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ABSTRACT

Multi-camera multi-object tracking (MCMOT) faces significant challenges in
maintaining consistent object identities across varying camera perspectives, par-
ticularly when precise calibration and extensive annotations are required. In this
paper, we present CALIBFREE, a self-supervised representation learning frame-
work that does not need any calibration or manual labeling for the MCMOT task.
By disentangling view-agnostic and view-specific features through single-view
distillation and cross-view reconstruction, our method adapts to complex, dy-
namic scenarios with minimal overhead. Experiments on the MMP-MvMHAT
dataset show a 3% improvement in overall accuracy and a 7. 5% increase in the
average F1 score over state-of-the-art approaches, confirming the effectiveness of
our calibration-free design. Moreover, on the more diverse MvMHAT dataset, our
approach demonstrates superior over-time tracking and strong cross-view perfor-
mance, highlighting its adaptability to a wide range of camera configurations.

1 INTRODUCTION

Multiple Object Tracking (MOT) is an essential problem in computer vision, aiming to identify
and track multiple objects within video streams. While single-camera tracking has been extensively
studied Cao et al. (2023); Wojke et al. (2017); Cai et al. (2022); Meinhardt et al. (2022); Zeng et al.
(2022); Zhang et al. (2023), the importance of Multi-Camera Multi-Object Tracking (MCMOT)
continues to grow with the rising applications of multi-camera systems in surveillance, smart cities,
and autonomous vehicles Gilbert & Bowden (2006); He et al. (2020); You & Jiang (2020); Cheng
et al. (2023); Zhang et al. (2022a); Gu et al. (2023). MCMOT aims to maintain consistent object
identities across multiple camera views, addressing inherent challenges such as viewpoint variation,
occlusions, and synchronization issues, as illustrated in Figure 1. By integrating diverse viewpoints,
MCMOT can offer improved tracking robustness, enhanced scene understanding, and fewer blind
spots compared to single-camera methods Han et al. (2020; 2021).

Despite these advantages, achieving effective MCMOT remains challenging He et al. (2020); You &
Jiang (2020); Chen et al. (2014). A primary difficulty arises from significant variations in object ap-
pearance and motion across different camera views, making reliable object re-identification (ReID)
nontrivial. Moreover, many MCMOT methods Ristani et al. (2016b); Maksai et al. (2017); Tesfaye
et al. (2019); He et al. (2020); You & Jiang (2020); Cheng et al. (2023) rely on calibrated camera se-
tups or large-scale annotations. Even minor camera shifts—such as relocating a camera or changing
its angle—can break calibration, causing immediate performance declines until the system is recal-
ibrated and annotated data are recollected. Similarly, transitioning to a new scene often necessitates
gathering a fresh dataset, performing calibration, and retraining the model. As camera networks
expand or reconfigure, the associated computational overhead grows, making frequent recalibration
and reannotation both costly and impractical in real-world applications.

Main Results: To address these limitations, we propose a self-supervised learning framework
specifically designed for multi-camera setups with overlapping fields of view. Our method avoids
explicit calibration and reduces the need for annotations by leveraging data-driven representation
learning. In particular, we present a disentangled feature learning strategy that separates view-
agnostic and view-specific features through single-view distillation and cross-view reconstruction.
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Figure 1: Multi-Camera Multi-Object Tracking (MCMOT) setup. Left: Multi-view scenes with
individuals tracked across overlapping camera views, each assigned a unique color-coded bounding
box. Top right: Flexible camera configurations illustrating variable camera numbers and placements
across scenarios, or due to factors like malfunction or relocation. Bottom right: Examples of appear-
ance variations for individuals across different viewpoints, highlighting the challenge of maintaining
consistent identity association in multi-view tracking.

This approach mitigates viewpoint-based discrepancies and improves cross-view tracking without
costly manual calibration or any labeling. Our contributions can be summarized as follows:

1. We propose a self-supervised representation learning framework for MCMOT, effectively
reducing reliance on both manual annotations and camera calibration.

2. We introduce a disentangled feature learning strategy via single-view distillation and cross-
view reconstruction, enhancing robustness against viewpoint variations.

3. We empirically validate our method on two challenging MCMOT datasets: (1) MMP-
MvMHAT, featuring densely placed indoor cameras that capture crowded, occluded envi-
ronments, where our method surpasses state-of-the-art baselines by 3% in overall accuracy
and 7.5% in average F1 score. (2) MvMHAT, containing both indoor and outdoor scenes
with sparser camera coverage and reduced overlapping fields of view, where our approach
likewise demonstrates superior over-time tracking and strong cross-view performance, un-
derscoring its adaptability to diverse real-world scenarios.

