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Abstract

Multilingual pre-trained Large Language Models (LLMs) are incredibly effective at Question
Answering (QA), a core task in Natural Language Understanding, achieving high accuracies
on several multilingual benchmarks. However, little is known about how well their con-
fidences are calibrated. In this paper, we comprehensively benchmark the calibration of
several multilingual LLMs (MLLMSs) on a variety of QA tasks. We perform extensive exper-
iments, spanning encoder-only, encoder-decoder, and decoder-only QA models (size varying
from 110M to 7B parameters) and diverse languages, including both high- and low-resource
ones. We study different dimensions of calibration in in-distribution, out-of-distribution, and
cross-lingual transfer settings, and investigate strategies to improve it, including post-hoc
methods and regularized fine-tuning. For decoder-only LLMs such as LlaMa2, we addition-
ally find that in-context learning improves confidence calibration on multilingual data. We
also conduct several ablation experiments to study the effect of language distances, language
corpus size, and model size on calibration, and how multilingual models compare with their
monolingual counterparts for diverse tasks and languages. Our experiments suggest that the
multilingual QA models are poorly calibrated for languages other than English and incorpo-
rating a small set of cheaply translated multilingual samples during fine-tuning/calibration
effectively enhances the calibration performance.

1 Introduction

Pre-trained Large Language Models (LLMs) like BERT, RoBERTA, T5, BART (Devlin et al.l [2019; [Liu
et al.l |2019; [Wolf et al.; [2020; Raffel et al.,|2020; [Lewis et al., 2019al), and their multilingual counterparts like
mT5, mBART, XLM (Xue et al.,|2021; [Liu et al.| |2020; |Conneau et al.||2019), have greatly advanced Natural
Language Understanding. The multilingual LLMs (MLLMs) are able to transfer knowledge acquired from
English to other languages, leading to impressive cross-lingual performances on various downstream tasks in
the zero-shot and few-shot settings, i.e., for languages not seen during fine-tuning (Wu & Dredze, 2020; | Xue
et al. |2021). Question Answering (QA) is a common task for understanding how well machines understand
human language, and more importantly, it comes in a variety of formats such as multiple choice, span
selection, or free-form answer generation. Several NLP/multimodal tasks can be cast as QA, highlighting
the universality of the QA format. Multilingual QA as a task is becoming increasingly important with the
globally widespread deployment and democratization of Al systems(Loginova et al., [2021)).

Despite the amazing progress of LLMs across several benchmarks, they unfortunately suffer from sometimes
generating incorrect answers, with very high confidence. This can have severe consequences for safety-critical
applications such as healthcare, autonomous driving, or finances where mistakes can be very costly. With
the increasing application of LLMs to such tasks, it is crucial to understand whether the predictions are
reliable, and when the models are unsure of the answer. Confidence calibration is one such reliability metric
that measures whether the model’s prediction probability estimates are aligned with the actual probability
of the answer being correct. Confidence calibration has been studied in Computer Vision |Guo et al.| (2017));
Minderer et al.| (2021)) and Natural Language Processing Desai & Durrett| (2020)); [Dan & Roth| (2021)).
However, most of the prior works are limited to classification settings, which is inapplicable to the generality
of the QA task. Recently,|Zhang et al.[(2021);|Jiang et al.[(2021) have shown that state-of-the-art English QA
models are surprisingly poorly calibrated. However, there remains a gap in understanding of the calibration
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(a) XLM (b) With TS (c) With more English (d) With Bengali

Figure 1: In this plot we show that pre-trained multilingual models, fine-tuned on English QA, are not well
calibrated in languages other than English, specifically low-resource ones like Bengali. (a) shows the reliability
diagram for XLM |Conneau et al.| (2019)) fine-tuned on the English TyDiQA training set, evaluated on the
Bengali TyDiQA test set. The large deviation from the diagonal Y=X line indicates it is not well calibrated.
(b), (¢) and (d) show that Temperature Scaling (TS), fine-tuning with more English data, and fine-tuning
on Bengali TyDiQA training data respectively, all improve calibration compared to (a), as indicated by the
better alignment with the diagonal and the lower ECE score. This indicates that despite high zero-shot
cross-lingual accuracy, zero-shot cross-lingual calibration is not good for LLMs, unless dedicated calibration
strategies, like TS, are used to improve them.

properties of multilingual QA models. In this paper, we address this gap by a comprehensive study on the
Calibration of Multilingual Question Answering Large Language Models. The main research questions we
investigate in this paper are:

1) How well are MLLMs calibrated in the cross-lingual transfer scenario?
2) How can we improve MLLMs’ confidence calibration on multilingual QA datasets?
The contributions of our work are as follows:

e We provide the first comprehensive benchmarking of confidence calibration of multilingual QA models
(architectures including extractive models: mBERT, XLM-R and generative models: mT5, mBART, and
LLaMa2) over both low- and high-resource languages, in-distribution and out-of-distribution settings.

e We observe that the calibration performance on English is not transferable to other languages, across
various datasets and architectures. Distance between the target languages and English, and the distribution
of different languages at the pre-training stage, are all highly correlated with calibration performance, across
the various model types.

e An investigation of various calibration strategies including post-hoc methods and regularization methods,
aimed at enhancing cross-lingual calibration. Temperature scaling (optimized over a cross-lingual validation
dataset) shows the most significant improvement even if the target language is absent in the validation data.
e We consider the In-Context Learning (ICL) scenario for LLMs such as LlaMa-2 and show that ICL improves
both accuracy and calibration on multilingual QA tasks.

e We perform a suite of ablation experiments to study the role of example diversity, language diversity,
and model size on calibration, and to compare the calibration of MLLMs with that of their monolingual
counterparts.

2 Related Work

2.1 Calibration of Large Language Models

Prior studies (Desai & Durrett}, 2020; Dan & Roth, [2021} | Xu & Zhang) [2023; |He et al, 2021) have investigated
the calibration of pre-trained LLMs on downstream tasks, primarily with a focus on monolingual English
models and tasks, and primarily in the classification setting. [Kuleshov & Liang| (2015); |[Jagannatha &
E study calibration for structured prediction, but not in the context of LLMs, Recently, |Ahuja
et al. studies calibration of multilingual pre-trained LLMs, specifically mBERT and XLM (Devlin
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let all [2019; |Conneau et al., 2019) on various downstream classification tasks including natural language
inference and commonsense reasoning. They show that multilingual models are not well-calibrated in the
classification setting, especially for low-resource languages. |Jiang et al. (2022) also explores cross-lingual
calibration performance for mBERT and XLM, comparing various post-hoc calibration methods on both
structured and unstructured prediction tasks. In this work, we extend this line of work to calibration of
MLLMs for QA, in both classification and generative settings, and to cross-lingual and distribution shift
settings.

