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Abstract Weight sharing is a fundamental concept in neural architecture search (NAS), enabling

gradient-based methods to explore cell-based architectural spaces significantly faster than

traditional black-box approaches. In parallel, weight-entanglement has emerged as a tech-

nique for more intricate parameter sharing amongst macro-architectural spaces. Since

weight-entanglement is not directly compatible with gradient-based NAS methods, these

two paradigms have largely developed independently in parallel sub-communities. This

paper aims to bridge the gap between these sub-communities by proposing a novel scheme

to adapt gradient-based methods for weight-entangled spaces. This enables us to conduct

an in-depth comparative assessment and analysis of the performance of gradient-based

NAS in weight-entangled search spaces. Our findings reveal that this integration of weight-

entanglement and gradient-based NAS brings forth the various benefits of gradient-based

methods, while preserving the memory efficiency of weight-entangled spaces. The code for

our work is openly accessible here.

1 Introduction

The concept of weight-sharing in Neural Architecture Search (NAS) was motivated by the need to

improve efficiency over that of conventional black-box NAS algorithms, which demand significant

computational resources to evaluate individual architectures. Here, weight-sharing (WS) refers

to the paradigm by which we represent the search space with a single large supernet, also known

as the one-shot model, that subsumes all the candidate architectures in that space. Every edge

of this supernet holds all the possible operations that can be assigned to that edge. Importantly,

architectures that share a particular operation also share its corresponding operation weights,

allowing for efficient simultaneous partial training of an exponential number of subnetworks with

each gradient update.

Gradient-based NAS algorithms (or optimizers), such as DARTS (Liu et al., 2019), GDAS (Dong

and Yang, 2019) and DrNAS (Chen et al., 2021b), assign an architectural parameter to every choice

of operation on a given edge of the supernet. The output feature maps of these edges are thus an

aggregation of the outputs of the individual operations on that edge, weighted by their architectural

parameters. These architectural parameters are learned using gradient updates by differentiating

through the validation loss. Supernet weights and architecture parameters are therefore trained

simultaneously in a bi-level fashion. Once this training phase is complete, the final architecture can

be obtained quickly, e.g., by selecting operations with the highest architectural weights on each

edge as depicted in Figure 1(b). However, more sophisticated methods have also been explored

(Wang et al., 2021a) for this selection.

While gradient-based NAS methods have primarily been studied for cell-based search spaces, a

different class of search spaces focuses on macro-level structural decisions, such as the number of

channels in a layer of the supernet, or the number of layers which are stacked to form the supernet.

In these spaces, all architectures are subnetworks of the architecture with the largest architectural

choices, identical to the supernet in this case. These search spaces share weights more intricately
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Figure 1: (a) Two-Stage NASwithWE (Algorithm 3): dotted paths show operation choices not sampled

at the given step (b) Single-Stage NAS with WS (Algorithm 4): every operation choice is

evaluated independently and contributes to the output feature map with corresponding

architecture parameters (c) Single-Stage NAS with WE (Algorithm 1): operation choices

superimposed with corresponding architecture parameters. The architecture parameters for

the three operation choices are represented by [𝛼𝑖 ]3𝑖=1 and [𝛽𝑖 ]3𝑖=1. The operation weights, or

choices, are symbolized by cubes (for convolutional layers) or rectangles (for feedforward

layers) in various colors. In scenarios (a) and (c), due to weight entanglement, the smaller

weights are effectively structured subsets of the larger weights. Conversely, in (b), through

weight-sharing, operation weights are maintained independently from each other. In both

(b) and (c), to determine the optimal architecture, the operations associated with the highest

architecture parameter value are selected. This selection process applies to the choice of

kernel size and the output dimension of the feedforward network.

via weight-entanglement (WE) between similar operations on the same edge. An example of this

for convolutional layers is that the 9 weights of a 3 × 3 convolution are a subset of the 25 weights

of a 5 × 5 convolution. This paradigm reduces the memory footprint of the supernet to the size of

the largest architecture in the space, unlike WS search spaces, where it increases linearly with the

number of operation choices.

In order to efficiently search over such weight-entanglement spaces, two-stage methods first

pre-train the supernet and then perform black-box search on it to obtain the final architecture. OFA

(Cai et al., 2020), SPOS (Guo et al., 2020), AutoFormer (Chen et al., 2021a) and HAT (Wang et al.,

2020) are prominent examples of methods that fall into this category. Note that these methods

do not employ additional architectural parameters for supernet training or search. They typically

train the supernet by randomly sampling subnetworks and training them as depicted in Figure

1(a). The post-hoc black-box search relies on using the performance of subnetworks sampled from

the trained supernet as a proxy for true performance on the unseen test set. To contrast with this

two-stage approach, we refer to traditional gradient-based NAS approaches as single-stage methods.

To date, weight-entangled spaces have only been explored with two-stage methods, and cell-

based spaces only with single-stage approaches. In this paper, we bridge the gap between these

parallel sub-communities. We do so by addressing the challenges associated with integrating

off-the-shelf single-stage NAS methods with weight-entangled search spaces. After a discussion of

related work (Section 2), we make the following main contributions:
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1. We propose a generalized scheme to apply single-stage methods to weight-entangled spaces

while maintaining search efficiency and efficacy at larger scales (Section 3, with visualizations

in Figure 1(c) and Figure 2 and Figure 3). We refer to this method as TangleNAS.

2. We propose a unified evaluation framework for the comparative evaluation of single and

two-stage methods (Section 4.1) and study the effect of weight-entanglement in conventional

cell-based search spaces (i.e., NAS-Bench-201 and the DARTS search space) (Section 4.2).

3. We evaluate our proposed generalized scheme for single-stage methods across a diverse set of
weight-entangled macro search spaces and tasks, from image classification (Section 4.3.1 and

Section 4.3.2) to language modeling (Section 4.3.3).

4. We conduct a comprehensive evaluation of the properties of single and two-stage approaches

(Section 5), demonstrating that our generalized gradient-based NAS method achieves the best of
single and two-stage methods: the enhanced performance, improved supernet fine-tuning prop-

erties, superior any-time performance of single-stage methods, and low memory consumption

of two-stage methods. To facilitate reproducibility, our code is openly accessible here.

2 Related Work

Weight-sharing was first introduced in ENAS (Pham et al., 2018), which reduced the computa-

tional cost of NAS by 1000× compared to previous methods. However, since this method used

reinforcement learning, its performance was quite brittle. Bender et al. (2018) simplified the tech-

nique, showing that searching for good architectures is possible by training the supernet directly

with stochastic gradient descent. This was followed by DARTS (Liu et al., 2019), which set the

cornerstone for efficient and effective gradient-based, single-stage NAS approaches.
DARTS, however, had prominent failure modes, such as its discretization gap and convergence

towards parameter-free operations (White et al., 2023), as outlined in Robust-DARTS (Zela et al.,

2020). Numerous gradient-based one-shot optimization techniques were developed since then (Cai

et al., 2019; Nayman et al., 2019; Wang et al., 2021b; Dong and Yang, 2019; Hu et al., 2020; Li et al.,

2021; Chen et al., 2021b; Zhang et al., 2021). Amongst these, we highlight DrNAS (Chen et al., 2021b),

which we will use in our experiments as a representative of gradient-based NAS methods. DrNAS

treats one-shot search as a distribution learning problem, where the parameters of a Dirichlet

distribution over architectural parameters are learned to identify promising regions of the search

space. Despite the remarkable performance of single-stage methods, they are not directly applicable

to some real-world architectural domains, such as transformers, due to the macro-level structure

of these search spaces. DASH (Shen et al., 2022) employs a DARTS-like method to optimize CNN

topologies (i.e., kernel size, dilation) for a diverse set of tasks, reducing computational complexity by

appropriately padding and summing kernels with different sizes and dilations. FBNet-v2 (Wan et al.,

2020) and MergeNAS (Wang et al., 2021b) make an attempt along these lines for CNN topologies,

but their methodology is not easily extendable to search spaces like transformers with multiple

interacting modalities, such as embedding dimension, number of heads, expansion ratio, and depth.