2 RELATED WORK

2.1 SINGLE-CAMERA MULTI-OBJECT TRACKING

Single-camera multi-object tracking (MOT) has been extensively studied, with the tracking-by-
detection paradigm being the most widely adopted Cao et al. (2023); Leal-Taixé et al. (2016); Schul-
ter et al. (2017); Wojke et al. (2017). In this framework, object detectors Duan et al. (2019); Girshick
(2015); Ge et al. (2021) identify objects in each frame, and temporal associations are made using
methods like the Kalman Filter Welch (1995) and the Hungarian Matching algorithm Kuhn (1955).
Deep appearance features further improve association accuracy Chu & Ling (2019); Xu et al. (2019;
2020). End-to-end approaches such as MOTR Zeng et al. (2022), MOTRv2 Zhang et al. (2023),
and TrackFormer Meinhardt et al. (2022) leverage query-based object detection to perform long-
term tracking without manual association rules Carion et al. (2020). TransTrack Sun et al. (2020)
and P3Aformer Zhao et al. (2022) improve efficiency using location-based cost matrices. However,
single-camera MOT struggles with occlusions and complex interactions due to limited viewpoints,
motivating research in multi-camera multi-object tracking (MCMOT).

2.2 MULTI-CAMERA MULTI-OBJECT TRACKING

Multi-camera multi-object tracking (MCMOT) has gained growing attention for its complexity and
broad applications. Existing methods fall into three main categories: distributed, global, and end-to-
end. Distributed methods perform tracking independently within each camera, followed by cross-
view association Gilbert & Bowden (2006); Prosser et al. (2008); Cai & Medioni (2014); Chen et al.
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(2014). Techniques such as hierarchical clustering Murtagh & Contreras (2012) and non-negative
matrix factorization (NMF) Wang & Zhang (2012) are used to merge intra-camera tracklets, though
they often assume ideal conditions not met in dynamic environments. Global methods detect in-
dividuals across views and associate them directly to build tracklets Ristani et al. (2016b); Maksai
et al. (2017); Tesfaye et al. (2019). TRACTA He et al. (2020) and DMCT You & Jiang (2020)
utilize perspective models and occupancy heatmaps, while ReST Cheng et al. (2023) employs a re-
configurable graph for robust association. End-to-end methods like MUTR3D Zhang et al. (2022a),
PF-Track Pang et al. (2023), and ViP3D Gu et al. (2023) are designed for 3D tracking tasks such
as autonomous driving. MCTR Niculescu-Mizil et al. (2024) proposes a calibration-free framework
using track embeddings, but it depends on labeled data and fixed camera setups, limiting flexibility.
Our work focuses on overlapping-camera scenarios, where shared fields of view offer appearance
and geometric constraints for trajectory linking. In contrast, non-overlapping setups Javed et al.
(2005); Tesfaye et al. (2017); Chilgunde et al. (2004) face challenges such as time delays and lack
of spatial correspondence.

2.3 SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) has become a powerful paradigm in computer vision Doersch et al.
(2015); Noroozi & Favaro (2016) and multi-modal tasks Akbari et al. (2021); Wang et al. (2021), en-
abling robust representation learning without labeled data. Pretext tasks like context prediction Do-
ersch et al. (2015); Pathak et al. (2016), jigsaw puzzles Noroozi & Favaro (2016); Kim et al. (2018b),
and colorization Larsson et al. (2017) have shown effectiveness for image-level learning. For videos,
pace prediction Wang et al. (2020) and space-time cube puzzles Kim et al. (2018a) help capture tem-
poral dynamics. More recent techniques such as contrastive learning Chen et al. (2020); He et al.
(2019); van den Oord et al. (2018) and masked autoencoding He et al. (2021); Huang et al. (2022) are
effective across both image and video domains. In multi-object tracking, self-supervised methods
use spatial-temporal consistency to reinforce object identity. Strategies include cross-input consis-
tency Bastani et al. (2021), cycle-consistency Yin et al. (2023), and path-consistency Lu et al. (2024).
In MCMOT, recent approaches like MvMHAT Feng et al. (2024) and MvMHAT++ Gan et al. (2021)
leverage consistency-based tasks such as symmetric-consistency (SymC) and transitive-consistency
(TrsC), though they rely on CNN-based features. In contrast, our method adopts masked autoencod-
ing He et al. (2021), which is more compatible with transformer architectures and enables richer,
more adaptable representation learning in complex MCMOT settings.

3 METHOD

In this section, we present the details of our proposed approach, CALIBFREE. We begin by formu-
lating the problem, followed by a description of our algorithm, and conclude with how the generated
features are used during inference.

3.1 PROBLEM FORMULATION

Multi-camera multi-object tracking (MCMOT) aims to track all subjects across synchronized video
streams from V cameras and associate identities across views. This can be formulated as a spatio-
temporal association problem with two objectives:

• Intra-camera tracking: Given detections Dv
t = {Dv

i | i = 1, 2, . . . , Nv
t } at frame t in

view v, associate them over time to form tracklets τvt , as in single-camera MOT.

• Cross-view matching: Match detections D̄t = {D̄1
t , D̄

2
t , . . . , D̄

V
t } across views at time t

that belong to the same subject.

Like single-camera methods (e.g., DeepSORT Wojke et al. (2017), ByteTrack Zhang et al. (2022b)),
MCMOT relies on robust feature representations to ensure reliable association. These features must
remain consistent across time and camera viewpoints while being discriminative enough to separate
different identities.

Given all detections at time t, Dt = {D1
t,1, . . . , D

V
t,NV

t
}, the goal is to extract two types of features

for each detection Dv
t,i:
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Distillation 

Decoder

Reconstruction 

Decoder

Figure 2: Overview of CALIBFREE. The method includes single-view distillation, feature disen-
tanglement, and cross-view reconstruction. In single-view distillation (red box), masked detections
are encoded, and feature quality is supervised by a teacher model using distillation loss. The disen-
tanglement module splits features into view-agnostic and view-specific parts. For cross-view recon-
struction (purple box), pooled view-agnostic features are processed to reconstruct masked patches
across views, optimized with reconstruction loss.

