ neg → pos ↓ neg → neg ↓
ERM (Kazemi & Elqursh, 2017) 64.18 0.9456 8.64 3.45 3.00 2.2
DA-ERM (Agarwal et al., 2020) 64.66 0.9543 7.47 2.92 2.73 2.73
KL Feature Consistency 64.57 0.9582 7.07 2.73 2.50 1.84
DAIR 64.75 0.9606 6.33 2.54 2.22 1.57

Table 3: Accuracy and Consistency metrics on VQA v2 val &
IV-VQA test set.

The results for the CV-VQA are in Table 2. DAIR achieves a
higher accuracy as compared to all baselines. This improve-
ment is significant given that the model needs to predict the
answer correctly from 3000 candidate answers. As against
this, applying KL for feature consistency catastrophically
fails on the CV-VQA task achieving significantly lower CM
scores than ERM.

https://github.com/optimization-for-data-driven-science/DAIR/
https://github.com/optimization-for-data-driven-science/DAIR/
https://github.com/optimization-for-data-driven-science/DAIR/
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The results for the IV-VQA are reported in Table 3. In
addition to our CM score, we borrow the consistency metrics
from (Agarwal et al., 2020) that measure three types of
flips. DAIR achieves a higher accuracy as compared to all
baselines across both datasets, while improving under CM
score and the ‘Predictions flipped’ metric which is the sum
of the three types of flips. While applying DAIR to this
task, we observe a trade-off between the VQA accuracy and
the consistency metrics controlled by the λ parameter. See
Appendix H for more details.

4. Conclusion
In this paper, we proposed a simple yet effective consis-
tency regularization technique, called data augmented loss
invariant regularization (DAIR). DAIR is applicable when
data augmentation is used to promote performance invari-
ance across pairs of original and augmented samples, and
it enforces the loss to be similar on the original and the
augmented samples. While existing consistency regulariza-
tion techniques cannot handle covariant data augmentation,
we showed that DAIR is broadly applicable to tasks in-
volving invariant/covariant data augmentation. Empirically,
DAIR set new state-of-the-art results in dialog state track-
ing and VQA benchmarks which involved covariant data
augmentation, and provided competitive results in all other
benchmarks.

Finally, A discussion on limitations and broader impact
appears in Appendix L.
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Appendix
In this appendix, we provide additional linear regression example with theoretical analysis (Appendix A) and its exten-
sion (Appendix B); include practical considerations when DAIR used in training (Appendix C); proofs of the analyses from
Section 2 (Appendix D); the impact of partial augmentation (Appendix E); experiments on invariant tasks (Appendix F);
training details on all experiments (Appendices G to K); discussion on limitations and broader impact (Appendix L). We
provide a table of contents below for easier navigation.
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A. Additional linear regression example with theoretical analysis

Figure 3: The plot of the optimal, ERM,
DA-ERM and DAIR-SQ (λ = 100)
regressors for the toy example of Ap-
pendix A.

In this section, we answer the question “What does DAIR offer beyond DA-ERM?”
both theoretically and empirically through a simple toy example. In this example,
we demonstrate that DAIR can fundamentally outperform DA-ERM, even in the
limit of infinite training samples (no overfitting due to finite samples). Consider a
linear regression problem where at the training time the input is xtrain = (x, s = y)
and the label y, i.e., ztrain = (xtrain, y). Here, x ∼ N (0, σ2

x), and y = x+ ε, where
ε is independent of x and ε ∼ N (0, σ2

ε). In this example, the target is explicitly
provided as a spurious feature to the learner at the training time. At test time, the
spurious feature is absent, i.e., xtest = (x, s = 0).

Clearly, in this toy example, the optimal regressor is w⋆ = (w⋆
1 , w

⋆
2)

⊤ = (1, 0)⊤.
However, absent the knowledge of the spurious feature vanilla ERM will learn
wERM ≈ (0, 1)⊤, completely overfitting the spurious feature. We assume that the
learner has access to a data augmentation module that generates z̃ = A(z; a, σ2

n) =
(xaug, y), such that xaug = (x, s = ay + n) where n ∼ N (0, σ2

n). The augmented
data will encourage the learned model to become invariant to the spurious feature. In Figure 3, we perform simulations with
a = 0.5, σ2

x = 1, σ2
ε = 0.25, σ2

n = 0.1 and plot four linear regressors associated with the slope of their respective w1. We
ignore w2 as the second spurious feature is absent at test time and hence w2 does not impact test performance. The optimal
regressor is shown as the blue line, with a slope of 1. ERM (red line) completely fails due to the overfitting to the spurious
feature. DA-ERM (orange line) significantly improves over ERM but still is far from optimal performance. DA-ERM⋆

(purple line) which is solely trained on augmented examples (ignoring the original examples) slightly outperforms DA-ERM
but still significantly overfits to the spurious feature. DAIR-SQ (green line) almost recovers the optimal solution. This is
not a coincidence. We prove that DAIR-SQ is optimal for a class of linear regression problems, while DA-ERM does not
approach optimal performance even in the limit of infinite samples. Here we state the rigorous statement, followed by proof.

Proposition A.1. Consider a linear regression problem with training point ztrain = (xtrain, y) where xtrain = (x, s = y); y
denotes label and s denotes the spurious feature. Here, x ∼ N (0, σ2

x), and y = x + ε, where ε is independent of x and
ε ∼ N (0, σ2

ε). Assume the learner has access to a data augmentation module which generates zaug = (xaug, y) where
xaug = (x, s = ay+ n). Here n ∼ N (0, σ2

n), and a ∈ R. At test time, the spurious feature is absent, i.e., xtest = (x, s = 0).
Both DAIR-SQ and DA-ERM are applied to solve this problem: DAIR-SQ achieves optimal test error as number of samples
grows and λ → ∞. On the other hand, DA-ERM cannot generally recover optimal performance even in the limit of infinite
training data.

Proof. First let us present the DA-ERM solution:

fDA-ERM(w) =E
[
(w1x+ w2y − y)2 + (w1x+ w2(ay + n)− y)2

]
(1)

=E
[
w2

1x
2 + (w2 − 1)2y2 + 2w1(w2 − 1)xy

]
+ E

[
w2

1x
2 + (w2a− 1)2y2 + w2

2n
2
]

+ E [2w1(w2a− 1)xy + 2w1w2xn+ 2w2(w2a− 1)yn] (2)

=w2
1σ

2
x + (w2 − 1)2(σ2

x + σ2
ε) + 2w1(w2 − 1)σ2

x

+ w2
1σ

2
x + (w2a− 1)2(σ2

x + σ2
ε) + w2

2σ
2
n

+ 2w1(w2a− 1)σ2
x (3)

=(w1 + w2 − 1)2σ2
x + (w2 − 1)2σ2

ε

+ (w1 + w2a− 1)2σ2
x + (w2a− 1)2σ2

ε + w2
2σ

2
n. (4)