Weight-entanglement, on the other hand, provides a more effective way of weight-sharing,

exclusive to macro-level architectural spaces. In weight-entanglement, operations with weights of

smaller dimensionality are structured subsets of the largest dimension. Hence, the total number of

parameters in the supernet is the same as the number of parameters in the largest architecture in

the space. The concept of weight-entanglement was developed in slimmable networks (Yu et al.,

2018; Yu and Huang, 2019), OFA (Cai et al., 2020) and BigNAS (Yu et al., 2020) in the context of

convolutional networks (see also AtomNAS (Mei et al., 2019)) and later spelled out in AutoFormer

(Chen et al., 2021a) and applied to the transformer architecture.

Single-path-one-shot (SPOS) methods (Guo et al., 2020) have shown a lot of promise in searching

weight-entangled spaces. SPOS trains a supernet by uniformly sampling paths (one at a time

to limit memory consumption) and then training the weights along that path. The supernet
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training is followed by a black-box search that uses the performance of the models sampled from

the trained supernet as a proxy. OFA used a similar idea to optimize different dimensions of

CNN architectures, such as its depth, width, kernel size, and resolution. Additionally, it enforced

training of larger to smaller subnetworks sequentially to prevent interference between subnetworks.

Subsequently, AutoFormer adopted the SPOS method to optimize a weight-entangled space of

transformer architectures.

In this work, we demonstrate the application of single-stage methods to macro-level search

spaces with weight-entanglement. This approach leverages the time efficiency and effectiveness of

modern differentiable NAS optimizers, while maintaining the memory efficiency inherent to the

weight-entangled space. Although DrNAS is our primary method for exploring weight-entangled

spaces, our methodology is broadly applicable to other gradient-based NAS methods.

3 Methodology: Single-Stage NAS with Weight-Superposition

Figure 2: Weight superposition with architecture parameters 𝛼𝑖
3

𝑖=1
for

kernel size search. Supernet weight matrix (LHS) is adapted

to gradient-based methods (RHS).

Computational Efficiency. Our
primary goal in this work

is to effectively apply single-

stage NAS to search spaces

with macro-level architectural

choices. To reduce the memory

consumption and preserve com-

putational efficiency, we pro-

pose two major modifications

to single-stage methods. Firstly,

the weights of the operations on

every edge are shared with the corresponding weights of the largest operator on that edge. This

reduces the size of the supernet to the size of the largest individual architecture in the search space.

Figure 3: Combi-superposition with parameters 𝛼𝑖𝛽 𝑗 . Supernet weight

matrix (LHS) is adapted to gradient-based methods (RHS).

Secondly, to compute opera-

tion mixture, we take each oper-

ation choice, zero-pad to match

the size of the largest choice,

and then sum these, with each

one multiplied by its respective

architectural parameter. The

resulting operation thus rep-

resents a mixture of different

choices on an edge. This ap-

proach, visualized in Figure 1(c),

contrasts with single-stage NAS

methods, which weigh the out-
puts of operations on a specific edge using architectural parameters (refer to Figure 1(b)). Figure

2 provides an overview of the idea for a single architectural choice, such as the kernel size. This

is equivalent to taking the largest operation and re-scaling the weights of each sub-operation by

corresponding architectural parameters followed by summation of the weights (see the right-most

weight matrix in Figure 2).

Weight Superposition. Weight Superposition is defined as a weighted summation of subsets of

the largest weight matrix, to obtain weights with structural properties comparable to the largest

operation. Consequently, a single forward pass on the superimposed weights suffices to capture the

effect of all operational choices, thus making our approach computationally efficient. See Figure 2

for details on weight superposition of the kernel size.
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Algorithm 1 TangleNAS
1: Input: 𝑀 ← number of cells, 𝑁 ← number of operations

O ← [𝑜1, 𝑜2, 𝑜3, ...𝑜𝑁 ]
Wmax ← ∪𝑁𝑖−1𝑤𝑖

A← [𝛼1, 𝛼2, 𝛼3, ...𝛼𝑁 ]
𝛾 = learning rate ofA, 𝜂 = learning rate ofWmax

𝑓 is a function or distribution s.t.

∑𝑁
𝑖=1

𝑓 (𝛼𝑖 ) = 1

2: 𝐶𝑒𝑙𝑙 𝑗 ← 𝐷𝐴𝐺 (O𝑗 ,W𝑚𝑎𝑥 𝑗 ) /* defined for j=1...M */

3: 𝑆𝑢𝑝𝑒𝑟𝑛𝑒𝑡 ← ∪𝑀
𝑗
𝐶𝑒𝑙𝑙 𝑗 ∪A

4: /* example of forward propagation on the cell */
5: for 𝑗 ← 1 to𝑀 do
6: /* PAD weight to output dimension of Wmax before summation */
7: /* Generalized Weighing Scheme */

8: 𝑜 𝑗 (𝑥,Wmax ) = 𝑜 𝑗,𝑖 (𝑥,
∑𝑁
𝑖=1

𝑓 (𝛼𝑖 )Wmax [: 𝑖 ] )

9: end for
10: /* weights and architecture update */

11: A = A − 𝛾∇AL𝑣𝑎𝑙 (Wmax

∗,A)

12: 𝑊max = Wmax − 𝜂∇Wmax
L𝑡𝑟𝑎𝑖𝑛 (Wmax,A)

13: /* Architecture Selection */

14: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑎𝑟𝑐ℎ ← argmax(A)

Combi-Superposition. An operation may

depend on two or more architectural de-

cisions. Consider, for example, embed-

ding dimension and intermediate MLP di-

mension (where the latter depends on the

former by a searchable multiplicative fac-

tor i.e., the MLP ratio). To accommodate

this, we introduce combi-superposition

outlined in Figure 3 and in Algorithm

2. Combi-superposition superimposes the

weights across multiple different archi-

tectural dimensions, allowing for search

across different interacting architectural

modalities.

Algorithm. These concepts allow us to

apply any arbitrary gradient-based NAS method, such as DARTS, GDAS, or DrNAS, to macro-

level search spaces that leverage weight-entanglement without incurring additional memory and

computational costs during forward propagation. We name this single-stage architecture search

method TangleNAS. See Algorithm 1 for an overview of the bi-level optimization framework with

weight-superposition. The operation 𝑓 in Algorithm 1 determines the differentiable optimizer used

in the method. For example, 𝑓 is a softmax function for DARTS and a function that samples from

the Dirichlet distribution for DrNAS. We use DrNAS as the primary gradient-based NAS method

in all our experiments, and refer to DrNAS used in conjunction with weight-entangled spaces as

TangleNAS in the remainder of the paper.

4 Experiments

We evaluate TangleNAS on a broad range of search spaces, from cell-based spaces (which serve

as the foundation for single-stage methods) to weight-entangled convolutional and transformer

spaces (which are central to two-stage methods). We initiate our studies by exploring two simple

toy search spaces, which include a collection of cell-based and weight-entangled spaces. Later, we

scale our experiments to larger analogs of these spaces. In all our experiments, we use WE to refer

to the supernet type with entangled weights between operation choices andWS to refer to standard
weight-sharing proposed in cell-based spaces. For details on our experimental setup, please refer

to Appendix F. Furthermore, in all our experiments the focus is on unconstrained search, i.e., a
scenario where the user is interested in obtaining the architecture with the best performance on

their metric of choice, without constraints such as model size, or inference latency. The two-stage

baselines we mainly compare against are SPOS (Guo et al., 2020) with Random Search (SPOS+RS)
and SPOS with Evolutionary Search (SPOS+ES). For MobileNetV3 (Section 4.3.2) and ViT (Section

4.3.1), we use the original training pipeline from OFA (Cai et al., 2020) and Autoformer (Chen et al.,

2021a), respectively, both of which use SPOS (Guo et al., 2020) as their foundation. However, for

Once-for-All, we do not incorporate the progressive shrinking scheme during search.

4.1 Toy search spaces

We begin the evaluation of TangleNAS on two compact toy search spaces that we designed as a

contribution to the community to allow faster iterations of algorithm development:

• Toy cell space: a small version of the DARTS space; architectures are evaluated on the Fashion-

MNIST dataset (Xiao et al., 2017).