• View-agnostic features (fa): Capture identity-preserving cues (e.g., silhouette, body
shape, pose) for cross-view matching.

• View-specific features (fs): Encode appearance-specific details (e.g., clothing, texture)
useful for temporal tracking within a view.

These features support both within-view and cross-view association, enabling robust identity conti-
nuity across space and time in uncalibrated multi-camera environments.

3.2 CALIBFREE

Masked autoencoders He et al. (2021) have proven effective in learning visual semantics, generating
high-quality features from images. CALIBFREE builds on this framework to improve representa-
tions for detections of different persons, see Figure 2. Unlike traditional methods that reconstruct
from partial observations within the same image and view, CALIBFREE introduces a cross-view
reconstruction task, enabling reconstruction from observations across different views using view-
agnostic features. Furthermore, it incorporates a distillation process from large models to refine the
learning of view-specific features.

Pre-processing. At each timestep t, V frames are captured from V cameras. An off-the-shelf
detector is applied to each frame to generate bounding boxes for all visible persons. The detected
regions are cropped and resized to a uniform size (H,W ). Since the number of detections can
vary across views, the maximum number of detections N is used as a preset. For views with fewer
detections, zero tensors of size (H,W,C) are added to represent missing detections. The resulting
input is Dt = {Dj

t,i ∈ RV×N×H×W×C | i = 1, 2, . . . , N ; j = 1, 2, . . . , V }, which consolidates all
detections from all views at time t.

Masking. Each detection is divided into non-overlapping patches, P = {Pi | Pi ∈ RC×h×w}Mi=1,
where M = H

h × W
w is the total number of patches. These patches are converted into a sequence

of tokens, K = {Ki | Ki ∈ RE}Mi=1, using patch embedding and positional encoding. A subset
of tokens Kvis ⊂ K (e.g., 25%) is randomly sampled without replacement, and the remaining
tokens are masked, following a ”random masking” strategy. Although various masking strategies
exist, Random masking is chosen for its simplicity and ease of implementation without requiring
additional inputs.
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The same mask is applied across all detections Dt to ensure consistency between views. This shared
mask preserves positional encoding and prevents disruptions in cross-view reconstruction, which
relies on consistent masking across views, as discussed later.

Single View Encoder. The single-view encoder Φsve is a standard Vision Transformer (ViT Doso-
vitskiy et al. (2021)) applied to the Mvis visible, unmasked patch tokens Kvis ⊂ K. Unlike con-
ventional masked autoencoders, the encoder processes all unmasked tokens from detections within
each view, enabling multi-head self-attention across patches in a single view. This setup captures
variations between different detections, with consistent masked token positions enhancing cross-
detection learning.

Positional embeddings for the patch tokens are generated using a sinusoidal function across all
detection patches within a view. This ensures that while unmasked tokens may occupy the same
positions across detections because of consistent mask, their positional embeddings remain distinct.

The encoder outputs features split evenly into view-agnostic features fa (first half) and view-specific
features fs (second half), as follows: fa, fs = Φsve(K

vis), fa, fs ∈ RMvis×E
2

Distillation Decoder. We project the view-specific encoder features to the decoder width Ed with a
linear layer and concatenate learned embeddings for the masked positions to form a length-M token
sequence. This sequence is fed to a shallow ViT decoder Φdistill. Positional embeddings are added
to all tokens so that masked tokens retain their spatial coordinates.

The decoder outputs per-patch features for the entire detection, f̂s ∈ RM×Ed . In parallel, the
corresponding unmasked crop is processed by a pretrained teacher to obtain patch-level targets.
Before computing the distillation loss, a linear head is used to align the student features fstudent to
the teacher feature space fteacher.

We use the publicly released ViT-L MAE model He et al. (2021) pretrained on ImageNet-1K (self-
supervised). Its single-view pretraining emphasizes view-specific cues—e.g., color, fine textures,
and local details—while contributing less to view-agnostic properties such as aspect ratio, coarse
silhouette, or pose. This makes it a good supervisor for the view-specific branch (via patch-level
distillation) while leaving the cross-view branch to learn identity-consistent signals across cameras.

Cross View Encoder. The view-agnostic features are passed through a pooling layer to combine
patch information, producing a single view-agnostic embedding per detection. Note that no infor-
mation is mixed across cameras at this stage—only patches within the same detection are combined.
All embeddings from each view are then projected into the cross-view encoder dimension, Ed, and
sent to a shallow ViT-based cross-view encoder. Multi-head self-attention is applied across these
embeddings to capture differences between views. The output feature f̂a ∈ REd is learnt through
all the views, representing the high-level semantic features that are universal across views.

Reconstruction Decoder. The view-agnostic feature f̂a is combined with the view-specific feature
f̂s for each patch, creating an enriched representation that captures both cross-view consistency and
camera-specific details. These combined features are fed into the reconstruction decoder, which
reconstructs the original image by predicting pixel values for each masked patch.

