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ABSTRACT

Offline reinforcement learning (RL) focuses on learning policies using static
datasets without further exploration. With the introduction of distributional rein-
forcement learning into offline RL, current methods excel at quantifying the risk
and ensuring the security of learned policies. However, these algorithms cannot
effectively balance the distribution shift and robustness, and even a minor pertur-
bation in observations can significantly impair policy performance. In this paper,
we propose the algorithm of Offline Robustness of Distributional actor-critic En-
semble Reinforcement learning (ORDER) to improve the robustness of policies.
In ORDER, we introduce two approaches to enhance the robustness: i) introduce
the smoothing technique to policies and distribution functions for states near the
dataset; ii) strengthen the quantile network. In addition to improving the robust-
ness, we also theoretically prove that ORDER converges to a conservative lower
bound, which can alleviate the distribution shift. In our experiments, we vali-
date the effectiveness of ORDER in the D4RL benchmark through comparative
experiments and ablation studies.

1 INTRODUCTION

Offline reinforcement learning (RL) (Lange et al., 2012; Brandfonbrener et al., 2021; Wang et al.,
2021; Nguyen-Tang et al., 2023) concerns the problem of learning a policy from a fixed dataset with-
out further interactions. Offline RL can reduce risk and costs since it eliminates the need for online
interaction. In this way, offline RL can be well used in real-world applications such as autonomous
driving (Diehl et al., 2023), healthcare (Zhang et al., 2023) and robot control (Singh et al., 2022).

Applying the standard policy improvement approaches to an offline dataset typically results in the
distribution shift problem, making offline RL a challenging task (Haarnoja et al., 2018; Ashvin
et al., 2020). Some prior works have relieved this issue by penalizing the action-value of the out-of-
distribution (OOD) actions (Fujimoto et al., 2019; Fujimoto & Gu, 2021; Lyu et al., 2022). Never-
theless, simply learning the expectation of action-value is unable to quantify risk and ensure that the
learned policy acts safely. To overcome this problem, some efforts have been made to import dis-
tributional RL (Dabney et al., 2018a;b; Ma et al., 2020) into offline RL to learn the full distribution
over future returns, which is used to make plans to avoid risky and unsafe actions. In addition, with
the establishment of risk-sensitive objectives (Ma et al., 2020), distributional offline RL (Ma et al.,
2021; Bai et al., 2022b) learns state representations better since they can acquire richer distributed
signals, making them superior to traditional reinforcement learning algorithms even on risk-seeking
and risk-averse objectives.

Unfortunately, research on distributional offline RL is less complete. CODAC (Ma et al., 2021)
brings distributional RL into the offline setting by penalizing the predicted return quantiles for OOD
actions. Meanwhile, MQN-CQR (Bai et al., 2022b) learns a worst-case policy by optimizing the
conditional value-at-risk of the distributional value function. However, existing distributional offline
RL methods only focus on the safety of the learned policy. These methods leverage a conservative
return distribution to impair the robustness, and will make policies highly sensitive, even a minor
perturbation in observations (Kumar et al., 2020). As a result, merely possessing safety can not
make a fine balance between conservatism and robustness, which does not pay enough attention to
robustness.
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In this paper, we propose Offline Robustness of Distributional actor-critic Ensemble Reinforcement
Learning (ORDER) by introducing a smoothing technique to quantile networks. Firstly, we con-
sider the dynamic entropy regularizer of the quantile function instead of an unchangeable constant
to ensure sufficient exploration. Secondly, the increasing number of quantile networks is also bene-
ficial to obtain a more robust distribution value function. Thirdly, smooth regularization is brought
into the distribution and policies of states near the dataset. In theory, we prove that ORDER ob-
tains a uniform lower bound on all integrations of the quantiles with the distribution soft Bellman
operator, which controls the distribution shift. Such bound also achieves the same effect for both
expected returns and risk-sensitive objectives. Overall, ORDER can mitigate the OOD problem and
simultaneously balance conservatism and robustness.

In our experiments, ORDER outperforms the existing distributional offline RL methods in the D4RL
benchmark (Fu et al., 2020). Meanwhile, our algorithm is also competitive against the current
advanced algorithms. Our ablation experiments demonstrate that strengthening the quantile network
is critical to the performance of ORDER. In addition, choosing different risk measure functions does
not have a great impact on the performance of ORDER, which also shows the robustness of our
method.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS AND OFFLINE REINFORCEMENT LEARNING

Consider an episodic Markov decision process (MDP) M = (S,A,P, T,R, γ), where S is the state
space, A is the action space, P(s′|s, a) is the transition distribution, T is the length of the episode,
R(s, a) is the reward function, and γ is the discount factor. For a stochastic policy π(a|s) : S×A →
R, action-value function Qπ is defined as

Qπ(s, a) := Eπ[

∞∑
t=0

γtR(st, at)] | at ∼ π(·|st), st+1 ∼ P(·|st, at), s0 = s, a0 = a.

Assuming rewards satisfy R(st, at) ∈ [Rmin, Rmax], then Qπ(s, a) ∈ [Vmin, Vmax] ⊆ [Rmin/(1 −
γ), Rmax/(1 − γ)]. Standard RL aims at learning the optimal policy π⋆ such that Qπ⋆

(s, a) ≥
Qπ(s, a) for all s ∈ S, a ∈ A and all π. The corresponding Q-function of the policy satisfies the
Bellman operator:

T πQ(s, a) = E[R(s, a)] + γ · EP,π[Q(s′, a′)].

In the offline setting, the agent is not allowed to interact with the environment (Fu et al., 2020). The
objective of agents is to learn an optimal policy only from a fixed dataset D := {(s, a, r, s′)}. For

all states s ∈ D, let π̂(a|s) :=
∑

s′,a′∈D 1(s′=s,a′=a)∑
s′∈D 1s′=s

be the empirical behavior policy. In order to

avoid the situation where the denominator of the fraction is 0 in the theoretical analysis, we assume
that π̂(a|s) > 0. Broadly, actions that are not drawn from π̂ (i.e., those with low probability density)
are the out-of-distribution (OOD).

An approximation T̂ π is used in fitted Q-evaluation (FQE) (Riedmiller, 2005; Ernst et al., 2005)
that R and P in T π are replaced by estimates R̂ and P̂ based on D. Next, sampling (s, a, r, s′)

from D, Bellman target can be estimated as T̂ πQ(s, a) = E[R̂(s, a)] + γEP̂,π[Q(s′, a′)]. Since
Qπ = T πQπ is the fixed point of the Bellman operator T π , Qπ can be evaluated by computing
Q̂k+1 := argminQ L(Q̂, T̂ πQ̂k), where L(Q,Q′) = ED(s,a)[(Q(s, a)−Q′(s, a))2]. If T̂ π = T π ,
then limk→∞ Q̂k = Qπ .

