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ABSTRACT

Molecular docking is a cornerstone of drug discovery, relying on high-resolution
ligand-bound structures to achieve accurate predictions. However, obtaining these
structures is often costly and time-intensive, limiting their availability. In contrast,
ligand-free structures are more accessible but suffer from reduced docking perfor-
mance due to pocket geometries being less suited for ligand accommodation in
apo structures. Traditional methods for artificially inducing these conformations,
such as molecular dynamics simulations, are computationally expensive. In this
work, we introduce Sesame, a generative model designed to predict this confor-
mational change efficiently. By generating geometries better suited for ligand
accommodation at a fraction of the computational cost, Sesame aims to provide a
scalable solution for improving virtual screening workflows.

1 INTRODUCTION

Within the realm of drug discovery, molecular docking serves as a pivotal methodology for explor-
ing and characterizing the intricate interactions between molecular entities and their corresponding
protein binding cavities (Meng et al., 2011). Traditionally, high-resolution ligand-bound, or holo
structures, are needed as the starting point for this computational workflow (Bender et al., 2021).
However, they might not be always available, as they are produced by costly experimental protocols
(Turnbull & Emsley, 2013).

Ligand-free, or apo structures, are more readily available. They can be derived from experimental
methods, similar to those used for holo structures, or predicted employing models like AlphaFold2
(Jumper et al., 2021). Despite their availability, when used as input for virtual screening campaigns,
they suffer from lower performance compared to holo structures, both in traditional docking (Dı́az-
Rovira et al., 2023) and deep learning approaches (Corso et al., 2023). This performance drop is
attributed to pocket geometries being better suited for ligand accommodation in holo structures. This
problem is particularly relevant when transient binding sites, such as allosteric and cryptic pockets,
are of interest. These unique pockets are binding sites that only become apparent under an induced
conformational change, e.g. drug binding, providing a promising alternative to classical binding
sites for drug development (Basciu et al., 2019). Moreover, they can be involved in mechanisms that
allow for additional specificity in modulating certain diseases (Hollingsworth et al., 2019).

Traditional approaches for generating these holo-like geometries consist in computationally expen-
sive molecular dynamics (MD) protocols that can take up to several GPU-days (Sabanés Zariquiey
et al., 2022). In this work we present Sesame, a generative model that can generate these desired
geometries for a fraction of the cost by predicting the apo-holo conformational changes in a ligand-
agnostic way.

2 RELATED WORK

Traditional Molecular Dynamics Approaches. MD simulations are computational methods that
calculate atomic and molecular interactions and physical movements over time by solving Newton’s
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equations of motion. These simulations can be used to characterize the formation of cryptic pock-
ets through numerous approaches: standard MDs with organic probe molecules to measure binding
propensity of fragments (Guvench & MacKerell Jr, 2009), mixed-solvent MDs to characterize hy-
drophobic regions (Sabanés Zariquiey et al., 2022) and enhanced sampling methods to accelerate
the sampling of the conformations of interest (Oleinikovas et al., 2016; Basciu et al., 2019).

Deep Learning Approaches. Molecular docking has been a field of interest in deep learning re-
search during the last few years. The seminal work of DiffDock (Corso et al., 2023) introduced
generative models to docking, achieving state-of-the-art performance. However, this work had al-
ready observed a lower performance in apo predicted structures compared to holo conformations.
This finding prompted multiple studies aimed at generating improved protein conformations to use
as inputs in computational workflows (Bose et al., 2024; Yim et al., 2024) or at directly modeling
the joint distribution of protein and ligand conformations (Abramson et al., 2024).

Closer to our work are ApolloDiff 1 (Zhang et al., 2023) and SBAlign (Somnath et al., 2023). Apol-
loDiff focuses on the generation of holo conformations using an equivariant diffusion model con-
ditioned on the apo conformation and sequence. SBAlign, meanwhile, formulates an alternative
approach to solving the Schrödinger Bridge (Léonard, 2013) problem under the assumption that
samples from the source and target distributions are available and paired and recovers a stochastic
trajectory between them.