2.2 Calibration of models on Question Answering tasks

Recently, there has been growing interest in studying calibration of English QA models (Kamath et al. 2020}
[Zhang et al. 2021} [Jiang et all) 2021; |Si et al. 2022). Kamath et al.| (2020) trains an extra calibrator of
confidence scores to improve the calibration performance and examines the calibration performance on an
out-of-domain (OOD) setting. They utilize the scores from the calibrator and uses it as a reranker to select
the answers. [Zhang et al.| (2021]) extends this work by adding the features of the context and back-translated
context. |[Jiang et al| (2021)) analyzes the calibration performance of generative language models, and find
that the generative models on QA are not well-calibrated. Our work in contrast investigates the calibration
of pre-trained multilingual LLMs (both extractive, with an encoder-only architecture, and generative, with
an encoder-decoder or decoder-only architecture) on QA, and various techniques to improve calibration
such as temperature scaling |Guo et al.| (2017)), label smoothing |Szegedy et al.| (2016) and cross-lingual data
augmentation.

3 Background

3.1 Question Answering

Context: {.....wahrend die Oscar-Gewinnerin Marlee Context: {.....wéhrend die Oscar-Gewinnerin Marlee
Matlin in die Amerikanische Gebardensprache (ASL) Matlin in die Amerikanische Gebardensprache (ASL)
ubersetzte.} ubersetzte.}
Question: {Welche Schauspielerin tibersetzte beim Question: {Welche Schauspielerin ibersetzte beim
Spiel in die Amerikanische Gebardensprache?} Spiel in die Amerikanische Gebérdensprache?}
Encoder-only Model Encoder-Decoder, Decoder-only
(e.g., mBERT, XLM) Model (e.g., mT5, LLaMa2)
Answer start index: 15 . . i
Answer end index: 16 Answer: Marlee Matlin
Answer Extraction Answer Generation

Figure 2: Differences in the output format between extractive and generative QA models.

In this work, we focus on two broad types of models for QA: extractive (or discriminative) and generative (as
shown in Figure[2). For models based on encoder-only language models like mBERT and XLM-R (Conneaul
let al., 2019; Devlin et al 2019; Liu et al., 2019), the prediction of the answer span within the given context
is framed as a classification task and achieved using two linear layers. These linear layers are placed on
top of the hidden representations and are responsible for predicting the start and end indices of the answer
span Y, respectively. The logit score of the answer z,,, is defined as the sum of the logits of the start and
end positions, zsier: and Zeng (2022). Unlike standard classification problems which contain a fixed
number of classes and compute the logits score from the model over those classes, here we sample a K-sized
candidate set Z = {Y } i of answers for a question (Jiang et all [2021)), by selecting answers with top K logits
scores zgns- The confidence of each candidate answer is the score after softmax is applied to its logit zgmns-

In the case of generative models like mT5 and mBART Xue et al| (2021)); [Liu et al. (2020); Touvron et al.
2023), we frame question-answering task as a sequence-to-sequence generation problem |[Khashabi et al.
2020). If y; denotes the i*" generated token and y.; denotes all the previously generated i — 1 tokens,

the probability of the answer is defined as P'(Y|X) = HLYl P(y;| X, y<;), a product of the individual token




Under review as submission to TMLR

probabilities P(y;|X,y<;) that are generated by the decoder. Beam Search is used to find the candidate

answers and the normalized probability is defined as P(Y|X) = %,
Y'ez

of the prediction. The final answer of the model is the one with the highest normalized probability, over all
answers in the candidate set.

and used as the confidence

3.2 Metrics to measure the Confidence Calibration of a model

A model is considered well-calibrated if the confidence estimates of its prediction are well-aligned with the
actual probability of the answer being correct. Given an input X for which the gold output is Y and the
model output is Y, with confidence P, a perfectly calibrated model satisfies the following condition:

PY =Y |P(Y |X)=p)=pVpel01].

The above probability cannot be computed using finitely many samples since P is a continuous random
variable and, in practice, it is approximated by bucketing the predictions.

Expected calibration error (ECE) A popular metric to measure confidence calibration is called the
Expected Calibration Error (ECE) |Guo et al.| (2017). The predictions are bucketed into M disjoint equally
sized interval bins based on the confidence values, and the weighted average of the difference between each
bucket’s accuracy and confidence is calculated:

Z | |accB ) — conf(Bm) |,
where B, is the m'" bucket containing samples whose prediction confidence lies in (242, 2], acc(B,y,) and
conf(By,) is the average accuracy and prediction confidence of examples in the bucket B,, respectively. We

set the number of bins as 10 in all our experiments.
3.3 Techniques to improve the Confidence Calibration of a model

The calibration properties of a model can be evaluated directly out-of-box based on the probabilities it
assigns to the predicted answers. Further, one can adopt strategies to calibrate a model, which can be
broadly categorized into:

e Post-hoc calibration methods that do not require any additional training, for example, Temperature Scaling
(TS) |Guo et al.| (2017).

e Specialized fine-tuning, such as Label Smoothing and Few Shot Learning, which regularizes training, or
leverages augmented data respectively.

Temperature Scaling (TS) is a technique to improve the calibration of a machine learning model (Guo

et al., |2017)). When applying the softmax function to output the probability distribution of the logits, T'S

utilizes a single parameter 7 to scale the logits: softmax(z;) = % We perform TS in two ways
exp(zi/T

specialized to the QA model type:

e Extractive Models: we compute the TS factors on the start logits and the end logits separately (7s¢qrt and

Tend), Obtained by optimizing the Negative Log-Likelihood (NLL) loss on the validation set, extending the

standard classification setting in |Guo et al.| (2017)).The softmax score of the answer is computed as follows:
ea:p( Zstart | Zend)

Tstart Tend

E@K exp(Zstazt 4 Zend))

Tstart Tend

softmax(zens) =

3 G:enemtz've Models: For each of the K candidate answers, we hayeAan associated normalized probability
P(Y | X). We use the log probabilities of these as logits z = logP(Y | X), in the softmax function |Jiang
et al.| (2021). We then similarly optimize for a temperature T', with respect to the NLL loss, on the validation
set.

Few-shot Learning (FS) Incorporating a small number of examples from the target language during
fine-tuning, mixed in with the English examples improves the calibration performance in classification tasks
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(Ahuja et al.| [2022). We investigate whether this strategy helps calibrate multilingual QA models by ran-
domly selecting 1000 samples from 5 different languages to fine-tune LLMs, in addition to the almost 100
times larger English data.

4 Benchmarking Calibration of Multilingual QA Models

In this section, we perform a comprehensive set of experiments spanning various LLMs and multi-lingual
QA datasets. We focus on the cross-lingual zero-shot setting where the models are fine-tuned only on the
English QA training data and tested on other languages not seen during fine-tuning, and also show results
under challenging distribution shift scenarios.