2.2 DISTRIBUTIONAL REINFORCEMENT LEARNING

Instead of a scalar Qπ(s, a), distributional RL model intrinsic randomness of return by learning
distribution action-value Zπ(s, a) =

∑∞
t=0 γ

tR(st, at) (Bellemare et al., 2017). Obviously, Q-
function is the expectation of the return distribution, i.e.,Qπ(s, a) = E[Zπ(s, a)]. The distributional
Bellman operator for policy evaluation is T πZ(s, a) :

D
= R(s, a) + γZ(s′, a′), where D

= indicates
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equality in distribution. Define the quantile function be the inverse of the cumulative density function
FZ(z) = Pr(Z < z) as F−1

Z (τ) := inf{z ∈ R : τ ≤ FZ(z)} (Müller, 1997), where τ denotes
the quantile fraction. For random variables U and V with quantile functions F−1

U and F−1
V , the

p-Wasserstein distance Wp(U, V ) = (
∫ 1

0
|F−1

U (τ) − F−1
V (τ)|pdτ)1/p is the Lp metric on quantile

functions. Bellemare et al. (2017) gave that the distributional Bellman operator T π is a γ-contraction
in the Wp, i.e., let d̄p(Z1, Z2) := sups,aWp(Z1(s, a), Z2(s, a)) be the largest Wasserstein distance
over (s, a), and Z = {Z : S×A → P(R)|∀(s, a),E[|Z(s, a)|p] <∞} be the space of distributions
over R with bounded p-th moment, then

d̄p(T πZ1, T πZ2) ≤ γ · d̄p(Z1, Z2) ∀Z1, Z2 ∈ Z.

Fitted distributional evaluation (FDE) (Ma et al., 2021) approximates T π by T̂ π using D, then Zπ

can be estimated by starting from an arbitrary Ẑ0 and iteratively computing

Ẑk+1 = argmin
Z

Lp(Z, T̂ πẐk), where Lp(Z,Z
′) = ED(s,a)[Wp(Z(s, a), Z

′(s, a))p].

In distributional RL, let risk measure function Φ : Z → R be a map from the value distribution
space to real numbers. Given a distorted function g(τ) over [0, 1], the distorted expectation of Z is

Φg(Z(s, a)) =

∫ 1

0

F−1
Z(s,a)(τ)g(τ)dτ,

and the corresponding policy is πg(s) := argmaxa Φg(Z(s, a)) (Dabney et al., 2018b). Specially,
if g = Uniform([0, 1]), then Qπ(s, a) = Φg(Z(s, a)). For other choices of g(τ), please refer to
Section 5.2.

2.3 ROBUST REINFORCEMENT LEARNING

Robust RL learns the policy by introducing worst-case adversarial noise to the system dynamics
and formulating the noise distribution as the solution of a zero-sum minimax game. In order to
learn robust policy π, SR2L (Shen et al., 2020) obtains ŝ = argmaxŝ∈Bd(s,ϵ)

DJ(π(·|s)||π(·|ŝ)) by
adding a perturbation to the state s, where Bd(s, ϵ) = {ŝ : d(s, ŝ) ≤ ϵ} and the Jeffrey’s divergence
DJ for two distributions P and Q is defined by DJ(P ||Q) = 1

2 [DKL(P ||Q) + DKL(Q||P )], and
then define a smoothness regularizer for policy as Rπ

s = Es∼ρπ maxŝ∈Bd(s,ϵ)DJ(π(·|s)||π(·|ŝ)).
Analogously, RQ

s = Es∼ρπ maxŝ∈Bd(s,ϵ)(Q(s, a) − Q(ŝ, a))2 is the smoothness regularizer for
Q-function, where ρπ is state distribution.
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Figure 1: Architecture diagram for ORDER.

3 OFFLINE ROBUSTNESS OF DISTRIBUTIONAL ENSEMBLE ACTOR-CRITIC

In ORDER, we first obtain a state with adversarial perturbations, and then introduce the smoothness
regularization to both the policy and the distribution action-value function for states with adver-
sarial noises. The smooth regularization can be used to learn a smooth Z-function and generate a
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smooth policy, which makes the algorithm robust. However, the introduction of smoothness could
potentially result in an overestimation of values at the boundaries of the supported dataset. To over-
come this problem, we incorporate a penalty factor for OOD actions to reduce the quantile values of
these actions. In addition, we strengthen the quantile network by increasing the number of quantile
networks, which is also beneficial to the robustness of our algorithm. The overall architecture of
ORDER is shown in Fig. 1.

3.1 ROBUST DISTRIBUTIONAL ACTION-VALUE FUNCTION

In this part, we sample three sets of state-action pairs and form three different loss functions to obtain
a conservative smooth policy. First of all, we construct a perturbation set Bd(s, ϵ) to obtain (ŝ, a)
pairs, where Bd(s, ϵ) is an ϵ-radius ball measured in metric d(·, ·) and ŝ ∈ Bd(s, ϵ). Then we sample
(s, â) pairs from the current policy πϕ, where â ∼ πϕ(s). ORDER contains M Z-function and
denotes the parameters of them-th Z-function and the target Z-function as θm and θ

′

m, respectively.
With the help of the constructions, we will give the different learning targets for (s, a), (ŝ, a) and
(s, â) pairs, respectively.

In DSAC (Ma et al., 2020), based on the idea of maximum entropy RL (Haarnoja et al., 2018), the
distribution soft Bellman operator is defined as

T π
DSZ(s, a) :

D
= R(s, a) + γ[Z(s′, a′)− c log π(a′|s′)].

The algorithm based on maximum entropy RL has better robustness and stronger generalization.
Because optimal possibilities are explored in different ways, it is easier to adjust in the face of
interference. Hence, for a (s, a) pair sampled from D, we obtain the target as

T̂ π
DSZθm(s, a) := R(s, a) + γ[ min

j=1,...,M
Zθ′

j
(s′, a′)− c · log π(a′|s′)],

where the nextZ-function takes the minimum value among the targetZ-functions. The loss function
is defined as follows,

LZ(θm) = Lp(Zθm , T̂ π
DSZθm).

Next, we introduce the smoothness regularizer term to the distribution action-value function that is
designed to enhance the smoothness of the Z-function. Specifically, we minimize the difference
between Zθm(ŝ, a) and Zθm(s, a), where (ŝ, a) is a state-action pair with a perturbed state. Then
we take an adversarial ŝ ∈ Bd(s, ϵ) which maximizes Lp(Zθm(ŝ, a), Zθm(s, a)). The final smooth
term we introduced is shown below:

Lsmooth(s, a; θm) = max
ŝ∈Bd(s,ϵ)

ϱ · Lp(Zθm(ŝ, a), Zθm(s, a)), (1)

where ϱ ∈ [0, 1] is a factor that balances the learning of in-distribution and out-of-distribution
values. Thus, for the selected ŝ ∈ Bd(s, ϵ), we minimize Eq. (1) to get a smooth Z-function. Since
the actions should be near the offline data and close to the behavior actions in the dataset, we do not
consider OOD action for smoothing in this part.

