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ABSTRACT
Designing effective neural networks is fundamentally important
in deep multimodal learning. Most existing works focus on a
single task and design neural architectures manually, which are
highly task-specific and hard to generalize to different tasks.
In this paper, we devise a generalized deep multimodal neural
architecture search (MMnas) framework for various multimodal
learning tasks. Given multimodal input, we first define a set of
primitive operations, and then construct a deep encoder-decoder
based unified backbone, where each encoder or decoder block
corresponds to an operation searched from a predefined operation
pool. On top of the unified backbone, we attach task-specific heads
to tackle different multimodal learning tasks. By using a gradient-
based NAS algorithm, the optimal architectures for different tasks
are learned efficiently. Extensive ablation studies, comprehensive
analysis, and comparative experimental results show that the
obtained MMnasNet significantly outperforms existing state-of-
the-art approaches across three multimodal learning tasks (over
five datasets), including visual question answering, image-text
matching, and visual grounding.
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Figure 1: Schematic of the proposed generalized MMnas
framework,which searches for the optimal architectures for
the VQA, image-text matching, and visual grounding tasks.

1 INTRODUCTION
The developments in deep neural networks enable the machine
to deal with complicated multimodal learning tasks that require
a fine-grained understanding of both vision and language clues,
e.g., visual captioning [1, 51], visual grounding [43, 53], image-text
matching [26, 36], and visual question answering (VQA) [14, 57].
Existing approaches have pushed state-of-the-art performance on
respective tasks, however, their architectures are usually dedicated
to one specific task, preventing them from being generalized to
other tasks. This phenomenon raises a question: Is it possible to
design a generalized framework that can simultaneously adapt to
various multimodal learning tasks?

One promising answer to this question is the multimodal-BERT
framework [9, 30, 34, 46], which is inspired by the de facto BERT
model [11] in the natural language processing (NLP) community.
Similar to the transfer learning paradigm [47, 61], BERT adopts
a two-stage learning paradigm that first pre-trains a universal
backbone via self-supervised learning, and then fine-tune the
model for the specific task via supervised learning. Analogously,
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the multimodal-BERT family pre-trains the Transformer-based
backbone to obtain generalizable representations from a large-
scale corpus consisting of paired multimodal data (e.g., images and
their associated captions). Thereafter, the generalized multimodal
backbone is fine-tuned to downstream tasks such as VQA and
visual grounding. Despite that the multimodal-BERT approaches
deliver promising results on the benchmarks of various multimodal
learning tasks, their computational costs are usually very high (e.g.,
∼10M training samples [46] or ∼300M model size [9, 34]), which
severely limits their applicability.

In this paper, we tackle the generalized multimodal learning
problem from another perspective. Rather than pre-training one
generalized model for various tasks, we design a generalized frame-
work instead, which can adaptively learn the optimal architecture
for various tasks. To do this, we introduce neural architecture
search (NAS) [64] into multimodal learning and propose a deep
multimodal neural architecture search (MMnas) framework (see
Figure 1). Inspired by the modularized MCAN model [56], we first
define a set of primitive operations as the basic unit to be searched.
Taking image and sentence features as inputs, we design a unified
encoder-decoder backbone by respectively feeding features into
the encoder and decoder. The encoder (or the decoder) consists
of multiple encoder (or decoder) blocks cascaded in depth, where
each block corresponds to an operation searched from the encoder
operation pool. On top of the unified backbone, task-specific
heads are respectively designed for each task (e.g., VQA, visual
grounding). By attaching the unified backbone with each head (i.e.,
task), we use a gradient-based one-shot NAS algorithm to search
the optimal architecture to the respective task. Compared to the
hand-crafted architecture of MCAN, the automatically searched
architecture of MMnas can better fit the characteristics of each task
and hence lead to better performance. It is worth noting that the
proposed MMnas framework is not conflict with the multimodal-
BERT approaches. We can also apply the pre-training strategy on
the searched architecture to further enhance its performance.

To summarize, the main contributions of this study is three-fold:

(1) We put forward a new generalized multimodal learning
paradigm that uses the neural architecture search (NAS)
algorithm to search for the optimal architecture for different
tasks. Compared with the multimodal-BERT approaches that
use large-scale data to pre-train a generalized model, our
paradigm can better capture the characteristics of each task
and be more parametric efficient.

(2) We devise a novel MMnas framework, which consists of a
unified encoder-decoder backbone and task-specific heads to
deal with different task, including visual question answering,
image-text matching, and visual grounding.

(3) We conduct extensive experiments on five commonly used
benchmark datasets. The optimal MMnasNet delivers new
state-of-the-art performance, highlighting the effectiveness
and generalizability of the proposed MMnas framework.

