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Abstract

Code-specific Large Language Models (Code001
LLMs) have greatly improved performance002
across code-related tasks, offering substantial003
benefits in practical applications. However, ex-004
isting research reveals significant performance005
bottlenecks in Code Execution tasks, which re-006
quires models to predict the execution results007
of given code snippets. This study identifies008
that, the Attention Trap phenomenon in train-009
ing data constitutes a key constraint on model010
performance. To address this phenomenon, we011
propose the Attention Cracking with Rejection012
Sampling (AC-RS) method. The method first013
applies structural optimization to training data014
to eliminate attention traps. Then, it conducts015
secondary training on the outputs generated by016
the fine-tuned model to mitigate potential neg-017
ative impacts from manual data intervention.018
Experimental results show that AC-RS signif-019
icantly enhances the accuracy of Code Execu-020
tion while preserving models’ original capabili-021
ties. Notably, the optimized 7B model achieves022
prediction accuracy comparable to 32B model023
and GPT-4o.024

1 Introduction025

With the rapid advancement of large language026

models (LLMs) (OpenAI, 2022; Ouyang et al.,027

2022; OpenAI et al., 2024; Touvron et al., 2023a,b;028

Grattafiori et al., 2024; Bai et al., 2023; Yang029

et al., 2024), Code LLMs have attracted substan-030

tial academic and industrial attention due to their031

direct applicability and broad potential. From032

early models like StarCoder (Li et al., 2023) and033

CodeLlama (Rozière et al., 2024) to recent advance-034

ments including Deepseek Coder (Guo et al., 2024;035

DeepSeek-AI et al., 2024) and Qwen Coder (Qwen-036

Team, 2024; Hui et al., 2024), Code LLMs have037

shown remarkable performance across code-related038

tasks.039

However, studies (Austin et al., 2021; Nye040

et al., 2021; Gu et al., 2024) indicate that cur-041

Figure 1: Attention Trap in Leetcode data.

rent Code LLMs underperform in Code Execution 042

tasks. Austin et al. (2021) reveals that even 137B 043

model struggles to predict execution results of ba- 044

sic Python code, achieving merely 29% accuracy 045

on test case from the proposed MBPP benchmark, 046

while fine-tuning only provides minimal perfor- 047

mance gains. Nye et al. (2021) attributes this to 048

the lack of explicit step-by-step reasoning before 049

giving the predicted results. While previous work 050

focuses on reasoning deficiencies, our work reveals 051

that attention traps in widely-used LeetCode1 train- 052

ing data fundamentally constrain execution predic- 053

tion capabilities. 054

When models process training data with lexi- 055

cal similarities, their attention mechanisms become 056

overly focused on surface-level token correlations 057

while neglecting deeper abstract relationships be- 058

tween data components. We term this phenomenon 059

the "Attention Trap". In Code Execution tasks 060

using LeetCode data, this issue becomes promi- 061

nent. Figure 1 demonstrates how trained model 062

distributes attention during Code Execution predic- 063

tions. The presence of target outputs "5" in Query 064

creates strong attention biases. During learning, 065

models excessively attend to these reference out- 066

1https://leetcode.com/
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Figure 2: Pipeline of Attention Cracking with Rejection Sampling (AC-RS).