Finally, we consider the following loss function to prevent overestimation of OOD actions.
LOOD(θm, β) = β · EU(τ),D(s,a)[c0(s, a) · F−1

Zθm (s,a)(τ)],

for some state-action dependent scale facor c0 and U = Uniform([0, 1]).

Incorporating both the in-distribution target and OOD target, we conclude the loss function in OR-
DER as follows,

min
θm

Es,a,r,s′∼D[LZ(θm) + αLsmooth(s, a; θm) + LOOD(θm, β)]. (2)

3.2 ROBUST POLICY

With the above smooth limits, we can learn a robust policy with fewer policy changes un-
der perturbations. We choose a state ŝ ∈ Bd(s, ϵ) as mentioned above which is maximizing
DJ(πϕ(·|s)||πϕ(·|ŝ)). Consequently, our loss function for policy is as follows:

min
ϕ

[Es,a,r,s′∼D[− min
j=1,...,M

Φj
g(s, a) + α1 max

ŝ∈Bd(s,ϵ)
DJ(πϕ(·|s)||πϕ(·|ŝ)) + log πϕ(a|s)]], (3)

where the first term is designed to get a conservative policy by maximizing the minimum of the
distributional functions ensemble and the last term is a regularization term.
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3.3 IMPLEMENTATION DETAILS

In this subsection, we integrate the distributional evaluation and policy improvement algorithms
introduced in Section 3.1 and Section 3.2 into the actor-critic framework. With the loss function
introduced in Eq. (2) and Theorem 1, it is natural to get the following iterative formula for Zπ by
starting from an arbitrary Z̃0,

Z̃k+1 = argmin
Z
{Lp(Z(s, a), T̂ π

DSẐ
k(s, a)) + max

ŝ
ϱ · Lp(Z(ŝ, a), Z(s, a))

+ β · EU(τ),D(s,a)[c0(s, a) · F−1
Z(s,a)(τ)]}. (4)

Following Kumar et al. (2020), we suggest employing a min-max objective in which the inner loop
selects the current policy to maximize the objective, while the outer loop is responsible for minimiz-
ing the objective with respect to this policy:

Z̃k+1 = argmin
Z

max
µ
{β · EU(τ)[ED(s),µ(ã|s)F

−1
Z(s,ã)(τ)− ED(s,a)F

−1
Z(s,a)]

+ Lp(Z(s, a), T̂ πk

DS Ẑ
k(s, a)) + max

ŝ
ϱ · Lp(Z(ŝ, a), Z(s, a))},

where µ is an actor policy. To establish a well-posed optimization problem, we introduce a regular-
ization term in the original objective. Detailed analysis procedures are provided in Appendix A.1.
The final optimization objective becomes

Z̃k+1 = argmin
Z
{β · EU(τ)[ED(s) log

∑
a

exp(F−1
Z(s,a)(τ))− ED(s,a)F

−1
Z(s,a)(τ)]

+ Lp(Z(s, a), T̂ πk

DS Ẑ
k(s, a)) + max

ŝ
ϱ · Lp(Z(ŝ, a), Z(s, a))},

where U = Uniform([0, 1]). To perform optimization with respect to the distribution Z, we ex-
press the quantile function using a deep neural network (DNN) Gθ(τ ; s, a) ≈ F−1

Z(s,a)(τ). It has
been demonstrated in (Koenker & Hallock, 2001) that EU(τ)Lκ(δ; τ) is an unbiased estimator of
the Wasserstein distance and can be optimized using stochastic gradient descent (SGD). There-
fore, in order to calculate Lp(Z,Z

′) = Wp(Z,Z
′)p, we minimize the weighted pairwise Huber

regression loss of various quantile fractions. For a sample (s, a, r, s′) ∼ D and a′ ∼ π(·|s′)
and random quantiles τ, τ ′ ∼ U , distribution temporal differences (TD) error is defined as
δ = r + γGθ′(τ ′; s′, a′) − Gθ(τ ; s, a). Then, τ -Huber quantile regression loss (Huber, 1992) with
threshold κ is represented as

Lκ(δ; τ) =

{
|τ − 1{δ < 0}| · δ2/(2κ), if |δ| ≤ κ,
|τ − 1{δ < 0}| · (|δ| − κ/2), otherwise.

More details for the algorithm ORDER are presented in Algorithm 1.

3.4 THEORETICAL ANALYSIS

Before presenting our theorems, we first give some assumptions about the MDP and dataset. Next,
we assume that the search space in Eq. (4) includes all possible functions.

Assumption 1 For all s ∈ D and a ∈ A, FZπ(s,a) is smooth. Furthermore, The search space of the
minimum over Z in Eq. (4) is overall smooth functions FZπ(s,a) with support on [Vmin, Vmax].

The assumption is given to guarantee the boundness of the p-th moments of Zπ(s, a) as well as
Zπ ∈ Z . Meanwhile, it is necessary for us to analyze and characterize the solution Z̃k+1 of the
objective of Eq. (4). Next, we assume that a stronger condition is needed.

Assumption 2 For all s ∈ S and a ∈ A, there exists ζ ∈ R>0, such that FZπ(s,a) is ζ-strongly
monotone, i.e., F ′

Zπ(s,a)(x) ≥ ζ.

This assumption is only designed to ensure the convergence of F−1
Zπ(s,a)(x) in our theoretical analy-

sis. Next, we assume that the infinite norm of two quantiles with perturbation is restricted by a fixed
constant.
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Assumption 3 For all s ∈ D, a ∈ A and the selected ŝ ∈ Bd(s, ϵ), we assume that ||F−1
Z(ŝ,a) −

F−1
Z(s,a)||∞ ≤ σ, σ is constant.

In the above assumption, || · ||∞ represents the infinite norm. Since perturbed observation ŝ is
randomly sampling from an ℓ∞ ball of norm ϵ1, the assumption is reasonable.

Finally, we assume p > 1. Therefore, we derive the following lemma which characterizes the con-
servative distribution soft evaluation iterates Z(s, a) with the distributional soft Bellman operator.

Lemma 1 Suppose Assumptions 1-3 hold. For all s ∈ D, a ∈ A, k ∈ N, and τ ∈ [0, 1], we have
F−1
Z(s,a)(τ) = F−1

T̂ π
DSẐ

k(s,a)
(τ)− c(s, a), where c(s, a) = |βp−1c0(s, a)± σp−1|

1
p−1 · sign(c0(s, a)).

