Breaking the Attention Trap in Code LLMs: A Rejection Sampling
Approach to Enhance Code Execution Prediction

Anonymous ACL submission

Abstract

Code-specific Large Language Models (Code
LLMs) have greatly improved performance
across code-related tasks, offering substantial
benefits in practical applications. However, ex-
isting research reveals significant performance
bottlenecks in Code Execution tasks, which re-
quires models to predict the execution results
of given code snippets. This study identifies
that, the Attention Trap phenomenon in train-
ing data constitutes a key constraint on model
performance. To address this phenomenon, we
propose the Attention Cracking with Rejection
Sampling (AC-RS) method. The method first
applies structural optimization to training data
to eliminate attention traps. Then, it conducts
secondary training on the outputs generated by
the fine-tuned model to mitigate potential neg-
ative impacts from manual data intervention.
Experimental results show that AC-RS signif-
icantly enhances the accuracy of Code Execu-
tion while preserving models’ original capabili-
ties. Notably, the optimized 7B model achieves
prediction accuracy comparable to 32B model
and GPT-4o.

1 Introduction

With the rapid advancement of large language
models (LLMs) (OpenAl, 2022; Ouyang et al.,
2022; OpenAl et al., 2024; Touvron et al., 2023a,b;
Grattafiori et al., 2024; Bai et al., 2023; Yang
et al., 2024), Code LLMs have attracted substan-
tial academic and industrial attention due to their
direct applicability and broad potential. From
early models like StarCoder (Li et al., 2023) and
CodeLlama (Roziere et al., 2024) to recent advance-
ments including Deepseek Coder (Guo et al., 2024;
DeepSeek-Al et al., 2024) and Qwen Coder (Qwen-
Team, 2024; Hui et al., 2024), Code LLMs have
shown remarkable performance across code-related
tasks.

However, studies (Austin et al., 2021; Nye
et al., 2021; Gu et al., 2024) indicate that cur-

print(solution.maxAbsoluteSum([

1, -3, 2, 3, -41)) # Outputfll?
________________ <
Query

<|im_start|>system ?

You are Qwen, created by

I.E);a.\mple 1: —
Input: nums =
Output: B

Explanation: Th
has absolute

ubarray [2,3]

m = abs(2+3) = abs(5) = 5.
Input: num
Output: 8

= [21 '5111 '4131 '2]
Figure 1: Attention Trap in Leetcode data.

rent Code LLMs underperform in Code Execution
tasks. Austin et al. (2021) reveals that even 137B
model struggles to predict execution results of ba-
sic Python code, achieving merely 29% accuracy
on test case from the proposed MBPP benchmark,
while fine-tuning only provides minimal perfor-
mance gains. Nye et al. (2021) attributes this to
the lack of explicit step-by-step reasoning before
giving the predicted results. While previous work
focuses on reasoning deficiencies, our work reveals
that attention traps in widely-used LeetCode! train-
ing data fundamentally constrain execution predic-
tion capabilities.

When models process training data with lexi-
cal similarities, their attention mechanisms become
overly focused on surface-level token correlations
while neglecting deeper abstract relationships be-
tween data components. We term this phenomenon
the "Attention Trap". In Code Execution tasks
using LeetCode data, this issue becomes promi-
nent. Figure 1 demonstrates how trained model
distributes attention during Code Execution predic-
tions. The presence of target outputs "5" in Query
creates strong attention biases. During learning,
models excessively attend to these reference out-

"https://leetcode.com/

Remove Examples

: N
(S TLE EXO TS —> | Instruct Model AC Query e AC 4.'-

E Append "Please give @
» all the examples in the
' answer."

v

Fetch Query Eommmeerd LC-Base

®
------- > Modify
@ —> Infer

====) Train

Figure 2: Pipeline of Attention Cracking with Rejection Sampling (AC-RS).

puts in the input queries, sometimes even forming
erroneous correlations with unrelated examples("8"
in example). This prevents proper modeling of the
multi-step reasoning chain connecting problem de-
scriptions, program code, and execution results.
Full example and comparations are provided in
Appendix A.