3 METHODS

In this work we seek to learn a mapping between two explicit data distributions: the source distribu-
tion of apo structures, and the target distribution of holo structures. In this context, flow matching
(FM) (Lipman et al., 2023) is a generative modeling paradigm which provides a simulation-free way
of learning continuous normalizing flows (CNFs) that generate data over a learned vector field (Chen
et al., 2018). Given two distributions q0 and q1, one can then learn the CNF ψt(x) that transports q0
to q1 by optimizing the conditional flow matching (CFM) objective:

LCFM := Et,x0∼q0,x1∼q1

[
∥vt(x)− ut(x|x1)∥2

]
(1)

where ut(x|x1) is the conditional vector field associated with the interpolation between x0 and x1
and vt(x) can be parameterized with a neural network.

Previous works have extended FM to Riemannian Manifolds (Chen & Lipman, 2024) and gener-
alized it to use arbitrary source and target distributions (Tong et al., 2023; Albergo et al., 2023),
postulating FM as a suitable framework for a generative model of holo structures given apo samples
and allowing us to take advantage of several novel developments in the protein structure generation
field (Bose et al., 2024; Jing et al., 2024).

Namely, we follow FoldFlow and parameterize backbones as SE(3)-equivariant frames that represent
rigid transformations T = (r, x) ∈ SE(3) that consist of a rotation r ∈ SO(3) and a translation x ∈
R3 (Jumper et al., 2021). This formulation allows us to decompose the CFM process independently
in SO(3) and R3. In each space, we can define conditional flows using the geodesic (2) and linear (3)
interpolants, respectively, and use their associated vector fields to optimize the following simplified
objectives:

LSO(3)(θ) = Et,q(r0,r1) ∥vθ(t, rt)− ut(rt|r0, r1)∥2SO(3) , with rt = expr0
(
t logr0(r1)

)
(2)

LR3(θ) = Et,q(x0,x1) ∥vθ(t, xt)− ut(xt|x0, x1)∥2 , with xt = (1− t)x0 + tx1 (3)

We optimize these objectives with the loss function used by FoldFlow, and additionally find in-
creased performance with the addition of the Frame Aligned Point Error loss from AlphaFold2
(Jumper et al., 2021). Moreover, we also include the auxiliary losses from FrameFlow (Yim et al.,

1We omit ApolloDiff as a baseline in our experiments due to the lack of weights and code availability.
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2023), which encourage a better representation of the backbone atoms. Therefore, the final loss is
formulated as:

Ltotal = LFOLDFLOW + LFAPE + Laux (4)

Further details on FM and the used loss functions can be found in Appendix F.

4 EXPERIMENTS

4.1 PREDICTING LARGE CONFORMATIONAL CHANGES

We first evaluate our method in the dataset of overall protein motions of the D3PM database (Peng
et al., 2022), a dataset comprised of apo-holo pairs where the Root Mean Squared Deviation (RMSD)
of the Cα carbon atoms between bound and unbound states is > 2.0Å, which we call D3PM-Large
(see Appendix A for details).

In Table 1 we report the statistics of the RMSD between the Cα carbon atoms of the generated struc-
tures and the holo conformations. Additionally, we also compute ∆RMSD = RMSDapo−holo −
RMSDgen−holo to asses whether the generated structures are closer to the holo conformation than
the respective apo one. Here, positive values are indicative of good performance (Zhang et al., 2023).

Table 1: Conformational changes results in the D3PM-Large Test Set. RMSD between generated
conformations and true holo structures. Results marked with an asterisk (*) were obtained from
Somnath et al. (2023).

RMSD (Å) ↓ ∆RMSD (Å) ↑ % RMSD (Å) < τ ↑
Methods Med. Mean Std Med. Mean Std τ = 2 τ = 5 τ = 10

EGNN* 19.99 21.37 8.21 — — — 1% 1% 3%
SBAlign 3.67 4.82 3.93 1.30 1.92 2.59 0% 71% 93%
Sesame 2.87 3.65 2.95 2.15 3.11 4.26 38% 82% 96%

Sesame outperforms previous baselines, achieving 38% of predictions with an RMSD < 2.0Å with
respect to the reference holo structure. Moreover, it also showcases better performance in generating
structures that are more similar to the holo conformations than their apo counterparts, aligning more
closely with our objectives. This distinction is crucial, since a generated conformation may be
similar to the holo structure yet still remain closer to the apo state.

While our model demonstrates strong performance in modeling large conformational changes, most
ligand-induced conformational changes occur on a smaller scale, with 88% of the cases having a
RMSD between corresponding Cα atoms of less than 2Å, and with 75% of the cases where it falls
below 1Å (Frimurer et al., 2003).