5



Search Type Optimizer Supernet type Test acc (%) Search Time (hrs)

Single-Stage

DrNAS WS 91.190 ± 0.049 6.3

TangleNAS WE 91.300 ± 0.023 6.2

Two-Stage SPOS+RS

WE 90.680 ± 0.253 15.6

WE 90.317 ± 0.223 13.2

Optimum - - 91.630 -

Table 1: Evaluation on the toy cell-based search

space on the Fashion-MNIST dataset.

Search Type Optimizer Supernet type Test acc (%) Search Time (hrs)

Single-Stage

DrNAS WS 10 ± 0.000 12.4

TangleNAS WE 82.495 ± 0.461 8.6

Two-Stage SPOS+RS

WE 81.253 ± 0.672 21.7

WE 81.890 ± 0.800 26.4

Optimum - - 84.410 -

Table 2: Evaluation on the toy conv-macro search

space on the CIFAR-10 dataset.

• Toy conv-macro space: a small space inspired by MobileNet, including kernel sizes and the

number of channels in each convolution layer as architectural decisions. The architectures are

evaluated on CIFAR-10.

We describe these spaces in Appendix D, including links to code for these open source toy bench-

marks. The results of these experiments are summarized in Tables 1 and 2. In both of these search

spaces, TangleNAS outperforms its two-stage counterparts over 4 seeds. Additionally, DrNAS with-
out weight-entanglement performs extremely poorly on the macro level search space (equivalent

to a random classifier).

4.2 Cell-based search spaces

We now begin our comparative analysis of single and two-stage approaches by applying them to

cell-based spaces, which are central in the single-stage NAS literature. We evaluate TangleNAS

against DrNAS and SPOS on these spaces. Here, we use the widely studied NAS-Bench-201 (NB201)

(Dong and Yang, 2020) and DARTS (Liu et al., 2019) search spaces. We refer the reader to Appendix

D for details about these spaces and Appendix F.4 for the experimental setup. We evaluate each

method with 4 different random seeds.

Search Type Optimizer Supernet CIFAR-10 (%) ImageNet (%) Search Time (hrs)

Single-Stage

DrNAS WS 2.625 ± 0.075 26.290 9.1

TangleNAS WE 2.556 ± 0.034 25.691 7.4

Two-Stage

SPOS+RS WE 2.965 ± 0.072 27.114 18.7

SPOS+ES WE 3.200 ± 0.065 27.320 14.8

Table 3: Comparison of test errors of single and two-stage

methods on the DARTS search space.

Our contribution on these spaces is

two-fold. Firstly, we study the effects of

weight-entanglement on cell-based spaces

in conjunction with single-stage methods.

To this end, we entangle the weights of

similar operations with different kernel

sizes on both search spaces. For NB201, the

weights of the 1×1 and 3×3 convolutions
are entangled, and in the DARTS search space, the weights of dilated and separable convolutions

with kernel sizes 3×3 and 5×5 are (separately) entangled. Secondly, we study SPOS on the NB201

and DARTS search spaces. To the best of our knowledge, we are the first to study a two-stage

method like SPOS in such cell search spaces.

Tables 3 and 4 show the results. For both search spaces, TangleNAS yields the best results,

outperforming the single-stage baseline DrNAS withWS, as well as both SPOS variants. TangleNAS

also significantly lowers the memory requirements and runtime compared to its weight-sharing

counterpart. We note that overall, the SPOS methods are ineffective in these cell search spaces.

Search Type Optimizer Supernet CIFAR-10 CIFAR-100 ImageNet16-120 Search Time (hrs)

Single-Stage

DrNAS WS 94.360 ± 0.000 72.245 ± 0.732 46.370 ± 0.000 20.9

TangleNAS WE 94.360 ± 0.000 73.510 ± 0.000 46.370 ± 0.000 20.4

Two-Stage

SPOS+RS WE 89.107 ± 0.884 56.865 ± 2.597 31.665 ± 1.146 29.5

SPOS+ES WE 87.133 ± 2.605 56.463 ± 2.342 29.785 ± 3.015 26.7

Table 4: Comparison of test-accuracies of single and two-stage methods on NB201 search space.
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4.3 Macro Search Spaces

Given the promising results of TangleNAS on the toy and cell-based spaces, we now extend our

evaluation to the home base of two-stage methods. We study TangleNAS on a vision transformer

space (AutoFormer-T and -S) and a convolutional space (MobileNetV3), both of which were previ-

ously proposed and examined using two-stage methods by Chen et al. (2021a) and Cai et al. (2020),

respectively. Additionally, we explore a language model transformer search space centered around

GPT-2 (Radford et al., 2019).

Search Type Optimizer CIFAR-10 CIFAR-100

Inherit (%) Fine-tune (%) Retrain (%) Params FLOPS Inherit (%) Fine-tune (%) Retrain (%) Params FLOPS

Single-Stage TangleNAS 93.570 97.702 ± 0.017 97.872 ± 0.054 8.685M 1.946G 76.590 82.615 ± 0.064 82.668 ± 0.161 8.649M 1.939G

Two-Stage

SPOS+RS 94.290 97.605 ± 0.038 97.767 ± 0.024 8.512M 1.910G 78.210 82.407 ± 0.026 82.210 ± 0.142 8.476M 1.905G

SPOS+ES 94.100 97.632 ± 0.047 97.643 ± 0.023 7.230M 1.659G 77.970 82.517 ± 0.140 82.518 ± 0.114 8.245M 1.859G

Table 5: Test Accuracies on the AutoFormer-T space for CIFAR-10 and CIFAR-100 (across 4 random

seeds)

4.3.1 AutoFormer. We evaluate TangleNAS on the AutoFormer-T and AutoFormer-S spaces introduced

by Chen et al. (2021a), based on vision transformers. The search space consists of the choices of

embedding dimensions and number of layers, and for each layer, its MLP expansion ratio and

the number of heads it uses to compute attention. More details can be found in Table 20 in the

appendix. The embedding dimension remains constant across the network, while the number of

heads and the MLP expansion ratio change for each layer. This results in a search space of about

10
13
architectures. We train our supernet using the same training hyperparameters and pipeline as

used in AutoFormer, and use its evolutionary search as our baseline.

SuperNet-Type NAS Method ImageNet (%) Datasets Params FLOPS
CIFAR-10 (%) CIFAR-100 (%) Flowers (%) Pets(%) Cars(%)

AutoFormer-T SPOS+ES 75.474 98.019 86.369 98.066 91.558 91.935 5.893M 1.396G

AutoFormer-T TangleNAS 78.842 98.249 88.290 98.066 92.347 92.396 8.981M 2.000G

AutoFormer-S SPOS+ES 81.700 99.100 90.459 97.900 94.853 92.545 22.900M 5.100G

AutoFormer-S TangleNAS 81.964 99.120 90.459 98.326 95.070 92.371 28.806M 6.019G

Table 6: Evaluation on the AutoFormer-T space on downstream tasks. ImageNet-1k validation accura-

cies are obtained through inheritance, whereas the test accuracies for the other datasets are

achieved through fine-tuning the ImageNet-pretrained model.

In Tables 5 and 6, we evaluate TangleNAS against AutoFormer on the AutoFormer-T and

AutoFormer-S spaces. Interestingly, we observe that although AutoFormer sometimes outperforms

TangleNAS upon inheritance from the supernet, the TangleNAS architectures are always better

upon fine-tuning and much better upon retraining. For ImageNet-1k we obtain an improvement of

3.368% and 0.264% on AutoFormer-T and AutoFormer-S spaces, respectively (see Table 6).

4.3.2 MobileNetV3. Next, we study a convolutional search space based on the MobileNetV3 architecture.

The search space is defined in Table 19 in the appendix and contains about 2 × 1019 architectures.
This follows from the search space designed by OFA (Cai et al., 2020), which searches for kernel

size, number of blocks, and channel-expansion factor.

Search Type Optimizer Top-1 acc (%) Params FLOPS

Single-Stage TangleNAS 77.424 7.580M 528.80M

Two-Stage

OFA+RS 77.046 6.870M 369.160M

OFA+ES 77.050 7.210M 420.500M

Largest Arch - 77.336 7.660M 566.170M

Table 7: Evaluation on MobileNetV3.