For detailed proof, please refer to Appendix B.1. Briefly, it is according to the result of a simple
variational skill to handle that F is a function, and setting the derivative of Eq. (4) equal to zero.

Next, we define the conservative soft distributional evaluation operator T̃ π = OcT̂ π
DS by composit-

ing T̂ π
DS and the shift operator Oc : Z → Z , which is defined by F−1

OcZ(s,a)(τ) = F−1
Z(s,a)(τ) −

c(s, a). Consequently, it is following that Z̃k+1 = T̃ πZ̃k. Next, we exhibit that T̃ is contractive in
d̄p and Z̃π is the fixed point of T̃ π .

Theorem 1 Under the same assumptions as in Lemma 1. T̃ π
DS is a γ-contraction in d̄p, so Z̃k

converges to a unique fixed point Z̃π .

For detailed proof, please refer to Appendix B.2. It takes advantage of the fact that T̂ π is a a γ-
contraction in d̄p Bellemare et al. (2017); Dabney et al. (2018b) and the famous Banach fixed point
theorem.

Now, the main theorem we came up with shows that the conservative distributional soft evaluation
obtains a conservative quantile estimate of the true quantile at all quantiles τ .

Theorem 2 Under the same assumptions as in Theorem 1. For any δ ∈ R>0, c0(s, a) > 0, with
probability at least 1− δ, we have

F−1
Zπ(s,a)(τ) ≥ F

−1

Z̃π(s,a)
(τ) + (1− γ)−1 min

s′,a′

{
c(s′, a′)− 1

ζ

√
5|S|

n(s′, a′)
log

4|S||A|
δ

}
,

for all s ∈ D, a ∈ A, and τ ∈ [0, 1]. Furthermore, for β ≥ maxs,a

{
p(∆(s,a)p−1+σp−1)

c0(s,a)

}
, we have

F−1
Zπ(s,a)(τ) ≥ F

−1

Z̃π(s,a)
(τ).

For detailed proof, please refer to Appendix B.3. As the theorem shows, the above inequality indi-
cates that the quantile estimates obtained by T̃ π are a lower bound of the true quantiles. Further-
more, we give a sufficient condition to show that the result given in Theorem 2 is not a vacuous
conclusion. Therefore, Theorem 2 theoretically illustrates that ORDER does not exacerbate the dis-
tribution shift problem, and the mitigation of the distribution shift problem will be demonstrated in
the experimental section.

The performance of many RL algorithms will exhibit different behaviors under different distorted
expectations. Consequently, we can acquire the same conservative estimates of these objectives,
which is a kind of generalization of Theorem 2.

Corollary 1 For any δ ∈ R>0, c0(s, a) > 0, sufficiently large β and g(τ), with probability at least
1− δ, for all s ∈ D, a ∈ A, we have Φg(Z

π(s, a)) ≥ Φg(Z̃
π(s, a)).

In particular,Qπ(s, a) ≥ Q̃π(s, a) is obtained if we take g = Uniform([0, 1]). By choosing different
risk measure functions, we can apply this conclusion to any risk-sensitive offline RL.

1ϵ is usually a very small number.
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4 RELATED WORKS

Offline RL (Lange et al., 2012; Wu et al., 2019; Kidambi et al., 2020; Prudencio et al., 2023) learns
a policy from previously collected static datasets. As a subfield of RL (Sutton & Barto, 2018;
Puterman, 2014), it has achieved significant accomplishments in practice (Singh et al., 2022; Diehl
et al., 2023; Zhang et al., 2023; Singla et al., 2021). However, the main two challenges of offline RL
are the distribution shift problem and robustness (Prudencio et al., 2023; Agarwal et al., 2020; Bai
et al., 2022a), which require various techniques to improve the stability and performance of learned
policies.

4.1 DISTRIBUTION SHIFT

The cause of the distribution shift problem is that the distribution of collected offline training data
differs from the distribution of data in practice. BCQ (Fujimoto et al., 2019) addresses this problem
through policy regularization techniques, which formulates the policy as an adaptable deviation
constrained by maximum values (Sohn et al., 2015). One solution to alleviate the distribution shift
problem as mentioned in BEAR (Kumar et al., 2019) is incorporating a weighted behavior-cloning
loss achieved by minimizing maximum mean discrepancy (MMD) into the policy improvement
step. Though learning a conservative Q-function caused by distribution shift, CQL (Kumar et al.,
2020) solves the overestimation of value functions, which theoretically proves that a lower bound
of the true value is obtained. With the introduction of distributional reinforcement learning into
offline RL, CODAC (Ma et al., 2021) learns a conservative return distribution by punishing the
predicted quantiles returned for the OOD actions. From another perspective, continuous quantiles
are used in MQN-CQR (Bai et al., 2022b) to learn the quantile of return distribution with non-
crossing guarantees. ORDER builds on these approaches, but considers the entropy regularizer of
quantile function instead of an unchangeable constant for ensuring sufficient exploration and may
relieve the training imbalance.

4.2 ROBUSTNESS ISSUES

Owning to the distribution shift issues, current offline RL algorithms tend to prioritize caution in
their approach to value estimation and action selection. Nevertheless, this selection can compromise
the robustness of learned policies, making them highly sensitive to even minor perturbations in
observations. As a groundbreaking piece of work, SR2L (Shen et al., 2020) achieves a more robust
policy by introducing a smoothness regularizer into both the value function and the policy. A robust
Q-learning algorithm proposed in REM (Agarwal et al., 2020) is presented that integrates multiple
Q-value networks in a random convex combination of multiple Q-value estimates, ensuring that the
final Q-value estimate remains robust. With arbitrarily large state spaces, RFQI (Panaganti et al.,
2022) learns the optimal policy by employing function approximation using only an offline dataset
and addresses robust offline reinforcement learning problems. In ORDER, we import the smoothing
regularizer to the distribution functions and policies instead of simple action-value functions.

Our method is related to the previous offline RL algorithms based on constraining the learned value
function (Kostrikov et al., 2021; Kumar et al., 2020). What sets our method apart is that it can
better capture uncertain information about OOD actions and learn more robust policies with the
introduction of the smoothing technique into distributional reinforcement learning. In addition, we
enhance the network by using the entropy regularizer of quantile networks and increasing the number
of network ensembles, which also improves robustness.

5 EXPERIMENTS

In the sequel, we first compare ORDER against some offline RL algorithms. Then how different risk
measure functions impact our proposed algorithm is investigated in Section 5.2. Besides, Section
5.3 shows the ensemble size of the quantile network in ORDER. And our approach significantly
exceeds the baseline algorithm in most tasks.