Pre-trained MLLMs: In our experiments, we investigate the calibration performance of five different
models: mBERT (Devlin et al} [2019), XLM-R (Conneau et al. |2019)), mT5 (Xue et al., 2021)), mBART (Liu
et al.| [2020)), LLaMa2 (Touvron et al., 2023), and Aya-expanse (Dang et al.;[2024). mBERT and XLM-R are
encoder-only extractive architectures, while mBART and mT5 are encoder-decoder generative architectures.
LLaMa2 ana Aya are decoder-only LLMs with much greater ICL capabilities compared to mT5/mBART,
and we use Llama-2-7b-hf and aya-expanse-8b. We fine-tune all these models on the SQUAD 1.1 training
data (Rajpurkar et al., [2016). B

Datasets{]

e XQuAD (Artetxe et al.,|2019) is a popular benchmark to evaluate the cross-lingual ability of multilingual
models on QA. The dataset is derived from the development set of SQuAD 1.1. It contains 1190 parallel
pairs for 12 languages including English.

e MLQA (MultiLingual Question Answering) has a similar extractive-answer format as XQuAD and contains
QA pairs in seven languages. (Lewis et al., [2019D)

e TyDiQA (TyDiQA-GoldP) (Clark et al., [2020)) also shares the extractive-answer format , and contains 9
topologically diverse languages such as Korean and Teluglﬂ

Metrics

e EM: Exact Match Rate. The prediction should be the same as the gold answer.

o ECE: Expected Calibration Error. In this paper, ECE denotes the Expected Calibration Error averaged
over all the languages in the corresponding dataset.

e ECE(en): ECE(en) denotes the Expected Calibration Error on the English-data only.

4.1 Results for In-Distribution Tasks

Figure [3] and Table [I| show the calibration performance of the five different MLLMs for the XQuAD dataset
in the cross-lingual zero-shot setting. We notice that the relative increase in answer error for languages other
than English is smaller compared to the relative increase in ECE across all models. For example, as shown
in Table [1} the average prediction error for all the non-English languages is 56% while for English answer
error is 33%, i.e. a 69.7 % increase. On the other hand, the average ECE for non-English languages is 18
% vs 7.32 % for English, an increase of 145%. LLaMa2 has a comparable calibration performance as the
extractive models but the exact match rate is lower, especially for languages that are less represented in
LlaMa2’s pre-training data, such as Hindi and Greek. EL

4.2 Results for Out-of-Distribution (OOD) Tasks

Additionally, we evaluate the performance of MLLMs on the TyDiQA dataset, which is collected from a
different resource and different setup than SQuAD, resulting in a distribution shift for the model fine-tuned
on SQuAD. In Table [2] we show the performance of the MLLMs on the TyDiQA test set, and observe the

1The size of the candidate set, K, is set as 20 for all MLLMs and for LLaMa2, K is set at 10

2 Additional details of the datasets and experiments are presented in Appendix

3We use the secondary task (Gold-P) in TyDiQA, which aims at predicting the specific span within a context passage that
serves as the answer to the question. The TyDiQA data is collected directly in each language without the use of translation
(unlike MLQA and XQuAD).

4The accuracy of the models on XQuAD are in Table in Appendix. The language distribution of pre-training LLaMa2 is
in Appendix @
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Figure 3: Calibration performance of six different models on the XQuAD dataset. Note that ECE is lower
the better. mBART gets higher variance on TH and EL because it has not seen the two languages at the
pre-training stage.

Table 1: Average performance across six different models on the XQuAD dataset (12 languages). EM is
higher the better, ECE is lower the better.

EN AR DE EL ES HI
EM ECE EM ECE EM ECE EM ECE EM ECE EM ECE
70.24 7.84 4237 18.78 55.47 13.0 39.38 19.27 55.20 13.13 43.63 18.66
RO RU TH TR VI ZH
EM ECE EM ECE EM ECE EM ECE EM ECE EM ECE
56.70 13.06 45.42 18.01 40.52 18.54 44.00 17.70 4882 18.26 56.47 12.59

following:

eFine-tuning on SQuAD helps more than fine-tuning on TyDiQA (en), even though the task is OOD. This
can be attributed to the much larger amount of fine-tuning data in SQuAD compared to TyDiQA-en which
makes up for the task distribution shift.

e Fine-tuning on all TyDiQA languages helps much more than just TyDiQA-en or SQuAD.

Table 2: Comparison of the calibration performance of various multilingual LLMs. The models are fine-tuned
on SQuAD, TyDiQA-en, and TyDiQA-all, respectively and are evaluated on the test set of TyDiQA. Note
that the results are averaged over all the 9 languages.

XLM EM(1) ECE(]) ECE(en)() mT5 EM(T) ECE(]) ECE(en)({)
SQuAD 50.04  14.78 14.11 SQuAD 50.31  24.37 18.47
TyDiQA-en 3574  16.40 7.33 TyDiQA-en  40.13  26.96 19.16
TyDiQA-all 66.09  12.83 11.37 TyDiQA-all 67.11  18.03 19.22

In our experiments, for both in-domain and out-of-domain tasks, we find that extractive and generative
models (scaled from 100M to 8B parameters) are consistently more miscalibrated on non-English inputs,
with substantially higher calibration error than on English. This persistent cross-lingual calibration gap
highlights the need to improve prediction reliability in multilingual settings.

5 Techniques to Improve the Calibration of MLLMs

In this section, we explore the role of various strategies to improve calibration including post-hoc methods,
regularization methods, and ICL. We aim to address the following questions:

e Do existing calibration techniques work in our cross-lingual transfer settings?

e Can data-augmented fine-tuning on translated cross-lingual data improve calibration?

e What are the comparative impacts of having more monolingual data versus having more diverse, cross-
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lingual data?
e Can using in-context examples improve confidence calibration?