During the supernet training, we activate all

choices in our supernet at all times. Table 7 shows that

on this OFA search space, TangleNAS outperforms OFA

(based on both unconstrained evolutionary and ran-

dom search on the pre-trained OFA supernet). Notably,

TangleNAS even yields an architecture with higher

accuracy than the largest architecture in the space (while OFA yields worse architectures).
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4.3.3 Language Modeling (LM) Space. Finally, given the growing interest in efficient large language

models and recent developments in scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), we

study our efficient and scalable TangleNAS method on a language-model space for two different

scales. We create our language model space around a smaller version of nanoGPT model
1
and the

model at its original size. In this transformer search space, we search (with 4 random seeds) for the

embedding dimension, number of heads, number of layers, and MLP ratios (as defined in Table 18

of the appendix). We weight-entangle all of these by combi-superposition in four dimensions. For

Architecture Search-Type Loss Perplexity ↓ Params Inference time (s)

GPT-2 Manual 3.077 21.690 123.590M 113.30

TangleNAS Automated 2.904 18.243 116.519M 102.50

(a) Comparison of fine-tuning architecture discov-

ered by TangleNAS and GPT-2 on Shakespeare

dataset.

Search Type Optimizer Test loss Perplexity ↓ Params Inference Time (s)

Single-Stage TangleNAS 1.412 ± 0.011 4.104 87.010M 93.88

Two-Stage

SPOS+RS 1.433 ± 0.005 4.191 77.570M 85.17

SPOS+ES 1.444 ± 0.013 4.238 78.750M 87.10

(b) Comparison of single and two-stage methods

on language model search space. We report

the test loss and perplexity on the TinyStories

dataset.

Table 8: Evaluation on Language Model Space

each of these transformer search dimensions, we consider 3 different choices.We train our language

models on the TinyStories (Eldan and Li, 2023) dataset (for the smaller version of nanoGPT) and on

OpenWebText (Aaron et al., 2019) (for nanoGPT at its original size). Furthermore, we fine-tune

the model trained on OpenWebText on the Shakespeare dataset. On the smaller scale, we beat

the SPOS+ES and SPOS+RS baselines as presented in Table 8b. This improvement is statistically

very significant with a two-tailed p-value of 0.0064 for ours v/s SPOS+ES and p-value of 0.0127

for ours v/s SPOS+RS. As shown in Table 8a, we obtain a smaller model on OpenWebText while

achieving better perplexity after fine-tuning on Shakespeare
2
. This model is also very efficient

during inference time in comparison to GPT-2.

5 Results and Discussion
For a more thorough evaluation, we now compare different properties of single and two-stage

methods, focusing on their any-time performance, the impact of the train-validation split ratios,

and the Centered Kernel Alignment (Kornblith et al., 2019) (see Appendix H) of the supernet feature

maps. Additionally, we study the effect of pretraining, fine-tuning and retraining on the AutoFormer

space for CIFAR-10 and CIFAR-100, as well as the downstream performance of the best model

pre-trained on ImageNet across various classification datasets. We conclude by discussing the

insights derived from TangleNAS in designing architectures on real world tasks.

Space and time complexity. In practice, we observe that vanilla gradient-based NAS methods are

memory and compute expensive in comparison to both two-stage methods and our TangleNAS

approach with weight-superposition. While the time and space complexity of single-stage methods

is O(𝑛), where 𝑛 is the number of operation choices, TangleNAS, similar to two-stage methods,

maintainsO(1). On the NB201 and DARTS search spaces we observe a 25.28% and 35.54% reduction

in memory requirements for TangleNAS over DrNAS with WS. This issue only exacerbates for

weight-entangled spaces like AutoFormer, MobileNetV3 and GPT, making the application of vanilla

gradient-based methods practically infeasible.

Anytime performance. NAS practitioners often emphasize rapid discovery of competitive archi-

tectures. This is especially important given the rising costs of training large and complex neural

networks, like Transformers. Thus, strong anytime performance is crucial for the practical deploy-
ment of NAS in resource-intensive environments. Therefore, we examine the anytime performance

1https://github.com/karpathy/nanoGPT
2https://huggingface.co/datasets/karpathy/tiny_shakespeare

8

https://github.com/karpathy/nanoGPT
https://huggingface.co/datasets/karpathy/tiny_shakespeare


1 10 19 28 37 46 55 64 73 82 91 100
Epochs

30

40

50

60

70
Ac

cu
ra

cy

Accuracy Over Epochs

DrNAS+WE
DRNAS+WS

(a) CIFAR-100

1 10 19 28 37 46 55 64 73 82 91 100
Epochs

25

30

35

40

45

Ac
cu

ra
cy

Accuracy Over Epochs

DrNAS+WE
DRNAS+WS

(b) ImageNet16-120

Figure 4: Test accuracy evolution over epochs for NB201.

(a) CIFAR-10 (b) CIFAR-100

Figure 5: Any Time performance curves of AutoFormer vs. Ours.

of TangleNAS. Figure 4 demonstrates that TangleNAS (DrNAS+WE) is faster than its baseline

method (DrNAS+WS). Similarly, Figure 5 shows that TangleNAS has better anytime performance

than AutoFormer.

Effect of fraction of training data. One-shot NAS commonly employs a 50%-50% train-valid split for

cell-based spaces and 80%-20% for weight-entangled spaces. To eliminate possible biases, we tested

our method on various data splits within each search space. The findings, detailed in Section B,

show consistent results across these splits. Specifically, single-stage methods prove to be robust and

performant across different training fractions and search spaces, compared to two-stage methods.

5.1 Insights from NAS

Architecture design insights. In transformer spaces, reducing theMLP-ratio in the initial layers has

a relatively low impact on performance (Figure 6) and can often work competitively or outperform

handcrafted architectures. This observation is consistent across ViT and Language Model spaces.

Conversely, number of heads and embedding dimension have a significant impact.

Pruning a few of the final layers also has a relatively low impact on performance. In the

MobileNetV3 space, we find a strong preference for a larger number of channels and larger network
depth. In contrast, we discover that scaling laws for transformers may not necessarily apply in
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convolutional spaces, especially for kernel sizes - the earlier layers favor 5×5 kernel sizes while
later ones prefer 7×7 (3 being the smallest and 7 the largest).
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Figure 6: MLP ratio trajectory for LM. Number of layers

range from 1-12 and MLP ratio choice can be 2, 3

or 4.

Effect of pretraining, fine-tuning and re-
training. We examined the effects of in-

heriting, fine-tuning, and retraining in

the AutoFormer space on the CIFAR-10

and CIFAR-100 datasets. We observe that

retraining generally surpasses both fine-

tuning and inheriting. This raises ques-

tions about the correlation between inher-

ited and retrained accuracies of architec-

tures in two-stage methods and the poten-

tial training interference identified by Xu

et al. (2022). A strong correlation is crucial

for two-stage methods, which use the per-

formance of architectures with inherited

weights as a proxy for true performance in the black-box search. Indeed, while the SPOS+RS and

SPOS+ES methods perform well with inherited weights, TangleNAS exceeds their performance

after fine-tuning and retraining.

ImageNet-1k pre-trained architecture on downstream tasks. Lastly, we study the impact on

fine-tuning the best model obtained from the search on downstream datasets. We follow the

fine-tuning pipeline proposed in AutoFormer and fine-tune on different fine- and coarse-grained

datasets. We observe from Table 6 that the architecture discovered by TangleNAS on ImageNet is

much more performant in fine-tuning to various datasets (CIFAR-10, CIFAR-100, Flowers, Pets and

Cars) than the architecture discovered by SPOS.

6 Conclusion and Broader Impact

In this paper, we compare single-stage and two-stage NAS methods, traditionally used for different

search spaces, and introduce single-stage NAS to weight-entangled spaces, usually the domain of

two-stage methods. We empirically evaluate our single-stage method, TangleNAS, on a diverse set

of weight-entangled search spaces and tasks, showcasing its ability to outperform conventional

two-stage NAS methods while enhancing search efficiency. Our positive results on macro-level

search spaces suggest this approach could advance the development of modern architectures like

Transformers within the NAS community. A recent work (Klein et al., 2024) starts training of the

supernet from the largest pretrained model, subsequently fine-tuning it. Our method, which now

renders single-stage methods applicable to broader families of search spaces (e.g., transformers),

can similarly benefit from initialization with pretrained models, achieving additional computational

savings. We leave this for future work.