4.2 PREDICTING POCKET CONFORMATIONAL CHANGES

The task of predicting small conformational changes can prove to be more challenging due to the
even greater scarcity of high-quality data, as these subtle changes are more difficult to capture (Turn-
bull & Emsley, 2013). Although the D3PM database also has a dataset for pocket motions where the
RMSD between Cα atoms is lower than 2Å (see Appendix A.1.2), D3PM-Pocket only contains 865
apo-holo pairs, which represents a challenge to build generalizable predictive models. To overcome
this, we construct a dataset of apo-holo pairs by generating apo conformations from holo structures
after collapsing pockets using MD simulations. Further details in Appendix A.2.

For a more complete comparison with previous methods, we also retrain SBAlign on this new
dataset. More details on the retraining procedure can be found in Appendix B. We additionally use
the D3PM-Pocket dataset to evaluate the performance of both models in an established benchmark.

3



Published at the GEM workshop, ICLR 2025

Table 2: Conformational changes results in the PDBBind-MD Test Set. RMSD between generated
conformations and true holo structures. SBAlign was retrained in the PDBBind-MD dataset and
inference was performed for the best model hyperparameters.

RMSD (Å) ↓ ∆RMSD (Å) ↑ % RMSD (Å) < τ ↑
Methods Med. Mean Std Med. Mean Std τ = 0.15 τ = 0.2 τ = 0.5

SBAlign 0.52 0.55 0.18 0.05 0.03 0.11 0 % 0 % 24.46 %
Sesame 0.18 0.18 0.03 0.39 0.39 0.03 7.57 % 82.16 % 100%

Table 3: Conformational changes results in the D3PM-Pocket set. RMSD between generated confor-
mations and true holo structures. SBAlign was retrained in the PDBBind-MD dataset and inference
was performed for the best model hyperparameters.

RMSD (Å) ↓ ∆RMSD (Å) ↑ % RMSD (Å) < τ ↑
Methods Med. Mean Std Med. Mean Std τ = 0.15 τ = 0.2 τ = 0.5

SBAlign 0.77 1.21 1.08 0.001 0.001 0.002 1.16 % 2.33 % 18.60 %
Sesame 0.49 0.91 1.22 0.18 0.19 0.1 5.59 % 13.61 % 50.67 %

As we can observe on Tables 2 and 3, we outperform the existing baseline in ∆RMSD both in the
PDBBind-MD and D3PM-Pocket datasets, highlighting the potential of Sesame in capturing small
conformational changes.

Summary statistics for each dataset are provided in Appendix A.4 to better contextualize the reported
results. Additionally, we report results for cross-inferences, where we evaluate the models trained
on large conformational changes on small ones and vice versa to assess generalization capabilities
across different data distributions.

4.3 SESAME FACILITATES CRYPTIC POCKET IDENTIFICATION AND CHARACTERIZATION

Due to the increasing interest in drug discovery in targeting cryptic and transient pockets, multiple
algorithms for identifying and characterizing them have been designed. One example is Pocket-
Miner, a recent deep learning method which predicts the probability of a residue belonging to a
cryptic site (Meller et al., 2023). Testing Sesame alongside pocket prediction algorithms can help
assess a potential synergy, since Sesame is trained to generate proteins closer to holo states from apo
structures. This could improve the prediction of cryptic and transient pockets and allow for better
identification of the residues involved in them. Additionally, if the relevant residues are detected
more effectively, it would further confirm that the generated conformations are more holo-like.

To evaluate how Sesame could aid in this endeavor, we generate holo-like structures for the valida-
tion and test sets used in Meller et al. (2023), a set of known cryptic pockets, labeling as positive
those residues closer than 8 Å to the ligand. We then run PocketMiner on the apo, holo and predicted
conformations and obtain the precision-recall and receiver operating characteristic (ROC) curves for
each.

In Figure 1, we can observe an increase in performance in PocketMiner predictions on Sesame’s
generated structures versus their apo counterparts. This can indicate that the generated conforma-
tions are more geometrically similar to holo structures, increasing the reliability of pocket detection
algorithms. For further discussion and visualizations of results obtained see Appendix D.