5.1 Post-hoc Methods: Temperature Scaling

In Tables [12| we demonstrate the benefits of using temperature scaling (TS) and few-shot learning (FS)
on calibration for extractive models and generative models. TS does not affect accuracy by design, but it
provides significant benefits in calibration in most cases. Our experiments explore the impact of different
validation sets: 1) the SQuAD validation dataset (10.6k English sentences); 2) Merged MLQA validation
dataset (with 7 languages, 3k sentences). We also observe that optimizing the temperature on a relatively
small multilingual validation dataset is more powerful than on a larger English-only validation dataset.
Notably, even though some of the languages (e.g. SW, KO) do not occur in the merged validation dataset
of XQuAD and TyDiQA, he temperature computed on the merged dataset still effectively improves the
calibration performance in those languages. E|

Table 3: Calibration performance after applying temperature scaling (TS) and few-shot learning (FS) on
mBERT and mT5, evaluated on the XQuAD test set.

mBERT  EM({) ECE(]) ECE(en)(]) mT5 EM(1) ECE(]) ECE(en)()
1677 16.36 6.78 50.95  23.06 10.88
TS (SQuUAD)  46.77 6.3 6.66 TS (SQUAD)  50.95  14.05 4.84
TS (Merge)  46.77  5.86 7.87 TS (Merge)  50.95  10.19 2.77
FS 48.38 587 5.27 FS 54.10  21.22 11.04

5.2 Data Augmentation via Translation

We now investigate the effects of augmenting the training data by incorporating translated data. In our
experiments, we sampled 9929 training examples in English and obtained their translations in five different
languages (AR, DE, ES,HI, VI )ﬂ We have four dataset configurations: En denotes a subset of the English
data; En-Large denotes the full English data with available translations; En-tr denotes the En subset
along with its translations in other languages; Mixed denotes each subset is from a different language.
We fine-tune the MLLMs on this mixed dataset and evaluate their calibration performances. We show the
detailed results in Table m We see that data augmentation via translation improves calibration performance
(even for languages not included in the translation) by almost 75% and we observe the following helpfulness
ranking: Mixed > En-tr > En-large > En.

Table 4: Calibration after adding translated data during fine-tuning mBERT and mT5, evaluated on the
XQuAD test set. The size of En, En-tr is 9929, and En-large, Mixed is 59574.

mBERT EM(1) ECE(]) ECE(en)(]) mT5 EM(T) ECE(]) ECE(en)({)
En 43.51 17.75 9.93 En 49.88 24.05 18.36
En-tr 46.69 5.58 10.91 En-tr 53.63 22.37 14.66
En-large 46.18 12.18 3.73 En-large  50.99 23.27 11.91
Mixed 49.39 5.56 10.47 Mixed 54.93 20.97 13.48

5.3 In-context Learning

In-context learning (ICL) (Brown et al., [2020) has been used as an efficient way to direct LLMs to quickly
adapt to a new task. It appends the task demonstrations with the input prompts which enables the LLMs
to learn the task from the examples effectively. While ICL is known to boost accuracy, here, we demonstrate
it also improves calibration on multilingual QAE| We experimented with two ICL variants: 1) RANDOM: we

5Label Smoothing experiments and the observed benefits on calibration are in Appendix

6The translated sentences are obtained from the MLQA-translated dataset.

"We diagrammatically illustrate the different configurations in Figure [10|in Appendix

8ICL is particularly useful in calibrating massive LLMs such as LlaMa-2, where TS becomes prohibitively expensive due to
temperature optimization on the validation data.
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randomly select two samples of the target language from the training dataset 2) ADAPTIVE: we choose the two
samples of the target language from the training data most similar to the test input, measured by the simi-
larity between the contextual embeddings. Specifically, we use the contextual embedding from the encoder
LLM for the test input and all the training examples and find the examples with the highest cosine similarity.

60 s 0 shot 16 mm 0 shot
RANDOM RANDOM
501 mm ADAPTIVE 144 B ADAPTIVE
< 124
3] ]
g 40 10
30 o 8
X 6
w 20
4
101 ]
0- 0
R R N L L N

Figure 4: Comparison of accuracy (Left) and calibration (Right) of LLaMa2 across six languages of TyDiQA
under 1) zero-shot setting, 2) RANDOM: random 2-shot ICL 3) ADAPTIVE: most similar 2-shot ICL. Lower
ECE, and higher EM indicate better performance.

801 0 shot 20.0 mm 0 shot
RANDOM -V RANDOM
701 m ADAPTIVE 17.51 mm ADAPTIVE
£ 607 15.01
& 50 w1251
L 401 £ 10.0]
LEY 7.5/
207 5.0
101 2.5
0! 0.0
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Figure 5: Comparison of accuracy (Left) and calibration (Right) of Aya across six languages of TyDiQA
under 1) zero-shot setting, 2) RANDOM: random 2-shot ICL 3) ADAPTIVE: most similar 2-shot ICL. Lower
ECE, and higher EM indicate better performance.

We present and compare the calibration performance of LLaMa2-7B (fine-tuned on SQuAD) and Aya-
expanse-8B across six different languages with different ICL choices on TyDiQA in Figure and Figure ﬂ
We observe that the exact match rate is low for zero-shot learning but ICL with 2 samples can significantly
improve the performance for Llama-2. For Aya, English has higher ECE than the other languages. Never-
theless, in-context learning still remains an efficient way to improve confidence calibration, consistent with
our observations on Llama-2. We additionally demonstrate that selecting the most similar 2 samples for the
in-context learning improves both accuracy and calibration performance, and decreases ECE by more than
10% compared to RANDOM ICL. For a low-resource language like Swahili, ADAPTIVE ICL generates a much
better-calibrated output compared to zero-shot and RANDOM for LlaMa-2. Figure [6] shows some qualitative
examples where ICL helps in model calibration for Korean and Swahili.

Given our experimental results, we confirm that existing calibration techniques are effective in cross-lingual
settings. In particular, optimizing temperature on a relatively small but semantically diverse multilingual
validation set yields stronger multilingual confidence calibration than temperature scaling on English only

9The results of the random 2-shot ICL experiment are averaged over 5 runs.
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Prediction Confidence

( \w/olc , 18941 v 0.52
Context: 1894 0f| B T3} 91 20 2000 £ Ef SR 7HX|
An27t 03 E FFY2E A3t /Ut
Question: C|E 20| £ Ef0[ 742 HTHUS AR Q7122 | W iaL
18944 v 0.72
|\ J
(Context: Jean Bedel Bokassa (* 22 Februari 1921-1 3 \M 21 Septemba X 0.46
Novemba 1996) alikuwa rais na baadaye Kaisari wa Jamhuri 1979
ya Afrika ya Kati au baadaye Milki ya Afrika ya Kati hadi
kupinduliwa tar. 21 Septemba 1979. wICL
\Question: Je,Jean Bedel Bokassa alizaliwa mwaka upi? > 1979 X 0.28

Figure 6: When appending the Korean and Swahili examples in the prompts, the model is more confident
about the correct prediction and less confidence about the wrong prediction.

and other calibration techniques such as label smoothing and few-shot learning. We also observe that data
augmenting with semantically diverse cross-lingual data is more helpful than simply adding more monolingual
data for improving multilingual confidence calibration. The observations apply for both extractive and
generative models. Finally, for more powerful decoder-only language models such as LLaMA-2-7B and Aya-
8B, in-context learning improves both accuracy and confidence calibration across languages, with larger gains
for lower-resource languages.