This study addresses the high energy consumption associated with neural architecture search,

particularly in black-box techniques that demand extensive computational resources to train many

architectures from scratch. Our proposed method falls in the family of one-shot NAS methods, and

hence significantly reduces energy usage and identifies efficient architectures with far less energy

consumption than manual tuning.
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A Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions

and scope? Yes

(b) Did you describe the limitations of your work? Yes, in Appendix I

(c) Did you discuss any potential negative societal impacts of your work? NA

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? https:
//2022.automl.cc/ethics-accessibility/ Yes

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same benchmarks,

data (sub)sets, available resources)? Yes

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, search

spaces, hyperparameter tuning)? Yes

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account for the

impact of randomness in your methods or data? Yes, for experiments on smaller scales

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or splits)? Yes,

for experiments on smaller scales

(e) Did you report the statistical significance of your results? Yes, we perform a two tailed p-value test

on the tinystories dataset for language modeling

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? Yes, We used NAS-Bench-201

which is tabular

(g) Did you compare performance over time and describe how you selected the maximum duration? Yes,

we study performance over compute budgets

(h) Did you include the total amount of compute and the type of resources used (e.g., type of gpus,

internal cluster, or cloud provider)? Yes

(i) Did you run ablation studies to assess the impact of different components of your approach? No, We

only add a single main component in our approach

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental results,

including all requirements (e.g., requirements.txt with explicit versions), random seeds, an instruc-

tive README with installation, and execution commands (either in the supplemental material or as a

url)? Yes

(b) Did you include a minimal example to replicate results on a small subset of the experiments or on

toy data? Yes

(c) Did you ensure sufficient code quality and documentation so that someone else can execute and

understand your code? Yes

(d) Did you include the raw results of running your experiments with the given code, data, and instruc-

tions? Yes, we include the smaller pickle files for toy benchmarks we create and results logs wherever

possible. We will share larger raw files eg: checkpoints upon acceptance, as anonymization of these

resources is difficult.

(e) Did you include the code, additional data, and instructions needed to generate the figures and tables

in your paper based on the raw results? Yes

4. If you used existing assets (e.g., code, data, models). . .
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(a) Did you cite the creators of used assets? Yes

(b) Did you discuss whether and how consent was obtained from people whose data you’re using/curating

if the license requires it? We do not use personal data

(c) Did you discuss whether the data you are using/curating contains personally identifiable information

or offensive content? We do not use personal data

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? Yes

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., GitHub or

Hugging Face)? Yes

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if applicable? NA

(b) Did you describe any potential participant risks, with links to Institutional Review Board (irb)

approvals, if applicable? NA

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on

participant compensation? NA

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? NA

(b) Did you include complete proofs of all theoretical results? NA

B Training across data fractions
TangleNAS is more robust across dataset fractions for network weights and architecture optimization as

seen from Tables 9, 10, 11, and 12.

Search Type Optimizer Train portion CIFAR-10 (%) CIFAR-100 (%)

Single-Stage TangleNAS

50% 97.715 ± 0.088 82.538 ± 0.118
80% 97.872 ± 0.054 82.668 ± 0.161

Two-Stage

SPOS+RS

50% 97.680 ± 0.026 82.537 ± 0.280
80% 97.767 ± 0.024 82.210 ± 0.142

SPOS+ES

50% 97.77 ± 0.038 82.354 ± 0.120
80% 97.642 ± 0.023 82.517 ± 0.114

Table 9: Evaluation on the AutoFormer-T space for CIFAR-10 and CIFAR-100.
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Search Type Optimizer Train portion Supernet type Test acc (%)

Single-Stage

DrNAS

50%

WS

10

80% 10

TangleNAS

50%

WE

83.020 ± 0.000
80% 82.495 ± .0.461

Two-Stage

SPOS+RS

50%

WE

81.253 ± 0.672
80% 81.345 ± 0.383

SPOS+ES

50%

WE

81.890 ± 0.800
80% 82.322 ± 0.604

Optimum - - - 84.41

Table 12: Evaluation on toy conv-macro search space on CIFAR-10 dataset.

Search Type Optimizer Train portion Supernet Accuracy (%)

CIFAR-10 CIFAR-100 ImageNet16-120

Single-Stage

DrNAS

50%

WS

94.36 ± 0.000 72.245 ± 0.732 46.37 ± 0.00
80% 94.36 ± 0.00 71.153 ± 0.697 46.37 ± 0.00

TangleNAS

50%

WE

94.36 ± 0.00 73.51 ± 0.000 46.37 ± 0.00
80% 94.36 ± 0.00 73.51 ± 0.000 46.37 ± 0.00

Two-Stage

SPOS+RS

50%

WE

89.107 ± 0.884 56.865 ± 2.597 31.665 ± 1.146
80% 87.778 ± 2.446 53.68 ± 4.174 30.545 ± 3.643

SPOS+ES

50%

WE

87.133 ± 2.605 56.463 ± 2.342 29.785 ± 3.015
80% 89.095 ± 0.825 56.363 ± 4.724 30.935 ± 3.546

Table 10: Comparison of test accuracies of single and two-stage methods with WS and WE on NB201

search space.

Search Type Optimizer Train portion Supernet type Test acc (%)

Single-Stage

DrNAS

50%

WS

91.19 ± 0.049
80% 91.125 ± 0.033

TangleNAS

50%

WE

91.3 ± 0.023
80% 91.065 ± 0.163

Two-Stage

SPOS+RS

50%

WE

90.68 ± 0.253
80% 90.687 ± 0.110

SPOS+ES

50%

WE

90.318 ± 0.223
80% 90.595 ± 0.219

Optimum - - - 91.63

Table 11: Evaluation on toy cell-based search space on Fashion-MNIST dataset.
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Search Type Optimizer Train portion Supernet CIFAR-10 (%) ImageNet (%)

Single-Stage

TangleNAS

50%

WE

2.556 ± 0.034 25.69
80% 2.67 ± 0.076 25.742

DrNAS

50%

WS

2.625 ± 0.075 26.29

80% 2.580 ± 0.028 25.67

Two-Stage

SPOS+RS

50%

WE

2.965 ± 0.072 27.114

80% 2.965 ± 0.072 27.114

SPOS+ES

50%

WE

3.200 ± 0.066 27.424

80% 3.002 ± 0.037 26.76

Table 13: Comparison of test errors of single and two-stage methods with WS and WE on DARTS

search space.

C Comparison with different gradient-based optimizers
We also compare DrNAS against different gradient-based NAS optimizers in Tables 15, 14, and 16 on the toy

cell-based, toy macro and the AutoFormer search spaces. We observe that DrNAS outperforms GDAS and

DARTS on all of these search spaces, showing its robust nature.

Optimizer Test-acc (%)

TangleNAS+DrNAS 83.02
SPOS+RS 81.25

SPOS+ES 81.89

TangleNAS+DARTS_v1 81.61

TangleNAS+DARTS_v2 81.49

TangleNAS+GDAS 10 (degenerate)

Table 14: Comparison of DrNAS with other gradient-based optimizers on the toy conv-macro search

space on CIFAR-10.

Optimizer Test-acc (%)

TangleNAS+DrNAS 90.930
SPOS+RS 90.688

SPOS+ES 90.595

TangleNAS+DARTS_v1 89.905

TangleNAS+DARTS_v2 90.747

TangleNAS+GDAS 90.618

Table 15: Comparison of DrNAS with other gradient-based optimizers on the toy cell-based search

space on FashionMNIST dataset.

17



Optimizer CIFAR-10 CIFAR-100

TangleNAS+DrNAS 97.872 ± 0.054 82.668 ± 0.161
SPOS+RS 97.767 ± 0.024 82.210 ± 0.142

SPOS+ES 82.518 ± 0.114 82.518 ± 0.114

TangleNAS+DARTS_v1 97.672 ± 0.040 82.107 ± 0.392

TangleNAS+GDAS 97.45 ± 0.096 82.120 ± 0.281

Table 16: Comparison of DrNAS with other gradient-based optimizers on the AutoFormer-T space for

CIFAR-10 and CIFAR-100.

