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Abstract

Cognitive processes usually take place at a macroscopic scale in systems charac-
terised by emergent properties, which make the whole ‘more than the sum of its
parts.’ While recent proposals have provided quantitative, information-theoretic
metrics to detect emergence in time series data, it is often highly non-trivial to
identify the relevant macroscopic variables a priori. In this paper we leverage
recent advances in representation learning and differentiable information estimators
to put forward a data-driven method to find emergent variables. The proposed
method successfully detects emergent variables and recovers the ground-truth emer-
gence values in a synthetic dataset. This proof-of-concept paves the ground for
future analyses uncovering the emergent structure of cognitive representations in
biological and artificial intelligence systems.

1 Introduction

Cognitive processes usually take place in systems made of multiple interacting parts, e.g. neurons
composing the nervous system of an organism. Importantly, cognitive processes themselves don’t
seem to take place at a ‘microscopic’ level of individual units, but at ‘macroscopic’ levels involving
assemblies of several coordinated units [7]. Hence, when trying to unveil the inner workings of a
— natural or artificial — cognitive system, it is crucial to be able to identify relevant macroscopic
variables that best characterise the corresponding cognitive processes.

The identification of macroscopic variables has traditionally been driven by intuition and expert
knowledge. For example, the investigation of collective behaviour in statistical physics is based
on macroscopic variables known as ‘order parameters,’ which are typically identified heuristically
and then used to describe phase transitions and other phenomena of interest [18]. Unfortunately,
identifying relevant macroscopic variables is often more an art than a science, being heavily dependent
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on prior knowledge and expectations. Having automated procedures to identify relevant macroscopic
variables of cognitive systems would open important avenues for investigating the inner workings of
different cognitive architectures.

A promising approach to identify empirically useful macroscopic variables is provided by unsuper-
vised representation learning [13, 4, 20]. For example, information maximisation has proven to be
a powerful objective for learning representations within neural networks [5, 13]. In this paper we
combine this approach with recent breakthroughs in our ability to formally characterise emergent
phenomena [17, 11], which have proven to be not only theoretically sound but also empirically
powerful [9, 15]. Building on this literature, in this paper we investigate the feasibility of leveraging
recently proposed metrics of emergence to identify representations that display emergent properties.
Our results show that causal emergence facilitates learning of more complex features of the data
relative to pure mutual information maximisation.

2 Methods

2.1 Quantifying emergence

Consider a system composed of n parts, and let Xi
t denote the state of part i at time t. The information

that the joint process carries from t to t′ can be quantified by the mutual information I(Xt;Xt′),
where Xt = (X1

t , . . . , X
n
t ). How can one characterise an emergent macroscopic variable of such

system? Following Ref. [17], one can define causally emergent variables Vt as satisfying two key
criteria:

(i) Supervenience: there exists a function (or coarse-graining) f such that Vt = f(Xt).

(ii) Unique information: Vt holds unique information about the future evolution of the system
Xt′ that cannot be not found in the individual X1

t , . . . , X
n
t by themselves.

Critically, the unique information of Vt about Xt′ can be rigorously quantified using the framework of
Partial Information Decomposition (PID, [21]), and its recent extension to time series data (ΦID, [10]).
Emergence, therefore, is defined as the capability of a supervenient variable to provide predictive
power that cannot be reduced to underlying microscale phenomena.

Quantifying unique information in high-dimensional systems can be highly non-trivial. Luckily, the
ΦID formalism allows to derive simpler measures that provide sufficient criteria for emergence. In
particular, it has been shown that the following is a sufficient condition for causal emergence [17]:

Ψ := I(Vt;Vt+1)−
∑
i

I(Xi
t ;Vt+1) > 0 . (1)

Importantly, Ψ is comparatively easy to calculate, as it relies only on pairwise marginal distributions
and on Shannon’s mutual information. These key features allow the framework to be applicable on a
wide range of scenarios, as illustrated by the applications reviewed in Ref. [11]. Note that here we
take t′ = t+ 1, but in principle any t′ > t is valid.