2 RELATEDWORK
We briefly review previous studies on typical multimodal learning
tasks and neural architecture search.

Multimodal Learning Tasks: Multimodal learning aims to build
models that can understand and associate information from mul-
tiple modalities. From early research on audio-visual speech
recognition [12, 60] to the recent explosion of interest in vision-and-
language tasks [2, 8, 54], multimodal learning is a multi-disciplinary
field of significant importance and potential. At present, multimodal
learning with deep neural networks is the de facto paradigm
for modern multimodal learning tasks, such as visual question
answering (VQA) [2][26][56], image-text matching [24, 29], and
visual grounding [55][53]. In the following, we briefly describe
three typical multimodal learning tasks and a few representative
approaches accordingly.

The VQA task aims to answer a question in natural language
with respect to a given image, which requires a fine-grained and
simultaneous understanding of both image and question. Antol et al.
present a large-scale VQA benchmark with human annotations and
some baseline methods [2]. Fukui et al. [14], Kim et al. [27], Ben et al.
[4], and Yu et al. [57] devise different approximated bilinear pooling
models to effectively fuse multimodal features with second-order
interactions and then integrate them with attention-based neural
networks. Most recently, deep co-attention models are proposed
to integrate multimodal fusion and attention learning and deliver
new state-of-the-art performance on the benchmark datasets [15,
26, 37]. Yu et al. introduce the idea of modularization into the deep
co-attention model to characterize the fine-grained multimodal
interactions by modularized attention units [56].

Image-text matching aims to learn two respective mapping func-
tions for the image modality and the text modality, which are then
projected into a common semantic space for distance measurement.
Karpathy et al. propose a deep fragment embedding approach to
learn the fine-grained similarity between the visual object in the
image and textual word in the caption by maximizing their dot-
product similarity under a multi-instance learning framework [24].
Lee et al. propose a stacked cross attention network to exploit
the correspondences between textual words and image regions in
discovering full latent alignments [29].

Visual grounding (a.k.a, referring expression comprehension)
aims to localize an object in an image referred to by a textual
query. Rohrbach et al. propose a GroundeR model to localize the
referred object by reconstructing the sentence using attention
mechanism [43]. Yu et al. introduce a modular attention network
that simultaneously models the language-based attention and
visual-based attention to capture rich contextual information for
accurate localization [53].

The tasks above have the same input modalities (i.e., image and
text), however, their solutions are diverse and task-specific, thus
preventing them from being generalized to other tasks. Inspired by
the success of BERT model [11] in the NLP community, multimodal-
BERT approaches are proposed to learn generalized multimodal
representation in a self-supervised manner [9, 30, 34, 46]. Although
promising results have been delivered, these methods usually suffer
from tremendous computational costs which limits their usability
in practical scenarios.
Neural Architecture Search: Neural architecture search (NAS),
a.k.a. AutoML, has drawn an increasing interest in the last couple
of years, and has been successfully applied to various deep learning
tasks, such as image recognition [65], object detection [16], and
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Figure 2: The flowchart of theMMnas framework, which consists of (a) unified encoder-decoder backbone and (b) task-specific
heads on top the backbone for visual question answer (VQA), image-text matching (ITM), and visual grounding (VG).

language modeling [45]. Early NAS methods use the reinforcement
learning to search neural architectures, which are computationally
exhaustive [64, 65]. Recent works accelerate the searching process
by using weight-sharing [40] or hypernetwork [6]. Although
these methods bring acceleration by orders of magnitude, they
usually require a meta-controller (e.g., a hypernetwork or an RNN)
which still burdens computational speed. Recently, one-shot NAS
methods have been proposed to eliminate the meta-controller by
modeling the NAS problem as a single training process of an
over-parameterized supernet that comprises all candidate paths
[5, 7, 32, 52].

The most closely related study to our work is the MFAS approach
[39], which also incorporates NAS to search the optimal architecture
for multimodal tasks. However, MFAS focuses on a simpler problem
to search for the multimodal fusion model given two input features,
which cannot be directly used to address the multimodal learning
tasks in this paper.

3 THE MMNAS FRAMEWORK
In this section, we introduce a generalized multimodal learning
frameworkMMnas via neural architecture search, which can be flex-
ibly adapted to a wide range of multimodal learning tasks involving
image-sentence inputs. As shown in Figure 2, MMnas contains a
unified encoder-decoder backbone and task-specific heads. Taking
an image and its associated sentence (e.g., a question, a caption or
a query) as inputs, the unified encoder-decoder backbone learns
the multimodal interactions with a deep modularized network
consisting of stacked encoder and decoder blocks, where each block
is searched within a set of predefined primitive operations. On top
of the unified backbone, we design task-specific heads to deal with
the VQA, image-text matching (ITM), and visual grounding (VG)
tasks, respectively. Before presenting the MMnas framework, we
first introduce its basic building blocks, the primitive operations.