D Search Space details
Toy cell space. This particular search space takes its inspiration from the prominently used Differentiable

Architecture Search (DARTS) space, and is composed of diminutive triangular cells, with each edge offering

four choices of operations: (a) Separable 3×3 Convolution, (b) Separable 5×5 Convolution, (c) Dilated 3×3
Convolution, and (d) Dilated 5×5 Convolution. The macro-architecture of the model comprises three cells of

the types reduction, normal, and reduction again stacked together. Notably, we entangle the 3×3 and 5×5
kernel weights for each operation type, i.e., separable convolutions and dilated convolutions. We evaluate

these search spaces and their architectures on the Fashion-MNIST dataset by creating a small benchmark,

which we release here.

Toy conv-macro space. This toy space draws its inspiration from MobileNet-like spaces where we search

for the number of channels and the kernel size of convolutional layers in a network (also referred to as a

macro search space) for four convolutional layers. Every convolutional layer has a choice of three kernel

sizes and number of channels. See Table 17 for more details. We evaluate this search space on the CIFAR-10

dataset by creating a small benchmark, which we release here.

Architectural Parameter Choices

Kernel sizes (all layers) 3, 5, 7

Number of channels (layer 1) 8, 16, 32

Number of channels (layer 2) 16, 32, 64

Number of channels (layer 3) 32, 64, 128

Number of channels (layer 4) 64, 128, 256

Table 17: Toy Convolutional-Macro Search Space.

NAS-Bench-201 Space. The NAS-Bench-201 search space (Dong and Yang, 2020) has a single cell type

which is stacked 15 times, with residual blocks (He et al., 2016) after the fifth and tenth cells. Each cell has

4 nodes, with each node connected to the previous ones by operations chosen from skip connection, 3×3
convolution, 1×1 convolution, 3×3 average-pooling, and zeroize, which zeros out the input feature map.

There is limited scope for weight-entanglement in this space, given that only two of the five candidate

operations contain learnable parameters. In this case, we entangle the 3×3 and 1×1 convolution kernels on

every edge for every cell, thus obtaining parameter savings over traditional weight sharing.

DARTS Search Space. The DARTS (Liu et al., 2019) search space has two kinds of cells - normal and
reduction. Reduction cells double the number of channels in its outputwhile halving the width and height

of the feature maps. The supernet consists of 8 cells stacked sequentially, while the discretized network

stacks 20 cells. Reduction cells are placed at 1/3 and 2/3 of the total depth of the network. Each cell takes

two inputs - one each from the outputs of the two previous cells. There are 14 edges in each cell, with each

edge in the supernet consisting of 8 candidate operations as follows: 3×3 max pooling, 3×3 average pooling,
skip connect, 3×3 separable convolutions, 5×5 separable convolutions, 3×3 dilated convolutions, 5×5 dilated
convolutions, and none (no operation).
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Architectural Parameter Choices

Embedding Dimension 384, 576, 768

Number of Heads 6, 8, 12

MLP Expansion Ratio 2, 3, 4

Number of Layers 5,6,7

Table 18: Choices for Language Model Space.

Architectural Parameter Choices

Kernel sizes (all layers) 3, 5, 7

Channel expansion (all layers) 3,4,6

Number of blocks 2,3,4

Table 19: MobileNetV3 Search Space.

AutoFormer Space and Language Model Space. We present the details of the AutoFormer Space and

the Language Model space is Tables 20 and 18, respectively.

E Methodological details
Combi-Superposition. Traditional cell-based search spaces primarily consider independent operations

(e.g., convolution or skip). One-shot differentiable optimizers thus have their mixture operations tailored to

these search spaces, which are not general enough to be applied to macro-level architectural parameters.

Consider, e.g., the task of searching for the embedding dimension and the expansion ratio for a transformer.

Here, a single operation, i.e., a linear expansion layer, has two different architectural parameters – one

corresponding to the choice of embedding dimension and the other to the expansion ratio. To adapt single-

stage methods to these combined operation choices in the search space, we propose the combi-superposition
operation.

The combi-superposition operation simply takes the cross product of architectural parameters for the

embedding dimension and expansion ratio and assigns its elements to every combination of these dimensions.

This allows us to optimize jointly in this space without the need for a separate forward pass for each

combination. Every combination maps to a unique sub-matrix of the operator weight matrix, indexed by both

the embedding dimension and the expansion ratio. To address shape mismatches of the different operation

weights during forward passes, every sub-matrix is zero-padded to match the shape of the largest matrix.

See Algorithm 2 for more details, and Figure 3 for an overview of the idea.

Architectural Parameter Choices

Embedding dimension 192, 216, 240

Number of layers 12, 13, 14

MLP ratio (per layer) 3.5, 4

Number of heads (per layer) 3, 4

Table 20: Choices for AutoFormer-T Search Space.
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Algorithm 2 Combi-Superposition Operation

For ease of presentation, we show the algorithm for superimposing along two dimensions. However, in practice, we can super-
impose an arbitrary number of dimensions (e.g., four dimensions in our experiments with NanoGPT).

𝑒𝑚𝑏𝑒𝑑_𝑑𝑖𝑚 ← [𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑛] {Choices for embedding dimension}

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑖𝑜 ← [𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑚] {Choices for expansion ratio}

𝛼 ← [𝛼1, 𝛼2, 𝛼3, . . . , 𝛼𝑛] {Architecture parameters for embedding dimension}

𝛽 ← [𝛽1, 𝛽2, 𝛽3, . . . , 𝛽𝑚] {Architecture parameters for expansion ratio}

𝑋 ← 𝑖𝑛𝑝𝑢𝑡_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒

𝑊 ,𝑏 ← 𝑓 𝑐_𝑙𝑎𝑦𝑒𝑟_𝑤𝑒𝑖𝑔ℎ𝑡, 𝑓 𝑐_𝑙𝑎𝑦𝑒𝑟_𝑏𝑖𝑎𝑠

𝑊𝑚𝑖𝑥 ← 0
𝑏𝑚𝑖𝑥 ← 0
for 𝑖 ← 1 to 𝑛 do

for 𝑗 ← 1 to𝑚 do
𝑊 _𝑖 𝑗 =𝑊 [: (𝑒𝑚𝑏𝑒𝑑_𝑑𝑖𝑚[𝑖] × 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑖𝑜 [ 𝑗]), : 𝑒𝑚𝑏𝑒𝑑_𝑑𝑖𝑚[𝑖]]
𝑏_𝑖 𝑗 = 𝑏 [: 𝑒𝑚𝑏𝑒𝑑_𝑑𝑖𝑚[𝑖] × 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑖𝑜 [ 𝑗]]
𝑊mix ←𝑊mix + normalize(𝛼 [𝑖]) · normalize(𝛽 [ 𝑗]) × PAD(𝑊𝑖 𝑗 )
𝑏mix ← 𝑏mix + normalize(𝛼 [𝑖]) · normalize(𝛽 [ 𝑗]) × PAD(𝑏𝑖 𝑗 )

end for
end for
𝑌 ← 𝑋 ·𝑊𝑚𝑖𝑥 + 𝑏𝑚𝑖𝑥 {Compute the output of the FC layer with a mixture of weights and bias}

return 𝑌

For completeness and to facilitate comparison with TangleNAS (Algorithm 1), we present Algorithm

3, which describes a generic two-stage method on a macro search space with weight entanglement (WE).

Additionally, vanilla single-stage methods on cell-based weight sharing (WS) spaces follow Algorithm 4.