2.2 Model architecture and information estimators

Our aim is to establish an automated procedure to identify emergent macroscopic variables Vt

with respect to a microscopic substrate Xt. For this, we investigate parametric coarse-grainings
Vt = fθ(Xt) that can be optimised to maximise Ψ via a differentiable objective function.

A key ingredient to maximising Ψ is employing a suitable estimator of Shannon’s mutual information.
Although many popular estimators are not differentiable [6, 8], the literature offers a number of dif-
ferentiable estimators [14, 19]. We use the Smoothed Mutual Information "Lower-bound" Estimator
(SMILE) [19], which is one of a family of approaches that formulates mutual information estimation
as a variational problem, and was specifically designed to address the issue of high variance in exist-
ing estimators such as the NWJ lower bound [12] and MINE [1]. The SMILE mutual information
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Figure 1: Model architecture and data-generating process. a) Architecture for learning causally emergent
representations. b) The sequential bit-string data used for training, featuring auto-correlation of the parity of the
first 5 bits and auto-correlation of the value of the 6th bit of the string.

estimator is given by

I(X;Y ) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
≥ Ep(x,y)

[
gφ(x, y)

]
− logEp(x)p(y)

[
clip

(
egφ(x,y), e−τ , eτ

)]
≜ IS

φ (X;Y ) , (2)

where gφ is a parameterised function that estimates the log density ratio log (p(x, y)/(p(x)p(y))),
clip(v, l, u) = max (min (v, u) , l), and τ ≥ 0 is a hyperparameter. As τ → ∞, IS converges to the
MINE estimation [1], but a finite τ prevents the potentially exponential growth of the variance of the
estimate with MI (which MINE suffers from [19]).

Equipped with this estimator, we can now formulate our representation learning algorithm for causally
emergent features. The architecture is schematically shown in Fig. 1a. Our model involves three
learnable functions:

1. A representation network fθ, that learns a supervenient variable Vt = fθ(Xt).

2. A critic for the macroscopic variable gφ, that controls the estimation of I(Vt;Vt+1).

3. A critic for the microscopic variable hξ, that controls the estimation of I(Xi
t ;Vt+1).

During training, φ and ξ are trained to estimate their respective mutual information quantities, while
the representation parameters θ are trained to maximise the SMILE approximation to Ψ given by

ΨS(θ, φ, ξ) := IS
φ(fθ(Xt); fθ(Xt+1))−

∑
i

IS
ξ (X

i
t ; fθ(Xt+1)) . (3)

We refer to ΨS as the emergence objective function, and the first term in the RHS of Eq. (3) as the
predictive mutual information [2] — since (by the data processing inequality [3]) it represents a
lower bound on the joint mutual information between the past and future states of the whole system,
I(Xt;Xt′). As a control condition, we also ran experiments with an objective function consisting of
only the predictive information, removing the marginal mutual information terms.

2.3 Synthetic dataset

We evaluate our method for learning causally emergent representations by applying it to sequences of
random bit-strings of length n with two constructed temporal correlations:
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Figure 2: The model recovers ground truth emergent features. Using the emergence objective function (left
column), the model finds the correct Ψ value and is able to recover the known emergent feature (parity bit).
Using only predictive MI as the objective (right column), the model fails to discover any emergent features.

1. The parity of the first n− 1 bits is auto-correlated across time, such that

P
{
⊕n−1

i=1 Xi
t+1 = ⊕n−1

i=1 X
i
t

}
= γparity >

1

2
,

where ⊕ represents modulo-2 addition.
2. The last (or extra) bit in the bit-string Xn is auto-correlated across time, such that

P
{
Xn

t+1 = Xn
t

}
= γextra >

1

2
.

Since parity is a synergistic function of the bits of a bit-string (i.e. it cannot be predicted from each
of the input bits individually [16]), and since the parity predicts some information about the future
evolution of the system, Vt = ⊕n−1

i=1 X
i
t is an emergent feature of the system.