To eliminate attention traps in training data, we
propose Attention Cracking with Rejection Sam-
pling. Our method contains two stages: (1) Atten-
tion Cracking (AC) modifies training data to elimi-
nate attention traps; (2) Rejection Sampling (RS)
(Liu et al., 2024b) employs self-generated model
outputs for secondary training, preventing perfor-
mance degradation from manual data modifications.
Experimental results demonstrate that AC-RS sig-
nificantly improves performance with minimal data
requirements. Using only 1,000 LeetCode sam-
ples, our method achieves 13.57% improvements
on the Code Execution tasks of LiveCodeBench
(Jain et al., 2024). It also shows 10.96% gains on
Test Output Prediction tasks, which require pre-
dicting results from problem descriptions rather
than code, while maintaining code generation ca-
pabilities. Remarkably, the enhanced 7B-Instruct
model matches the Code Execution accuracy of
32B-Instruct model and GPT-40-20240806 (Ope-
nAl, 2024).

2 Related Works

The field of Code LLMs originated from data-
centric methodologies and has gradually developed
into a thriving research area (Jiang et al., 2024).
Early studies in code-related domains adopted data
construction methods from general-purpose do-
mains. For instance, Chaudhary (2023) employed
the Self-Instruct (Wang et al., 2023) approach to

automatically generate code instruction dataset
CodeAlpaca. Luo et al. (2023) further enhanced
this dataset through Evol-Instruct (Xu et al., 2023),
training the WizardCoder model. Additionally,
Magicoder (Wei et al., 2024) attempted to generate
high-quality instruction tuning data using open-
source code. As data-related challenges were pro-
gressively addressed, multiple high-performance
open-source code models emerged. Representa-
tive examples include the Qwen Coder series and
DeepSeek Coder series. Concurrently, researchers
achieved notable progress in other dimensions of
code-related tasks. Frameworks like MFTCoder
(Liu et al., 2024a) and models like Phi (Abdin et al.,
2024) advanced the field through multi-task train-
ing strategies and parameter efficiency improve-
ments, respectively.

3 Method

This section details the implementation of AC-RS
method. To ensure fair comparison and better
prepare for subsequent training data generation,
we first train LC-Base model using Leetcode data
through Rejection Sampling (® in Figure 2). AC-
RS method then introduces two formal stages: At-
tention Cracking and Rejection Sampling.

3.1 Attention Cracking

The AC stage aims to eliminate attention traps.
Concretely, by removing target outputs from
queries, we prevent models from relying on su-
perficial pattern matching. The AC stage modi-
fies LeetCode queries through two operations: (1)
AC Queries: Remove target outputs from exam-
ples in original queries for training. (2) Fetch
Queries: Append "Please give all the examples
in the answer." at query endings, increasing the

Table 1: Accuracy(%) on LiveCodeBench. Qwen2.5-Coder, DeepSeek-Coder, CodeLlama are all Instruct models.

Test Output Code Exec Code Exec

Model Size Code Gen Self Repair Prediction w/ COT w/o COT Avg

GPT-40-0806 - 49.35% 59.75% 76.02% 96.24% 58.04% 67.88%
Qwen2.5-Coder 32B 52.61% 62.25% 70.81% 89.35% 57.41% 66.49%
CodeLlama 7B 10.29% 10.50% 25.11% 27.97% 20.46% 18.87%
DeepSeek-Coder 6.7B 19.44% 24.25% 26.02% 3591% 39.67% 29.06%
Qwen2.5-Coder 7B 36.44% 45.75% 49.55% 68.06% 44.68% 48.90%
LC-Base 7B 38.07% 48.50% 54.52% 72.86% 48.23% 52.44%
AC 7B 37.42% 46.75% 57.92% 70.98% 58.04% 54.22%
AC-RS 7B 39.54% 47.75% 60.41% 71.19% 58.25% 55.43%

likelihood of including examples in retrieved re-
sults. Fetch Queries collect generation results from
the LC-Base model. Generated data is processed
by selecting responses with the same examples as
queries, prioritizing those passing tests. This filter-
ing criterion applies to both LC-Base and RS stage
outputs.

3.2 Rejection Sampling

To prevent performance degradation from AC stage
data modifications, we introduce a RS stage. This
mechanism directly uses AC queries to obtain out-
puts from AC-trained models, eliminating atten-
tion distortion caused by query-output mismatches.
Through quality filtering of model-generated re-
sponses, RS substantially reduces training diffi-
culty while mantaining data quality. Notably, we
pre-applied Rejection Sampling in both LC-Base
model and AC model training stages and incorpo-
rated 30 additional samples to ensure instruction
following.