Algorithm 3Weight Entanglement (Two-Stage)

1: Input: 𝑀 ← number of cells, 𝑁 ← number of operations

O ← [𝑜1, 𝑜2, 𝑜3, ...𝑜𝑁 ]
Wmax ← ∪𝑁𝑖−1𝑤𝑖

𝜂 = learning rate ofWmaxO

2: 𝐶𝑒𝑙𝑙 𝑗 ← 𝐷𝐴𝐺 (O|,Wmax| ) /* defined for j=1...M */

3: 𝑆𝑢𝑝𝑒𝑟𝑛𝑒𝑡 ← ∪𝑀
𝑖
𝐶𝑒𝑙𝑙𝑖

4: /* example of forward propagation on the cell */
5: for 𝑗 ← 1 to𝑀 do

6: 𝑖 ∼ U (1, 𝑁 )

7: /* Slice weight matrix corresponding to operation */

8: 𝑜 𝑗 (𝑥,W𝑚𝑎𝑥 ) = 𝑜 ( 𝑗,𝑖 ) (𝑥,W𝑚𝑎𝑥 [: 𝑖 ] )

9: end for
10: /* weights update */

11: Wmax [: 𝑖 ] = Wmax [: 𝑖 ] − 𝜂∇Wmax
[: 𝑖 ]L𝑡𝑟𝑎𝑖𝑛 (Wmax )

12: /* Search */

13: 𝑆𝑢𝑝𝑒𝑟𝑛𝑒𝑡∗ ← pre-trained supernet

14: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑎𝑟𝑐ℎ ← Evolutionary-Search(𝑆𝑢𝑝𝑒𝑟𝑛𝑒𝑡∗)

Algorithm 4Weight Sharing (Single-Stage)

1: Input: 𝑀 ← number of cells, 𝑁 ← number of operations

O ← [𝑜1, 𝑜2, 𝑜3, ...𝑜𝑁 ]
WO ← [𝑤1, 𝑤2, 𝑤3, ....𝑤𝑁 ]
A← [𝛼1, 𝛼2, 𝛼3, ...𝛼𝑁 ]
𝛾 = learning rate ofA
𝜂 = learning rate ofWO
𝑓 is a function or distribution s.t.

∑𝑁
𝑖=1

𝑓 (𝛼𝑖 ) = 1

2: 𝐶𝑒𝑙𝑙𝑖 ← 𝐷𝐴𝐺 (O|,WO| ) /* defined for i=1...M */

3: 𝑆𝑢𝑝𝑒𝑟𝑛𝑒𝑡 ← ∪𝑀
𝑖
𝐶𝑒𝑙𝑙𝑖 ∪A

4: /* example of forward propagation on the cell */
5: for 𝑗 ← 1 to𝑀 do
6: /* Compute mixture operation as weighted sum of output of

operations*/

7: 𝑜 𝑗 (𝑥,WO ) =
∑𝑁
𝑖=1

𝑓 (𝛼𝑖 ) 𝑜 ( 𝑗,𝑖 ) (𝑥, 𝑤( 𝑗,𝑖 ) )

8: end for
9: /* weights and architecture update */

10: A = A − 𝛾∇AL𝑣𝑎𝑙 (WO
∗,A)

11: WO = WO − 𝜂∇WOL𝑡𝑟𝑎𝑖𝑛 (WO ,A)

12: /* Search */

13: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑎𝑟𝑐ℎ ← argmax(A)

Compatibility issues between weight-entanglement and gradient-based methods. We address the

incompatibility between gradient-based NAS methods and weight-entangled (WE) spaces as follows (where

n refers to the number of operation choices):

• Gradient-based NAS methods do not share or entangle weights among competing operations, which

increases their GPU memory footprint. We tackle this issue by adopting weight-entanglement from

two-stage methods, thereby reducing the parameter size of the supernet from O(n) to O(1).

• Gradient-based NAS methods compute a weighted combination of output of the operations. Even after

entangling the operation weights, this approach leads to increased GPU memory usage because all

intermediate competing activations/features need to be preserved in memory. Additionally, this method
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does not scale well with an increase in the number of operation choices, as GPU memory consumption

during forward propagation scales as O(n). To address this, we propose weight superposition, which

computes the weighted combination directly within the space of entangled weights.

• In vanilla gradient-based methods, a forward pass is computed independently for each operation choice,

resulting in a time and memory complexity of O(n). In contrast, TangleNAS computes only a single

forward pass using the superimposed weights, reducing the cost of the forward pass to O(1).

Details on Figure 1. In the overview Figure 1, we use rounded squares to represent the input and output

feature maps of a convolution. The colored cubes represent the convolutional kernels, while the colored

rectangles denotes non-convolutional architectural choices. These two differ primarily in how their weights

are entangled.

Consider Figure 1 (a), which illustrates the forward pass of an input feature map through the candidate

operations on an edge of the supernet in a two-stage weight-entanglement method (such as OFA). In two-

stage methods, random paths through the supernet are sampled and trained in the first stage. In this figure,

thick lines indicate the paths sampled in a given step. The weights of the operation choices, depicted in the

figure by colored cubes and rectangles, overlap with one another, showing that all the operations use slices

of a common, large weight matrix. We show three choices of convolutions, each of a different kernel size

(say, 1×1, 3×3, and 5×5), represented by cubes of varying sizes. The 1×1 and 3×3 convolutions use slices of
the larger 5×5 convolution as their weights, represented in the figure by nesting the smaller kernels inside

the larger ones. Since only one operation is sampled at a time (in this case, the orange kernel), there is only

one output feature map. This feature map, after global average pooling, is then passed through one of the

three non-convolutional operation choices. The operation choices here may be the embedding dimension,

for example, and different slices of the largest feedforward network are used for the choices of embedding

dimensions. At the end of the first stage in Figure 1 (a), the supernet has been trained along different paths.

In the second stage, paths are sampled from the trained supernet using black-box methods (such as random

or evolutionary search) and evaluated on the dataset to obtain the optimal architecture, which we represent

with optim arch.
Now, consider Figure 1 (b), which represents the forward pass in a single-stage weight-sharing method

(such as DARTS). As you can see, there is no nesting of the weights of the three convolutions or feedforward

networks in this case, indicating that each has its own distinct set of weights. Naturally, this will incur more

GPU memory usage, as more weights need to be stored and their gradients computed. The outputs from

each of these convolutional (or feedforward) operations are then weighted by 𝛼1, 𝛼2, and 𝛼3 (or 𝛽1, 𝛽2, and

𝛽3), which represent the architectural parameters of the operations. These weighted feature maps are then

summed up to produce the output feature maps.

The optimization loop of single-stage weight-sharing methods, shown in Figure 1(b), aims to find the

optimal values for the architectural parameters 𝛼 and 𝛽 . We obtain the discretized model by selecting only

the operations in the supernet with the highest values of these parameters at the end of this loop. Specifically,

the convolutional kernel and non-convolutional operator (in this case, the feedforward network) with the

maximum values of 𝛼 and 𝛽 are represented as argmax(𝛼1, 𝛼2, 𝛼3) and argmax(𝛽1, 𝛽2, 𝛽3), respectively. The

resulting discretized model, or optimal architecture, is denoted as optimal arch. Note that these methods

do not require black-box search, as the optimal architecture can be obtained directly from the learned

architectural parameters.

In Figure 1 (c), we depict our hybrid framework, which utilizes both entangled (nested) weights and

architectural parameters. This approach reduces GPU memory usage due to weight entanglement and allows

for the optimal architecture to be obtained directly from the learned parameters, eliminating the need for a

black-box search.

F Experimental Setup

F.1 Toy Search Spaces

Below are the hyperparameter settings for the two toy spaces for TangleNAS and SPOS. All experiments

were run on a single RTX-2080 GPU.
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Search Space Cell Space Conv Macro

Epochs 100 100

Learning rate (LR) 0.1 3e-4

Min. LR 0.001 0.0001

Optimizer SGD Adam

Architecture LR 0.0003 0.0003

Batch Size 64 64

Momentum 0.9 0.9

Nesterov True False

Weight Decay 0.0005 0.0005

Arch Weight Decay 0.001 0.001

Regularization Type L2 L2

Regularization Scale 0.001 0.001

Table 21: Configurations used in the DrNAS experiments on Toy Spaces.

Search Space Cell Space Conv Macro

Epochs 250 250

Learning rate (LR) 0.1 3e-4

Min. LR 0.001 0.0001

Optimizer SGD Adam

Batch Size 64 64

Momentum 0.9 0.9

Nesterov True False

Weight Decay 0.0005 0.0005

Table 22: Configurations used in the SPOS experiments on Toy Spaces.

F.2 Language Model

We use the AdamW optimizer in all experiments related to language modeling. Other hyperparameter choices

are as specified in Table 23. Below are the hyperparameter settings for TangleNAS. We run experiments on

TinyStories on 8 RTX-2080 GPUs and experiments on OpenWebText on 8 A6000 GPUs.