3.1 Primitive Operations
In the following, we present four types of primitive operations,
termed as the self-attention (SA), guided-attention (GA), feed-forward
network (FFN), and relation self-attention (RSA) operations. First,
we introduce a generalized formulation of the scaled dot-product
attention proposed in [49], which is the core of our primitive
operations below.

Denotem queries andn key-value pairs asQ ∈ Rm×d ,K ∈ Rn×d ,
V ∈ Rn×d respectively, where d is the common dimensionality. The
original scaled dot-product attention function in [49] obtains the
output features F ∈ Rm×d by weighted summation over all values
V with respect to the attention learned from the scaled dot-product
of Q and K :

F = A(Q,K ,V ) = softmax(
QKT
√
d

)V (1)

Inspired by [21], we introduce the apriori relationship R ∈ Rm×n

between Q and K into Eq.(1) to obtain a more generalized formula:

F = A(Q,K ,V ,R) = softmax(
QKT
√
d
+ R)V (2)

Without loss of generality, the commonly used multi-head
mechanism [49] can also be incorporated with the generalized
scaled dot-product attention function, which consists ofh paralleled
heads (i.e., independent attention functions) to further improve the
representation capacity of the attended features:

F = MHA(Q,K ,V ,R) = [head1, head2, ..., headh]W o (3)

where each headj = A(QWQ
j ,KW

K
j ,KW

V
j ,R) refers to an indepen-

dent scaled dot-product attention function.WQ
j ,W

K
j ,W

V
j ∈ R

d×dh

are the projection matrices for the j-th head, andW o ∈ Rh∗dh×d .
dh is the dimensionality of the output features from each head and
is usually set to dh = d/h.
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SA(X): Taking a group of input features X ∈ Rm×dx of dimension
dx , the output features Z ∈ Rm×d of the SA operation are obtained
by feeding the inputs through Eq.(3) as follows:

Z = SA(X ) = MHA(X ,X ,X , 0) (4)

where each zi ∈ Z encodes the intra-modal interactions between
xi and all features within X . 0 is an all-zero matrix indicating that
no relation prior is provided.
GA(X, Y ): Taking two group of features X ∈ Rm×dx and Y ∈

Rn×dy of dimension dx and dy respectively, the GA operation
transforms them into Z ∈ Rm×d as follows:

Z = GA(X ,Y ) = MHA(X ,Y ,Y , 0) (5)

where each zi ∈ Z encodes the inter-modal interactions between
xi and all features within Y .
FFN(X): This operation is a two-layer MLP network with ReLU
activation and dropout in between. Taking one group of input
features X ∈ Rm×dx , the transformed output features Z ∈ Rm×d
of the FFN operation are obtained as follows:

Z = FFN(X ) = FCd ◦ Drop0.1 ◦ ReLU ◦ FC4d (X ) (6)

where FCd (·) is a fully-connected layer of output dimension d and
Dropp (·) is a dropout layer with dropout rate p. The symbol ◦
denotes a composition of two layers.
RSA(X, R): This operation takes a group of features X ∈ Rm×dx
along with their relation features R ∈ Rm×m×dr as inputs, where dr
is the dimensionality of the relation features. The output features
Z ∈ Rm×d of the RSA operation are obtained as follows:

MLP(R) = ReLU ◦ FC1 ◦ ReLU ◦ FCdh (R)
Z = RSA(X ,R) = MHA(X ,X ,X , log(MLP(R) + ϵ ))

(7)

where MLP(R) denotes a two-layer MLP network with transforma-
tions applied on the last axis of R. ϵ = 1e−6 is a small constant to
avoid the underflow problem.

For each of the primitive operation above, shortcut connection
[20] and layer normalization [3] are respectively applied to it.
The reason why we use these four operations is two-fold: 1) they
are effective and complementary at modeling different kinds of
interactions for multimodal learning; and 2) we expect MMnas to be
a neat baseline thus only involve the essential operations. Without
losing of generality, more effective operations can be included to
enlarge the operation pool seamlessly in the future.

3.2 Unified Encoder-Decoder Backbone
Inspired by [56], we construct a unified encoder-decoder as the
backbone to model the deep interactions between the bimodal
inputs consisting of an image and its associated sentence. In the
following, we describe each component of the backbone in detail.
Sentence and Image Representations: The input sentence is
first tokenized and then trimmed (or zero-padded) into a sequence
ofm words. Each word is represented as a 300-D vector using the
pre-trained GloVe word embeddings [38]. The word embeddings are
fed into a one-layer LSTM network with dx hidden units, resulting
in the final sentence features X ∈ Rm×dx .