In implementation, we encountered output for-
matting issues when applying RS with LeetCode
data(Appendix B). To resolve this, we devel-
oped specialized Helper models by combining
CodeAlpaca samples (Chaudhary, 2023) with Leet-
Code/Fetch/AC queries. These Helper models ef-
fectively replace direct model generations for train-
ing purposes.

4 [Experiments

4.1 Datasets & Models

During training, we validate the AC method using
LeetCode data from Shen and Zhang (2024). To
build helper models, we randomly select 10,000
samples from CodeAlpaca (Chaudhary, 2023)
and obtain corresponding outputs via GPT-4o-
20240806 (OpenAl, 2024). For evaluation, we
employ LiveCodeBench (Jain et al., 2024), Hu-
manEval (HE) (Chen et al., 2021) and MBPP

Table 2: Accuracy(%) on HE and MBPP. Qwen* repre-
sents Qwen2.5-Coder-7B-Instruct.

Model HE HE+ MBPP MBPP+
Qwen* 87.19% 82.20% 83.33% 71.67%
LC-Base 86.10% 80.30% 84.92% 74.07%
AC 8524% 79.63% 77.25% 67.20%
ACnE 84.63% 79.09% 75.66% 65.87%
AC-RS 86.46% 80.67% 83.07% 72.75%

(Austin et al., 2021) benchmarks with the EvalPlus
framework (Liu et al., 2023) to assess AC-RS ef-
fectiveness.

For model selection, Qwen2.5-Coder-7B-
Instruct (Hui et al.,, 2024) serves as baseline
model. Comparative experiments include
CodeLlama-7B-Instruct (Roziere et al., 2024),
DeepSeek-Coder-6.7B-Instruct (Guo et al., 2024),
GPT-40-20240806, and Qwen2.5-Coder-32B-
Instruct (Hui et al., 2024). All models are trained
using LLaMA Factory (Zheng et al., 2024) and
deployed via vLLM (Kwon et al., 2023). Detailed
experimental configurations are elaborated in
Appendix C.

4.2 Results

Table 1 presents performance comparisons between
AC-RS and other models on LiveCodeBench. Ex-
perimental results demonstrate that AC-RS out-
performs Qwen2.5-Coder-7B-Instruct across all
evaluation tasks. On the tasks central to our re-
search objectives, Test Output Prediction and Code
Execution, the method improves accuracy from
49.55% to 60.41% and 44.68% to 58.25%. Re-
markably, AC-RS slightly outperforms larger mod-
els like Qwen2.5-Coder-32B-Instruct and GPT-4o-
20240806 in Code Execution results.

We analyze contributions from both AC and
RS stages. During AC implementation, models
show significant gains in Test Output Prediction
and Code Execution by avoiding attention traps

in LeetCode data. However, this comes with a
0.65% decrease in general Code Generation ability
comparing to LC-Base. This trade-off stems from
using Fetch Query outputs as training data, which
introduces misalignment issues between queries
and outputs, causing distortion in data probability
distributions. The Rejection Sampling (RS) stage
addresses two critical challenges: It resolves query-
output alignment issues through self-generated
training data from AC-trained models, while si-
multaneously reducing model adaptation complex-
ity. This stage further improves performance in
Test Output Prediction and Code Execution, while
maintaining Code Generation performance without
degradation.

Experimental results from HumanEval (HE)
and MBPP benchmarks (Table 2) further validate
method robustness. During the AC stage alone,
we observe performance declines of 0.86% on HE
and 7.67% on MBPP, confirming the risks of data
distribution disruption from single-stage optimiza-
tion. However, the RS stage successfully mitigates
these declines, with AC-RS ultimately matching
LC-Base performance on both benchmarks.

4.3 Ablations & Discussions

This section systematically analyzes two core
questions: (1) the necessity of introducing Fetch
Queries, and (2) different implementations of the
AC method. Experimental results reveal critical
factors in method design.