puts in the input queries, sometimes even forming067

erroneous correlations with unrelated examples("8"068

in example). This prevents proper modeling of the069

multi-step reasoning chain connecting problem de-070

scriptions, program code, and execution results.071

Full example and comparations are provided in072

Appendix A.073

To eliminate attention traps in training data, we074

propose Attention Cracking with Rejection Sam-075

pling. Our method contains two stages: (1) Atten-076

tion Cracking (AC) modifies training data to elimi-077

nate attention traps; (2) Rejection Sampling (RS)078

(Liu et al., 2024b) employs self-generated model079

outputs for secondary training, preventing perfor-080

mance degradation from manual data modifications.081

Experimental results demonstrate that AC-RS sig-082

nificantly improves performance with minimal data083

requirements. Using only 1,000 LeetCode sam-084

ples, our method achieves 13.57% improvements085

on the Code Execution tasks of LiveCodeBench086

(Jain et al., 2024). It also shows 10.96% gains on087

Test Output Prediction tasks, which require pre-088

dicting results from problem descriptions rather089

than code, while maintaining code generation ca-090

pabilities. Remarkably, the enhanced 7B-Instruct091

model matches the Code Execution accuracy of092

32B-Instruct model and GPT-4o-20240806 (Ope-093

nAI, 2024).094

2 Related Works095

The field of Code LLMs originated from data-096

centric methodologies and has gradually developed097

into a thriving research area (Jiang et al., 2024).098

Early studies in code-related domains adopted data099

construction methods from general-purpose do-100

mains. For instance, Chaudhary (2023) employed101

the Self-Instruct (Wang et al., 2023) approach to102

automatically generate code instruction dataset 103

CodeAlpaca. Luo et al. (2023) further enhanced 104

this dataset through Evol-Instruct (Xu et al., 2023), 105

training the WizardCoder model. Additionally, 106

Magicoder (Wei et al., 2024) attempted to generate 107

high-quality instruction tuning data using open- 108

source code. As data-related challenges were pro- 109

gressively addressed, multiple high-performance 110

open-source code models emerged. Representa- 111

tive examples include the Qwen Coder series and 112

DeepSeek Coder series. Concurrently, researchers 113

achieved notable progress in other dimensions of 114

code-related tasks. Frameworks like MFTCoder 115

(Liu et al., 2024a) and models like Phi (Abdin et al., 116

2024) advanced the field through multi-task train- 117

ing strategies and parameter efficiency improve- 118

ments, respectively. 119

3 Method 120

This section details the implementation of AC-RS 121

method. To ensure fair comparison and better 122

prepare for subsequent training data generation, 123

we first train LC-Base model using Leetcode data 124

through Rejection Sampling (① in Figure 2). AC- 125

RS method then introduces two formal stages: At- 126

tention Cracking and Rejection Sampling. 127

3.1 Attention Cracking 128

The AC stage aims to eliminate attention traps. 129

Concretely, by removing target outputs from 130

queries, we prevent models from relying on su- 131

perficial pattern matching. The AC stage modi- 132

fies LeetCode queries through two operations: (1) 133

AC Queries: Remove target outputs from exam- 134

ples in original queries for training. (2) Fetch 135

Queries: Append "Please give all the examples 136

in the answer." at query endings, increasing the 137
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Table 1: Accuracy(%) on LiveCodeBench. Qwen2.5-Coder, DeepSeek-Coder, CodeLlama are all Instruct models.

Model Size Code Gen Self Repair Test Output
Prediction

Code Exec
w/ COT

Code Exec
w/o COT Avg

GPT-4o-0806 - 49.35% 59.75% 76.02% 96.24% 58.04% 67.88%
Qwen2.5-Coder 32B 52.61% 62.25% 70.81% 89.35% 57.41% 66.49%
CodeLlama 7B 10.29% 10.50% 25.11% 27.97% 20.46% 18.87%
DeepSeek-Coder 6.7B 19.44% 24.25% 26.02% 35.91% 39.67% 29.06%
Qwen2.5-Coder 7B 36.44% 45.75% 49.55% 68.06% 44.68% 48.90%
LC-Base 7B 38.07% 48.50% 54.52% 72.86% 48.23% 52.44%
AC 7B 37.42% 46.75% 57.92% 70.98% 58.04% 54.22%
AC-RS 7B 39.54% 47.75% 60.41% 71.19% 58.25% 55.43%