Following the strategy in [1], the input image is represented as
a set of objects extracted from a pre-trained object detection model
(e.g., Faster R-CNN). For each image, the object detector predicts

n objects with each object being represented as a group of visual
features and relation features, respectively. The visual features
Y ∈ Rn×dy are obtained by pooling the convolutional features
from the detected objects. The relation features R ∈ Rn×n×4 are
calculated by the relative spatial relationships of object pairs1.
Sentence Encoder and Image Decoder: Taking the word-level
sentence featuresX as inputs, the sentence encoder learns the intra-
modal interactions of sentence words by passing X through M

encoder blocks {b (1)enc,b
(2)
enc, ...,b

(M )
enc } recursively:

X (i ) = b
(i )
enc (X

(i−1) ) (8)

where i ∈ {1, 2, ...,M } and X (0) = X . Each b
(i )
enc (·) corresponds to

an operation searched from an encoder operation pool with inde-
pendent operation weights. Similar to [56], the encoder operation
pool consists of two candidate operations: SA and FFN.

Analogous to the sentence encoder, we design an image de-
coder consisting of N decoder blocks {b (1)dec,b

(2)
dec, ...,b

(N )
dec }. Slightly

different from that of the encoder, the decoder operation pool
contains four operations: SA, RSA, GA, and FFN. Taking the visual
features Y and relation features R from the image, along with the
output features X (M ) from the sentence encoder as inputs, the
image decoder models the intra- and inter-modal interactions of
the multimodal inputs in a recursive manner:

Y (i ) = b
(i )
enc (Y

(i−1) ,R,X (M ) ) (9)

where i ∈ {1, 2, ...,N } and Y (0) = Y . Each b (i )dec (·) takes at least one
input (i.e., Y (i−1) ) and may have an additional input (i.e., R or X (M ) )
if specific operation is searched (i.e., RSA or GA).

3.3 Task-specific Heads
The output sentence features X (M ) = [x (M )

1 ,x
(M )
2 , ...,x

(M )
m ] and

image features Y (N ) = [y (N )
1 ,y

(N )
2 , ...,y

(N )
n ] from the unified

encoder-decoder backbone contain rich information about the
attentive interactions between the sentence words and image
objects. On top of the backbone, we attach task-specific heads to
address the visual question answering (VQA), image-text matching
(ITM), and visual grounding (VG) tasks, respectively.
VQA Head: Similar to most existing works [2, 26, 57], we resolve
the VQA problem by predicting the best-matched answer to the
question from a large answer vocabulary. Inspired by the multi-
modal fusion model in [56], we use two independent attentional
reduction models for X (M ) and Y (N ) to obtain their reduced
features x̃ and ỹ, respectively:

α = softmax(MLP(X (M ) )), β = softmax(MLP(Y (N ) ))

x̃ =
m∑
i=1

αix
(M )
i , ỹ =

n∑
i=1

βiy
(N )
i

(10)

where α ∈ Rm , β ∈ Rn are the attention weights to be learnt.
MLP(X ) = FC1 ◦ ReLU ◦ FCd (X ) corresponds to a two-layer MLP

1Denote the location of the i-th object as {xi , yi , hi , wi }, where xi , yi
refer to the center of the object, and wi , hi refer to the width and height
of the object, respectively. Following the strategy in [21], the 4-D rela-
tion feature between the m-th object and the n-th object is defined as
[log( |xm − xn |/wm ), log( |ym − yn |/hm ), log(wn/wm ), log(hn/hm )].
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network. After that, the reduced features are fused together as
follows:

z = LayerNorm(WT
x x̃ +WT

y ỹ) (11)

whereWx ,Wy ∈ R
d×dz are two projection matrices to embed the

input features into a dz -dimensional common space. LayerNorm is
appended on the fused feature to stabilize training [3].

The fused feature z is then projected into a vector p ∈ Rk
and then fed into a k-way classification loss, where k denotes
the size of the answer vocabulary. For the dataset that provides
multiple answers to each question, we formulate it as a multi-label
classification problem and use binary cross-entropy (BCE) loss to
train the model. For the dataset that only has one answer to each
question, we regard it as a single-label classification problem and
use the softmax cross-entropy loss instead.
ITM Head: Image-text matching aims to learn a matching score
to measure the cross-modal similarity between the image-text pair.
Since the outputs of the ITM and VQA tasks are similar, we therefore
reuse part of the model in the VQA head. On top of the fused feature
z from Eq.(11), the matching score s ∈ (0, 1) is obtained as follows:

s = σ (WT
z z) (12)

whereWz ∈ R
dz and σ (·) denotes the sigmoid function. Denote the

predicted matching score of an input image-text pair as s (I,T ),
where (I,T ) represents a positive sample with correspondence.
We use BCE loss with hard negatives mining for (I,T ) as our loss
function to train the matching model:

Lmatch = log(s (I,T )) + log(1 − s (I,T ′))