ACnR vs. AC: How Output Refetch Amplifies
Attention Shifting Figure 3 presents experimen-
tal results for ACnR (Attention Cracking with no
Refetch). This approach modifies queries while
retaining original outputs. Results show that ACnR
improves Test Output Prediction and Code Ex-
ecution performance, but achieves weaker gains
(2.72% and 0.62% improvements over LC-Base)
compared to the Refetch-enhanced AC method.
The limited improvement stems from insufficient
example coverage in original outputs. Statistical
analysis reveals that only 43.1% of LC-Base out-
puts contain examples. By introducing specially
designed Fetch Queries, we increase the example-
containing output ratio to 99.9%, significantly im-
proving data collection efficiency. The Fetch Query
mechanism enables better data utilization, ulti-
mately unleashing greater model potential.

ACnE vs. AC: Trade-offs Between Difficulty
and Generalization The AC method removes an-
swer references from LeetCode problem descrip-

65

mm AC
60 | MmN ACnR

ACnE
55 A AC Helper
ACnE Helper
50 1 mmm AC-RS
45 4
40 A
35 -j I
30 - T T T

Code Generation Test Output Prediction Code Excution

Scores (%)

Figure 3: Model performance differences on Live-
CodeBench in the ablation study. (ACnR refers to AC
with no Refetch, ACnE refers to AC with no Example).

tions to mitigate attention traps. A comparable
approach, termed ACnE (Attention Cracking with
no Examples), eliminates entire example sections.
Figure 3 demonstrates comparable performance be-
tween ACnE and AC-RS across three key tasks.
This equivalence arises from ACnE’s increased
learning demands: Models must not only predict
execution results but also autonomously gener-
ate test cases, forcing deeper understanding of
problem-code-example relationships. However,
ACnE incurs two substantial costs: (1) Reduced
generalization capability: While ACnE achieves
higher code generation accuracy than AC on test
sets from May 2023 to March 2024 (closer to train
data period), its performance degrades on later
datasets (April-August 2024). Table 2 shows ACnE
underperforms AC on both HE and MBPP bench-
marks. (2) Limited multi-dataset compatibility:
When trained with 10,000 CodeAlpaca samples
(ACnE_Helper), performance declines significantly
due to gradient signal dilution from standard train-
ing data. Given our primary objective, eliminate
attention traps through minimal data modifications,
we select the more adaptable AC method as the
preferred implementation.

5 Conclusion

Our study proposes AC-RS method. The AC stage
eliminates attention traps in training data through
data restructuring. The RS stage addresses perfor-
mance degradation by training models with self-
generated outputs. Experimental results demon-
strate that our 7B model trained with AC-RS
achieves superior performance on LiveCodeBench.
Notably, it matches the Code Execution accuracy
of 32B parameter model and performs comparably
to GPT-4o.

6 Limitations

While AC-RS effectively eliminate attention traps
in Code Execution training data, two limitations
persist: First, our validation remains constrained
by the scarcity of high-quality open-source code
instruction data and computational resource limi-
tations. Second, AC-RS specifically targets Code
Execution tasks. Systematically identifying diverse
attention traps across massive training data and de-
veloping universal solutions remains an unresolved
research challenge.

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
Preprint, arXiv:2404.14219.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. Preprint,
arXiv:2309.166009.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large language
models trained on code. Preprint, arXiv:2107.03374.

DeepSeek-Al, Qihao Zhu, Daya Guo, Zhihong Shao,
Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun
Li, Huazuo Gao, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. Preprint, arXiv:2406.11931.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. Preprint, arXiv:2407.21783.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.
2024. Cruxeval: A benchmark for code rea-
soning, understanding and execution. Preprint,
arXiv:2401.03065.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, et al. 2024. Deepseek-coder:
When the large language model meets program-

ming — the rise of code intelligence. Preprint,
arXiv:2401.14196.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2.5-coder
technical report. Preprint, arXiv:2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free evalu-
ation of large language models for code. Preprint,
arXiv:2403.07974.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large
language models for code generation. Preprint,
arXiv:2406.00515.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611-626, New York, NY, USA. Association
for Computing Machinery.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you!
Preprint, arXiv:2305.06161.

Bingchang Liu, Chaoyu Chen, Zi Gong, Cong Liao,
Huan Wang, Zhichao Lei, Ming Liang, Dajun Chen,
Min Shen, Hailian Zhou, et al. 2024a. Mftcoder:
Boosting code llms with multitask fine-tuning. In
Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD 24,
page 5430-5441, New York, NY, USA. Association
for Computing Machinery.