During decoding, each output vector from the decoder represents the pixel values of a specific patch,
effectively reconstructing masked areas. The decoder’s final layer uses a linear projection to match
the total pixel count per patch, preserving each patch’s spatial structure. After projection, the output
is reshaped to form a coherent, reconstructed image, closely resembling the original input.

Loss. To ensure robust training, we employ a combination of three losses:

Disentanglement Loss: This normalized mutual information (NMI) loss measures the independence
between view-agnostic and view-specific features, quantifying how much information about one
feature set is shared by the other:

Ldisentangle = NMI(fa, fs)

Minimizing Ldisentangle enhances feature disentanglement by reducing shared information between
the two feature sets.

Distillation Loss: This loss facilitates knowledge transfer from a larger teacher model pretrained
on a different dataset. Given potential domain differences, Smooth L1 Loss is used to mitigate the
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impact of outliers:
Ldistillation = SmoothL1(fstudent, fteacher)

Reconstruction Loss: This loss calculates the mean squared error (MSE) between the reconstructed
and original images in pixel space, applied only to masked patches:

Lreconstruction = MSELoss(fmasked
reconstructed, f

masked
original)

The overall loss function combines these components:
Loss = Ldisentangle + Ldistillation + Lreconstruction

3.3 INFERENCE

A key advantage of CALIBFREE is its independence from camera calibration and human anno-
tations. While both the single-view encoder/decoder and the cross-view encoder are used during
self-supervised training, only the single-view encoder is needed at inference.

During inference, all patches are passed (unmasked) through the single-view encoder to generate
feature embeddings. These features are average-pooled across patches to produce a single em-
bedding per detection, which is then split into view-agnostic and view-specific components. For
single-camera tracking, we integrate the view-specific features into DeepSORT Wojke et al. (2017)
for within-camera association, using Kalman filtering to refine tracks. For cross-camera matching,
we use the view-agnostic features to compute the association matrix, without applying any Kalman
filter.

4 RESULTS

Due to page limits, we include dataset, evaluation metrics, implementation details and more results
in the Appendix.

4.1 MAIN RESULTS AND ANALYSIS

4.1.1 BASELINE METHODS

We compare our method against state-of-the-art approaches in Tables 1 and 2, where the best results
are highlighted and second-best underlined.

For single-camera (over-time) tracking, we include four representative MOT methods: Track-
tor++ Bergmann et al. (2019), CenterTrack Zhou et al. (2020), TraDeS Wu et al. (2021), and
TrackFormer Meinhardt et al. (2022). Since these do not support cross-view tracking, we assign
ground-truth IDs upon first appearance in each camera and apply each method independently within
views.

For MCMOT, we evaluate DeepCC Ristani & Tomasi (2018) and SVT Dong et al. (2021), with
DeepCC leveraging an off-the-shelf ReID model Zhong et al. (2017) for cross-view association. We
also include MvMHAT and its extension MvMHAT++, two self-supervised methods that require
no fine-tuning, with MvMHAT++ introducing an additional training stage. All MCMOT methods
are evaluated on the MMP-MvMHAT dataset using ground-truth bounding boxes for consistency,
except that previous self-supervised methods are also tested with YOLOX-generated detections.

Detector-based results using YOLOv7 and YOLOX are shown in Table 4. For MvMHAT, we use a
Detectron2 Wu et al. (2019) detector; among available models, we select the ResNet-50 variant that
achieves MOTA closest to the original MvMHAT paper for fair comparison.

Lastly, we do not re-train supervised baselines on our dataset, as they require labeled data—unlike
our self-supervised approach—ensuring a fair comparison in terms of generalization and calibration-
free capability.

4.1.2 RESULTS ON MMP-MVMHAT

Over-Time Tracking: Table 1 reports CALIBFREE’s performance on the indoor-focused MMP-
MvMHAT dataset, where many subjects exhibit limited motion (e.g., seated office workers). Despite
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Over-time Tracking Cross-View Tracking Overall
Methods IDP IDR IDF1 MOTA HOTA AIDP AIDR AIDF1 MHAA A F

supervised
Tracktor++Bergmann et al. (2019) 67 56 61 67.2 46.2 62 23.2 33.8 19.1 43.1 47.4

CenterTrackZhou et al. (2020) 35.9 24.1 28.8 48.2 27.1 29.3 3.9 6.8 3.1 25.7 17.8
TraDeSWu et al. (2021) 59.7 50.1 54.5 66.1 42.7 54.5 17.3 26.2 13.3 39.7 40.4

TrackFormerMeinhardt et al. (2022) 41.8 28.6 34 46.7 30.2 39.9 5.3 9.4 3.2 25 21.7
DeepCCRistani & Tomasi (2018) 51.6 52.5 52.1 92.5 59.3 42.7 23.4 30.2 19.7 56.1 41.2

SVTDong et al. (2021) 63.1 63.4 63.3 96.7 68.8 53.8 33.4 41.2 29.8 63.1 52.3

self-supervised
MvMHAT(YOLOX)Gan et al. (2021) 51.1 53.2 52.7 82.1 47.2 30.4 17.1 23.2 14.1 48.1 37.9