4.4 SESAME GENERATES VIABLE STRUCTURES FOR MOLECULAR DOCKING

In this section we seek to evaluate the performance of Sesame generated structures using them as in-
put for a standard docking protocol. A common way of measuring a docking software’s performance
is reproducing a crystallographically resolved structure, with the degree of geometric similarity serv-
ing as said measurement of the performance (Salmaso et al., 2018). In this context, we can evaluate
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Figure 1: Precision-Recall (left) and ROC (right) curves for PocketMiner predictions.

the ability of Sesame generated structures to accept compound geometries that resemble those in the
crystal holo conformations.

It is important to note that Sesame employs only backbone atoms, meaning side chains are not
explicitly determined. Since most docking software requires side chains as input, and they are vital
for determining the ligand’s correct position, their positions were predicted using Prime (Jacobson
et al., 2004). To ensure a fair comparison, the side chains of both holo and apo structures were also
reconstructed following the same protocol and included as baselines. Docking performance was
then evaluated using RMSD, with all calculations performed against the ligand structure in the holo
X-ray.

The two PDB complexes were chosen based on the availability of both apo and holo structures with
high resolution and their clinical significance (Wu et al., 2022; Hiron et al., 2010).

Table 4: RMSD and corresponding docking poses for the Holo versus Reconstructed Holo, Apo and
Model. (PDBs: 4ZZI, 4XKQ)

RMSD (Å) ↓ Docking Pose

Holo X-ray vs Reconstructed Holo 1.622 Figure 4.A
Holo X-ray vs Reconstructed Apo 5.704 Figure 4.B
Holo X-ray vs Model 3.724 Figure 4.C

In the results corresponding to the complex 4ZZI in Table 4, we obtain an increased performance
when compared to the apo structure, indicating that the obtained backbone structure is better suited
for docking protocols. The low RMSD in the X-ray versus reconstruction comparison confirms the
validity of the side chain prediction protocol. Further discussion and additional results of the 4LVT
complex can be found in Appendix E.2.

For full details of the corresponding docking methods, protocol and visualization of the obtained
poses that were used for the RMSD calculations see Appendix E.1 and Appendix E.3, respectively.

5 CONCLUSIONS AND FUTURE WORK

In this work, we introduce Sesame, a novel generative model that leverages the flow matching frame-
work to construct a generative process between two data distributions, learning how to transform
apo-like protein conformations into holo-like ones. Our model surpasses existing baselines in cap-
turing both large and small conformational changes. Furthermore, we demonstrate that the generated
conformations aid in identifying cryptic binding pockets and serve as effective input structures for
molecular docking, leading to improved results compared to their original apo counterparts. These
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findings indicate that Sesame offers a scalable and efficient approach for enhancing virtual screening
workflows and streamlining the drug discovery pipeline.

Future work aims to address the main limitations of the model. Namely, this includes extending
the framework to incorporate side chain modeling, as they play a fundamental role in protein-ligand
interactions, binding affinity and docking accuracy. Additionally, we plan to expand our data gener-
ation efforts using molecular dynamics simulations that capture transitions across energetic barriers,
thereby increasing the diversity of targetable binding pockets and providing richer datasets that
encompass both subtle and large-scale movements and allow for an end-to-end model capable of
accurately modeling both.
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A DATASETS

A.1 D3PM DATABASE

The D3PM database collects all kinds of protein motions, including overall structural changes upon
ligand binding and the inherently flexibility of protein, which we refer to as D3PM-Large, as well
as flap movements of residues within binding pocket; which we do so as D3PM-Pocket (Peng et al.,
2022).

A.1.1 D3PM-LARGE

The initial dataset is sourced from the D3PM-Large, where the RMSD of the Cα carbon atoms
between bound and unbound states is > 2.0Å, following the protocol outlined in SBAlign (Somnath
et al., 2023). First, apo-holo pairs are selected and filtered to ensure that the reported RMSD of Cα

exceeds 3Å. The selected pairs are then aligned using the Kabsch (Kabsch, 1976) algorithm, and the
RMSD of these Cα is recalculated. Pairs are retained if the recalculated RMSD falls within a small
margin of error, indicating minimal reconstruction error. Lastly, proteins with more than one chain
are removed from the set. Then the structures are randomly split in training, validation and tests
sets.

Table 5: D3PM-Large training, validation, and test sets.

# Unique chains # Apo chains # Holo chains # Unique Proteins

Train 1291 799 1133 443
Val 150 136 147 73
Test 150 141 144 74

A.1.2 D3PM-POCKET

This dataset contains pairs of apo-holo proteins where the overall RMSD between Cα atoms is <
2.0Å. We use the entire dataset for evaluation, with no other data processing than the one outlined
in A.3

Table 6: D3PM-Pocket training, validation, and test sets.