We evaluate our experiments on the D4RL benchmark (Fu et al., 2020) with various continuous
control tasks and datasets. Specifically, we employ three environments (HalfCheetah, Hopper and
Walker2d) and four dataset types (random, medium, medium-replay, and medium-expert). The
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random or medium dataset is generated by a single random or medium policy. The medium-replay
dataset contains experiences collected in training a medium-level policy, and the medium-expert
dataset is a mixture of medium and expert datasets.

Table 1: Normalized average returns on D4RL benchmark, averaged over five random seeds.
“r”,“m”,“m-r” and “m-e” indicate the abbreviations of random, medium, medium-replay and
medium-expert, respectively. All methods are run for 1M gradient steps.

Datasets BEAR CQL CODAC RORL MQN-CQR ORDER
(Reproduced)

hopper-r 3.9±2.3 7.9±0.4 11.0±0.4 22.7±8.4 13.2±0.6 24.8 ± 7.8
hopper-m 51.8±4.0 53.0±28.5 70.8±11.4 104.8±0.3 94.7±13.2 101.5±0.2
hopper-m-r 52.2±19.3 88.7±12.9 100.2±1.0 102.3±0.5 95.6±18.5 106.4±0.1
hopper-m-e 50.6±25.3 105.6±12.9 112.0±1.7 112.8±0.2 113.0±0.5 114.6±3.3
walker2d-r 12.8±10.2 5.1±1.3 18.7±4.5 21.5±0.2 22.6±6.1 28.4± 6.2
walker2d-m -0.2±0.1 73.3±17.7 82.0±0.5 103.2±1.7 80.0±0.5 86.0± 0.2
walker2d-m-r 7.0±7.8 81.8±2.7 33.2±17.6 90.1±0.6 52.3±16.7 87.9±4.8
walker2d-m-e 22.1±44.9 107.9±1.6 106.0±4.6 120.3±1.8 112.1±8.9 115.1±1.2

halfCheetah-r 2.3±0.0 17.5±1.5 34.6±1.3 28.2±0.7 32.6±2.9 31.5±1.0
halfCheetah-m 43.0±0.2 47.0±0.5 46.3±1.0 64.7±1.1 45.1±1.5 63.7±0.4
halfCheetah-m-r 36.3±3.1 45.5±0.7 44.0±0.8 61.1±0.7 45.3±7.9 57.4±1.7
halfCheetah-m-e 46.0±4.7 75.6±25.7 70.4±19.4 108.2±0.8 71.1±4.9 93.2±1.1

5.1 COMPARISON WITH OFFLINE RL ALGORITHMS

In all the aforementioned datasets, we compare our method against several previous popular offline
RL algorithms, including (i) bootstrapping error accumulation reduction (BEAR) (Kumar et al.,
2019), (ii) conservative q-learning (CQL) (Kumar et al., 2020), (iii) CODAC (Ma et al., 2021), (iv)
robust offline reinforcement learning (RORL) (Yang et al., 2022), (v) monotonic quantile network
with conservative quantile regression (MQN-CQR) (Bai et al., 2022b). The results of BEAR and
CQL are directly taken from (Fu et al., 2020). For CODAC and MQN-CQR, their results are taken
from the original paper. Since the RORL paper does not report scores with five random seeds, we run
the RORL using the official code base. The neural network architecture we use is given in Appendix
C.2. Table 4 and Table 5 list the hyperparameters of ORDER in different datasets. Without loss of
generality, we employ the neutral risk measure in this subsection.

The performance of all these algorithms is exhibited in Table 1, which reports the average normal-
ized scores along with their corresponding standard deviations. We observe that ORDER outper-
forms BEAR in all tasks and surpasses the performance of the CQL algorithm. Significantly, our
algorithm surpasses the performance of current distributed offline RL methods (see CODAC and
MQN-CQR in Table 1), which is attributed to the assurance of robustness in ORDER. Meanwhile,
ORDER competes favorably with the current state-of-the-art algorithms, owing to the safety guar-
anteed by distributional RL.

5.2 POLICY TRAINING UNDER RISK MEASURES FUNCTION

In this subsection, we investigate how the risk measure functions affect the performance of ORDER.
We compare three risk-averse learned policies (Ma et al., 2020) in distribution RL with the risk-
neutral measure function. Specifically, for different g(τ), three ways of distorted expectation are
considered,

• CPW: g(τ) = τλ/(τλ + (1− τ)λ)1/λ, and λ is set as 0.71.

• Wang: g(τ) = FN (F−1
N (τ) + λ), where λ is set as 0.25 and FN is the standard Gaussian

CDF.

• CVaR: g(τ )=min{τ/λ, 1}, and λ is set as 0.25.

8
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Besides, we evaluate three risk-seeking learned policies.

• The first risk-seeking method is mean-variance and λ is set as -0.1.

• The second risk-seeking method is Var, and λ is set as 0.75.

• The third risk-seeking method is Wang, and λ is set as -0.75.

Table 2: Performance of ORDER under various risk-averse methods in hopper-medium-replay-v2.
Each method is run with five random seeds.

Risk measure Neutral CPW(0.71) CVaR(0.25) Wang(0.25)

Performance of ORDER 106.4±0.1 105.3±0.4 106.2±0.4 106.0±1.5

Table 3: Performance of ORDER under various risk-seeking methods in hopper-medium-replay-v2.
Each method is run with five random seeds.

Risk measure Neutral Mean-Std(-0.1) VaR(0.75) Wang(-0.75)

Performance of ORDER 106.4 ±0.1 107.5±0.3 106.5±0.6 106.4±0.2

The results are shown in Table 2 and Table 3, indicating that there is little difference between risk-
averse methods and risk-seeking learned policies. This suggests that risk measure functions within
the ORDER framework are not highly sensitive. At this point, we also empirically demonstrate the
robustness of our approach.

5.3 ABLATIONS ON BENCHMARK RESULTS

0 200 400 600 800 1000
training epoch

0

20

40

60

80

100

d4
rl 

no
rm

al
ize

d 
sc

or
e

hopper-medium-replay-v2
M=2
M=4
M=6

Figure 2: The normalized score under different en-
semble sizes. Each method is run with five random
seeds.

Without loss of generality, we choose the
hopper-medium-replay-v2 dataset as an exam-
ple to conduct the ablation study in this sub-
section. The performance of our ORDER al-
gorithm under different Ms is visualized in
Fig. 2. We observe with the increase of M , the
effect has a significant improvement in both
computation efficiency and stability; as shown
in the yellow and purple lines. However, M
should not be too large, which is presumably
attributed to the overfitting problem (see the
blue line, the normalized score value fluctuates
significantly around the training epoch of 700).
In conclusion, M is set as four to balance be-
tween robustness enhancement and computa-
tional efficiency improvement.