6 Additional Ablation Experiments and Discussion

In this section, we perform ablations to answer the following research questions:

e the relationship between linguistic and non-linguistic features, and the transferability of calibration per-
formance from English to other languages.

e the effect of model size on calibration, and accuracy, for a particular model familym

6.1 Investigating the effects of language distance and corpus size on calibration

One important aspect of the multilingual model analysis is the factors that affect the model’s cross-lingual
ability (Jones et all |2021} |Jiang et al., [2022; |Ahuja et al., 2022)). Here we focus on analyzing both linguistic
(distances between languages) and non-linguistic factors (pre-training data size) for calibration performance.
Lingustic Features Following previous work (Ahuja et al. [2022; \Jones et al.l [2021)), we load the syntactic
and genetic distances that are pre-computed by the URIEL project (Littell et al. [2017)), as the distance
measurements between English and other target languages. The syntactic distance measures the structural
differences between various languages. The genetic distance quantifies the genetic relation between languages
according to the Glottolog tree. We investigate whether the closeness of the target language to the source
language, English, implies better calibration performance. To measure this we compute Pearson’s correlation
coefficient between the language distance and ECE of the standard models. Table [5] shows that the calibra-
tion performance is highly correlated with the syntactic distances between English and the corresponding
languages.

Non-Lingustic Features We also explore the impact of non-linguistic features from training. In this sec-
tion, we compute the correlation between pre-training data size and calibration performance and Table
indicates that the size of different languages in the pre-training influences the cross-lingual calibration of QA
models.

6.2 Investigating the effects of model size on calibration

Lastly, we investigate the effect of model size on confidence calibration. While|Guo et al.| (2017)) demonstrated
that calibration degrades with increasing model size (on ResNet), we show that this is not the case for pre-
trained MLLMs. We demonstrate the effect of model size on extractive and generative models for XQuAD

10We additionally investigate how the calibration of multilingual models corresponds to their monolingual counterparts in
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Table 5: Pearson’s correlation coefficient between linguistic/non-linguistic characteristics and calibration
error on the XQuAD dataset for various models (Left: Extractive QA models, Right: Generative QA
models). Higher absolute values indicate better correlation. Syn and Gen denote the syntactic and genetic
distance between English and other languages respectively, and Size indicates the proportion of the pre-
training data in each language.

Model Syn Gen Size Model Syn Gen Size
mBERT 0.74 0.68 -0.72 mT5H 0.77 0.69 -0.68
XLM-R 0.56 0.54 -0.40 mBART  0.76 0.72 -0.31

LLaMa2  0.60 0.53 -0.57

and TyDiQA (Tables @E The table shows that the accuracy increases with model size, as expected.
Further, we note that confidence calibration also improves with increasing model size, which also supports
prior findings on the calibration of monolingual encoder LLMs in |Dan & Roth! (2021]).

Table 6: Calibration performance of XLM-R (Left) and mT5 (Right) across different sizes, evaluated on the
XQuAD test set and TyDiQA test sets.

XLM-R XQuAD TyDIQA mT5 XQuAD TyDIQA
EM(1) ECE() EM(f) ECE() EM(1) ECE()) EM(1) ECE(})

Small 38.44 27.44 32.05 30.29

Base 54.93 12.38 50.04 14.78 Base 50.95 23.06 50.31 24.37
Large 60.50 10.69 61.02 13.42 Large 56.02 21.60 56.91 20.27

In this section, we have examined how both linguistic and non-linguistic factors shape calibration perfor-
mance. On the linguistic side, we focus on the syntactic and genetic distance between English and the
target language; on the non-linguistic side, we consider pre-training size. We find that all these factors affect
the model’s calibration performance. In addition, we observe a consistent scaling pattern: as model size
increases, accuracy improves and calibration error decreases.

7 Conclusion

In this work, we performed a comprehensive study of the confidence calibration of MLLMs, focusing on
the QA task. We studied diverse scenarios, covering extractive and generative LLMs, several QA datasets,
different calibration strategies, different inference settings (ICL and fine-tuning), and generalization under
distribution shifts. We summarize the key insights from our paper: (1) Multilingual models need to be
calibrated, especially in zero-shot settings, before deployment in real-world applications. 2) Temperature
scaling on a mixed-language validation dataset is a very effective calibration strategy. 3) Adding cheap
machine-translated data at the fine-tuning stage helps improve calibration even on languages unseen during
fine-tuning. 4) ICL benefits not only the accuracy of powerful LLMs, but also their confidence calibration
on multilingual tasks. We believe our work will be fundamental in spurring progress towards developing
reliable multilingual systems and advancing NLP forlow-resourced languages.
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A Appendix

e A.1 Details of datasets

A.2 Details of architectures

e A.3 Details of experiments

e A.4 Details of LLaMa2 experiments

o A.5 Additional calibration metrics

e A.6 Distribution of languages for pre-training the models
e A.7 Additional Calibration Results

e A.8 Additional results on MLQA

o A.9 Additional results on TyDiQA

e A.10 Additional result on XQuAD

e A.11 Additional results for data augmentation

e A.12 Additional In-context Learning Results

e A.13 Additional Analysis

A.1 Dataset Details
Here we provide more statistics of the datasets.

Table 7: The number of training and test samples in SQuAD, XQuAD, MLQA, TyDiQA-GoldP.

Train Test
SQuAD 87.6K 10.6K
XQuAD N/A 14.28K
MLQA N/A 46.14K

TyDiQA-GoldP  49.88K  5.08K

Table 8: List of languages in XQuAD, MLQA, and TyDiQA-GoldP

XQuAD MLQA TyDiQA-GoldP
Arabic Arabic Arabic
German German Bengali
Greek English Finnish
English Spanish English
Spanish Hindi Swahili
Hindi Vietnamese Korean
Romanian Chinese Indonesian
Russian Russian
Thai Telugu
Turkish
Vietnamese
Chinese
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A.2 Architecture Details

In section we investigate the relationship between calibration performance and model size. Here, we
provide more details of XLM-R and mT5 in a range of different sizes. XLM-R-base contains 12 layers with
768 hidden states and 8 heads while the large version contains 24 layers, 1027 hidden states, and 16 heads
(Conneau et al., 2019; [Wolf et al |2020). The small variant of mT5 consists of 6 layers for both the encoder
and decoder components, where the base mT5 model has 12 layers, and the large mT5 model has 24 layers.

Table 9: The number of parameters for XLM-R and mT5.