# Unique chains # Apo chains # Holo chains # Unique Proteins

Test 1723 861 862 848

A.2 PDBBIND-MD

However informative, the D3PM-Pocket dataset has quite a small size. Due to the lack of addi-
tional holo-apo pairing data, we decided to artificially generate more data using molecular dynam-
ics. While it is quite complicated to generate holo conformations from apo structures, the reverse
procedure is a simpler problem. In this dataset we take advantage of the PDBBind dataset (Liu et al.,
2017) split in temporal splits following DiffDock (Corso et al., 2023). This set contains bound holo
structures, and employing molecular dynamics, we collapse the pockets to generate an artificial apo
structure, that is naturally paired with the original holo one.

First a quality filter is passed on the protein structures, which consists in the removal of structures
with backbone breaks. Afterwards, for each remaining entry, the ligand was removed, and the pro-
tein structure was prepared for MD simulations. The proteins were parameterized using the AMBER
ff14SB (Case et al., 2023; Maier et al., 2015) force field in the gas phase to ensure consistency of
force field parameters across all systems.

Each system underwent an initial heating phase followed by an equilibration before trajectory anal-
ysis. The heating and equilibration steps were conducted using implicit solvent conditions, with the
generalized Born model, to minimize computational cost while maintaining biophysical relevance.

9
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All systems were initially heated from 0 K to 550 K over 1000 steps. This heating phase utilized
Langevin dynamics (ntt=3) with a collision frequency of 100.0 ps−1 to maintain thermal stability.
The timestep was set to 0.0005 ps, ensuring controlled energy fluctuations during heating. After
heating, each system was equilibrated for 4 ps at a constant temperature of 550 K. A higher Langevin
collision frequency (200.0 ps−1) was used during equilibration to stabilize the system at 550 K while
preventing excessive energy fluctuations. The timestep was increased to 0.001 ps to allow for a more
efficient sampling of the conformational space.

To analyze the stability and dynamic behavior of each protein, residues within a 5Å radius of the
removed ligand were extracted. The RMSD of these residues was calculated throughout the MD
trajectory to evaluate conformational changes in the binding pocket. This protocol was used to
determine which systems exhibited the most significant conformational changes in the binding site
after ligand removal. Afterwards, proteins having a minimum RMSD change of 0.5Å were kept.

Table 7: PDBBind-MD training, validation, and test sets.

# Unique Chains # Apo chains # Holo chains # Unique Proteins

Train 6596 6596 6596 2334
Val 395 395 395 353
Test 185 185 185 80

A.3 DATA PROCESSING

Apo and holo chains are featurized following AlphaFold2 (Jumper et al., 2021), where each residue
is associated with SE(3)-equivariant frames that map rigid transformations onto an idealized back-
bone configuration. Each frame is defined by the atomic coordinates of the nitrogen (N), alpha
carbon (Cα), carbonyl carbon (C), and oxygen (O) atoms, with transformations incorporating ex-
perimental bond angles and lengths (Engh & Huber, 2012). The backbone oxygen position is deter-
mined by an additional rotation around the Cα-C bond. The final representation encodes all heavy
atom coordinates as structured transformations in RN×4×3, ensuring consistency across conforma-
tional states.

In this step, we additionally add a mask in the holo structure for pocket residues, defined as those
within a 8 Å distance cutoff of the ligand. After this, apo-holo pairs undergo local sequence align-
ment and only matching positions are kept. Then apo structures are centered by substracting the
center of mass from the Cα positions and holo structures are superimposed onto them using Kabsch
alignment of the Cα atoms. During apo-holo alignment, we transfer the holo-defined pocket mask
to the apo and retain up to 512 residues, cropping the excess when necessary.

A.4 DATASET STATISTICS

We report summary statistics for each dataset, as they help interpret results, putting in context the
obtained metrics.

Table 8: Summary statistics for the datasets.