+ log(s (I,T )) + log(1 − s (I ′,T ))
(13)

where T ′ and I ′ denote the hard negative text and image samples
for (I,T ) mined from the whole training set per training epoch.
VG Head: We address the visual grounding task by predicting a
ranking score and a refined bounding box for each visual object
in the image referred to by the query. To do this, we first feed
the word-level query features X (M ) into the attentional reduction
model in Eq.(10) to obtain the reduced feature vector x̃ . After that,
x̃ is broadcasted and integrated with the object-level image features
Y (N ) as follows:

Z = LayerNorm(WT
x x̃ +WT

y Y (N ) ) (14)

where Z ∈ Rn×dz correspond to the fused features of n objects
in the image. Each object feature z ∈ Z is then linearly projected
into a ranking score s ∈ R and a 4-D bounding box offset b ∈ R4,
respectively. Similar to [59], we design a multi-task loss function
consisting of a ranking loss Lrank and a regression loss Lreg:

L = Lrank + λLreg (15)

where λ is a hyper-parameter to balance the two terms. The Lrank
term penalizes the KL-divergence between the predicted scores
S = [s1, s2, ..., sn] ∈ Rn and the ground-truth scores S∗ ∈ Rn for
n objects, where S∗ are obtained by calculating the IoU scores of
all objects with respect to the unique ground-truth bounding box.
Softmax normalizations are respectively applied to S and S∗ to
form a score distribution. The Lreg term penalizes the smoothed
L1 distance [17] between the predicted offset b and the ground-
truth offset b∗ for the objects with their IoU scores S∗ larger than

a threshold σ . The offset b∗ ∈ R4 is obtained by calculating the
translations between the bounding box of the input object and the
bounding box of ground-truth object [17].

Algorithm 1: Search Algorithm for MMnasNet.
Input: A supernet parameterized by the architecture weights θ and the model

weightsW . Training set Da and Dm are used to optimize θ andW ,
respectively. Tw and Tj denote the number of epochs for the
warming-up and iterative optimization stages, respectively. u is a factor
to balance the update frequencies of θ andW .

Output: The searched optimal architecture a∗
Random initialize θ andW ;
# The warming-up stage;
for t = 1 to Tw do

Random sample an architecture a ∼ A;
Random sample a mini-batch dm ⊆ Dm ;
UpdateW by descending ∇W Ltrain (N (a,W )) on dm ;

end
# The iterative optimization stage;
for t = 1 to Tj do

for i = 1 to u do
Random sample a mini-batch dm ⊆ Dm ;
Sample an architecture a ∼ A (θ ) with respect to θ ;
UpdateW by descending ∇W Ltrain (N (a,W )) on dm ;

end
Random sample a mini-batch da ⊆ Da ;
Sample an architecture a ∼ A (θ ) with respect to θ ;
Update θ by descending ∇θ Ltrain (N (a,W )) on da ;

end
Return a∗ by picking the operation with the largest value in θ ∗ for each block.

4 SEARCH ALGORITHM
To obtain the optimal MMnasNet architecture for each task on
specific dataset, we introduce an efficient one-shot search algorithm
that search the optimal architecture within an over-parameterized
supernet with weight sharing.

Denote a supernet asN (A (θ ),W ) that encodes the whole search
space A of MMnas, where W and θ correspond to the model
weights and architecture weights of all the possible operations
in the supernet, respectively2. The optimal architecture is obtained
by minimizing the expectation with respect to θ andW jointly:

(θ∗,W ∗) = argmin
θ,W

Ea∼A (θ )[L (N (a,W ))] (16)

where for each of the three tasks above,L (N (a,W )) indicates using
the task-specific loss function to optimize the weights of network
architectureN (a,W ), where a is a valid architecture sampled from
the supernet with respect to θ . Based on the obtained optimal θ∗,
the optimal architecture a∗ is obtained by selecting the operation
with the largest architecture weight in each block of the backbone.

Inspired by the strategy in [7], we adopt an iterative algorithm
to optimize the architecture weights θ and the model weights
W alternatively. We first separate the training set into two non-
overlapping sets Dm and Da . When training the model weights
W , we first freeze the architecture weights θ and stochastically
sample exactly one operation for each block with respect to θ after
softmax activation, which results in a valid architecture a. After
2Given a MMnas supernet consisting ofM encoder blocks and N decoder blocks, the
size of the search space is 2M×4N and the number of all the possible operations in
the supernet is 2M+4N , where 2 and 4 correspond to the sizes of the encoder and
decoder operation pools, respectively.
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that, we update the model weightsW activated by a via standard
gradient descent on Dm . When training the architecture weights
θ , we freeze the model weightsW , sample a valid architecture a,
and then update θ via gradient descent on Da .

As claimed in [10], the iterative optimization of W and θ
inevitably introduces bias to certain architectures and leave the
rest ones poorly optimized. To alleviate the problem, we introduce
an additional warming-up stage before the iterative optimization.
In the warming-up stage, we do not train the architecture weights
θ and sample operations uniformly to train the model weightsW .
This ensures that the model weightsW are well initialized thus
leading to more impartial and robust architecture search.