Hence, the solution of w⋆
DA-ERM = argminw fDA-ERM(w) is given by

2w⋆
1 + (1 + a)w⋆

2 − 2 = 0,

(w⋆
1 + w⋆

2 − 1)σ2
x + (w⋆

2 − 1)σ2
ε + a(w⋆

1 + w⋆
2a− 1)σ2

x + a(w⋆
2a− 1)σ2

ε + w⋆
2σ

2
n = 0. (5)
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Subsequently,

w⋆
DA-ERM =


a2(σ2

x+σ2
ε)−2a(σ2

x+σ2
ε)+σ2

x+σ2
ε+2σ2

n

a2(σ2
x+2σ2

ε)−2aσ2
x+σx+2(σ2

ε+σ2
n)

2(a+1)σ2
ε

a2(σ2
x+2σ2

ε)−2aσ2
x+σ2

x+2(σ2
ε+σ2

n)

 . (6)

w⋆
DAIR = argmin

w
fDAIR(w)

= argmin
w

E
[
(w1x+ w2y − y)2 + (w1x+ w2(ay + n)− y)2

]
+
[
λ(|w1x+ w2y − y| − |w1x+ w2(ay + n)− y|)2

]
.

When λ → ∞, we have w⋆
DAIR,2 = 0 and hence:

w⋆
DAIR =

 1

0

 .

We then evaluate the testing loss assuming the spurious feature is absent, i.e., xtest = (x, s = 0).

ℓDAIR(xtest;w
⋆
DAIR) = E

[
(w⋆

DAIR
⊤xtest − y)2

]
= E

[
(x− (x+ ε))2

]
= σ2

ε .

ℓDA-ERM(xtest;w
⋆
DA-ERM) = E

[
(w⋆

DA-ERM
⊤xtest − y)2

]
= E

[(
a2(σ2

x + σ2
ε)− 2a(σ2

x + σ2
ε) + σ2

x + σ2
ε + 2σ2

n

a2(σ2
x + 2σ2

ε)− 2aσ2
x + σx + 2(σ2

ε + σ2
n)

x− (x+ ε)

)2
]

= σ2
ε +

(a+ 1)4σ4
εσ

2
x

(a2(σ2
x + 2σ2

ε)− 2aσ2
x + σx + 2(σ2

ε + σ2
n))

2

≥ ℓDAIR,

completing the proof.

One can show that simple data independent regularization methods (e.g. weight decay) cannot help close the gap between
the performance of DA-ERM and DAIR (see Proposition A.2). While the toy example presented an extreme case with a
spurious feature equal to the output, we prove theoretically that the same conclusion holds as long as a subset of features
have different correlation patterns with the output at training and test time (see Proposition B.1 for the general multi-variate
linear regression setup). Note that in this toy example when σn → ∞, DA-ERM could also recover w⋆. One can interpret
that as σn → ∞, the augmenter becomes stronger and forces w2 to vanish. On the other hand, DAIR recovers w⋆ with a
much weaker augmenter. This is crucial since in real-world applications, designing strong augmentation schemes requires
careful design.

Proposition A.2. Consider the case in which a weight decay regularizer γ
2 (w

2
1 +w2

2) is added to the DA-ERM, the resulting
solution is the following:

w⋆
DA-ERM-WD =


a2(σ2

ε+σ2
x)−2a(σ2

ε+σ2
x)+2γ+σ2

ε+2σ2
n+σ2

x

a2(γ(σ2
ε+σ2

x)+2σ2
ε+σ2

x)−2aσ2
x+γ2+γ(σ2

ε+σ2
n+σ2

x+2)+2σ2
ε+2σ2

n+σ2
x

(a+1)(γ(σ2
ε+σ2

x)+2σ2
ε)

a2(γ(σ2
ε+σ2

x)+2σ2
ε+σ2

x)−2aσ2
x+γ2+γ(σ2

ε+σ2
n+σ2

x+2)+2σ2
ε+2σ2

n+σ2
x
)

 .
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Proof of Proposition A.2. The proof follows the same idea of Proposition A.1 and therefore it is omitted here.

Proposition A.2 shows that even using the weight decay regularizer would not close the gap between the performance of
DA-ERM and DAIR. In other words w⋆

DA-ERM-WD ̸= w⋆ = (1, 0) unless σ2
n → ∞ and γ = 0.
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B. Multi-dimensional extension of linear regression example (Appendix A)
Consider a multi-dimensional extension of the example in Appendix A. During training, the input is xtrain = [x strain]

⊤ ∈
Rd+k and y = 1⊤x + ε, where x ∼ N (0, σ2

xI) ∈ Rd, ε ∼ N (0, σ2
ε), strain = yvtrain + ntrain, vtrain ∈ Rk and ntrain ∼

N (0, σ2
ntrain

I) ∈ Rk. Similar to the toy example, we introduce spurious feature strain to mislead the model. ERM based
approach should overfit to use the information in strain if σ2

ntrain
is small. Suppose the learner also has access to the augmented

datapoints of the form xaug = [x saug]
⊤ ∈ Rd+k, where saug = yuaug + naug, uaug ∈ Rk, and naug ∼ N (0, σ2

naug
I) ∈ Rk.

The augmented data points will encourage the model to be invariant to the spurious feature during training. The testing data
is xtest = [x 0]⊤ ∈ Rd+k. Again, the optimal w is [1 0]⊤ and we compare the performances of DA-ERM and DAIR. One
can think of this is a simplified setup that is aimed at emulating a case with some features, e.g., background, bearing no
impact on the labels, whereas they may be (highly) correlated with the label during the training. One may guess the results
of comparison as this is the extension of the toy example in the main body of the paper: DAIR mostly works better than
DA-ERM. We introduce the formal proposition below.

Proposition B.1. Consider the linear least squares regression problem for predicting the target variable y in the problem
described above. Assume that the learner has access to a data augmentation module that perturbs the spurious feature,
as described above. Consider the population level loss (i.e. number of samples is infinity). Then, for any value of σ2

ntrain
,

σ2
naug

, vtrain and naug, DAIR-SQ achieves optimal test error as λ → ∞. On the other hand, DA-ERM cannot obtain optimal
performance (other than for only certain corner cases such as σ2

naug
→ ∞ and/or σ2

ntrain
→ ∞).