MvMHAT(GT)Gan et al. (2021) 58.6 58.8 58.7 93.7 65 35.4 21.2 26.5 20.3 57 42.6
MvMHAT++(YOLOX)Feng et al. (2024) 59.3 60.5 60.1 82.2 52.1 45.7 34.1 40.5 28.9 55.5 50.3

MvMHAT++(GT)Feng et al. (2024) 67.1 67.6 67.3 95 70.2 62.1 42.5 50.4 40.6 67.8 58.9

CALIBFREE(YOLOX) 81.3 77.1 79.1 82.5 59.2 52.3 48.4 50.3 34.4 58.4 64.7
CALIBFREE(GT) 82.2 78 80 97.6 75.7 55 50.9 52.8 44.2 70.8 66.4

Table 1: Results on MMP-MvMHAT. CALIBFREE surpasses both supervised and self-supervised
methods across key metrics, demonstrating robust identity tracking in over-time and cross-view
scenarios.

Over-time Tracking Cross-View Tracking Overall
Methods IDP IDR IDF1 MOTA HOTA AIDP AIDR AIDF1 MHAA A F

supervised
Tracktor++Bergmann et al. (2019) 54.2 40.1 46.1 66.5 42.8 34.3 14.6 20.5 37.1 51.8 33.3

CenterTrackZhou et al. (2020) 44.3 33.5 38.1 63.5 37.8 29.7 9.1 13.9 34.1 48.8 26.0
TraDeSWu et al. (2021) 46.7 43.2 44.9 69.5 42.9 32.4 14.0 19.6 36.0 52.8 32.2

TrackFormerMeinhardt et al. (2022) 52.3 47.2 49.6 70.4 47.3 47.8 23.2 31.3 40.2 55.3 40.4
DeepCCRistani & Tomasi (2018) 44.7 44.2 44.4 63.9 41.1 57.9 34.8 43.4 43.8 53.9 43.9

SVTDong et al. (2021) 47.9 47.2 47.6 65.4 43.1 61.7 45.7 52.5 50.4 56.9 50.0

self-supervised
MvMHATGan et al. (2021) 53.1 52.0 52.5 64.7 47.9 53.0 46.4 49.5 51.7 58.2 51.0

MvMHAT++Feng et al. (2024) 58.5 57.4 57.9 66.3 51.8 63.8 56.0 59.6 59.7 63.0 58.8
CALIBFREE 59.1 58.4 58.7 60.4 52.0 58.9 56.2 57.4 57.0 58.4 58.1

Table 2: Results on MvMHAT. CALIBFREE achieves best or second best results across most key
metrics.

the simplicity of such motion—often inflating IDF1 for other methods—CALIBFREE achieves an
IDF1 of 80.0, demonstrating strong identity continuity under occlusion and crowding. Its HOTA
score of 75.7 reflects balanced accuracy in detection and association, minimizing ID switches and
ensuring stable long-term tracking.

Cross-View Tracking: CALIBFREE achieves an AIDF1 of 52.8 and MHAA of 44.2, outperform-
ing all baselines. While its AIDP is slightly lower than MvMHAT++, CALIBFREE achieves higher
AIDR, indicating better recall of cross-camera matches. This reflects its ability to capture identity-
consistent features under challenging viewpoint changes and appearance similarity. Compared to
supervised baselines like DeepCC and SVT—which require manual annotations—CALIBFREE de-
livers stronger association without labels. Center-based trackers (e.g., CenterTrack) lack robust ap-
pearance modeling and accumulate ID switches in crowded scenes, while TrackFormer can produce
mismatches when its detection step underperforms.

Sensitivity to Bounding Box Quality: As shown in Table 1, CALIBFREE is more robust to noisy
bounding boxes than prior self-supervised methods using YOLOX detections. While others suffer
significant performance drops, CALIBFREE maintains ID-related metrics with minimal degrada-
tion, highlighting the resilience of its learned features to imperfect detections.

Overall: CALIBFREE surpasses self-supervised baselines (MvMHAT, MvMHAT++) in both accu-
racy (70.8) and F1 score (66.4), demonstrating the advantage of its disentangled features for both
temporal and spatial consistency. Although motion in MMP-MvMHAT is simpler, the cluttered
indoor layout introduces frequent identity ambiguities, which CALIBFREE handles effectively.

4.1.3 RESULTS ON MVMHAT

Over-Time Tracking. Table 2 presents results on the MvMHAT dataset, which includes both in-
door and outdoor scenes with sparsely placed cameras and minimal overlap. Single-camera methods
like TrackFormer yield competitive MOTA (e.g., 70.4), largely reflecting detector quality. However,
CALIBFREE achieves higher ID-based metrics (IDP, IDR, IDF1) and HOTA, indicating better tem-
poral identity consistency.