Jiawei Liu, Chunqgiu Steven Xia, Yuyao Wang, and
LINGMING ZHANG. 2023. Is your code gener-
ated by chatgpt really correct? rigorous evaluation
of large language models for code generation. In
Advances in Neural Information Processing Systems,
volume 36, pages 21558-21572. Curran Associates,
Inc.

Tiangi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J Liu, and Jialu Liu. 2024b.
Statistical rejection sampling improves preference op-
timization. In The Twelfth International Conference
on Learning Representations.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. Preprint, arXiv:2306.08568.

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2305.06161
https://doi.org/10.1145/3637528.3671609
https://doi.org/10.1145/3637528.3671609
https://doi.org/10.1145/3637528.3671609
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://iclr.cc/virtual/2024/poster/17450
https://iclr.cc/virtual/2024/poster/17450
https://iclr.cc/virtual/2024/poster/17450
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
et al. 2021. Show your work: Scratchpads for
intermediate computation with language models.
Preprint, arXiv:2112.00114.

OpenAl. 2022. Introducing chatgpt. https://openai.
com/index/chatgpt/.

OpenAl. 2024. Hello gpt-40. https://openai.com/
index/hello-gpt-4o/.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, et al. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems, volume 35, pages
27730-27744. Curran Associates, Inc.

Qwen-Team. 2024. Code with codeqwenl.5. https:
//gqwenlm.github.io/blog/codeqwent.5/.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al.
2024. Code llama: Open foundation models for code.
Preprint, arXiv:2308.12950.

Wei Shen and Chuheng Zhang. 2024. Policy filtration
in rlhf to fine-tune llm for code generation. Preprint,
arXiv:2409.06957.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023a. Llama: Open and
efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484—13508, Toronto, Canada. Association
for Computational Linguistics.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: Empowering
code generation with OSS-instruct. In Proceedings of

the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 52632-52657. PMLR.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. Preprint,
arXiv:2304.12244.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. Preprint, arXiv:2407.10671.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yonggiang Ma.
2024. Llamafactory: Unified efficient fine-tuning of
100+ language models. Preprint, arXiv:2403.13372.

A Examples for attention trap

Figure 4 and Figure 5 compare attention weight
distributions between the LC-Base model and AC-
RS model. The LC-Base model demonstrates clear
attention trap patterns when processing LeetCode
training data. During output learning, the model
disproportionately focuses on reference answers in
input queries rather than problem descriptions or
code logic. Visual analysis reveals two dominant at-
tention patterns in the LC-Base model: (1) Strong
focus on sequence-initial tokens (2) Heightened
attention to recent colon symbols (:) and space
character. Beyond these common high-attention el-
ements, tokens corresponding to example answers
in queries receive maximum attention weights, fol-
lowed by other example answers and their explana-
tory components. The AC method eliminates this
trap through targeted training data modifications.
These modifications enable proper attention allo-
cation to critical elements like problem statements,
input parameters, and program code. This improve-
ment allows effective capture of abstract reasoning
patterns in Code Execution tasks. The approach
better utilizes the performance potential inherent
in training data.

https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://qwenlm.github.io/blog/codeqwen1.5/
https://qwenlm.github.io/blog/codeqwen1.5/
https://qwenlm.github.io/blog/codeqwen1.5/
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2409.06957
https://arxiv.org/abs/2409.06957
https://arxiv.org/abs/2409.06957
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2403.13372

You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>

<|im_start|>user

You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+l, ..., numsr-1, numsr] is abs(numsl + numsl+1l + ...
+ numsr-1 + numsr).

Return the maximum absolute sum of any (possibly empty) subarray of nums.

Note that abs(x) 1s defined as follows:

If x is a negative integer, then abs(x) = -x.
If x is a non-negative integer, then abs(x) = x.

0.000 0.030 0.060 0.090 0.120 0.150 0.180
Example 1:

Input: nums = [1,-3,2,3,-4]
Output: B
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.

Example 2:

Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.

Constraints:

1 <= nums.length <= 10™5
-10”4 <= nums[i] <= 10~4

Please complete the following Python code:

*python

class Solution:

def maxAbsoluteSum(self, nums: List[int]) -> int:

“t<|im_end|>

<|im_start|>assistant
To solve the problem of finding the maximum absolute sum of any subarray, we can utilize a strategy that involves tracking two running
computations as we iterate through the array:

1. **Maximum Subarray Sum (Kadane's Algorithm)**: This helps us find the maximum sum of any contiguous subarray. We'll use this to find
the maximum positive sum a subarray can achleve.