likelihood of including examples in retrieved re-138

sults. Fetch Queries collect generation results from139

the LC-Base model. Generated data is processed140

by selecting responses with the same examples as141

queries, prioritizing those passing tests. This filter-142

ing criterion applies to both LC-Base and RS stage143

outputs.144

3.2 Rejection Sampling145

To prevent performance degradation from AC stage146

data modifications, we introduce a RS stage. This147

mechanism directly uses AC queries to obtain out-148

puts from AC-trained models, eliminating atten-149

tion distortion caused by query-output mismatches.150

Through quality filtering of model-generated re-151

sponses, RS substantially reduces training diffi-152

culty while mantaining data quality. Notably, we153

pre-applied Rejection Sampling in both LC-Base154

model and AC model training stages and incorpo-155

rated 30 additional samples to ensure instruction156

following.157

In implementation, we encountered output for-158

matting issues when applying RS with LeetCode159

data(Appendix B). To resolve this, we devel-160

oped specialized Helper models by combining161

CodeAlpaca samples (Chaudhary, 2023) with Leet-162

Code/Fetch/AC queries. These Helper models ef-163

fectively replace direct model generations for train-164

ing purposes.165

4 Experiments166

4.1 Datasets & Models167

During training, we validate the AC method using168

LeetCode data from Shen and Zhang (2024). To169

build helper models, we randomly select 10,000170

samples from CodeAlpaca (Chaudhary, 2023)171

and obtain corresponding outputs via GPT-4o-172

20240806 (OpenAI, 2024). For evaluation, we173

employ LiveCodeBench (Jain et al., 2024), Hu-174

manEval (HE) (Chen et al., 2021) and MBPP175

Table 2: Accuracy(%) on HE and MBPP. Qwen* repre-
sents Qwen2.5-Coder-7B-Instruct.

Model HE HE+ MBPP MBPP+

Qwen* 87.19% 82.20% 83.33% 71.67%
LC-Base 86.10% 80.30% 84.92% 74.07%
AC 85.24% 79.63% 77.25% 67.20%
ACnE 84.63% 79.09% 75.66% 65.87%
AC-RS 86.46% 80.67% 83.07% 72.75%

(Austin et al., 2021) benchmarks with the EvalPlus 176

framework (Liu et al., 2023) to assess AC-RS ef- 177

fectiveness. 178

For model selection, Qwen2.5-Coder-7B- 179

Instruct (Hui et al., 2024) serves as baseline 180

model. Comparative experiments include 181

CodeLlama-7B-Instruct (Rozière et al., 2024), 182

DeepSeek-Coder-6.7B-Instruct (Guo et al., 2024), 183

GPT-4o-20240806, and Qwen2.5-Coder-32B- 184

Instruct (Hui et al., 2024). All models are trained 185

using LLaMA Factory (Zheng et al., 2024) and 186

deployed via vLLM (Kwon et al., 2023). Detailed 187

experimental configurations are elaborated in 188

Appendix C. 189

4.2 Results 190

Table 1 presents performance comparisons between 191

AC-RS and other models on LiveCodeBench. Ex- 192

perimental results demonstrate that AC-RS out- 193

performs Qwen2.5-Coder-7B-Instruct across all 194

evaluation tasks. On the tasks central to our re- 195

search objectives, Test Output Prediction and Code 196

Execution, the method improves accuracy from 197

49.55% to 60.41% and 44.68% to 58.25%. Re- 198

markably, AC-RS slightly outperforms larger mod- 199

els like Qwen2.5-Coder-32B-Instruct and GPT-4o- 200

20240806 in Code Execution results. 201

We analyze contributions from both AC and 202

RS stages. During AC implementation, models 203

show significant gains in Test Output Prediction 204

and Code Execution by avoiding attention traps 205
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in LeetCode data. However, this comes with a206