Cross-View Tracking. Single-view trackers struggle when ID switches occur, propagating errors
across views and degrading AIDF1. That said, their cross-view performance improves slightly over
MMP-MvMHAT due to reduced overlap and fewer direct transitions. CALIBFREE outperforms
multi-view trackers like DeepCC and SVT across all cross-view metrics. MvMHAT++ achieves
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Over-time Tracking Cross-View Tracking Overall
Methods IDP IDR IDF1 MOTA HOTA AIDP AIDR AIDF1 MHAA A F

ViT-L (teacher) 82.1 77.8 79.9 97.5 75.6 47.9 44.4 46.1 36.7 67.1 63
Distillation only 78.4 67.8 72.7 97.2 68.4 47.5 40.1 43.5 34.4 65.8 58.1

Reconstruction only 81.2 77.1 79.1 97.5 75.2 52.3 48.4 50.3 41.8 69.7 64.7

CALIBFREE(ours) 82.2 78 80 97.6 75.7 55 50.9 52.8 44.2 70.8 66.4

Table 3: Ablation studies of CALIBFREE variations. The full model, combining distillation,
reconstruction, and feature disentanglement, achieves the best performance across all tracking met-
rics.

Detector Detector Over-time Tracking Cross-View Tracking Overall
Pretrain Inference IDP IDR IDF1 MOTA HOTA AIDP AIDR AIDF1 MHAA A F

YOLO7 YOLO7 59.9 57.5 58.6 44.9 47.7 47.2 44.3 45.7 16.4 30.7 52.2
Groundtruth YOLO7 59.8 57.4 58.5 44.9 47.7 49.3 46.1 47.6 18.3 31.6 53.1

YOLOX YOLOX 81.3 77.1 79.1 82.5 59.2 52.3 48.4 50.3 34.4 58.4 64.7
Groundtruth YOLOX 81 76.8 78.9 82.5 59 54 50.1 52 37.5 60 65.5

Groundtruth Groundtruth 82.2 78 80 97.6 75.7 55 50.9 52.8 44.2 70.8 66.4

Table 4: Ablation study on detector choice during pretraining and inference. Results show that
CALIBFREE maintains high ID association consistency, with inference detector choice impacting
tracking accuracy more than pretraining.

higher precision and AIDF1 in this setting, which we attribute to two factors: (1) CALIBFREE
uses a less accurate detector (lower MOTA), reducing cross-view consistency; and (2) MvMHAT++
benefits from a second-stage training step specifically tailored for cross-view association, offering
an advantage in sparsely overlapped environments.

Overall Performance. CALIBFREE demonstrates strong gains over most single-camera and multi-
view baselines in overall accuracy (A) and F1 score (F ). By disentangling view-specific and view-
agnostic features, it maintains identity across views without calibration. Although MvMHAT++
excels in some cross-view metrics, CALIBFREE’s unified, annotation-free framework delivers ro-
bust and generalizable performance under real-world challenges like occlusions, sparse views, and
subject similarity.

4.2 ABLATION STUDIES

4.2.1 EFFECT OF DISTILLATION AND RECONSTRUCTION

Table 3 presents an ablation study comparing four CALIBFREE variants. The ViT-L (teacher) setting
uses features from a pretrained ViT-L Dosovitskiy et al. (2021) directly, without training a student.
Distillation only trains a student using only the distillation loss Ldistill, while Reconstruction only
trains a student from scratch using only Lrecon. Our full model combines Ldistill +Lrecon +Ldisent and
outputs disentangled view-specific and view-agnostic features.

The ViT-L teacher achieves strong over-time tracking (IDF1: 79.9, MOTA: 97.5) but limited cross-
view performance (AIDF1: 46.1, MHAA: 36.7). Distillation alone underperforms due to reduced
model capacity and masked inputs (AIDF1: 43.5). Reconstruction alone slightly lowers over-time
performance (IDF1: 79.1) but improves cross-view accuracy (AIDF1: 50.3), highlighting the im-
portance of spatial reconstruction for multi-view consistency. The full CALIBFREE model achieves
the best overall results (F: 66.4, Accuracy: 70.8), validating the importance of all components for
robust uncalibrated tracking.

4.2.2 EFFECT OF DETECTOR CHOICE

Table 4 compares three detector configurations—ground truth, YOLOX Ge et al. (2021), and
YOLOv7 Wang et al. (2023)—used during both pretraining and inference. CALIBFREE demon-
strates strong robustness to detector choice during pretraining; however, inference quality has a
more substantial effect. Switching from YOLOX to the less accurate YOLOv7 results in noticeable
performance drops, highlighting the importance of reliable detections—a challenge common to all
tracking methods. Notably, models pretrained with ground truth and inferred using YOLOX achieve
ID-based metrics comparable to those with ground-truth inference, demonstrating CALIBFREE’s
adaptability when the inference detector maintains reasonable accuracy. Moreover, as shown in
Table 1, CALIBFREE is significantly more resilient to bounding box imperfections compared to
previous self-supervised methods.
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Teacher Student Over-time Tracking Cross-View Tracking Overall
Model Model IDP IDR IDF1 MOTA HOTA AIDP AIDR AIDF1 MHAA A F

ViT-L ViT-B 82.2 78 80 97.6 75.7 55 50.9 52.8 44.2 70.8 66.4
ViT-B ViT-B 82.0 77.8 79.8 97.5 75.5 52.1 47.8 49.7 42.0 69.8 64.8
ViT-B ViT-S 77.6 75.8 76.7 97.2 71.8 50.3 45.4 47.7 40.4 68.8 62.2

Table 5: Ablation studies of different models. Using ViT-L as teacher and ViT-B as student
achieves best results.