The detailed search algorithm is illustrated in Algorithm 1.

5 EXPERIMENTS
We evaluate the searched MMnasNets on three multimodal learning
tasks and perform comparative analysis to the state-of-the-art
methods on five benchmark datasets thoroughly. Furthermore, we
conduct comprehensive ablation experiments to explore the reasons
why MMnas is effective.

5.1 Datasets
VQA-v2 is a commonly-used dataset for the VQA task [18]. It
contains human annotated question-answer pairs for COCO images
[31]. The dataset is split into three subsets: train (80k images with
444k questions); val (40k images with 214k questions); and test
(80k images with 448k questions). The test subset is further split
into test-dev and test-std sets that are evaluated online. The results
consist of three per-type accuracies (Yes/No, Number, and Other)
and an overall accuracy.
Flickr30K contains 31,000 images collected from Flickr website
with five captions each. Following the partition strategy of [24, 29],
we use 1,000 images for validation and 1,000 images for testing and
the rest for training.
RefCOCO, RefCOCO+ and RefCOCOg are three datasets to
evaluate visual grounding performance. All three datasets are
collected from COCO images [31]. RefCOCO and RefCOCO+ are
split into four subsets: train (120k queries), val (11k queries), testA
(6k queries about people), and testB (5k queries about objects).
RefCOCOg is split into three subsets: train (81k queries), val (5k
queries), and test (10k queries)

The statistics and evaluation metrics of the datasets are summa-
rized in Table 1.

5.2 Experimental Setup
Universal Setup: We use the following hyper-parameters for
MMnasNet as the default settings unless otherwise stated. For each
primitive operation, the latent dimensionality in the multi-head
attentiond is 512 and the number of headsh is 8. The dimensionality
of the fused features dz is set to 2d . The number of encoder blocks
M and decoder blocks N are respectively set to 12 and 18 to match
the number of blocks in the 6-layer MCAN model3 [56].

3A L-layer MCAN model corresponds to a special case of the MMnasNet model
consisting of 2L encoder blocks (with repeated SA-FFN operations) and 3L decoder
blocks (with repeated SA-GA-FFN operations).

Table 1: The detailed statistics and evaluation metrics of the
tasks and datasets.

Task Dataset Image Source #Img. #Sent. Metric

VQA VQA-v2 [18] COCO 204K 1.1M Accuracy

ITM Flickr30K [41] Flickr 31K 155K Recall@K

VG
RefCOCO [25]

COCO
20K 142K

AccuracyRefCOCO+ [25] 20K 142K
RefCOCOg [35] 26K 95K

For each dataset, we use its train split to perform architecture
search. The train set is further random split into two subsets Dm
and Da with |Dm |/|Da | = 4. Each randomly initialized model is
warmed-up for Tw = 50 epochs and then searched for another
Tj = 20 epochs with the early stopping strategy. The frequency
ratio u for updating the model and architecture weights is set to 5.
With the searched optimal architecture, we train the MMnasNet
model again from scratch to obtain the final model.
VQA Setup: For VQA-v2, we follow the setting in [56] that all
questions are processed to a maximum length ofm = 14 and the
size of the answer vocabulary is set to 3129. The visual features and
relation features are extracted from a pre-trained Faster R-CNN
model on Visual Genome [1]. The number of extracted objects
n ∈ [10, 100] is determined by a confidence threshold.
ITM Setup: For Flickr30K, the maximum length of texts (i.e.,
captions) is set tom = 50. The visual features and relation features
are extracted from a Faster R-CNN model pre-trained on Visual
Genome with the number of objects n = 36 [1]. For each positive
image-text pair (I,T ) in the training set, we use the following hard
sample mining strategy before each training epoch: we randomly
sample 64 negative images per text and 64 negative texts per image
from the whole training set to generate negative image-text pairs.
Thereafter, we feed all these negative pairs to the current model
checkpoint to predict their matching scores and regard the top-5
ranked negative samples as the hard negative samples according
to their scores. Finally, we randomly pick one hard image sample
I ′ and one hard text sample T ′ from the candidate hard negative
samples, respectively.
VG Setup:We use the same settings for the three visual grounding
datasets. For the textual queries, the maximum length is set to
m = 14. For the images, we adopt two pre-trained object detectors
to extract the visual features: 1) a Mask R-CNN model trained on
COCO [19]; and 2) a Faster R-CNNmodel trained on Visual Genome
[42]. During the training data preparation for the two detectors,
we excluded all the images that exist in the training, validation and
testing sets of RefCOCO, RefCOCO+, and RefCOCOg to avoid the
data leakage problem. For both detectors above, we detect n = 100
objects for each image to extract the visual and relation features.
The loss weight λ is set to 1.