Length Cα RMSD Seq. Id. (%)

Dataset Med. Mean Std Med. Mean Std Med. Mean Std
PDBBind-MD 223 244 127.48 0.58 0.61 0.31 100.00 99.98 1.35
D3PM-Pocket 267 290 121.49 0.72 1.10 1.19 97.67 94.70 10.28
D3PM-Large 270 285 136.35 3.07 4.55 4.27 95.20 87.02 19.88
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B TRAINING SBALIGN

To retrain the SBAlign model on the PDBBind-MD dataset, we modified some hyperparameters to
better suit the model to the task of predicting small conformational changes. Primarily, we use a
lower diffusivity value, which controls the variance of the stochastic process.

We hypothesize that this led to some instabilities in the loss function, defined as:

L(θ, ϕ) := E
[∫ 1

0

∥∥G−
(
bθt +mϕ(Xt)

)∥∥2 + λt∥mϕ(Xt)∥2 dt
]
, (5)

with G:

x1 −Xt

β1 − βt
(6)

where βt is given by:

βt :=

∫ t

0

g2s ds. (7)

As g2s → 0, βt → 0, and consequently, the term in Equation 6 grows larger, causing large gradients.
These gradients can destabilize the optimization, leading to divergence and therefore to increasingly
larger loss values during the training. This hypothesis aligns with the observed instability when
training with low diffusivity.

We also note this affects inference 2 equally. In Table 9 we report metrics for several values of g
with the model trained on PDBBind-MD, and in Table 10 we present similar results for the original
SBAlign model. These results indicate that SBAlign is very sensitive to this parameter and struggles
to generalize across a broader range of motions.

Table 9: Conformational changes results in the PDBBind-MD Test Set. RMSD between generated
conformations and true holo structures after doing inference using SBAlign at different g values.

RMSD (Å) ↓ ∆RMSD (Å) ↑
g value Median Mean Std Median Mean Std
0.001 0.57 0.59 0.15 0.0009 0.0009 0.0003
0.01 0.52 0.55 0.18 0.05 0.03 0.1
0.02 0.77 0.87 0.32 -0.28 -0.21 0.28

Table 10: Conformational changes results in the D3PM-Large Test Set. RMSD between generated
conformations and true holo structures after doing inference using SBAlign at different g values.

RMSD (Å) ↓ ∆RMSD (Å) ↑
g value Median Mean Std Median Mean Std
0.1 4.43 6.70 5.16 0.036 0.029 0.003
1.0 3.80 4.98 3.95 1.18 1.76 2.52
2.0 7.69 8.87 4.14 -2.60 -2.11 3.06

2In all inferences for SBAlign across this work, we generate 10 structures in 10 sampling steps and report
metrics for the best one.
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C CROSS-INFERENCES RESULTS

In this section, we assess the capabilities of each model to generalize across different data distribu-
tions. To this end, we perform inferences with the models trained on large conformational changes
to predict small ones and vice versa.

As we can see in Table 11, both models suffer from reduced performance when predicting confor-
mational changes of a magnitude different that those it was trained on. Intuitively, we observe that
the models trained on large conformational changes fail by producing movements that are too large
and even lead corrupt structures, as evidenced by RMSD values much higher than the range found
in the apo-holo pairs in the dataset. Conversely, the ones trained on small ones are able to capture
only a small part of movement and fail to capture the full range of it, reflected in the combination of
low ∆RMSD values and high RMSD ones, but that fall within the distribution of apo-holo pairs in
the dataset.

While these results are perhaps to be expected, it highlights a key limitation of the models, which
ultimately stems from a lack of diverse, high-quality data.

Table 11: Conformational changes results for cross-inferences. RMSD between generated confor-
mations and true holo structures after doing inference in the test sets of the corresponding datasets.

Dataset Used RMSD (Å) ↓ ∆RMSD (Å) ↑
Model Train Inference Med. Mean Std Med. Mean Std
SBAlign D3PM-Large PDBBind-MD 2.23 2.36 0.45 -1.66 -1.77 0.45
Sesame D3PM-Large PDBBind-MD 2.38 2.50 0.90 -1.79 -1.93 0.90
SBAlign PDBind-MD D3PM-Large 4.46 6.74 5.16 0.025 0.003 0.31
Sesame PDBind-MD D3PM-Large 4.22 6.31 5.04 0.12 0.12 0.16

D VISUALIZATIONS OF CRYPTIC POCKET PREDICTION

Here, we provide two example of PocketMiner’s predictions for apo, holo and generated structures,
showing comparisons of the structures and PocketMiner’s per-residue predictions, where residues
predicted to belong to a cryptic binding pocket with a probability p > 0.5 are highlighted in red.