0.65% decrease in general Code Generation ability207

comparing to LC-Base. This trade-off stems from208

using Fetch Query outputs as training data, which209

introduces misalignment issues between queries210

and outputs, causing distortion in data probability211

distributions. The Rejection Sampling (RS) stage212

addresses two critical challenges: It resolves query-213

output alignment issues through self-generated214

training data from AC-trained models, while si-215

multaneously reducing model adaptation complex-216

ity. This stage further improves performance in217

Test Output Prediction and Code Execution, while218

maintaining Code Generation performance without219

degradation.220

Experimental results from HumanEval (HE)221

and MBPP benchmarks (Table 2) further validate222

method robustness. During the AC stage alone,223

we observe performance declines of 0.86% on HE224

and 7.67% on MBPP, confirming the risks of data225

distribution disruption from single-stage optimiza-226

tion. However, the RS stage successfully mitigates227

these declines, with AC-RS ultimately matching228

LC-Base performance on both benchmarks.229

4.3 Ablations & Discussions230

This section systematically analyzes two core231

questions: (1) the necessity of introducing Fetch232

Queries, and (2) different implementations of the233

AC method. Experimental results reveal critical234

factors in method design.235

ACnR vs. AC: How Output Refetch Amplifies236

Attention Shifting Figure 3 presents experimen-237

tal results for ACnR (Attention Cracking with no238

Refetch). This approach modifies queries while239

retaining original outputs. Results show that ACnR240

improves Test Output Prediction and Code Ex-241

ecution performance, but achieves weaker gains242

(2.72% and 0.62% improvements over LC-Base)243

compared to the Refetch-enhanced AC method.244

The limited improvement stems from insufficient245

example coverage in original outputs. Statistical246

analysis reveals that only 43.1% of LC-Base out-247

puts contain examples. By introducing specially248

designed Fetch Queries, we increase the example-249

containing output ratio to 99.9%, significantly im-250

proving data collection efficiency. The Fetch Query251

mechanism enables better data utilization, ulti-252

mately unleashing greater model potential.253

ACnE vs. AC: Trade-offs Between Difficulty254

and Generalization The AC method removes an-255

swer references from LeetCode problem descrip-256

Code Generation Test Output Prediction Code Excution
30

35

40

45

50

55

60

65

Sc
or

es
 (%

)

AC
ACnR
ACnE
AC Helper
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AC-RS

Figure 3: Model performance differences on Live-
CodeBench in the ablation study. (ACnR refers to AC
with no Refetch, ACnE refers to AC with no Example).

tions to mitigate attention traps. A comparable 257

approach, termed ACnE (Attention Cracking with 258

no Examples), eliminates entire example sections. 259

Figure 3 demonstrates comparable performance be- 260

tween ACnE and AC-RS across three key tasks. 261

This equivalence arises from ACnE’s increased 262

learning demands: Models must not only predict 263

execution results but also autonomously gener- 264

ate test cases, forcing deeper understanding of 265

problem-code-example relationships. However, 266

ACnE incurs two substantial costs: (1) Reduced 267

generalization capability: While ACnE achieves 268

higher code generation accuracy than AC on test 269

sets from May 2023 to March 2024 (closer to train 270

data period), its performance degrades on later 271

datasets (April-August 2024). Table 2 shows ACnE 272

underperforms AC on both HE and MBPP bench- 273

marks. (2) Limited multi-dataset compatibility: 274

When trained with 10,000 CodeAlpaca samples 275

(ACnE_Helper), performance declines significantly 276

due to gradient signal dilution from standard train- 277

ing data. Given our primary objective, eliminate 278

attention traps through minimal data modifications, 279

we select the more adaptable AC method as the 280

preferred implementation. 281

5 Conclusion 282

Our study proposes AC-RS method. The AC stage 283

eliminates attention traps in training data through 284

data restructuring. The RS stage addresses perfor- 285

mance degradation by training models with self- 286

generated outputs. Experimental results demon- 287

strate that our 7B model trained with AC-RS 288

achieves superior performance on LiveCodeBench. 289

Notably, it matches the Code Execution accuracy 290

of 32B parameter model and performs comparably 291

to GPT-4o. 292
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6 Limitations293