Proof. Assuming the linear least squares regression fit, the objective function of DA-ERM can be written as

2E[fDA-ERM(w)] = E
[
(w⊤xtrain − y)2 + (w⊤xaug − y)2

]
= E

[
(w⊤

1 x+ w⊤
2 strain − y)2 + (w⊤

1 x+ w⊤
2 saug − y)2

]
= E

[
(w⊤

1 x+ w⊤
2 (vtrainy + ntrain)− y)2 + (w⊤

1 x+ w⊤
2 (uaugy + naug)− y)2

]
= E

[
(w⊤

1 x+ w⊤
2 (vtrain(1

⊤x+ ε) + ntrain)− 1⊤x− ε)2
]

+ E
[
(w⊤

1 x+ w⊤
2 (uaug(1

⊤x+ ε) + naug)− 1⊤x− ε)2
]

= E
[
(x⊤(w1 + 1v⊤trainw2 − 1) + ε(w⊤

2 vtrain − 1) + n⊤
trainw2)

2
]

+ E
[
(x⊤(w1 + 1u⊤

augw2 − 1) + ε(w⊤
2 uaug − 1) + n⊤

augw2)
2
]

= σ2
x∥w1 + 1v⊤trainw2 − 1∥2 + σ2

ε(w
⊤
2 vtrain − 1)2 + σ2

ntrain
∥w2∥2

+ σ2
x∥w1 + 1u⊤

augw2 − 1∥2 + σ2
ε(w

⊤
2 uaug − 1)2 + σ2

naug
∥w2∥2,

where w = [w⊤
1 w

⊤
2 ]

⊤ with w1 ∈ Rd and w2 ∈ Rk. Expanding the norms will result in

2E[fDA-ERM(w)] = σ2
x[w

⊤Îw + 2w⊤1̂ṽ⊤trainw − 21̂⊤w + w⊤ṽtrain1̃
⊤1̃ṽ⊤trainw − 21̃⊤1̃ṽ⊤trainw + 1̂⊤1̂]

+ σ2
ε [w

⊤ṽtrainṽ
⊤
trainw − 2w⊤ṽtrain + 1] + σ2

ntrain
w⊤Ĩw

+ σ2
x[w

⊤Îw + 2w⊤1̂ũ⊤
augw − 21̂⊤w + w⊤ũaug1̃

⊤1̃ũ⊤
augw − 21̃⊤1̃ũ⊤

augw + 1̂⊤1̂]

+ σ2
ε [w

⊤ũaugũ
⊤
augw − 2w⊤ũaug + 1] + σ2

naug
w⊤Ĩw

= w⊤[σ2
xÎ + σ2

xṽtrain1̂
⊤ + σ2

x1̂ṽ
⊤
train + σ2

xṽtrain1̃
⊤1̃ṽ⊤train + σ2

ε ṽtrainṽ
⊤
train + σ2

ntrain
Ĩ]w

+ (−2σ2
x1̂− 2σ2

xṽtrain1̃
⊤1̃− 2σ2

ε ṽtrain)
⊤w

+ w⊤[σ2
xÎ + σ2

xũaug1̂
⊤ + σ2

x1̂ũ
⊤
aug + σ2

xũaug1̃
⊤1̃ũ⊤

aug + σ2
ε ũaugũ

⊤
aug + σ2

naug
Ĩ]w

+ (−2σ2
x1̂− 2σ2

xũaug1̃
⊤1̃− 2σ2

ε ũaug)
⊤w

+ 2(σ2
x1̂

⊤1̂+ σ2
ε)

where ṽtrain = [0⊤ v⊤train]
⊤, ũaug = [0⊤ u⊤

aug]
⊤, Ĩ =

[
0 0
0 I

]⊤
, Î =

[
I 0
0 0

]⊤
, 1̃ = [0⊤ 1⊤]⊤ and 1̂ = [1⊤ 0⊤]⊤.

By optimality condition, we have:
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Qw⋆
DA-ERM = −b (7)

where

Q = σ2
x(ṽtrain1̂

⊤ + 1̂ṽ⊤train + ũaug1̂
⊤ + 1̂ũ⊤

aug + ṽtrain1̃
⊤1̃ṽ⊤train + ũaug1̃

⊤1̃ũ⊤
aug)

+ 2σ2
xÎ + (σ2

ntrain + σ2
naug)Ĩ + σ2

ε(ṽtrainṽ
⊤
train + ũaugũ

⊤
aug)

b = σ2
x(−21̂+ (−ṽtrain − ũaug)1̃

⊤1̃) + σ2
ε(−ṽtrain − ũaug).

One can check that w⋆
DA-ERM ̸=

[
1
0

]
for generic choice of vtrain, uaug, σ

2
x, σ

2
naug

, σ2
ε , σ

2
ntrain

. This is because we have more

free variables than the number of equations in (7). Thus, w⋆
DA-ERM cannot recover the optimal regressor for the generic choice

of parameters. More specifically, only in certain corner cases w⋆
DA-ERM would recover the optimal regressor

[
1
0

]
. For

example, when σ2
ntrain

→ +∞, we have 1
σ2
ntrain

Q → Ĩ and 1
σ2
ntrain

b → 0. Thus, in this corner case, the optimality condition (7)
is asymptotically satisfied.

On the other hand, in the presence of DAIR regularizer, when λ → ∞, the loss function in (DAIR) remains finite if and only
if R(ℓ(z;w), ℓ(z̃;w)) = 0, almost everywhere. Equivalently, the objective in (DAIR) remains finite (when λ → ∞) if and
only if

(y − x⊤w1 − s⊤trainw2)
2 = (y − x⊤w1 − s⊤augw2)

2,

for almost all realizations of data, which implies w2 = 0. Thus, when λ → ∞, w⋆
DAIR → [w⋆⊤

1,DAIR, w
⋆⊤
2,DAIR] with

w⋆
2,DAIR = 0. In other words, the coefficient of the spurious features vanishes as λ → ∞ and hence the regression will

recover the groundtruth regressor
[

1
0

]
.
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C. Practical considerations for DAIR
Next, we discuss a more detailed comparison of DAIR-SQ with DAIR-L1, and its dependency on λ, where we explain the
rationale for settling on DAIR-SQ for the experiments in Section 3.

C.1. Why does DAIR-SQ significantly outperform DAIR-L1?

While we have already compared DAIR-SQ with several consistency regularization alternatives, we want to specifically
focus on a closely related DAIR variant called DAIR-L1, which has already appeared in the literature for invariant data
augmentation (Garg et al., 2019). As we observed in Section 2.1, DAIR-L1 either outright failed or was unstable on the toy
example. The following lemma further investigates the discrepancy between DAIR-SQ and DAIR-L1:

Lemma C.1. For any non-negative loss function ℓ,

RL1(z, z̃; θ)−Rsq(z, z̃; θ) ≥ 0,

with equality iff min{ℓ(z̃; θ), ℓ(z; θ), ℓ(z̃; θ)− ℓ(z; θ)} = 0.

Figure 4: The plot of
RL1(z, z̃; θ)−Rsq(z, z̃; θ).

The proof of Lemma C.1 appears in Appendix D.1. The difference is depicted in Figure 4.
This suggests that Rsq(z, z̃; θ) incurs a much smaller penalty when ℓ(z; θ) is large. On the
other hand, when ℓ(z; θ) ≈ 0 the regularizer is much stronger and almost equivalent to RL1.
Why does this matter? At the beginning of training when the network is not yet trained, the
loss values on the original samples are large, and Rsq regularizer is weak letting the training
to proceed towards a good solution for the original samples. As the network is being trained
on original samples and their loss is vanishing, the regulairzer starts to force the network
to become invariant on the augmented samples. The above hypothesis is also empirically
verified on Colored MNIST with Adversarial Augmentation.