As seen in Figures 2 and 3, the generated structures are closer to the holo conformations for some
regions of the proteins, and PocketMiner’s per-residue predictions are more closely aligned to those
of the holo than the apo as well.

Figure 2: Left: Apo (blue), Holo (yellow) and Generated Sample (green). Right: PocketMiner per-
residue predictions for each structure (PDBs: 1KX9-B, 1N8V-B)
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Figure 3: Left: Apo (blue), Holo (yellow) and Generated Sample (green). Right: PocketMiner per-
residue predictions for each structure (PDBs: 3QXW-B, 3QVX-A)

E DOCKING METHODS AND VISUALIZATIONS

E.1 METHODS

Protein Data Bank (PDB) was the source for the apo and holo X-ray structures. To ensure a fair
comparison with the model, side chains (except beta carbon), water, ions, and heteroatom molecules
were removed from the crystal structures. Missing side chains in both X-rays and models were
reincorporated using Prime (Jacobson et al., 2004). The Protein Preparation Wizard (Sastry et al.,
2013) in Schrödinger (Schrödinger Release 2024-4) was used to add hydrogens and assign bond
orders. Hydrogen bond and side-chain orientations were optimized at pH 7.4 with PROPKA (Bas
et al., 2008). Finally, in those cases where side-chains were reincorporated they were minimized with
Prime, using OPLS4 force field (Lu et al., 2021) and solvation VSGB (Li et al., 2011). Otherwise, we
applied a restrained minimization of 0.3Å RMSD. Grid-based receptor preparation was performed
by centering in the ligand-binding site identified from the X-ray structure. Ligand docking was
conducted using the standard Glide SP (Halgren et al., 2004) protocol. Figures were generated with
PyMOL (DeLano, 2002).

E.2 SESAME HELPS CORRECT SIDE CHAIN PREDICTION ERRORS

We further evaluate Sesame using the 4LVT complex. Interestingly, in this case, our side chain
reconstruction protocol performs significantly worse. Comparing the RMSD results of the recon-
structed side chains to those obtained from self-docking using the X-ray side chains, we observe
a substantially lower geometric similarity. We hypothesize that this is due to the apo conforma-
tion having a more closed pocket than the holo conformation, leading to a worse placement of side
chains.

However, applying the same protocol to Sesame’s generated structure yields improved results. This
further reinforces the potential of extending the method to include side chains as a promising direc-
tion for future research.

Table 12: RMSD and corresponding docking poses for the X-ray Holo versus X-ray Holo, Recon-
structed Holo, X-ray Apo and Model. (PDBs: 4LVT, 1GJH)

RMSD (Å) ↓ Docking Pose

Holo X-ray vs Holo X-Ray 3.063 Figure 4.D
Holo X-ray vs Reconstructed Holo 8.752 Figure 4.E
Holo X-ray vs Apo X-Ray 14.886 Figure 4.F
Holo X-ray vs Model 6.081 Figure 4.G
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E.3 VISUALIZATIONS

Figure 4 displays the highest-ranked docking pose for each structure based on Glide score, which
was subsequently used for RMSD calculations.

Figure 4: Docking Poses used for RMSD calculations in Tables 4 and 12. Alphabetical ordering
follows order of appearance in the respective tables.

F DETAILED METHODS

In this section, we aim to provide a more detailed theoretical background on flow matching and in
the used loss functions in our work.

Flow Matching. Flow matching is generative modeling paradigm that was introduced as a effi-
cient and simulation-free way to learn continuous normalizing flows (CNFs) (Lipman et al., 2023).
CNFs are a class of deep generative models that generate data by integrating an ordinary differential
equation over a learned vector field (Chen et al., 2018).

Let q0 and q1 be two distributions, one can learn a vector field vt that induces a CNF ψt(x) that
transports q0 to q1:

q1(x) = [ψ1]#q0(x) (8)

where # denotes the pushforward operator.

The marginal vector field vt(x) can then be parametrized with a neural network vt(xt; θ) and learned
by defining conditional flows ψt(x0|x1) interpolating between x0 ∼ q0 and x1 ∼ q1 and their
associated vector field ut(xt|x1), and regressing against the conditional vector field with the CFM
objective:

LCFM := Et,x0∼q0,x1∼q1

[
∥vt(x)− ut(x|x1)∥2

]
, (9)

Although originally constrained to a Gaussian starting distribution, flow matching was generalized,
relaxing said constraint and allowing arbitrary couplings by taking a joint distribution q(z), over
several possible choices (Tong et al., 2023; Albergo et al., 2023).