While AC-RS effectively eliminate attention traps294

in Code Execution training data, two limitations295

persist: First, our validation remains constrained296

by the scarcity of high-quality open-source code297

instruction data and computational resource limi-298

tations. Second, AC-RS specifically targets Code299

Execution tasks. Systematically identifying diverse300

attention traps across massive training data and de-301

veloping universal solutions remains an unresolved302

research challenge.303
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A Examples for attention trap 471

Figure 4 and Figure 5 compare attention weight 472

distributions between the LC-Base model and AC- 473

RS model. The LC-Base model demonstrates clear 474

attention trap patterns when processing LeetCode 475

training data. During output learning, the model 476

disproportionately focuses on reference answers in 477

input queries rather than problem descriptions or 478

code logic. Visual analysis reveals two dominant at- 479

tention patterns in the LC-Base model: (1) Strong 480

focus on sequence-initial tokens (2) Heightened 481

attention to recent colon symbols (:) and space 482

character. Beyond these common high-attention el- 483

ements, tokens corresponding to example answers 484

in queries receive maximum attention weights, fol- 485

lowed by other example answers and their explana- 486

tory components. The AC method eliminates this 487

trap through targeted training data modifications. 488

These modifications enable proper attention allo- 489

cation to critical elements like problem statements, 490

input parameters, and program code. This improve- 491

ment allows effective capture of abstract reasoning 492

patterns in Code Execution tasks. The approach 493

better utilizes the performance potential inherent 494

in training data. 495
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Figure 4: Attention weights of the LC-Base model trapped in attention traps.
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Figure 5: Attention weights of AC-RS on training data.
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B Qwen2.5-Coder-7B-Instruct Prediction496

Example497

Figure 6: Generation result of Qwen2.5-Coder-7B-
Instruct on the example illustrated in Figure 4.

C Experiment Settings498

LiveCodeBench Version LiveCodeBench serves499

as a continuously updated benchmark where each500

category of tasks contains multiple versions. To en-501

sure clear experimental variables and reproducibil-502

ity, we specify the exact versions and sample in-503

formation used. For Code Generation tasks, we504

employ the latest version v3 available at experi-505

ment initiation, containing 612 test samples from506

May 1, 2023 to September 1, 2024. Self Repair507

tasks rely on error outputs from Code Generation508

tasks, but their test sets differ in this study. This509

occurs because the Self Repair test set only updated510

to version v1 during our experiments, containing511

400 test samples from May 1, 2023 to April 1,512

2024. Test Output Prediction uses version v1 with513

442 samples from May 1, 2023 to April 1, 2024.514

Code Execution employs version v2 containing515

479 test samples from May 1, 2023 to December516

1, 2023. We note that LiveCodeBench leaderboard517

data changes cause slight sample count mismatches518

within identical time ranges. For example, the Self519

Repair tasks actually contain 439 samples (May520

1, 2023 to April 1, 2024) on the leaderboard, ex-521

ceeding our reported 400 samples. This difference522

stems from subsequent updates adding 39 new sam-523

ples from March 1, 2024 to April 1, 2024.524

Hyperparamter Settings We maintain consis-525

tent parameter configurations for both model train-526

ing and inference. The training process uses full-527

parameter bf16 precision mode with sequence528

length 4096 and batch size 32. To optimize mem-529

ory usage, we enable Deepspeed framework’s O2530

optimization level. This configuration allows com-531

plete training on a server with 4 NVIDIA A800532

80G GPUs. Models undergo 5 full training epochs533

with initial learning rate 1 ∗ 10−5 using a cosine534

learning rate scheduler. During inference, we fol- 535

low LiveCodeBench’s standard test script config- 536

uration: topp=0.95 and temperature=0.2. For cost 537

control, we request single outputs from GPT-4o 538

during data collection. For local models perform- 539

ing Rejection Sampling, we consistently execute 540

20 output predictions with topp=0.8 and tempera- 541

ture=0.95 to ensure sampled data quality. 542
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