2. **Minimum Subarray Sum**: Similarly, this helps us find the minimum sum of any contiguous subarray. By negating the array elements
and applying Kadane's again, we can find the minimum sum, which helps in calculating the maximum absolute sum when considering negative
subarray sums.

The maximum absolute sum of a subarray can be either the maximum subarray sum or the maximum negative of the minimum subarray sum.
Additionally, any subarray that happens to sum to zero will also contribute to the maximum absolute sum as zero's absolute value is
zero, which might be the maximum if other max sums are negative.

Here's the implementation of the above logic:

"~ python
from typing import List

class Solution:
def maxAbsoluteSum(self, nums: List[int]) -> int:
max_sum = @
min_sum = @

current_max = @
current_min = 0 0.000 0.030 0.060 0.090 0.120 0.150 9.188_

for num in nums:
current_max += num
current_min += num

Update global max and min sums
max_sum = max(max_sum, current_max)
min_sum = min(min_sum, current_min)

Reset current max and min if they drop below zero
if current_max < @:

current_max = 0
if current_min > @:

current_min = @

The result 1s the maximum of the maximum positive sum
and the absolute value of the minimum negative sum Current Step
return max(max_sum, abs(min_sum))

Example usage:

solution = Solution()

print(solution.maxAbsoluteSum([1, -3, 2, 3, -41)) # OutputEl5

print(solution.maxAbsoluteSum([2, -5, 1, -4, 3, -21)) # Qutput: 8

#4 Explanation:

- **current_max** and **current_min** are used to track the sum of the current subarray.

- As we iterate through the array, we update these values by adding the current number.

- We update the global maximum and minimum sums ("max_sum’ and “min_sum®) whenever the current values exceed or drop below them,
respectively.

- If at any point “current_max® or ‘current_min® becomes negative or positive, we reset them to zero because starting a new subarray
from the next element might yield a higher sum.

- Finally, the result is the maximum of “max_sum’ and the absolute value of “min_sum’, ensuring we account for both positive and
negative subarray contributions to the maximum absolute sum.

Figure 4: Attention weights of the LC-Base model trapped in attention traps.

<[im_start|>system

You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>

<|im_start|>user

You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+l, ..., numsr-1, numsr] is abs(numsl + numsl+l + ...
+ numsr-1 + numsr).

Return the maximum absolute sum of any (possibly empty) subarray of nums.

Note that abs(x) is defined as follows:

If x is a negative integer, then abs(x) = -x.

If x is a non-negative integer, then abs(x) = x.

Example 1:

Input: nums = [1,-3,2,3,-4] 0.000 0.014 0.028 0.042 0.056 0.070 9.884_
Example 2:

Input: nums = [2,-5,1,-4,3,-2]

Constraints:

1 <= nums.length <= 10"5
-1074 <= nums[i] <= 10™4

Please complete the following Python code:

" python

class Solution:

def maxAbsoluteSum(self, nums: List[int]) -> int:

TU<|im_end|>

<|im_start|>assistant
To solve the problem of finding the maximum absolute sum of any subarray, we can utilize a strategy that involves tracking two running
computations as we iterate through the array:

1. **Maximum Subarray Sum (Kadane's Algorithm)**: This helps us find the maximum sum of any contiguous subarray. We'll use this to find
the maximum positive sum a subarray can achieve.

2. **Minimum Subarray Sum**: Similarly, this helps us find the minimum sum of any contiguous subarray. By negating the array elements
and applying Kadane's again, we can find the minimum sum, which helps in calculating the maximum absolute sum when considering negative
subarray sums.

The maximum absolute sum of a subarray can be either the maximum subarray sum or the maximum negative of the minimum subarray sum.
Additionally, any subarray that happens to sum to zero will also contribute to the maximum absolute sum as zero's absolute value is
zero, which might be the maximum if other max sums are negative.