We also explore the impact of partial augmentation, where we only augment a certain
fraction of the training samples. DAIR shows stable performance compared with DA-ERM
when the number of augmented examples are limited. The results are presented in Figure 5 (Appendix E).

C.2. Dependence of DAIR-SQ on the regularization strength λ

While we have already seen that practically the optimal λ lies in the range [0.2, 100], in this section we relate λ to the quality
of the solution.

Definition C.2 (Empirical Expectation). We use Ê to denote the empirical expectation over a set of examples S.

Êz L(z) =
1

|S|
∑
i∈S

L(zi).

Proposition C.3. Let θ⋆λ ∈ argminθ fDAIR,R,λ(z, z̃; θ) and θ̃ denote any perfectly invariant solution, i.e.,
R(ℓ(z; θ̃), ℓ(z̃; θ̃)) = 0. We have:

Êz

{
R(ℓ(z; θ⋆λ), ℓ(z̃; θ

⋆
λ))

}
≤ Êz

{
ℓ(z; θ̃) + ℓ(z̃; θ̃)

2λ

}
.

Proposition C.3 bounds the value of (DAIR-SQ) inversely proportional to λ. Consider the example of a classification task
with K classes where the number of samples in different classes are the same. When the weights are zero, i.e., θ̃ = 0,
we have a perfectly invariant solution. Moreover, for this choice, we have ℓ(z; θ̃) = log(K) for all z if cross entropy loss
is used. The above lemma implies that Êz{R(ℓ(z; θ⋆λ), ℓ(z̃; θ

⋆
λ))} ≤ logK

λ . In other words, we can impose invariance by
increasing λ but we don’t need a very large λ, reconfirming that λ ≤ 100 sufficed in all of our experiments.

Although we have shown above that λ needs not to be very large, a natural question is that could we choose a large λ
anyway since when λ → ∞, the resulting model is perfectly invariant. In the following theorem, we show DAIR-SQ leads
to convergent algorithms when optimized by popular methods such as gradient descent and the convergence rate is affected
by λ.
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Theorem C.4. Consider a classification problem with logistic loss, where x, x̃ is the input, y is the output and θ denotes
model parameters. Assume ∥x∥, ∥x̃∥ ≤ Dx, and ∥θ∥ ≤ Dθ. After T iterations of gradient descent algorithm (Algorithm 1
in Appendix D.3), we have

∥∇θfDAIR,R,λ(·)∥2 = O
(
(1 + λ

√DxDθ)D2
x√

T

)
.

Theorem C.4 shows that DAIR penalizes the convergence rate for solving the problem to ϵ-gradient accuracy by a λ
√DxDθ

factor as λ increases. However, we observe that the additional complexity is negligible in practice as we usually do not solve
the optimization problems to stationarity but rather stop after certain number of iterations. For all experiments, we solve
each task for a certain number of epochs, which is chosen the same as the ERM baseline. While Theorem C.4 is established
for the gradient descent, it can be extended to the stochastic settings (Lei et al., 2019, Theorem 2) based on the smoothness
of the DAIR-SQ loss established in the proof of Theorem C.4.



Robustness through Data Augmentation Loss Consistency

D. Proofs
D.1. Proof of relation between DAIR-SQ and DAIR-L1 (Lemma C.1)

Proof of Lemma C.1. We proceed as follows:

RL1(z, z̃; θ)−Rsq(z, z̃; θ) = 2
√

min{ℓ(z; θ), ℓ(z̃; θ)}
∣∣∣√ℓ(z̃; θ)−

√
ℓ(z; θ)

∣∣∣ ,
We break it into two cases: if ℓ(z̃; θ) > ℓ(z; θ):

RL1(z, z̃; θ)−Rsq(z, z̃; θ) = ℓ(z̃; θ)− ℓ(z; θ)− (
√
ℓ(z̃; θ)−

√
ℓ(z; θ))2

= ℓ(z̃; θ)− ℓ(z; θ)− ℓ(z̃; θ)− ℓ(z; θ) + 2
√
ℓ(z̃; θ)

√
ℓ(z; θ)

= −2ℓ(z; θ) + 2
√
ℓ(z̃; θ)

√
ℓ(z; θ)

= 2
√
ℓ(z; θ)(

√
ℓ(z̃; θ)−

√
ℓ(z; θ)).

If ℓ(z̃; θ) ≤ ℓ(z; θ):

RL1(z, z̃; θ)−Rsq(z, z̃; θ) = ℓ(z; θ)− ℓ(z̃; θ)− (
√
ℓ(z̃; θ)−

√
ℓ(z; θ))2

= ℓ(z; θ)− ℓ(z̃; θ)− ℓ(z̃; θ)− ℓ(z; θ) + 2
√
ℓ(z̃; θ)

√
ℓ(z; θ)

= −2ℓ(z̃; θ) + 2
√
ℓ(z̃; θ)

√
ℓ(z; θ)

= 2
√
ℓ(z̃; θ)(

√
ℓ(z; θ)−

√
ℓ(z̃; θ)).

If we combine the two cases, we have:

RL1(z, z̃; θ)−Rsq(z, z̃; θ) = 2
√

min{ℓ(z; θ), ℓ(z̃; θ)}
∣∣∣√ℓ(z̃; θ)−

√
ℓ(z; θ)

∣∣∣ .

D.2. Proof of dependence of DAIR-SQ on λ (Proposition C.3)

Proof of Proposition C.3. We start the proof with the objective value.

Êz

{
ℓ(z; θ⋆λ) + ℓ(z̃; θ⋆λ)

2
+ λR(ℓ(z; θ⋆λ), ℓ(z̃; θ

⋆
λ))

}
≤ Êz

{
ℓ(z; θ̃) + ℓ(z̃; θ̃)

2
+ λR(ℓ(z; θ̃), ℓ(z̃; θ̃))

}
(8)

Êz

{
ℓ(z; θ⋆λ) + ℓ(z̃; θ⋆λ)

2
+ λR(ℓ(z; θ⋆λ), ℓ(z̃; θ

⋆
λ))

}
≤ Êz

{
ℓ(z; θ̃) + ℓ(z̃; θ̃)

2

}
(9)

Êz

{
λR(ℓ(z; θ⋆λ), ℓ(z̃; θ

⋆
λ))

}
≤ Êz

{
ℓ(z; θ̃) + ℓ(z̃; θ̃)

2
− ℓ(z; θ⋆λ) + ℓ(z̃; θ⋆λ)

2

}
(10)

Êz

{
λR(ℓ(z; θ⋆λ), ℓ(z̃; θ

⋆
λ))

}
≤ Êz

{
ℓ(z; θ̃) + ℓ(z̃; θ̃)

2

}
(11)

Êz

{
R(ℓ(z; θ⋆λ), ℓ(z̃; θ

⋆
λ))

}
≤ Êz

{
ℓ(z; θ̃) + ℓ(z̃; θ̃)

2λ

}
. (12)

Note (8) holds since θ⋆λ is the minimizer of the fDAIR,R,λ(z, z̃; θ). (9) and (11) hold since R(·) and ℓ(·) are non-negative
respectively.
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Algorithm 1 Training Neural Networks with GD

1: Input: Number of steps T , Training set S, Learning Rate η, Initialized Parameter θ0

2: for t = 1, 2, . . . , T do
3: Compute ∇θ Ê fDAIR,R,λ(zi, z̃i; θ

t).
4: Set θt+1 = θt − η∇θ Ê fDAIR,R,λ(zi, z̃i; θ

t).
5: end for

D.3. Proof of convergence of DAIR-SQ (Theorem C.4)

We first present DAIR applied to training neural networks with Gradient Descent (GD) and followed by proof of Theorem C.4.