Search Space Small-LM

Learning rate (LR) 5e-4

Min LR 5e-5

Beta2 0.99

Warmup Iters 100

Max Iters 6000

Lr decay iters 6000

Batch size 12

Weight decay 1e-1

Table 23: Configurations used in DrNAS on the Language Model Spaces.
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F.3 AutoFormer and OFA

We use a 50%-50% train and validation split for the CIFAR-10 and CIFAR-100 datasets for the cell-based spaces

and a 80%-20% for the weight-entangled spaces. We use the official source code of AutoFormer available

at code autoformer for all the AutoFormer experiments on CIFAR-10 and CIFAR-100, closely following

the AutoFormer training pipeline and search space design. AutoFormer explored three transformer sizes:

Autoformer-T (tiny), AutoFormer-S (small), and Autoformer-B (base). We restrict ourselves to Autoformer-T.

For baselines like OFA and AutoFormer, we follow their respective recipes to obtain the train-validation

split for ImageNet-1k. Our models were trained on 2xA100s with the same effective batch-size as AutoFormer.

For MobileNetV3 from Once-for-All, we use the same training hyperparameters as the baseline found here

(in addition to architectural parameters same as Table 24). We run experiments on CIFAR-10, CIFAR-100,

and ImageNet1-k on 4 A100 GPUs.

F.3.1 AutoFormer Fine-tuning.

CIFAR-10 and CIFAR-100 pretrained supernet. We fine-tune the CIFAR-10 and CIFAR-100 selected

networks (after inheriting them from the supernet) for 500 epochs. We set the learning rate to 1e-3, the

warmup epochs to 5, the warmup learning rate to 1e-6, and the minimum learning rate to 1e-5. All other

hyperparameters are set the same as in Appendix F.3.

ImageNet pretrained supernet. We follow the DeiT (Touvron et al., 2021) fine-tuning pipeline as used in

AutoFormer, to finetune on downstream tasks. Specifically, we set the epochs to 1000, the warmup epochs to

5, the scheduler to cosine, the mixup to 0.8, the smoothing to 0.1, the weight decay to 1e-4, the batch size to

64, the optimizer to SGD, the learning rate to 0.01 and the warmup learning rate to 0.0001 for all datasets.

Fine-tuning is performed on 8 RTX-2080 GPUs.

F.4 NB201 and DARTS

For single-stage optimizers, the supernet was trained with four different seeds. The supernet with the best

validation performance among these four was discretized to obtain the final model, which was then trained

from scratch four times to obtain the results shown in the table. For two-stage methods, we again train the

supernet four times and perform Random Search (RS) and Evolutionary Search (ES) on each one. The best

model obtained across all four supernets for both methods was then trained from scratch with four seeds to

compute the final results. For DrNAS, we follow the same procedure as suggested by the authors across

all search spaces. To accommodate multiple training recipes, we have developed a configurable training

pipeline. The configurations for DrNAS and SPOS are shown in Tables 24 and 25, respectively. We run our

search on a single RTX-2080 for both DARTS and NB201, and train the DARTS architectures from scratch on

8 RTX-2080 GPUs.

Search Space DARTS NB201

Epochs 50 100

Learning rate (LR) 0.1 0.025

Min. LR 0.0 0.001

Architecture LR 0.0006 0.0003

Batch Size 64 64

Momentum 0.9 0.9

Nesterov True False

Weight Decay 0.0003 0.0003

Arch Weight Decay 0.001 0.001

Partial Connection Factor 6 -

Regularization Type L2 L2

Regularization Scale 0.001 0.001

Table 24: Configurations used in the DrNAS experiments.
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Search Space DARTS NB201

Epochs 250 250

Learning rate (LR) 0.025 0.025

Min. LR 0.001 0.001

Architecture LR 0.0003 0.0003

Batch Size 256 64

Momentum 0.9 0.9

Nesterov True True

Weight Decay 0.0005 0.0005

Arch Weight Decay 0.001 0.001

Table 25: Configurations used in the SPOS experiments.

G Optimal architectures derived

G.1 DARTS
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Figure 7: DRNAS with WE normal cell
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Figure 8: DRNAS with WE reduction cell

G.2 Small LM

num_layers: 7, embed_dim: 768, num_heads: [12, 12, 12, 12, 12, 12, 12], mlp_ratio: [3, 4, 4, 4, 4, 4, 4]

G.3 AutoFormer

G.3.1 CIFAR-10.

50%50% split. mlp_ratio:[4, 4, 4, 4, 4, 4, 4, 4, 4, 3.5, 4, 4, 3.5, 4], num_heads:[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
num_layers: 14 embed_dim: 216

80%-20% split. mlp_ratio:[4, 4, 4, 4, 4, 4, 4, 4, 3.5, 4, 4, 4, 3.5, 3.5], num_heads:[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
depth: 14, embed_dim: 240

G.3.2 CIFAR-100.

50%-50% split. mlp_ratio: [4,4,4,4,4,4,4,4,3.5,4,4,4,4,4], num_heads:[4,4,4,4,4,4,4,4,4,4,4,4,4,4], depth: 14,

embed_dim: 216

80%-20% split. mlp_ratio:[3.5,4,4,4,4,4,4,4,4,4,4,4,4,4], num_heads:[4,4,4,4,4,4,4,4,4,4,4,4,4,4, depth: 14, em-

bed_dim: 240
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G.3.3 ImageNet1-k. mlp_ratio:[4,4,4,4,4,4,4,4,4,4,4,4,4,4], num_heads:[4,4,4,4,4,4,4,4,4,4,4,4,4,4, depth: 14, em-

bed_dim: 240

G.4 MobileNetV3

Kernel_sizes:[7,5,5,7,5,5,7,7,5,7,7,7,5,7,7,5,5,7,7,5],Channel_expansion_factor:[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6],

Depths : [4, 4, 4, 4, 4]

G.5 Toy Spaces

G.5.1 Toy cell (our best architecture) .

50%-50% split. Genotype(normal=[(’dil_conv_3x3’, 0), (’dil_conv_3x3’, 0), (’sep_conv_3x3’, 1)], nor-

mal_concat=range(1, 3), reduce=[(’sep_conv_3x3’, 0), (’sep_conv_3x3’, 0), (’dil_conv_3x3’, 1)], re-

duce_concat=range(1, 3))

80%-20% split. Genotype(normal=[(’dil_conv_3x3’, 0), (’dil_conv_5x5’, 0), (’sep_conv_3x3’, 1)], nor-

mal_concat=range(1, 3), reduce=[(’sep_conv_3x3’, 0), (’sep_conv_5x5’, 0), (’dil_conv_3x3’, 1)], re-

duce_concat=range(1, 3))

G.6 Toy conv-macro (our best architecture)

50%-50% split:. Channels = [32, 64, 128, 64], Kernel Sizes = [5, 5, 7, 7].

Train-Val fraction 80%-20%:. Channels = [32, 64, 128, 64], Kernel Sizes = [5, 5, 7, 7].

H Architecture Representation Analysis
CKA. Centered Kernel Alignment (CKA) (Kornblith et al., 2019) is a metric based on the Hilbert-Schmidt

Independence Criterion (HSIC). It is designed to model the similarity between representations in neural

networks. In this section, we analyze the CKA between structurally identical layers in the inherited, fine-

tuned, and retrained networks in the AutoFormer-T space. Specifically, the aim is to assess how similar

the inherited and fine-tuned representations are to those of the models trained from scratch. Table 26

presents the average CKA values for a fixed subset of the CIFAR-10 and CIFAR-100 datasets. We find that

the representations learned by the single-stage supernet are more similar to those of the architectures that

are fine-tuned or trained from scratch. This observation underscores potential issues with using inherited

weights from the supernet as a proxy for search in two-stage methods, as noted by Xu et al. (2022).

Model Inherit v/s Retrain Fine-Tune v/s Retrain
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

TangleNAS 0.4630 0.5853 0.5712 0.6527
SPOS+ES 0.4581 0.5793 0.5694 0.6309

SPOS+RS 0.4412 0.583 0.5797 0.6389

Table 26: CKA correlation between layers.

I Limitations and Future Work
Currently, TangleNAS is designed to optimize a single objective, such as a chosen performance metric.

However, in practice, there may be multiple objectives of interest, including hardware efficiency, robustness,

and fairness (Dooley et al., 2023). Additionally, it would be valuable to explore and apply our findings across

various applications in computer vision and natural language processing.
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