6 CONCLUSION

In this work, we introduce Offline Robustness
of Distributional actor-critic Ensemble Reinforcement Learning (ORDER) to balance the conser-
vatism and robustness in the offline setting. To achieve robustness, we first take into account the
entropy regularizer that helps fully explore the dataset and alleviates training imbalance issues.
Moreover, we consider the ensemble of multiple quantile networks to enhance robustness. Fur-
thermore, a smoothing technique is introduced to the policies and the distributional functions for the
perturbed states. In addition, we theoretically prove that ORDER converges to a conservative lower
bound, which also shows that we improve the robustness without exacerbating the OOD problem.
Finally, ORDER shows its advantage against the existing distributional offline RL methods in the
D4RL benchmark. We also validate the effectiveness of ORDER through ablation studies.
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A ALGORITHM AND IMPLEMENTATION DETAILS

In this section, we provide a comprehensive account of our practical implementation of ORDER,
offering a detailed explanation of the process.

A.1 ORDER OBJECTIVE

To establish a well-defined optimization problem, we introduce a regularization term denoted as
R(µ) in the original objective:

Ẑk+1 = argmin
Z

max
µ
{β · EU(τ)[ED(s),µ(ã|s)F

−1
Z(s,ã)(τ)− ED(s,a)F

−1
Z(s,a)(τ)]

+ Lp(Z, T̂ πk

Ẑk) + max
ŝ
ϱ · Lp(Z(ŝ, a), Z(s, a))}+R(µ).

Let c0(s, a) = µ(a|s)−π̂(a|s)
π̂(a|s) and R(µ) to be the entropy H(µ), then µ(a|s) ∝ exp (Q(s, a)) =

exp (
∫ 1

0
F−1
Z(s,a)(τ)dτ) is the solution to the inner-maximization. Substituting this selection into the

previously mentioned regularized objective function gives

Ẑk+1 = argmin
Z
{β · EU(τ)[ED(s) log

∑
a

exp(F−1
Z(s,a)(τ))− ED(s,a)F

−1
Z(s,a)(τ)]

+ Lp(Z, T̂ πk

Ẑk) + max
ŝ
ϱ · Lp(Z(ŝ, a), Z(s, a))}.

As demonstrated in (Ma et al., 2021), we also introduce a parameter ζ ∈ R>0 to threshold the
quantile value difference between µ and π̂, and give this difference a weight ξ ∈ R>0. Then we get
a trainable expression of β through the process of dual gradient descent:

min
Z

max
β≥0
{β · EU(τ)[ξ · [ED(s) log

∑
a

exp(F−1
Z(s,a)(τ))− ED(s,a)F

−1
Z(s,a)(τ)]− ζ]

+ Lp(Z, T̂ πk

Ẑk) + max
ŝ
ϱ · Lp(Z(ŝ, a), Z(s, a))}.

Since all our experiments take place in continuous-control domains, it is not feasible to list all pos-
sible actions as and directly compute log

∑
a exp(F

−1
Z(s,a)(τ)). In our implementation, we employ

the importance sampling approximation method described in (Kumar et al., 2020), and obtain

log
∑
a

exp(F−1
Z(s,a)(τ)) ≈ log(

1

2C

N∑
ai∼U(A)

[
exp(F−1

Z(s,a)(τ))

U(A)
] +

1

2C

N∑
ai∼π(a|s)

[
exp(F−1

Z(s,a)(τ))

π(ai|s)
]),

(5)

where U(A) = Uniform(A) represents a uniform distribution of actions. Algorithm 1 summarizes
a single step of the actor and critic updates used by ORDER.
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Algorithm 1 ORDER

1: Hyperparameters: Number of generated quantiles N , number of quantile networks for value
functions M , Huber loss threshold κ, discount rate γ, learning rates ηactor, ηZ , ηβ , tuning pa-
rameter α, α1, OOD penalty scale ξ, OOD penalty threshold ζ

2: Parameters: Critic parameters θ, Actor parameters ϕ, Penalty β
3: # Compute distributional TD loss
4: Get the next action using current policy a′ ∼ π(·|s′;ϕ)
5: for i = 1 to N do (For the m-th quantile network)
6: for j = 1 to N do
7: δmτi,τ ′

j
= r + γF−1

Z(s′,a′),θ′
m
(τ ′j)− F

−1
Z(s,a),θm

(τi)

8: end for
9: end for

10: Computer Lcritic(θm) = N−2
∑N

i=1

∑N
j=1 Lκ(δ

m
τi,τ ′

j
; τi)

11: # Compute OOD penalty
12: Sample i ∼ U({1, . . . , N}) and use quantile τi
13: Estimate log

∑
a exp(F

−1
Z(s,a),θm

(τi)) according to Eq. (5)
14: Compute

LOOD(θm, β) = β ·

ξ ·
log

∑
a

exp(F−1
Z(s,a),θm

(τi))−N−1
N∑
j=1

F−1
Z(s,a),θm

(τj)

− ζ
 .

15: # Update quantile network
16: Use Eq. (1) to add perturbations to the state to obtain ŝ.
17: Train θ using Eq. (2) by SGD
18: Update θ ← θ − ηZ∇(LZ(θm) + αLsmooth(s, a; θm) + LOOD(θm, β))
19: # Update policy network with Φj objective
20: Get new actions with re-parameterized samples ã ∼ π(·|s;ϕ)
21: Computer Φg(s, ã) using F−1

Z(s,ã),θ(τi), i = 1, . . . , N

22: Lactor(ϕ) = log(π(ã|s;ϕ)) + α1 maxŝDJ(πϕ(·|s)||πϕ(·|ŝ))−minj=1,...,M Φj
g(s, ã)

23: Update ϕ← ϕ+ ηactor∇Lactor(ϕ)

B PROOFS

B.1 PROOF OF LEMMA 1

Proof. By the definition of p-Wasserstein distance, we can re-write Eq. (4) as

ED(s,a)

∫ 1

0

|F−1
Z(s,a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ)|pdτ + β · EU(τ),D(s,a)[c0(s, a) · F−1
Z(s,a)(τ)]

+ ED(s,a),ŝ∈Bd(s,ϵ)

∫ 1

0

|F−1
Z(ŝ,a)(τ)− F

−1
Z(s,a)(τ)|

pdτ

=

∫ 1

0

ED(s,a)[|F−1
Z(s,a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ)|p + β · c0(s, a) · F−1
Z(s,a)(τ)

+ |F−1
Z(ŝ,a)(τ)− F

−1
Z(s,a)(τ)|

p]dτ.