5.3 Ablation Experiments
We run a number of ablations experiments on VQA-v2 to analyze
the reason behind MMnasNet’s effectiveness. Results shown in
Table 2 are discussed in detail next.
Search Space: In Table 2a, we compare the MMnasNet models
searched from different decoder operation pools. From the results,
we can see that: 1) modeling the intra-modal attention among visual
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Decoder operations All Y/N Num Other

{GA, FFN} 66.5 84.9 45.2 58.2
{SA, GA, FFN} 67.4 85.0 49.7 58.7
{RSA, GA, FFN} 67.6 84.9 51.3 58.8
{SA, RSA, GA, FFN} 67.8 85.1 52.1 58.9

(a) Search Space: Per-type accuracies of MMnasNet with
different decoder operation pools. Allmodels use the same
encoder operation pool of {SA, FFN}.

M N MCAN (Size) MMnasNet (Size)

4 6 66.1 (27M) 67.1 (28M)
8 12 66.9 (41M) 67.7 (44M)
12 18 67.2 (56M) 67.8 (58M)
16 24 67.2 (68M) 67.7 (76M)

(b) Model Depth: Overall accuracies and sizes of
MCAN and MMnasNet with different number of
encoder blocks M and decoder blocks N .

Encoder Decoder Accuracy

R R 66.9
S R 67.1
R S 67.6
S S 67.8

(c)Randomv.s. Searched:Overall accuracies
of MMnasNet with random (R) or searched
(S) architecture for the encoder-decoder.

Table 2: Ablation experiments for MMnasNet on VQA-v2. We train on the train split and report the results on the val split.

objects by SA or RSA is vital to object counting performance (i.e.,
the number type answers), which is consistent with the results
reported in [56]; 2) introducing the RSA operation which models
the relative spatial relationships between paired objects can further
facilitate the object counting performance; and 3) SA and RSA are
complementary to each other, hence modeling them together leads
to the best performance on all answer types.
Model Depth: In Table 2b, we compare MMnasNet to the reference
MCAN model [56] under different model depths (i.e., number of
encoder blocksM and decoder blocks N ). The results reveal that: 1)
MMnasNet consistently outperforms MCAN, especially when the
model depth is relatively shallow (e.g.,M ≤ 8). This can be explained
that the optimal architectures for different model depths are quite
different; 2) with the sameM and N , the model size of MMnasNet
is slightly larger than MCAN. This is because MMnasNet tends to
use more FFN operations, which introduces more parameters to
increase the nonlinearity of the model; and 3) with the increase
of model depth, both MCAN and MMnasNet saturate at M=12
and N=18, which reflects the bottleneck of the used deep encoder-
decoder framework.
Random vs. Searched: To prove the necessity and superiority
of the searched architectures over randomly generated ones, we
conduct the experiments in Table 2c by alternatively using the
searched or random architectures for the encoder and decoder,
respectively. From the results, we can see that: 1) the searched
architectures outperforms the random counterparts by up to 0.9
points; 2) the design of the decoder architecture is much more
important than the encoder architecture; and 3) the all-random
architecture also performs well compared to some recent works
[15, 26]. This suggests the used primitive operations that constitute
the architecture also play a key role in model performance.

5.4 Main Results
Taking the ablation studies into account, we compare the best-
performing MMnasNet models (with M=12 and N=18) to the
state-of-the-art approaches on five benchmark datasets. Figure 3
illustrates the optimal MMnasNet backbones searched for different
tasks (over specific datasets). This verifies our hypothesis that the
optimal architectures for different tasks may vary prominently.
Note that we do not compare MMnasNet to the multimodal-BERT
approaches (e.g., LXMRET [46] or UNITER [9]), since they introduce
additional training datasets for model pre-training thus may lead
to unfair comparison.
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Figure 3: The optimal MMnasNet backbones searched for
different tasks (over specific datasets).

In Table 3, we compare MMnasNets to the state-of-the-art
methods on VQA-v2. The demonstrated results show that: 1)
compared with existing state-of-the-art approaches, MMnasNet
outperforms them by a clear margin on all answer types; and 2)
MMnasNet significantly outperforms existing approaches on the
object counting performance (i.e., the number type), which owes to
the effectiveness of the RSA operation we introduce.

Table 4 contains the image-text matching results on Flickr30K.
Similar to most existing works [29, 50], we report the matching
results in terms of Recall@K , where K denotes the top-K results
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Table 5: Accuracies (with IoU>0.5) on RefCOCO, RefCOCO+ and RefCOCOg to compare with the state-of-the-art methods. All
methods use detected objects to extract visual features. COCO [31] and Genome [28] denote two datasets for training the object
detectors. SSD [33], FRCN [42] and MRCN [19] denote the used detectors with VGG-16 [44] or ResNet-101 [20] backbones.