Flow matching has additionally been extended to Riemannian Manifolds (Chen & Lipman, 2024).
On a manifold M, the CNF ψt(x) can be defined by integrating along a time-dependent vector field
vt(x) ∈ TxM, where TxM is the tangent space of the manifold at x ∈ M.
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As such, we can similarly learn the marginal vector field with a similar objective:

LCFM := Et,x0∼q0,x1∼q1

[
∥vt(x)− ut(x|x1)∥2g

]
, (10)

Where || · ||2g is the norm induced by the Riemannian metric g, and the conditional flows ψt(x) =
ψt(x0|x1) can be defined by interpolating along the geodesic paths for simple manifolds (Yim et al.,
2023).

The extension of flow matching to Riemannian Manifolds makes this framework readily applicable
to the protein modeling field and to our goal of a generative model of holo structures given apo ones.
More specifically, we follow FoldFlow and parameterize backbones as SE(3)-equivariant frames
that represent rigid transformations T = (r, x) ∈ SE(3) that consist of a rotation r ∈ SO(3) and a
translation x ∈ R3 (Jumper et al., 2021). This formulation allows us to decompose the CFM process
independently in SO(3) and R3. In each space, we can define conditional flows using the geodesic
(2) and linear (3) interpolants, respectively, and use their associated vector fields to optimize the
following simplified objectives:

LSO(3)(θ) = Et,q(r0,r1) ∥vθ(t, rt)− ut(rt|r0, r1)∥2SO(3) , with rt = expr0
(
t logr0(r1)

)
(11)

LR3(θ) = Et,q(x0,x1) ∥vθ(t, xt)− ut(xt|x0, x1)∥2 , with xt = (1− t)x0 + tx1 (12)

Where the conditional vector fields for rotation and translation take the following expressions, re-
spectively:

ut(xt|x0, x1) = x1 − x0 (13)

ut(rt|r0, r1) = logrt(r0)/t (14)

Following previous works (Yim et al., 2023), we perform all modelling within the zero center
of mass (CoM) subspace, which guarantees that the distribution of the sampled frames is SE(3)-
invariant, and pre-align with the Kabsch algorithm to remove global rotations that result in increase
kinetic enery in the ODE, and parameterize the velocity predictions vθ(t, xt) as a prediction of the
starting point x̂0 given xt (Yim et al., 2023; Bose et al., 2024; Jing et al., 2024).

Final loss function. Finally, the complete loss function is formulated as:

L = LFOLDFLOW + LFAPE + 1{t<0.25}λauxLaux, (15)

with

LFOLDFLOW = LFOLDFLOW−SO(3) + LFOLDFLOW−R3 , (16)

and:

LFOLDFLOW−R3 = Et∼U([0,1]),q(x0,x1),ρt(xt|x0,x1) ∥vθ(t, xt)− (x1 − x0)∥2 (17)

LFOLDFLOW−SO(3) = Et∼U([0,1]),q(r0,r1),ρt(rt|r0,r1)
∥∥vθ(t, rt)− logrt(r0)/t

∥∥2
SO(3)

(18)

FrameFlow Auxiliary Losses. In addition to the flow matching and FAPE losses, we also include
the auxiliary losses from Yim et al. (2023). Following Bose et al. (2024), we apply these atomic
constraints for t < 0.25, to encourage a better local neighbour representation during the last steps
of the generation procedure. These contrainsts consist a regression on the positions of the backbone
atoms Lbb and a pairwise distance loss on the local neighborhood L2D.
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Laux = EQ [Lbb + L2D] , Lbb =
1

4N

∑
∥A0 − Â0∥2, L2D =

∥∥∥1{D<6Â}(D − D̂)
∥∥∥2∑

1D<6Â −N
(19)

where Q is defined as the factorized joint distribution Q(t, x0, x1, x̃t) := U(0, 1) ⊗ π̄(x0, x1) ⊗
ρt(x̃t|x0, x1), 1 is the indicator function that indicates the membership to the local neighborhood
according to atomic distances in Angstroms (Å) and D is a multidimensional array constructed
from the pairwise distances between the four heavy atoms belonging to the backbone Dijab =
∥Aia −Ajb∥.
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