For arbitrary smooth functions ϕs,a with compact support [Vmin, Vmax], we consider a perturbation
Gε

s,a(τ) = F−1
Z(s,a)(τ) + ε · ϕs,a(τ) of F−1

Z(s,a)(τ), then the above formula can be written as

∫ 1

0

ED(s,a)[|Gε
s,a(τ)− F−1

T̂ π
DSẐ

k(s,a)
(τ)|p + β · c0(s, a) ·Gε

s,a(τ) + |Gε
ŝ,a(τ)−Gε

s,a(τ)|p]dτ.
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Then the following equation is obtained considering the derivative of ε at ε = 0:

d

dε

∫ 1

0

ED(s,a)[|Gε
s,a(τ)− F−1

T̂ π
DSẐ

k(s,a)
(τ)|p + βc0(s, a) ·Gε

s,a(τ) + |Gε
ŝ,a(τ)−Gε

s,a(τ)|p]dτ |ε=0

= ED(s,a)

∫ 1

0

[p|F−1
Z(s,a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ)|p−1sign(F−1
Z(s,a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ))

+ βc0(s, a) + p|F−1
Z(ŝ,a)(τ)− F

−1
Z(s,a)(τ)|

p−1sign(F−1
Z(ŝ,a)(τ)− F

−1
Z(s,a)(τ))]ϕs,a(τ)dτ.

Owning to some perturbation Gε
s,a will cause the objective value to decrease, so the above equation

must be equal to 0 for F−1
Z(s,a). If ϕ(s, a) does not equal zero for each s, a, since ϕ(s, a) is arbitrary,

it will also cause the above equation to be not equal to 0. Therefore, we obtain∫ 1

0

[p|F−1
Z(s,a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ)|p−1sign(F−1
Z(s,a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ))

+ βc0(s, a) + p|F−1
Z(ŝ,a)(τ)− F

−1
Z(s,a)(τ)|

p−1sign(F−1
Z(ŝ,a)(τ)− F

−1
Z(s,a)(τ))]ϕs,a(τ)dτ = 0.

for all s, a. According to the above term is zero for all ϕ(s, a), we have

p|F−1
Z(s,a)(s, a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ)|p−1sign(F−1
Z(s,a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ))

+ βc0(s, a) + p|F−1
Z(ŝ,a)(τ)− F

−1
Z(s,a)(τ)|

p−1sign(F−1
Z(ŝ,a)(τ)− F

−1
Z(s,a)(τ)) = 0.

According to Assumption 3, the above equation can be converted to
p|F−1

Z(s,a)(τ)− F
−1

T̂ π
DSẐk(s,a)

(τ)|p−1sign(F−1
Z(s,a)(τ)− F

−1

T̂ π
DSẐk(s,a)

(τ)) = βc0(s, a)± σp−1,

which holds if and only if
F−1
Z(s,a)(τ) = F−1

T̂ π
DSẐ

k(s,a)
(τ)− c(s, a),

where c(s, a) = |βp−1c0(s, a)± σp−1|
1

p−1 · sign(c0(s, a)). □

B.2 PROOF OF THEOREM 1

Proof. Let Z1, Z2 ∈ Z denote two action-value distributions. For all (s, a) ∈ S ×A, we have

Wp(T̂ π
DSZ1(s, a), T̂ π

DSZ2(s, a))

=Wp(R(s, a) + γ[ min
j=1,...,M

Z1,θ′
j
(s′, a′)− c · log π(a′|s′)],

R(s, a) + γ[ min
j=1,...,M

Z2,θ′
j
(s′, a′)− c · log π(a′|s′)])|s′ ∼ P(·|s, a), a′ ∼ π(·|s′)

≤ γWp(Z1(s
′, a′), Z2(s

′, a′))

≤ γ sups′,a′Wp(Z1(s
′, a′), Z2(s

′, a′)).

By the definition of d̄p, we have

d̄p(T̂ π
DSZ1, T̂ π

DSZ2) = sup
s,a

Wp(T̂ π
DSZ1(s, a), T̂ π

DSZ2(s, a))

≤ γ sups′,a′Wp(Z1(s
′, a′), Z2(s

′, a′))

= γd̄p(Z1, Z2).

Therefore, T̂ π
DS is a γ-contraction in d̄p. Since Oc is a non-expansion is d̄p, then T̃ π

DS is a γ-
contraction in d̄p. By Banach fixed point theorem, Z̃k converges to a unique fixed point Z̃π . □

B.3 PROOF OF THEOREM 2

Lemma 2 For all δ ∈ R>0, with probability at least 1− δ, for any Z ∈ Z and (s, a) ∈ D, we have

||FT̂ πZ(s,a) − FT πZ(s,a)||∞ ≤

√
5|S|
n(s, a)

log
4|S||A|

δ
, (6)

where n(s, a) represents the number of occurrences of (s, a) in D.
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Proof. Applying the definition of distributional soft Bellman operator to the cumulative density
function, we obtain that

FT̂ π
DSZ(s,a)(x)− FT π

DSZ(s,a)(x)

=
∑
s′,a′

P̂ (s′|s, a)π(a′|s′)Fγ[Z(s′,a′)−c·log π(a′|s′)]+R̂(s,a)(x)

−
∑
s′,a′

P (s′|s, a)π(a′|s′)Fγ[Z(s′,a′)−c·log π(a′|s′)]+R(s,a)(x).

Adding and subtracting
∑

s′,a′ P̂ (s′|s, a)π(a′|s′)Fγ[Z(s′,a′)−c·log π(a′|s′)]+R(s,a)(x) from this ex-
pression gives∑
s′,a′

P̂ (s′|s, a)π(a′|s′)(Fγ[Z(s′,a′)−c·log π(a′|s′)]+R̂(s,a)(x)− Fγ[Z(s′,a′)−c·log π(a′|s′)]+R(s,a)(x))

+
∑
s′,a′

(P̂ (s′|s, a)− P (s′|s, a))π(a′|s′)Fγ[Z(s′,a′)−c·log π(a′|s′)]+R(s,a)(x).

We proceed by bounding the two terms in the summation. For the first term,

Fγ[Z(s′,a′)−c·log π(a′|s′)]+R̂(s,a)(x)− Fγ[Z(s′,a′)−c·log π(a′|s′)]+R(s,a)(x)

=

∫ [
FR̂(s,a)(r)− FR(s,a)(r)

]
dFγ[Z(s′,a′)−c·log π(a′|s′)](x− r)

≤
∫
|FR̂(s,a)(r)− FR(s,a)(r)|dFγ[Z(s′,a′)−c·log π(a′|s′)](x− r)

≤ sup
r
|FR̂(s,a)(r)− FR(s,a)(r)|

∫
dFγ[Z(s′,a′)−c·log π(a′|s′)](x− r)

= ||FR̂(s,a)(r)− FR(s,a)(r)||∞.

Therefore,∑
s′,a′

P̂ (s′|s, a)π(a′|s′)(Fγ[Z(s′,a′)−c·log π(a′|s′)]+R̂(s,a)(x)− Fγ[Z(s′,a′)−c·log π(a′|s′)]+R(s,a)(x))

≤
∑
s′,a′

P̂ (s′|s, a)π(a′|s′)||FR̂(s,a)(r)− FR(s,a)(r)||∞

= ||FR̂(s,a)(r)− FR(s,a)(r)||∞.