Here's the implementation of the above logic:
*python
from typing import List

class Solution:
def maxAbsoluteSum(self, nums: List[int]) -> int:
max_sum = @
min_sum = @
current_max = @

GITCE LD S & 0.000 0.014 0.028 0.042 0.056 0.070 9.884_

for num in nums:
current_max += num
current_min += num

Update global max and min sums
max_sum = max(max_sum, current_max)
min_sum = min(min_sum, current_min)

Reset current max and min if they drop below zero
if current_max < @:

current_max = @
if current_min > 0:

current_min = @

The result is the maximum of the maximum positive sum
and the absolute value of the minimum negative sum Current Step
return max(max_sum, abs(min_sum))

Example usage:

solution = Solution()

print(solution.maxAbsoluteSum([1, -3, 2, BN -B1)) B output@lls

print(solution.maxAbsoluteSum([2, -5, 1, -4, 3, -21)) # Output: 8

##4# Explanation:

- **current_max** and **current_min** are used to track the sum of the current subarray.

- As we lterate through the array, we update these values by adding the current number.

- We update the global maximum and minimum sums (max_sum’ and ‘min_sum’) whenever the current values exceed or drop below them,
respectively.

- If at any point “current_max’ or “current_min’ becomes negative or positive, we reset them to zero because starting a new subarray
from the next element might yield a higher sum.

- Finally, the result is the maximum of “max_sum’ and the absolute value of "min_sum’, ensuring we account for both positive and
negative subarray contributions to the maximum absolute sum.

Figure 5: Attention weights of AC-RS on training data.

B Qwen2.5-Coder-7B-Instruct Prediction
Example

“**python
class Solution:
def maxAbsoluteSum(self, nums: List[int]) -> int:
max_sum = 0
current_sum = 0
for num in nums:
current_sum = max(@, current_sum + num)
max_sum = max(max_sum, current_sum)
current_sum = 0
for num in nums:
current_sum = max (@, -current_sum - num)
max_sum = max(max_sum, current_sum)
return max_sum

Figure 6: Generation result of Qwen2.5-Coder-7B-
Instruct on the example illustrated in Figure 4.

C Experiment Settings

LiveCodeBench Version LiveCodeBench serves
as a continuously updated benchmark where each
category of tasks contains multiple versions. To en-
sure clear experimental variables and reproducibil-
ity, we specify the exact versions and sample in-
formation used. For Code Generation tasks, we
employ the latest version v3 available at experi-
ment initiation, containing 612 test samples from
May 1, 2023 to September 1, 2024. Self Repair
tasks rely on error outputs from Code Generation
tasks, but their test sets differ in this study. This
occurs because the Self Repair test set only updated
to version v1 during our experiments, containing
400 test samples from May 1, 2023 to April 1,
2024. Test Output Prediction uses version v1 with
442 samples from May 1, 2023 to April 1, 2024.
Code Execution employs version v2 containing
479 test samples from May 1, 2023 to December
1, 2023. We note that LiveCodeBench leaderboard
data changes cause slight sample count mismatches
within identical time ranges. For example, the Self
Repair tasks actually contain 439 samples (May
1, 2023 to April 1, 2024) on the leaderboard, ex-
ceeding our reported 400 samples. This difference
stems from subsequent updates adding 39 new sam-
ples from March 1, 2024 to April 1, 2024.
Hyperparamter Settings We maintain consis-
tent parameter configurations for both model train-
ing and inference. The training process uses full-
parameter bfl6 precision mode with sequence
length 4096 and batch size 32. To optimize mem-
ory usage, we enable Deepspeed framework’s O2
optimization level. This configuration allows com-
plete training on a server with 4 NVIDIA A800
80G GPUs. Models undergo 5 full training epochs
with initial learning rate 1 * 10~° using a cosine

learning rate scheduler. During inference, we fol-
low LiveCodeBench’s standard test script config-
uration: topp=0.95 and temperature=0.2. For cost
control, we request single outputs from GPT-40
during data collection. For local models perform-
ing Rejection Sampling, we consistently execute
20 output predictions with topp=0.8 and tempera-
ture=0.95 to ensure sampled data quality.

	Introduction
	Related Works
	Method
	Attention Cracking
	Rejection Sampling

	Experiments
	Datasets & Models
	Results
	Ablations & Discussions

	Conclusion
	Limitations
	Examples for attention trap
	Qwen2.5-Coder-7B-Instruct Prediction Example
	Experiment Settings