No. of parameters XLM-R mT5

Small N/A 300M
Base 125M 580M
Large 355M 1.2B

A.3 Experiment Details

The monolingual models in other languages are (section 6.2):
German-BERT: https://www.deepset.ai/german-bert
Arabic-BERT: https://huggingface.co/asafaya/bert-base-arabic
Chinese-BERT: https://huggingface.co/bert-base-chinese

All the experiments are run on two 48G NVIDIA RTX A6000 GPUs. During the fine-tuning process of the
multilingual language models, a learning rate of 3e-5 is chosen from a hyperparameter selection range of
[le-5, 2e-5, 3e-5]. The batch size is set to 32. The extractive QA models are fine-tuned for 3 epochs and
the generative QA models are fine-tuned for 5 epochs with AdamW optimizer. LLaMa2 is fine-tuned on
SQuAD dataset for 1 epoch with QLoRA (Dettmers et al., [2023) mechanism (Smithl 2023)). It takes about
2 hours to train extractive models, about 7 hours to train generative models, and 24 hours to train LLaMa2.
We follow the implementations from Huggingface (Wolf et al. |2020) to load the dataset and fine-tune the
pre-trained models. The license of LLaMa2 can be found in https://ai.meta.com/1lama/license/, mTH
and multilingual BERT are using apache-2.0 license, mBART and XLM-R are using MIT license. TyDiQA is
using apache-2.0 license, MLQA and XQuAD are using cc-by-sa-3.0. The models and datasets are consistent
with their use in research.

A.4 LLaMa2 experiments configurations

We provide additional details of in-context learning experiments in this section. The prompts used for
querying LLaMa?2 is

Extract the minimal span word from the following context that best
answers the question.

### Question:

{question}

### Context:

{context}

### Answer:

The encoder-only language model used for extracting contextual embedding is sentence-transformers/stsb-
xlm-r-multilingual |Reimers & Gurevychl (2019).

A.5 Additional calibration metrics

Reliability Diagrams is a visual depiction of confidence calibration. These diagrams plot the average
accuracy of each bin B, (Y-axis), acc(B,,) as a function of the bin confidences conf(B,,) (X-axis, sorted
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in increasing order). If the model is perfectly calibrated, then the diagram should plot the identity function
(Y = X line). The greater the deviation from the diagonal, the more miscalibrated the model is. We show
an example of a reliability diagram in Figure

A.6 Language Distribution for different models

In this section, we show the language code mapping and the proportion of training data that comes from a
specific language for various pre-trained multilingual LLMs.

Table 10: Language code mapping.

LANG CODE
EN English
AR Arabic
DE German
EL Greek
ES Spanish
HI Hindi
RO Romainian
RU Russian
TH Thai
TR Turkish
VI Vietnamese
7ZH Chinese
KO Korean
FI Finnish
SW Swahili
1D Indonesian
BN Bengali
TE Telugu

Table 11: The distribution of different languages in the pre-training data for LLaMa2, mT5, mBRART,
mBERT, XLM-R, shown in percentages. Note that we only display the languages tested in the XQuAD and
TyDiQa dataset.

LANG | LLaMa2 | mT5 | mBART | mBERT | XLM-R
EN 89.70 5.67 21.67 22.54 12.56
AR <0.005 1.66 2.04 0.68 1.17
DE 0.17 3.05 4.86 7.10 2.78
EL <0.005 1.54 0.0 0.33 1.96
ES 0.13 3.09 3.89 3.93 2.22
HI <0.005 1.21 1.47 0.19 0.84
RO 0.03 1.58 4.48 2.80 2.56
RU 0.13 1.21 20.30 2.80 11.61
TH <0.005 1.14 0.0 0.34 2.99
TR <0.005 1.80 1.52 1.03 0.87
VI 0.08 1.87 10.02 0.51 5.73
ZH 0.13 1.67 3.42 1.80 1.69
KO 0.06 1.14 3.96 0.66 2.26
FI 0.03 1.35 3.96 1.58 2.27
SW <0.005 0.5 0.0 0.07 0.07
ID 0.03 1.80 0.0 0.80 0.80
BN <0.005 0.91 0.0 0.16 0.35
TE <0.005 0.52 0.0 0.36 0.20
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A.7 Additional Calibration Result
A.7.1 Label Smoothing (LS)

(Szegedy et all 2016; [Muller et al.l 2019) is a regularization technique that constructs a new target vector
(hE®) from the one-hot target vector (h;), where hX% = (1 —a)h; +a/C for a C class classification problem.
The range of the label smoothing weight « is from 0 to 1. For question answering via encoder-based models,
C corresponds to the length of the context, since we want to select one of C start positions and one of
C end positions for the answer. Accordingly, the a mass for the correct index is distributed to all other
indices. Note that we have two hyper-parameters a; and as corresponding to the start and end locations,
which can be selected independently via optimizing on the validation set. For all the Label Smoothing
experiments, we set the hyperparameter o = 0.1.

We show additional calibration performance after confidence calibration for mBERT, XLM-R and mBART
on XQUAD.

Table 12: Calibration performance after applying temperature scaling (TS), label smoothing (LS), and few-
shot learning (FS) on mBERT and mT5, evaluated on the XQuAD test set.

mBERT _ EM(}) ECE(]) ECE(en)(}) | XLM-R _ EM(f) ECE(]) ECE(en)(})
46.77 16.36 6.78 54.93 12.38 6.84
TS (SQuAD)  46.77 6.3 6.66 TS (SQuAD) 54.93 4.16 4.25
TS (Merge) 46.77 5.86 7.87 TS (Merge) 54.93 4.29 5.86
LS 47.80 14.65 1.88 LS 55.08 9.88 4.23
FS 48.38 5.87 5.27 FS 53.99 4.39 5.16

Table 13: Calibration performance after applying temperature scaling (TS), label smoothing (LS) and few-
shot learning (FS) on QA models: XLM-R and mBART, evaluated on the XQuAD test set.

mBART  EM(1) ECE(l) ECE(en)(l)
39.18  22.64 9.19
TS (SQuAD)  39.18  15.05 4.26
TS (Merge)  39.18  10.23 2.97
FS 54.14 1749 9.7

A.8 Additional Results on MLQA

Table shows the accuracy and calibration performance (ECE) for mBERT, XLM-R, mT5, mBART,
LLaMa2 on MLQA.

Table 14: Calibration performance of four different models on the MLQA dataset (7 languages). EM denotes
exact match rate. 1 (]) denotes higher (lower) is better respectively.

EN AR DE ES HI VI ZH
EM ECE EM ECE EM ECE EM ECE EM ECE EM ECE EM ECE
m ¢ ®H G O H O O O H O H O G
mBERT ~ 58.28 12.95 24.76 36.08 32.42 33.62 33.0 36.21 28.99 30.83 29.16 33.50 36.31 25.79
XLM-R  57.06 12.79 28.82 30.29 31.84 30.31 36.20 31.64 42.21 18.24 36.59 27.79 40.28 20.58
mT5 64.94 15.24 30.46 37.73 44.28 30.17 43.35 30.66 35.60 32.09 36.89 33.77 37.03 27.89
mBART  60.02 13.82 19.01 33.56 36.64 32.02 29.02 39.47 24.30 31.25 31.44 33.34 30.11 28.42
LLaMa2  57.72 1.96 18.11 24.73 35.09 16.54 33.79 17.7 19.24 22.27 28.37 17.98 34.3 18.11
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A.9 Additional Results on TyDiQA

We present accuracy (Figure [7)) and ECE (Figure [8) for XLM-R, mT5 and mBART across 9 languages on
TyDiQA. We also show additional results of Out-of-Distribution comparison in Table

Accuracy
(%))
o

I
”

S SR e e
Language

Figure 7: This figure compares the accuracy (EM) of mBERT, XLM-R, mT5, mBART across nine languages
of TyDiQA.