The following derivation process is similar to CODAC (Ma et al., 2021), so we can finally obtain
the above conclusion. □

It has been proved in CODAC that if ||F − G||∞ ≤ ϵ, then ||F−1 − G−1||∞ ≤ ϵ/ζ, where F and
G are two cumulative distribution functions (CDFs) with support χ, and F is ζ-strongly monotone.
Thus, according to Lemma 2, we have

Lemma 3 For any return distributionalZ with ζ-strongly monotone CDF FZ(s,a) and any δ ∈ R>0,
with probability at least 1− δ, for all s ∈ D and a ∈ A, we have

||F−1

T̂ π
DSZ(s,a)

− F−1
T πZ(s,a)||∞ ≤

1

ζ

√
5|S|
n(s, a)

log
4|S||A|

δ
.

Let ∆(s, a) = 1
ζ

√
5|S|

n(s,a) log
4|S||A|

δ and followed by Lemma 1

F−1

T̃ πZπ(s,a)
(τ) = FT̂ π

DSZ
π(s,a)(τ)− c(s, a)

≤ F−1
T πZπ(s,a)(τ)− c(s, a) + ∆(s, a)

= F−1
Zπ(s,a)(τ)− c(s, a) + ∆(s, a),
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the second step holds by Lemma 2 with probability at least 1 − δ. For any h ∈ R, if Z satisfies
F−1
Z(s,a)(τ) ≥ F−1

T πZ(s,a)(τ) + h for all s ∈ S and a ∈ A, then F−1
Z(s,a)(τ) ≥ F−1

T πZ(s,a)(τ) + (1 −
γ)−1h(∀τ ∈ [0, 1]). Then,

F−1
Zπ(s,a)(τ) ≥ F

−1

T̃ πZπ(s,a)
(τ) + c(s, a)−∆(s, a)

≥ F−1

T̃ πZπ(s,a)
(τ) + min

s,a
{c(s, a)−∆(s, a)}

≥ F−1

Z̃π(s,a)
(τ) + (1− γ)−1 min

s,a
{c(s, a)−∆(s, a)}. (7)

Notice that since for the last term in Eq. (7) to be positive, we need

βp−1c0(s, a) + σp−1 ≥ ∆(s, a)p−1 (∀s, a).
Owning to we have assumed that c0(s, a) > 0, then it can be equivalent to

β ≥ max
s,a
{p(∆(s, a)p−1 + σp−1)

c0(s, a)
},

we thus prove the conclusion of Theorem 2.

C EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

C.1 EXPERIMENTAL SETTINGS

Our experimental procedure largely adheres to (Fu et al., 2020), and the results of non-distributional
methods are directly taken from (Fu et al., 2020). For all experiments, we run algorithms for 1000
epochs (1000 training steps each epoch, i.e., 1M gradient steps in total). Then we evaluate them
using 10 test episodes in the original environment, which all last 1000 steps long. All benchmark
results are averaged over 5 random seeds. The reported results are normalized to D4RL scores that
measure how the performance compared with expert score and random score: normalized score =
100× score−random score

expert score−random score .

C.2 NEURAL NETWORK ARCHITECTURE

The same network architecture of ORDER is used in all experiments. For policy, we use a two-layer
fully connected neural network with 256 hidden neurons and ReLU activations. For the quantile net-
work, we adopt an ensemble structure. Specifically, the quantile function is the Hadamard product
of state-action feature ψ(s, a) and quantile embedding φ(τ), i.e., F−1

Z(s,a)(τ) = ψ(s, a)⊙φ(τ). Em-
bedding formula of φ(τ) represent as φj(τ) := h(

∑n
i=1 cos(iπτ)wij + bj)(Dabney et al., 2018a),

where wij , bj are weights of the neural network φ, and h is the sigmoid function. φ(τ) consists
of a one-layer 64-unit fully connected neural network and ψ(s, a) is a one-layer 256-unit fully
connected neural network. Then we apply a one-layer 256-unit fully connected neural network to
ψ(s, a)⊙ φ(τ).

C.3 IMPLEMENTATION DETAILS

We implement ORDER based on DSAC and keep the DSAC-specific hyperparameters the same.
This hyperparameters are detailed in table 4. As with CODAC, we introduce hyperparameters β, ζ, ξ
(See Appendix A.1). In most cases, β is a learnable parameter initialized to 1 with learning rate
ηβ = 3× 10−4. In a few cases, setting β = 1 throughout the entirety of training, which we indicate
by setting ζ = −1.

Since we introduce smoothing techniques to the policy and quantile networks, we also add other hy-
perparameters. In Eq (2), the weight α for the quantile network smoothing loss Lsmooth is searched
in {0.0, 0.0001}. And beyond that, the weight α1 of the policy smoothing loss in Eq. (3) is searched
in {0.0, 0.1, 1.0}. When training the policy and distribution action-value functions, we randomly
sample n = 10 perturbed observations from a ℓ∞ ball of norm ϵ and select the one to maximize
DJ(πθ(·|s)||πθ(·|ŝ) and Lsmooth, respectively. For Z smoothing loss in Eq. (1), set parameter ϱ to
0.2 for conservative value estimation. All the hyperparameters used in ORDER for the benchmark
are listed in Table 5.
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Table 4: ORDER backbone hyperparameters

Hyper-parameter Value

Discount factor γ 0.99
Batch size 256
Replay buffer size 1e6
Optimizer Adam
Minimum steps before training 1e4
Policy network learning rate ηactor 3e-4
Quantile network learning rate ηZ 3e-5
Huber regression threshold κ 1
Number of quantile fractions N 32
Quantile fraction embedding size 64

Table 5: Hyperparameters of ORDER for the benchmark results

Datasets ξ ζ ηcritic entropy tuning α α1

hopper-random 1 10 3e-5 yes 0.0001 0.1
hopper-medium 10 10 3e-4 yes 0.0 0.0
hopper-med-rep 1 10 3e-5 yes 0.0 0.0
hopper-med-exp 10 10 3e-5 no 0.0001 0.1

walker2d-random 1 10 3e-5 yes 0.0001 1.0
walker2d-medium 10 10 3e-5 no 0.0001 1.0
walker2d-med-rep 1 10 3e-5 yes 0.0 0.0
walker2d-med-exp 10 10 3e-5 no 0.0001 1.0

halfCheetah-random 1 10 3e-5 yes 0.0001 0.1
halfCheetah-medium 10 10 3e-5 no 0.0001 0.1
halfCheetah-med-rep 1 10 3e-5 yes 0.0001 0.1
halfCheetah-med-exp 0.1 -1 3e-4 no 0.0 0.0
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