Remark D.1. Algorithm 1 shows DAIR applied to training neural networks with GD. Note Algorithm 1 can also be extended
to the stochastic setting, which is the variant we used in the experiments of Section 3 and Appendix F.

Proof of Theorem C.4. The objective function of DAIR is the following:

fDAIR(x, x̃, y; θ) = fDA-ERM(x, x̃, y; θ) + λ
(√

ℓ(x, y; θ)−
√
ℓ(x̃, y; θ)

)2

=
1

2
(ℓ(x, y; θ) + ℓ(x̃, y; θ)) + λ

(√
ℓ(x, y; θ)−

√
ℓ(x̃, y; θ)

)2

.

Substituting logistic loss function, the above equation reduces to

fDAIR(x, x̃, y; θ) =
1

2
(log(1 + exp(ζ1(x, y, θ))) + log(1 + exp(ζ2(x̃, y, θ))))︸ ︷︷ ︸

L(θ)=h(ζ(θ))

+ λ
(√

log(1 + exp(ζ1(x, y, θ)))−
√

log(1 + exp(ζ2(x̃, y, θ)))
)2

︸ ︷︷ ︸
Rsq(θ)=g(ζ(θ))

,

where ζ = [ζ1(·) ζ2(·)]⊤, ζ1(x, y, θ) = −yθ⊤x and ζ2(x̃, y, θ) = −yθ⊤x̃. In order to obtain the convergence rate of
gradient descent, we need to compute the Lipschitz constant of the gradient of fDAIR. To this end, we need to bound the
Hessian of Rsq(θ). Applying chain rule to this function, we obtain:

∇2
θRsq(θ) = ∇θζ(θ)

⊤∇2
ζg(ζ)∇θζ(θ) +

∂g

∂ζ1
∇2

θζ1(θ) +
∂g

∂ζ2
∇2

θζ2(θ) =

 −yx⊤

−yx̃⊤

⊤

∇2
ζg(ζ)

 −yx⊤

−yx̃⊤,

 .

Where the last inequality is due to the fact that ∇2
θζ1(θ) = ∇2

θζ2(θ) = 0 since ζ1(·) and ζ2(·) are linear functions in θ.

Recall g(ζ) =
(√

log(1 + exp(ζ1))−
√
log(1 + exp(ζ2))

)2

, which implies:

(
∇2

ζg(ζ)
)
11

=
exp ζ1

(
−2 log (exp ζ1 + 1)

√
log (exp ζ2 + 1) + exp ζ1

√
log (exp ζ2 + 1) + 2 log

3
2 (exp ζ1 + 1)

)
2 (exp ζ1 + 1)2 log

3
2 (exp ζ1 + 1)

,

(
∇2

ζg(ζ)
)
12

=
exp (ζ1 + ζ2)

2 (exp ζ1 + 1) (exp ζ2 + 1)
√

log (exp ζ1 + 1)
√

log (exp ζ2 + 1)
,

(
∇2

ζg(ζ)
)
21

=
exp (ζ1 + ζ2)

2 (exp ζ1 + 1) (exp ζ2 + 1)
√

log (exp ζ1 + 1)
√

log (exp ζ2 + 1)
,

(
∇2

ζg(ζ)
)
22

=
exp ζ2

(
−2 log (exp ζ2 + 1)

√
log (exp ζ1 + 1) + exp ζ2

√
log (exp ζ1 + 1) + 2 log

3
2 (exp ζ2 + 1)

)
2 (exp ζ2 + 1)2 log

3
2 (exp ζ2 + 1)

.
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The Lipschitz constant of the gradient is equal to the spectral norm of the Hessian. To bound that, we use the fact that the
spectral norm is bounded by the Frobenius norm and hence we need to bound each individual entry of ∇2

ζg(ζ). To this end,
we will leverage the following inequality throughout our process:

1− 1

ϖ
≤ logϖ ≤ ϖ − 1, ∀ϖ > 0. (13)

We now bound (∇2
ζg(ζ))11. Notice that, using (13), we have:

0 ≤ (exp ζ1)
2

(exp ζ1 + 1)
2
log

3
2 (exp ζ1 + 1)

≤ (exp ζ1)
2

(exp ζ1 + 1)
2

(
1− 1

1 + exp ζ1

) 3
2

=

√
eζ1√

eζ1 + 1
≤ 1,

0 ≤ exp ζ1 log (exp ζ1 + 1)

(exp ζ1 + 1)
2
log

3
2 (exp ζ1 + 1)

≤ (exp ζ1)
2

(exp ζ1 + 1)
2

(
1− 1

1 + exp ζ1

) 3
2

=

√
eζ1√

eζ1 + 1
≤ 1,

and 0 ≤ exp ζ1

(exp ζ1 + 1)
2 ≤ 1

4 . Putting these pieces together, we obtain −
√
log (exp ζ2 + 1) ≤ (∇2

ζg(ζ))11 ≤
1
2

√
log (exp ζ2 + 1) + 1

8 , which in term implies

(∇2
ζg(ζ))11 = O(

√
DxDθ).

Similarly, we can obtain (∇2
ζg(ζ))22 = O(

√DxDθ). We now bound (∇2
ζg(ζ))12 and (∇2

ζg(ζ))21. By (13), we have:

0 ≤ exp ζ1

(1 + exp ζ1)
√

log(1 + exp ζ1)
≤ exp ζ1

(1 + exp ζ1)
√

1− 1
1+exp ζ1

=
exp ζ1√

(1 + exp ζ1)2 − (1 + exp ζ1)

=
exp ζ1√

1 + exp ζ1
√
exp ζ1

≤ 1.

Therefore, we have (∇2
ζg(ζ))12 ≤ 1

2 and (∇2
ζg(ζ))21 ≤ 1

2 . Given the bounds of the four entries of ∇2
ζg(ζ) above, we have

∥∇2
ζg(ζ)∥2 = O(

√
DxDθ).