Table 15: Comparison of the calibration performance of mBERT and mBART. The models are evaluated on
the test set of TyDiQA. EM: exact match rate.

EM(T) ECE() ECE(en)(1)

mBERT-SQuAD 44.68  17.30 11.46
mBERT-TyDiQA-en  44.99  11.12 5.95
mBERT-TyDiQA-all 68.74  10.98 8.02

mBART-SQuAD 3741 27.04 16.56
mBART-TyDiQA-en  41.52  35.55 25.18
mBART-TyDiQA-all 64.87  14.33 12.35

A.10 Additional Result on XQuAD

We show the detailed performance of five different models on XQuAD in Table [I6]

We also show the individual ECE before/after calibration for nBERT, XLM-R, mT5 and mBART on XQuAD
in Figure [9]

A.11 Additional Results for Data Augmentation

Here we show a diagram for visualizing the setting of our data augmentation experiment in Figure [10] and
provide additional results for XLM and mBART in Table

Furthermore, it is worth noting that even for languages such as RU (Russian), Ro (Romanian) and T'r
(Turkish), that were not included in the fine-tuning stage, we observed a significant improvement in their
performance as shown in Figure This suggests that the benefits of the fine-tuning process extend beyond
the explicitly included languages and have a positive impact on the overall performance across various lan-
guages in the evaluation set. Theoretically studying how translated sentences affect fine-tuning performance,
and the relation with language similarities is an interesting avenue for future study.
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ECE

Figure 8: This figure compares the calibration performance (ECE) of XLM-R, mBERT, mBART across
nine languages of TyDiQA under 1) no calibration 2) temperature scaling on English validation dataset 3)
temperature scaling on a 7-language validation dataset.

Table 16: Calibration performance of four different models on the XQuAD dataset (12 languages). EM
denotes exact match rate. 1 (]) denotes higher (lower) is better respectively. *Note that mBART has not
seen EL even during pre-training so cannot generate answers correctly in that language.

EN AR DE EL ES HI
EM(1) ECE()EM(1) ECE(J)EM(1) ECE())EM(1) ECE()EM(1) ECE(J)EM(1) ECE({)

mBERT 66.92 5.21 41.76 17.49 54.99 11.09 42.44 15.77 55.71 9.37 39.86 19.46

XLM-R 66.58 5.68 47.7 1549 57.2 9.99 52,58 11.76 54.29 12.24 50.78 12.25

mT5-R 72.21 10.9 45.88 26.01 56.13 19.84 37.87 28.91 56.81 19.36 46.64 26.65

mBART 67.59 9.07 23.98 29.91 46.13 21.53 7.23* 33.84* 43.61 20.58 30.06 29.56

LLaMa2 64.31 5.72 25.97 17.06 44.76 10.3 23.84 18.15 44.96 8.47 23.81 18.62

RO RU TH TR VI 7ZH
EM(1) ECE(})EM(1) ECE(})EM(1) ECE())EM(1) ECE(\)EM(1) ECE(L)EM(1) ECE(})

mBERT 58.74 9.91 50.78 15.96 28.21 23.2 35.1 16.45 47.48 15.22 46.64 16.72

XLM 61.4 9.29 54.59 12.51 55.57 6.75 50.5 12.73 51.82 14.37 55.55 10.05

mT5 59.19 19.11 39.55 26.43 49.92 23.62 49.08 24.79 47.76 27.84 57.93 18.92

mBART 47.79 21.57 323 27.04 2286 31.89 40.08 26.32 36.69 30.52 47.9 20.73
LLaMa2 36.41 11.91 33.61 16.68 22.49 18.13 23.89 15.62 37.06 12.99 57.23 3.73
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Figure 9: The figure presents results of the calibration performance, measured by ECE of various models
- mBERT, XLM-R, mT5, and mBART - across 13 languages in the XQuAD dataset. 1) no calibration 2)
temperature scaling on English validation dataset 3) temperature scaling on a 7-language validation dataset.
ECE is lower the better.
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Figure 10: This figure describes the setting of Sec. Different colors denote different examples and
the different shapes denote different languages, eg: squares are English and circles are German. Thus each
example (color) has a corresponding translation in the other languages (shapes). En denotes a subset of the
English data and En-Large denotes the full English data with available translations. En-tr denotes the En
subset along with its translations in other languages. Mixed denotes each subset from a different language.
Note: Each colored shape has the same number of examples and thus En-Large, En-tr and Mixed have the
same size.
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Table 17: Calibration performance after adding translated pairs at the fine-tuning stage for XLM-R and
mBART, evaluated on the XQuAD test set. In this case, the size of En is 9929, the size of the En-tr, and
En-large, Mixed is 59574.

EM(t) ECE() ECE(en)(J)

En 46.0 13.27 7.56
XLM-R En-tr 49.65 5.24 11.34
En-large 53.66 11.82 5.82
Mixed 52.93 7.04 7.48
En 48.41 32.97 22.62
mBART En-tr 49.96 32.42 24.02
En-large  45.18 35.79 20.83
Mixed 52.60 29.85 20.80
20 1583 20.0
== En B En En-tr
E::Itarrge 17.00 17.5 . En-large  mmm Mixed 16.03
151 mm Mixed 335 15.0 1 361
12.75 : 3.08
1.96 12.51 11.51
5 10+ .90 O 10.01 13
e} e
7.16 75 6.99
31 5 9342 369 5, (.40 5.01 3.03 95 27390
il lbl-l11111
0 Ru Ro Tr 0.0° Ru Ro Tr
Languages Languages

Figure 11: This figure shows the improvement of calibration brought by data augmentation via translation
for different languages on mBERT (Left) and XLM-R (Right). En denotes a subset of the English data and
En-Large denotes the full English data with available translations. En-tr denotes the En subset along with
its translations in other languages. Mixed denotes each subset from a different language.

A.12 Additional In-context Learning Results

Here we report additional results of confidence calibration with in-context learning. The model we used in
this experiment is a chat-optimized decoder-only model, LlaMa2-7B-chat. Note that we report Validation
Answer (VA), which checks whether the gold answer is contained in the generated answer, instead of Exact
Match (EM).