Over-time Tracking Cross-View Tracking Overall
Mask ratio IDP IDR IDF1 MOTA HOTA AIDP AIDR AIDF1 MHAA A F

0.9 82.3 78 80.1 97.6 75.8 53.8 48.7 51.1 43.0 70.3 65.6
0.75 82.2 78 80 97.6 75.7 55 50.9 52.8 44.2 70.8 66.4
0.5 82.0 77.9 79.8 97.5 75.6 55.1 50.1 52.4 43.9 70.7 66.1

Table 6: Ablation studies of mask ratios. 0.75 achieves the best balance between over-time and
cross-view tracking.

4.2.3 IMPACT OF TEACHER AND STUDENT MODEL SIZES

Table 5 investigates three teacher–student setups: ViT-L→ViT-B, ViT-B→ViT-B, and ViT-B→ViT-
S. A larger teacher (ViT-L) improves cross-view performance (AIDF1: 49.7→52.8, MHAA:
42.0→44.2) due to richer representations feeding into the cross-view encoder. Over-time metrics
(IDF1, MOTA) remain mostly unchanged, suggesting that temporal continuity is less sensitive to
teacher size. On the other hand, reducing the student to ViT-S lowers both over-time (IDF1: 76.7)
and cross-view (AIDF1: 47.7) performance, indicating insufficient capacity for robust identity mod-
eling. Although smaller students are more efficient, this comes at the cost of accuracy—especially
in complex multi-view scenarios.

4.2.4 EFFECT OF MASK RATIOS IN PRETRAINING

We examine the impact of mask ratios (0.5, 0.75, 0.9) in Table 6. High masking (e.g., 0.9) harms
cross-view performance (AIDF1: 51.1, MHAA: 43.0), suggesting that excessive masking limits
the model’s ability to learn spatially consistent features. Over-time metrics (IDF1, MOTA) remain
stable, as temporal tracking depends less on detailed spatial information. While both 0.5 and 0.75
achieve comparable cross-view results (AIDF1: 52.4 vs. 52.8), the 0.75 setting reduces token usage,
offering better efficiency. Thus, a 0.75 mask ratio strikes the best balance between accuracy and
computational cost for both temporal and cross-view tracking.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

We have introduced CALIBFREE, a self-supervised multi-camera multi-object tracking (MCMOT)
method that achieves state-of-the-art performance without relying on camera calibration or manual
annotations. By disentangling view-agnostic and view-specific features, supported by cross-view
reconstruction and knowledge distillation, CALIBFREE robustly handles complex identity associ-
ations across time and views. Experiments on the MMP-MvMHAT and MvMHAT datasets under-
score its strong adaptability in both over-time and cross-view tracking.

Despite these advances, our approach remains limited by its exclusive use of RGB features, thereby
overlooking valuable geometric relationships across views. Although learning geometric associa-
tions without camera parameters is nontrivial, incorporating such information could enhance identity
consistency and cross-view associations. In future work, we aim to explore self-supervised meth-
ods for integrating geometric cues, enabling CALIBFREE to better leverage spatial relationships
between detections.

Ethics Statement. This work uses publicly available datasets (MvMHAT, MMP-MvMHAT) with
no personally identifiable information or human-subject interaction. We adhere to the ICLR Code
of Ethics. While multi-camera tracking may raise privacy concerns, our contributions are intended
for academic research and do not enable identification beyond provided annotations.

Reproducibility Statement. Model architecture, objectives, training schedules, and evaluation
protocols are specified in Secs. 3–4 and the appendix; ablations (Sec. 4.4) support design choices.
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Datasets and preprocessing steps are documented, and we will release code, pretrained weights, and
evaluation scripts to reproduce all reported results upon publication.
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input mask reconstructed input mask reconstructed

View 1 View 2

Figure 3: Cross-view reconstruction results. The input images are the original scenes, while the
masked images indicate regions removed for reconstruction. CALIBFREE effectively reconstructs
these masked regions, capturing identity-preserving details across viewpoints even when large por-
tions are obscured.

A KEY TAKEAWAYS AND CALIBRATION INDEPENDENCE

Calibration-free design. Our approach never accesses camera intrinsics, extrinsics, or homogra-
phies at any stage of training or inference. As a result, deployment to a new camera network requires
no calibration effort, and the method remains robust even if cameras are re-positioned or experience
drift over time (Section. 1, Figure. 1).

Disentangled feature learning. A central insight is that explicitly disentangling two complemen-
tary embeddings—learned via a masked auto-encoder without any camera metadata—is both feasi-
ble and beneficial. The view-specific branch preserves appearance nuances tied to a particular cam-
era, while the view-agnostic branch captures identity cues consistent across viewpoints. This sepa-
ration (i) integrates seamlessly with off-the-shelf trackers such as DeepSORT Wojke et al. (2017),
(ii) eliminates calibration and labeling overhead, and (iii) opens new directions for cross-source
representation learning (e.g., audio–video or LiDAR–camera).

B DATASETS

MMP-MvMHAT. Adapted from MMPTRACK mmp, MMP-MvMHAT features 4–6 overlapping
indoor cameras and 28 individuals. It provides 8,000 fully annotated frames across four training
scenes and 4,000 frames for validation, with no calibration data. This setup, focused on crowded
and occluded environments, poses a challenging multi-view tracking task.