Recall ∇2
θRsq(θ) =

 −yx⊤

−yx̃⊤

⊤

∇2
ζg(ζ)

 −yx⊤

−yx̃⊤

 and the boundedness assumption on x and x̃, finally we have:

∥∇2
θRsq(θ)∥2 ≤

∥∥∥∥∥∥
−yx⊤

−yx̃⊤

∥∥∥∥∥∥
2

∥∇2
ζg(ζ)∥2

∥∥∥∥∥∥
−yx⊤

−yx̃⊤

∥∥∥∥∥∥
2

= O(D2
x

√
DxDθ).

We now find ∥∇2
θL(θ)∥2 using similar approach. Notice that

∇2
θL(θ) =

 −yx⊤

−yx̃⊤

⊤

∇2
ζh(ζ)

 −yx⊤

−yx̃⊤

 and ∇2
ζh(ζ) =


exp ζ1

(exp ζ1 + 1)2
0

0
exp ζ2

(exp ζ2 + 1)2

 .
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Thus, ∥∇2
ζh(ζ)∥2 = O(1) and therefore ∥∇2

θL(θ)∥2 = O(D2
x). Recall that

fDAIR(x, x̃, y; θ) = fDA-ERM(x, x̃, y; θ) + λ
(√

ℓ(x, y; θ)−
√
ℓ(x̃, y; θ)

)2

= 2L(θ) + λRsq(θ).

Thus, using the computed bounds ∥∇2
θRsq(θ)∥2 = O(D2

x

√DxDθ) and ∥∇2
θL(θ)∥2 = O(D2

x), we have

∥∇2
θfDAIR(x, x̃, y; θ)∥2 = O((1 + λ

√
DxDθ)D2

x).

Now that we have shown that the Lipschitz constant of the gradient is bounded, by classic gradient descent results (Nesterov,
2003, Theorem 1.2.4), we know that after T iterations of gradient descent with stepsize O( 1

(1+λ
√
DxDθ)D2

x
), we have

∥∇θfDAIR,R,λ(·)∥2 = O
(
(1 + λ

√DxDθ)D2
x√

T

)
,

which completes the proof.
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E. The impact of partial augmentation
We explore the impact of partial augmentation, where we only augment a certain fraction of the training samples. The
experiment revisits noiseless Rotated MNIST with weak rotation data augmentation and Colored MNIST with Adversarial
augmentation. This experiment emulates situations where an augmentation function is only applicable to certain examples
or where augmentation is expensive and we would like to decrease the augmentation cost.

In Figure 5, we report the experiment results for DA-ERM and DAIR-SQ by applying augmentation only {10%, 20%, 30%,
50%, 100%} of the training samples, averaged on three runs. In Rotated MNIST experiment, as can be seen, DAIR-SQ
with augmentation on only 20-30% of the samples performs similar to full augmentation. On the other hand, DA-ERM
is more sensitive to partial augmentation and is subject to a steeper performance drop. This could be viewed as further
evidence that DAIR-SQ could reach its best performance using weak augmenter functions. It is also noteworthy that in this
example, DAIR-SQ with only 10% partial augmentation still outperforms DA-ERM with 100% augmentation. One can
draw similar conclustion in the Colored MNIST experiment as only 10% augmentation gives comparable performance to
full augmentation.

Figure 5: Test accuracy vs fraction of augmented samples on Rotated MNIST.
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F. Experiments on invariant tasks
Now that we have established the effectiveness of DAIR on covariant tasks, we also benchmark its performance on invariant
tasks where more baselines are available. As in the previouss section, we only tune for λ via grid search and all other
hyperparameters remain the same as the ERM baseline.

F.1. ImageNet-9 background challenge

Deep learning models have outperformed human-level performance in many applications of which the most prominent
is image classification. However, these models are extremely vulnerable to overfitting to spurious correlations such as
background features. ImageNet-9 Background Challenge (Xiao et al., 2020) was proposed to test the background robustness
of image classification models. In this challenge, seven variations of images such as background/foreground removal,
are provided to measure the extent to which models rely on the background. For example, variations Only-BG-B and
Only-BG-T remove the backgrounds and therefore the test accuracy is expected to be low for a model which does not learn
spurious background features. See (?)Figure 1]xiao2020noise for example images of each variation. (Xiao et al., 2020)
choose to train a model on Mixed-Rand variation, which is the most powerful and comprehensive augmentation scheme, and
demonstrated that the resulting model is more robust. We choose the Mixed-Rand variation as our augmentation scheme and
compare the test accuracy on all seven variations of the models trained by ERM, (Xiao et al., 2020), DA-ERM, DAIR and
KL.

Table 4 summarizes the results. We see that DAIR outperforms ERM and DA-ERM by a large margin and is similarly
competitive as KL feature consistency regularization (see the third column). In particular, DAIR outperforms DA-ERM on
all metrics for which a higher test accuracy is more desirable. DAIR improves performance on the variations which include
domain shift, such as Mixed-Same, Mixed-Next and Only-FG. In particular, it also helps Original and the Mixed-Rand
variations which are seen during training as well. In this experiment, similar to Section 3.1, DAIR not only enhances
out-of-domain generalizability/robustness but also gives the best the in-distribution performance (original). The detailed
training setup can be found in Appendix I

Original ↑ Mixed-Rand ↑ Mixed-Same ↑ Mixed-Next ↑ Only-BG-B ↓ Only-BG-T ↓ No-FG Only-FG ↑
ERM (Original) 69.43 38.57 59.63 34.27 25.83 31.06 37.04 44.00
(Xiao et al., 2020) 49.41 51.98 51.85 50.48 13.41 13.80 20.05 52.22
DA-ERM 64.02 58.05 58.81 48.17 16.91 22.27 28.44 56.62
KL Feature Consistency 70.84 65.36 68.79 64.07 13.23 20.81 26.77 67.48
DAIR 72.91 63.48 69.16 62.02 17.19 24.02 31.88 66.15

Table 4: ImageNet-9 Backgrounds Challenge test accuracy on different shifted test sets. We use Mixed-Rand as augmentation
during training for DA-ERM, DAIR, and KL feature consistency. Arrows next to the heading of each column indicate the
desired direction of the metric. For example, the accuracy on Original images should be as high as possible but the accuracy
on Only-BG-B should be as low as possible.

F.2. Training robust deep networks against adversarial attacks

Figure 6: PGD20/Clean Acc. trade-off by
sweeping λ.

Neural networks have been widely used in various applications, especially
in computer vision. However, neural networks are vulnerable to adversarial
attacks, such as Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014)
and Projected Gradient Descent (PGD) (Madry et al., 2018), where small
adversarial perturbations in the input are designed to significantly alter the
output prediction.