Table 18: Calibration performance of LlaMa2-chat with/without ADAPTIVE ICL.

EN 1D FI
VA ECE VA ECE VA ECE
0 41.36 10.82 26.19 14.16 18.29 23.18
ADAPTIVE 56.82 16.04 71.33 8.02 51.28 14.14
KO SW RU
VA ECE VA ECE VA ECE
0 3841 1453 7.01 45,57 27.09 1241

ADAPTIVE 52.54 832 44.69 27.71 43.72 2397
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A.13 Additional Results for Analysis

A.13.1 Linguistic distances versus calibration performance

We performed additional statistical testing to determine which factor significantly impacts calibration per-
formance. More specifically, we applied the Wilcoxon signed-rank test as suggested in Dror et al.| (2018) and
compared the Pearson correlation coefficients for the three factors across different models and multiple runs.
Our results indicate that the syntactic distance has more impact on the multilingual calibration performance
compared to the genetic distance and pre-training size (with p-value= 0.0008 and p-value=0.0001 when
alpha = 0.05). We also compute the correlation between other types of linguistic features in Table and
the calibration performance. More details about the features can be found in |Littell et al.| (2017).

Table 19: Pearson Correlation Coefficient between other linguistic characteristics and calibration error on
XQuAD dataset for various models. The absolute value higher, the better. Here, Gen denotes the genetic
distances between English and other languages, Geo indicates the geographical distance, Ive is the inventory
distance, Pho denotes the phonological distance.

Model Gen Geo Ive Pho

mBERT 0.602 0.503 0.736 0.494
XLM-R 0.541 0.334 0.680 0.528
mT5 0.687 0.213 0.629 0.353
mBART 0.716 0.301 0.751 0.495

XQuAD is a parallel dataset in 12 languages and another interesting question for the multilingual language
model is: if a model is confident in predicting the answer of an English question-context pair, will it be
confident in predicting the answer of a parallel question-context pair in other languages? Here, we compute
the Pearson’s correlation coefficient between the confidence for predicting answers of source language and
those of target languages and plot the comparison in Figure [[2] We observe that languages more similar
to English exhibit a stronger correlation in the model’s confidence levels for identical question-context pairs
across languages. More specifically, when the model shows higher confidence in an English input, it tends to
also display similar confidence in inputs from closer languages like Spanish and German. The correlations
of the encoder-only models are much higher than encoder-decoder models.
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Figure 12: This figure presents the distance between English and other languages versus the correlation of
the confidence between source language across four different models. Here Correlation Coefficient denotes
Pearson’s correlation coefficients. The higher the better. In the y-axis labels, languages are ordered by their
syntactic distance from English.

A.13.2 Monolingual vs Multilingual Models

We also want to compare the multilingual models with their monolingual counterparts on extractive English
QA, focusing on the SQuAD dataset. In Table 20| we compare the accuracy and ECE of English LLMs
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and multilingual LLMs across both the extractive and generative architectures on the SQuAD test set. Our
results confirm that multilingual models are generally worse than monolingual English LLMs when tested
on English QA for either architecture type, which has also been noted in [Wu & Dredze| (2020)). However,
we notice a different trend for calibration. Both accuracy and confidence calibration are comparable when
evaluating the multilingual model and English monolingual model on the same English task (both generative
and extractive).

Table 20: Comparison of the calibration performance between English LMs and multilingual LMs. The
models are evaluated on the test set of SQuAD.

Exact Match (1) ECE ({) Exact Match (1) ECE ({)
BERT 76.61 4.09 TH 80.67 5.42
mBERT 77.02 6.45 mT5 78.90 5.32
RoBERTa 82.26 6.46 BART 84.11 29.24
XLM-R 77.21 8.46 mBART 77.14 8.05

Then we want to compare the multilingual models with their monolingual counterparts for languages other
than English. We select BERT-German and BERT-Arabic (Safaya et all, [2020), and BERT-Chinese [T_Z]
and fine-tune them on the translated training dataset of SQuAD 1.1. The results are shown in Table
and Table ??. We observe that the monolingual BERT models always achieve better calibration than
their multilingual counterparts, although the multilingual models sometimes are more accurate than the
corresponding monolingual models.

Table 21: Comparison of the calibration performance between German (DE)/Arabic (AR)/Chinese (ZH)
BERT and multilingual BERT (mBERT). The models are evaluated on the XQuAD test set for each language.

EM() ECE(]) EM(T) ECE (1) EM(T) ECE ()
BERT-DE 52.10 4.71 BERT-AR 48.66 11.30 BERT-ZH 37.22 6.88
mBERT 54.37 12.55 mBERT 40.92 18.50 mBERT 46.81 17.78

Table 22: Comparison of the calibration performance between German (DE)/Arabic (AR)/Chinese (ZH)
BERT and multilingual BERT (mBERT). The models are evaluated on the MLQA test set for each language.

EM(T) ECE(]) EM(T) ECE (}) EM(T) ECE (1)
BERT-DE 28.13 17.96 BERT-AR 24.95 12.80 BERT-ZH 30.75 6.22
mBERT 32.42 33.62 mBERT 28.82 30.29 mBERT 36.31 25.79

A.13.3 Size of Multilingual Models

Table 23: Calibration performance of mT5 and XLM-R across different sizes on the MLQA test sets.

mT5 XLM-R
EM() ECE({) EM() ECE()
Small 2888 3380 N/A  N/A
Base 41.79  29.65  39.00  24.95
Large 45.73 27.40 43.94  26.86

12The details of the monolingual models of other languages are in Appendix

23



	Introduction
	Related Work
	Calibration of Large Language Models
	Calibration of models on Question Answering tasks

	Background
	Question Answering
	Metrics to measure the Confidence Calibration of a model
	 Techniques to improve the Confidence Calibration of a model

	Benchmarking Calibration of Multilingual QA Models
	Results for In-Distribution Tasks
	Results for Out-of-Distribution (OOD) Tasks

	Techniques to Improve the Calibration of MLLMs
	Post-hoc Methods: Temperature Scaling
	Data Augmentation via Translation
	In-context Learning

	Additional Ablation Experiments and Discussion
	Investigating the effects of language distance and corpus size on calibration
	Investigating the effects of model size on calibration

	Conclusion
	Appendix
	Dataset Details
	Architecture Details
	Experiment Details
	LLaMa2 experiments configurations
	Additional calibration metrics
	Language Distribution for different models
	Additional Calibration Result
	Label Smoothing (LS)

	Additional Results on MLQA
	Additional Results on TyDiQA
	Additional Result on XQuAD
	Additional Results for Data Augmentation
	Additional In-context Learning Results
	Additional Results for Analysis
	Linguistic distances versus calibration performance
	Monolingual vs Multilingual Models
	Size of Multilingual Models