MvMHAT. MvMHAT Feng et al. (2024) is a large-scale dataset containing 26 video groups (98
sequences) sourced from Campus Xu et al. (2016), EPFL Fleuret et al. (2008), and newly col-
lected footage. Each group includes 3–4 synchronized camera views, totaling over 90,000 annotated
frames. Split into training and testing (13 groups each) with a 2:1 ratio, MvMHAT covers diverse
scenarios and camera angles—often with 90° viewpoint differences—to facilitate robust multi-view
tracking evaluation.

C EVALUATION METRICS

Over-time Tracking. We adopt Multiple Object Tracking Accuracy (MOTA) Bernardin & Stiefel-
hagen (2008) to assess single-view tracking performance in terms of false positives, missed de-
tections, and identity switches. Given the emphasis on robust identity association over time, we
further use ID Precision (IDP), ID Recall (IDR), and ID F1 (IDF1) Ristani et al. (2016a), as well as

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

High Order Tracking Accuracy (HOTA) Luiten et al. (2021) for a balanced evaluation of detection,
association, and localization.

Cross-view Tracking. For multi-camera scenarios, we use Association ID Precision (AIDP), Asso-
ciation ID Recall (AIDR), and Association ID F1 (AIDF1) Han et al. (2020; 2021), which average
pairwise matching accuracy across different cameras. We also include Multi-view Multi-Human As-
sociation Accuracy (MHAA), which penalizes identity-consistency errors in multi-camera contexts
with frequent occlusions and appearance shifts.

Overall. To provide a holistic MCMOT assessment, we calculate the MCMOT F1 score (F) and
accuracy score (A) by taking the average of F1 and accuracy across both over-time and cross-view
tracking Feng et al. (2024):

F = Mean(IDF1, AIDF1) , A = Mean(MOTA, MHAA).

D IMPLEMENTATION DETAILS

Pretraining Phase. After detecting the bounding box for each person, the region of interest (ROI)
is cropped based on the bounding box coordinates and resized to a fixed resolution of 224 × 224
pixels through upsampling or downsampling. These resized ROIs are divided into non-overlapping
patches of size 16× 16.

The single-view encoder is implemented as a vanilla Vision Transformer (ViT) base model with 12
transformer blocks and 12 attention heads, using an embedding dimension of 768. During inference,
the output of the single-view encoder is split into view-agnostic and view-specific features, each with
a dimension of 384.

The single-view decoder, cross-view encoder, and cross-view decoder are shallow Vision Trans-
former models, each comprising 8 attention blocks and 16 attention heads with an embedding di-
mension of 512. For knowledge distillation, the teacher model is a ViT large model pretrained on
ImageNet, with an output feature dimension of 1024. To align dimensions during distillation, the
512-dimensional output of the single-view decoder is projected to 1024 dimensions using a linear
layer.

Pretraining is conducted over 400 epochs with a base learning rate of 1.5 × 10−4 and a 40-epoch
warmup phase. The weight decay is set to 0.05. Reconstruction loss is computed using mean squared
error (MSE) loss applied to normalized pixel values rather than raw pixel values. The maximum
number of detections is set to be 10 for both datasets.

Inference Phase. During inference, a detector identifies bounding boxes for all persons, and the
ROIs are cropped based on the bounding box coordinates. Features for each detection are generated
by feeding all patches (without masking) to the single-view encoder. The per-patch features are then
aggregated using max pooling to produce a single feature vector (matching the encoder dimension)
representing each detection.

For over-time tracking, we utilize DeepSort, with the generated features serving as the primary
matching criterion, complemented by a Kalman filter as a secondary criterion. For cross-view track-
ing, aggressive matching is employed, computing pairwise similarity between detections from dif-
ferent views to establish associations.

E VISUALIZATION

Figure 3 illustrates how CALIBFREE captures identity-preserving features across different view-
points, showing the original input, masked patches, and reconstructed outputs. Substantial portions
of each subject are masked to simulate partial observations, yet CALIBFREE reliably restores these
regions by leveraging both view-agnostic and view-specific features. Crucial details like posture,
clothing texture, and overall silhouette remain largely intact, supporting consistent identity tracking
across camera views. Even when significant information is obscured, the model reconstructs oc-
cluded areas accurately based on the available visible patches, all without requiring camera calibra-
tion. This visualization underscores CALIBFREE’s robustness and practical utility in multi-camera
scenarios with frequent occlusions and substantial viewpoint variations.
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F COMPUTATION AND RUNTIME

We report the hardware setup and training time for each dataset:

Dataset # GPUs GPU Model Mem/GPU Batch Epochs Wall-clock
MMP-MvMHAT 4 NVIDIA H100 80 GB 5 400 13.4 h
MvMHAT 4 NVIDIA A100 80 GB 5 400 38.3 h

At inference, using four cameras with 1080P input resolution, a ViT-B encoder (as single-view
encoder) for each view, and DeepSORT as the tracker, the average runtime per timestep is 154 ms
(± 32 ms) on one NVIDIA A100 80GB GPU.

G USE OF LARGE LANGUAGE MODELS (LLMS).

We used LLMs only as a writing assistant for improving clarity and conciseness of our text (e.g.,
rewriting and rephrasing). LLMs were not involved in research ideation, design, experimentation,
or analysis. The authors take full responsibility for all content.
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