In this section, we consider training robust neural networks against adversarial
attacks and compare with state-of-the-art baseline models which are specif-
ically designed for this task. We evaluate the performance of each algorithm
against PGD attacks as well as the clean (no attack-free) accuracy. In our
approach, the augmented examples z̃ can be generated by a certain strong
attack, such as Projected Gradient Descent (PGD) or CW (Carlini & Wagner, 2017).We conduct our experiments on
CIFAR-10 dataset and compare our approach with several other state-of-the-art baselines.
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# Algorithm Clean (%) FGSM (%) PGD20 (%) CM (%)

1 PGD Training (Madry et al., 2018) 82.89 55.38 48.40 –
2 APART (Li et al., 2020) 82.45 55.33 48.95 60.05
3 DAIR (λ = 6) 83.04 57.57 50.68 62.66
4 TRADES + ATTA (Zheng et al., 2020) 78.98 55.58 52.30 60.56
5 TRADES (Zhang et al., 2019) 81.67 57.78 52.90 63.14
6 DAIR (λ = 16.7) 81.29 58.58 53.37 67.51

Table 5: CIFAR-10 test accuracies under no attack (clean), FGSM, and PGD20 attacks, and accuracy consistency metric between original
and PGD20 attack.

The performance of our algorithm against the Fast Gradient Sign Method (FGSM) and variants of PGD, is summarized in
Table 5, which shows that our results are competitive with the baselines. We report the performance of DAIR in Table 5
based on the configurations that give the best Clean accuracy followed by the best Robust accuracy against PGD20 in
parenthesis afterward. The trade-off curve shown in Figure 6 suggests that by sweeping the value of λ, DAIR can achieve a
better clean accuracy but a slightly lower PGD20 accuracy, and dominates most of the baseline, while it achieves a similar
performance with TRADES. Note that the formulation in TRADES is equivalent to consistency regularization with KL
divergence between the logits of the original and adversarial images. As opposed to our setup, the regularizer term in
TRADES is also used in solving the maximization problem to generate adversarial images, whereas we only use the original
loss for generating the adversarial examples.

We also report the accuracy consistency metric (CM) in this experiment in Table 5. CM captures the consistency of accuracy
on PGD20 attack compared to clean examples. We observe that DAIR outperforms all baselines, which is in line with its
best generalization to different attacks.

Lastly, we compare DAIR with more recent baselines (namely (Tack et al., 2021)) on a different robust classification against
adversarial attacks setup, where we observe that DAIR offers competitive performance improvements compared to the
state-of-the-art baselines (see Appendix J).

F.3. Robust regression: simultaneous domain shift and label noise

In this experiment, we consider a regression task to minimize the root mean square error (RMSE) of the predicted values on
samples from the Drug Discovery dataset. The task is to predict the bioactivities given a set of chemical compounds (binary
features). We follow the setup of (Li et al., 2021) to introduce random noise to corrupt the targets. Furthermore, similar to
Colored MNIST, we add a spurious binary feature to the original setup. At training time, the spurious feature is set to 1
if the target is above a threshold (the median of all the targets in the training samples), and 0 otherwise. At test time, this
condition is reversed leading to poor generalization. We compare using ERM, DA-ERM and DAIR formulations under 0%,
20% and 40% noise levels on three baselines: L2 loss, Huber loss, and negatively tilted loss (Li et al., 2021), which is called
tilted empirical risk minimization (TERM) and is designed for robust regression. For each of these baselines, we perform
data augmentation by randomly assigning the spurious feature as 0 or 1 with equal probability. Finally, we apply the DAIR
regularizer to each of these loss functions with λ = 10.

Algorithms Test RMSE (Drug Discovery dataset)

0% Noise 20% Noise 40% Noise Clean

ERM DA-ERM DAIR ERM DA-ERM DAIR ERM DA-ERM DAIR ERM
L2 loss 1.97 (0.00) 1.36 (0.00) 1.23 (0.00) 4.33 (0.04) 2.52 (0.05) 2.04 (0.06) 5.30 (0.04) 3.47 (0.07) 2.99 (0.09) 1.23 (0.00)

Huber (Huber, 1964) 1.84 (0.00) 1.27 (0.00) 1.24 (0.00) 2.93 (0.05) 1.50 (0.02) 1.39 (0.02) 4.40 (0.07) 2.18 (0.04) 1.70 (0.05) 1.16 (0.00)

TERM (Li et al., 2021) 1.74 (0.00) 1.26 (0.00) 1.25 (0.00) 1.87 (0.01) 1.27 (0.01) 1.27 (0.01) 2.01 (0.02) 1.33 (0.01) 1.31 (0.01) 1.23 (0.00)

Table 6: Test RMSE for varying degrees of label noise for ERM, DA-ERM, and DAIR using different losses.

The results of this experiment are reported in Table 6. In the last column of the table we report results on the clean dataset
without any spurious features for comparison purposes. As can be seen, without data augmentation all methods fall prey
to spurious features and perform poorly, especially as the noise level is increased. It is noteworthy that while TERM is
not designed for domain shift, it slightly outperforms the other baselines in the presence of spurious features showing that
TERM has some inherent robustness to the domain shift. By adopting data augmentation, testing error decreases but is
still quite large as compared to the Clean ERM setup for high values of noise. Notably, DAIR is able to reduce the testing
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error across all objectives and noise levels with the gap between DAIR and other approaches increasing with the degree of
noise. For the noiseless setup, DAIR is able to almost recover the Clean ERM accuracy for all three objectives. The gains
achieved with DAIR are prominent for L2 and Huber, but marginal for TERM. Finally, DAIR combined with TERM can
simultaneously handle domain shift and noisy labels as can be seen in this table.
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G. Details on neural task-oriented dialog modeling
We provide details on the benchmark that we used in this experiment. Qian et al. (2021) proposed a new test set for
MultiWOZ 2.2, called MultiWOZ 2.2 with SGD entities, where named entities are replaced with those from Schema
Guided Dialog dataset (Rastogi et al., 2020) and showed that SimpleTOD (Hosseini-Asl et al., 2020) endures more than
8% performance drop on the new test set. Examples from the dataset are shown in Table 8. To address this problem, we
define a new data augmentation scheme for DAIR and DA-ERM by replacing the named entities from the MultiWOZ 2.2
training set with randomly scrambled versions of the named entities. For example, “warkworth house” could be turned into
“easrtokow hhrwu” (see Table 8). In all of our experiments, we utilize the SimpleTOD model (Hosseini-Asl et al., 2020)
and we apply DAIR to enforce invariance between the named entities in the training examples and the scrambled entities
from their corresponding augmented samples. The model is trained with ParlAI (Miller et al., 2017) fine-tuned with the
pre-trained BART (Lewis et al., 2019). Training hyper-parameters can be found in Table 7. The optimal λ was tuned by grid
search in {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 1.0}.

Parameter Value

λ 0.5
Epochs 4

Batchsize 6
Optimizer AdamW

Learning rate 10−5

Table 7: Hyper-parameters used in training SimpleTOD.

User: can you help me book a reserva-
tion at the warkworth house ho-
tel?

Agent: yes i could! how many people
are staying, and what days would
fyou like to stay?

User: it’s just for me, and i’ll be stay-
ing for three nights starting from
tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: warkworth house

User: can you help me book a reserva-
tion at the easrtokow hhrwu ho-
tel?