Method
Object Detector RefCOCO RefCOCO+ RefCOCOg

Dataset Model Backbone TestA TestB Val TestA TestB Val Test Val

CMN [22] COCO FRCN VGG-16 71.0 65.8 - 54.3 47.8 - - -
VC [62] COCO FRCN VGG-16 73.3 67.4 - 58.4 53.2 - - -
Spe.+Lis.+Rein.+MMI [55] COCO SSD VGG-16 73.7 65.0 69.5 60.7 48.8 55.7 59.6 60.2
Spe.+Lis.+Rein.+MMI [55] COCO SSD VGG-16 73.1 64.9 69.0 60.0 49.6 54.9 59.2 59.3
MAttNet [53] COCO MRCN ResNet-101 81.1 70.0 76.7 71.6 56.0 65.3 67.3 66.6
DDPN [59] Genome FRCN ResNet-101 80.1 72.4 76.8 70.5 54.1 64.8 67.0 66.7

MMnasNet (ours) COCO MRCN ResNet-101 82.5 78.4 81.5 70.9 62.3 69.8 72.7 73.1
MMnasNet (ours) Genome FRCN ResNet-101 87.4 77.7 84.2 81.0 65.2 74.7 75.7 74.7

Table 3: Accuracies on the test-dev and test-std splits of VQA-
v2. All methods use the same visual features [1] and are
trained on the train+val+vg splits, where vg denotes the
augmented dataset from Visual Genome.

Method
Test-Dev Test-Std

All Y/N Num Other All

Bottom-Up [48] 65.32 81.82 44.21 56.05 65.67
MFH+CoAtt [58] 68.76 84.27 49.56 59.89 -
BAN-8 [26] 69.52 85.31 50.93 60.26 -
BAN-8 (+G+C) [26] 70.04 85.42 54.04 60.52 70.35
DFAF-8 [15] 70.22 86.09 53.32 60.49 70.34
MCAN-6 [56] 70.63 86.82 53.26 60.72 70.90

MMnasNet (ours) 71.24 87.27 55.68 61.05 71.46

Table 4: Recall@{1, 5, 10} on Flickr30K to compare with the
state-of-the-art methods.

Method
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

VSE++ [13] 52.9 80.5 87.2 39.6 70.1 79.5
DAN [36] 55.0 81.8 89.0 39.4 69.2 79.1
DPC [63] 55.6 81.9 89.5 39.1 69.2 80.9
SCO [23] 55.5 82.0 89.3 41.1 70.5 80.1
SCANt→i [29] 61.8 87.5 93.7 45.8 74.4 83.0
SCANi→t [29] 67.7 88.9 94.0 44.0 74.2 82.6
CAMP [50] 68.1 89.7 95.2 51.5 77.1 85.3

MMnasNet (ours) 78.3 94.6 97.4 60.7 85.1 90.5

retrieved from a database and ranges within {1, 5, 10}. The cross-
modal matching results from two directions (i.e., the text retrieval
and image retrieval) are demonstrated in Table 4 to compare
with the state-of-the-art approaches. From the results, we can see
that MMnasNet significantly outperforms existing state-of-the-art
methods in terms of all evaluation metrics.

In Table 5, we report the comparative results on RefCOCO,
RefCOCO+, and RefCOCOg, respectively. We use the commonly
used accuracy metric [53], where a prediction is considered to be

correct if the predicted bounding box overlaps with the ground-
truth of IoU >0.5. With the standard visual features (i.e., the MRCN
model pre-trained on COCO), MMnasNet reports a remarkable
improvement over MAttNet on all the three datasets. Be equipped
with the powerful visual features (i.e., the FRCN model pre-trained
on Visual Genome), MMnasNet obtains further improvement and
delivers the new state-of-the-art performance across all datasets.

6 CONCLUSION
In this paper, we present a generalized deep multimodal neural
architecture search (MMnas) framework for various multimodal
learning tasks. Different from the existing approaches that design
hand-crafted and task-specific architectures to address only a single
task, MMnas can be generalized to automatically learn the optimal
architectures of different tasks. To achieve this, we construct a
unified encoder-decoder backbone with each encoder/decoder
block corresponding to an operation searched from a candidate
set of predefined operations. On top of the unified backbone, we
attach task-specific heads to deal with different tasks. The optimal
architecture for each task is learned by an efficient neural archi-
tecture search (NAS) algorithm to obtain task-specific MMnasNet.
Extensive experiments are conducted on the VQA, visual grounding,
and image-text matching tasks to show the generalizability and
effectiveness of the proposed MMnas framework. Comprehensive
results from five benchmark datasets validate the superiority of
MMnasNet over existing state-of-the-art methods.

Different from existing multimodal-BERT approaches that use
large-scale multimodal pre-training, we introduce an alternative
way to address the generalized multimodal learning problem via a
NAS framework. We hope our work may serve as a solid baseline
to inspire future research on multimodal learning.
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