Despite its simplicity, this dataset has two key advantages: there is a known emergent feature (the
parity), and one can calculate the mutual information and the emergence capacity analytically.2
These properties will allow us to verify that the model has successfully extracted the expected
emergent properties and that mutual information is being accurately estimated. A schematic of the
data-generating process is shown in Fig. 1b.

3 Results

Results show that our proposed architecture can accurately estimate the ground-truth value of Ψ in
the synthetic dataset, confirming it is able to learn causally emergent representations (Fig. 2). To
interpret the contents of the learned representation, we trained decoders with standard supervised
learning to predict both the parity of the first n− 1 bits (parity bit) and the last auto-correlated bit
(extra bit). We found that the parity bit could be decoded with high accuracy but the extra bit could
not, confirming that the learned representation indeed corresponded to an emergent feature.

As expected, when the marginal MI terms are removed from the objective function (Fig. 2, right
column), the model is no longer able to obtain the correct Ψ value — and, interestingly, only the

2Specifically, Ψ = 1−H2(γparity) and I(Xt;Xt+1) = 2−H2(γparity)−H2(γextra), where H2(p) represents
the entropy of a Bernoulli distribution with parameter p. Here we set γparity = γextra = 0.99.
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extra bit (but not the parity bit) is encoded in the representation. We hypothesise that, in the absence
of the regularisation induced by the marginal MI, the system’s inductive biases lead it towards
learning “low-order” (i.e. non-emergent) representations. Note that, despite having a constraint
removed, the model without marginal MI loss is unable to extract the full predictive information of
the system (which equals approximately 1.84 bit), showing that using the full emergence loss could
incentivise the system to learn features that provide information about the system’s dynamics that
would otherwise be ignored. We obtain qualitatively similar results with a noisier version of the same
data generating process (Supp. Fig. 3).

Moreover, we have also observed (Supp. Fig. 4) runs where fθ learns a new, unexpected emergent
feature that encodes the combination of the parity and extra bit, showing the capability of the model
to discover emergent features that were not originally designed.

4 Conclusion

In this paper, we proposed a machine learning method for discovering emergent variables in time
series data that leverages a recent information-theoretic characterisation of emergence [17], as well as
advances in mutual information estimation from data with neural networks [19]. Our results provide a
proof-of-concept for the method’s viability by applying it to time series of auto-correlated bit strings,
showing that it can be used to successfully learn the parity of a subset of bits — a feature that is known
to have emergent character over the bits. Interestingly, a pure information maximisation objective
struggled to learn this feature, suggesting that our method facilitates the identification of complex
features of the data. In future work, it would be interesting to see if our method is competitive with
recent representation learning methods on standard benchmarks [13, 4, 20].
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A Hyperparameters

Table 1: Hyperparameters for causal emergence representation learning.

Hyperparameter Value

Number of bits in Xt 5 + 1
Number of training steps 30000
Parity autocorrelation γparity 0.99
Extra bit autocorrelation γextra 0.99
Batch size 100
Representation network layer sizes [64, 16, 1]
Critic networks layer sizes [128, 64, 8]
Optimiser Adam
Representation network learning rate 1e-5
Critic networks learning rate 1e-4

Table 2: Hyperparameters for supervised learning of parity or extra bit using frozen representation
after every 1000 steps of causal emergence training.

Hyperparameter Value

Network layer sizes [128, 32, 1]
Learning rate 1e-4
L2 regularisation coefficient 1e-4
Batch size 100
Number of training steps 10000
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Figure 3: Replication of main results with noisier data. Same as in Fig. 2, but with γparity = γextra = 0.9.
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Figure 4: Sample run where the system discovers an unexpected emergent feature. This phenomenon,
observed in approximately 5% of runs, the system estimates the correct Ψ value (left), but neither the parity
or the extra bit can be decoded from the learnt representation (middle). Visual inspection of the representation
reveals that the system learnt a synergistic combination of the parity and extra bit, which is itself also emergent
— despite not being explicitly designed into the synthetic dataset.
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