Agent: yes i could! how many people
are staying, and what days would
fyou like to stay?

User: it’s just for me, and i’ll be stay-
ing for three nights starting from
tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: easrtokow hhrwu

User: can you help me book a reserva-
tion at the clarion inn & suites
atlanta downtown hotel?

Agent: yes i could! how many people
are staying, and what days would
fyou like to stay?

User: it’s just for me, and i’ll be stay-
ing for three nights starting from
tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: clarion inn & suites
atlanta downtown

Table 8: Left: sample from the original MultiWOZ dataset. Middle: augmented sample generated by scrambling. Right: synthetic
sample with name entities from SGD. Comparing left and the middle example, we are generating new named entities (marked in red) by
scrambling. Comparing left and the right example, the only difference is the named entity from different dataset, which is marked in red.
Note that the SGD named entities are not exposed to the model during training. Only the original named entities and scrambled named
entities from MultiWOZ are used during training.
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H. Setup and additional results for Visual Question Answering
All the approaches included in this paper use the original VQA v2 train split for training, along with the IV-VQA and
CV-VQA train splits for augmentation in the DAIR and DA-ERM(Agarwal et al., 2020) settings. The ERM setup (Kazemi &
Elqursh, 2017), represents a vanilla SAAA model trained on the VQA v2 train split. For the data augmentation methods, if
an image from VQA v2 contains multiple edited versions in IV-VQA/CV-VQA, we randomly select one of them to serve as
an augmented sample during training. We modify the official code released by (Agarwal et al., 2020) to suit our formulation.
All the methods are trained for 40 epochs with a learning rate of 0.001 and a batch size of 48. The baseline approaches that
we compare against are trained and evaluated by us, using the same training setup as DAIR.

λ VQA val (%) CM Predictions flipped (%) pos → neg (%) neg → pos (%) neg → neg (%)

0.72 64.89 95.89 6.67 2.64 2.38 1.65
1 64.75 96.06 6.33 2.54 2.22 1.57
1.68 63.90 96.19 5.78 2.20 1.95 1.64
2.68 62.51 96.63 5.23 1.88 1.86 1.49
5.18 60.03 97.22 4.45 1.63 1.59 1.22
10 57.70 97.67 3.91 1.33 1.37 1.21

Table 9: Accuracy-Consistency Tradeoff on VQA v2 val and IV-VQA test set controlled by λ

Table 9 indicates a tradeoff between the accuracy on the VQA v2 val set and the consistency metrics. The optimal λ value is
determined by grid search over a uniformly chosen set of size 8 in log space [10−1, 10] with the corresponding performance
on the validation set. As the λ value increases, the consistency between the predictions increases, while the accuracy on
original examples decreases. For instance, A λ value of 10 strongly boosts consistency thus lowering the ‘Predictions
flipped’ percentage to only 3.91% but sacrifices the classification accuracy causing it to drop to 57.7%.
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I. Details on training ImageNet-9
We use ResNet-50 provided by Torchvision but replace the last layer with 9 outputs. We train the model for 175 epochs with
batchsize 128, initial learning rate of 0.1 and decay of 0.1 at 30, 70, 110, 150 epochs.
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J. Details on training robust neural networks
J.1. Setups for the main results in Appendix F.2

For all algorithms reported in Table 5, we use Pre-Activation ResNet-18 (He et al., 2016), with a last-layer output size of
10 as the classification model and their original hyper-parameters. For training the DAIR model, the adversarial examples
are generated by L∞ based PGD attack with 11 iterations, ε (attack strength) set to 8/255 and attack step size to 2/255.
We train the model for 120 epochs with initial step size 0.0001 and uses CosineAnnealing scheduler. We evaluate all the
models against the standard FGSM attack and PGD attack with 20 iterations of same perturbation sizes. The optimal λ by
performing a grid search over a uniformly chosen set in log space [10−1, 102] with 10 points.

J.2. Additional results with new baselines

We also compare DAIR with some recent new baselines such (Tack et al., 2021), which utilizes Jensen-Shannon consistency
regularization on the features. To be detailed, a pair of images with attacks are fed into the model and the Jensen-Shannon
distance between the resulting output logits are computed afterward as the regularizer. The regularizer then is added to
existing algorithms such as (Madry et al., 2018), (Zhang et al., 2019) to boost their performances. The results are summarized
in Table 10. It can be seen that DAIR is also comparable with new baseline. It worth mentioning that the performance of
DAIR is better in Table 10 than in Table 5. The reason is that the training and the tuning setups are different. We follow the
exact setup of (Tack et al., 2021) and obtain the results in this subsection.

Method Clean PGD-20

ERM (Madry et al., 2018) 84.57 (83.43) 45.04 (52.82)
MART (Wang et al., 2019) 82.63 (77.00) 51.12 (54.83)

TRADES (Zhang et al., 2019) 82.87 (82.13) 50.95 (53.98)
JS Consistency (Tack et al., 2021) 86.45 (85.25) 56.51 (57.53)

DAIR-SQ 86.16 (85.24) 56.68 (57.22)

Table 10: DAIR vs (Tack et al., 2021). Accuracies in the parenthesis are from models tuned for PGD-20 while accuracies to
the left of the parenthesis are from models tuned for clean images.
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K. Additional details on robust regression
For the robust regression task, we determine the optimal λ by performing a grid search over a uniformly chosen set of size 5
in log space [1, 104] and the best performing λ on validation set is used for reporting the results on the test set. We set the
learning rate to 0.01 for all these experiments. Following the convention from (Li et al., 2021), we set the tilting factor ’t’ to
-2 for all experiments that use the TERM objective.
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L. Limitations & Broader Impact
Firstly, while we demonstrated the success of DAIR when the pairing information between original and augmented training
samples is known, the applicability of DAIR remains limited in only setups where such pairing information is available. We
also remark that DAIR incurs double the computational cost compared with algorithms which only consider one sample for
backpropagation (e.g., only an augmented examples) rather than the pair.

Secondly, applying DAIR to arbitrary tasks requires domain knowledge about the nature of the desired invariances to be
promoted which is expressed by choosing appropriate augmented samples. In particular, we did not address devising good
data augmentation procedures, but rather we argued that if data augmentation is already employed (i.e. DA-ERM is used),
DAIR can lead to remarkable gains (almost) with marginally added cost via further regularization of the losses. It remains to
examine whether DAIR could be used as a component for solving domain generalization for arbitrary domain shifts where
data augmentation pairing cannot be performed in a straightforward fashion.

Thirdly, we demonstrated the effectiveness of DAIR on a variety of supervised tasks involving multimodal, generative and
regression models. However, the applicability of DAIR to semi-supervised or self-supervised learning remains to be seen.

Finally, while we showed that DAIR boosts existing performance metrics, such as accuracy, the interplay of DAIR with
other important socially consequential metrics, such as group fairness and privacy, was not explored in this paper. It remains
to be seen whether DAIR may have any positive or negative consequences on these other Responsible AI metrics.
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