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ABSTRACT

Complex dynamical systems are challenging to model and control. Especially
when not deployed in controlled conditions, they might be subject to disturbances
that cannot be predicted in advance, e.g. wind, a payload, or environment-specific
forces. Adapting to such disturbances with a limited sample budget is difficult,
especially for systems with many degrees of freedom. This paper introduces a
theoretical framework to model this problem. We show that the expected error of
a sensorimotor controller can be bounded by two components: the optimality of
the controller and the domain gap between training and testing due to unmodelled
dynamic effects. These components are usually minimized separately; the former
with online or offline optimization, the latter with system identification. Motivated
by this observation, we propose a differentiable programming approach to jointly
minimize model and control errors with gradient descent. Similar to model-based
methods, our algorithm learns from prior knowledge about the system, but grounds
the model to account for observed disturbances, thereby favouring sample efficiency.
Yet, it maintains the flexibility of model-free methods, which can be applied to
generic systems with arbitrary inputs. We evaluate our approach on several complex
systems and tasks, and experimentally analyze the advantages over model-free and
model-based methods in terms of performance and sample efficiency.

1 INTRODUCTION

Consider the following scenario: a complex dynamical system, e.g. a drone or quadruped, is deployed
outside of controlled laboratory conditions. To optimally function, this robot has to quickly adapt to
the conditions it encounters in the target domain and cannot anticipate, e.g. a payload, wind, contact
with unknown surfaces, or other environment-specific disturbances. Some of these disturbances may
be hard to measure but their effect may be easy to observe from high-dimensional data such as images.
In order to adapt a control policy to the target domain, expressive models that leverage measurements
and environment observations are required to account for these effects. But how can this be done
efficiently, with only a restricted budget of samples? In principle it is possible to completely identify
a system’s dynamics through extensive experiments. But, such experiments are both tedious and
expensive to run in practice. This may not be feasible for systems with many degrees of freedom and
too dangerous for safety critical platforms such as flying robots (Zhang et al., 2021).

Variations of this few-shot adaptation problem can be found in multiple branches of machine learning
and robotics, including few shot learning (Wang et al., 2020), simulation grounding (Hanna & Stone,
2017; Chebotar et al., 2019), and simulation to reality transfer (Höfer et al., 2021; Loquercio et al.,
2019). In this paper, we study few-shot domain adaptation in the context of sensorimotor control. The
traditional approach for addressing this problem is to first identify a model of the system and then use
it in the downstream control task. The identification step consists of either adapting an existing model
from observations (Hanna & Stone, 2017; Chebotar et al., 2019; Farchy et al., 2013; Desai et al.,
2020; Fu et al., 2016) or learning it end-to-end from data (Jatavallabhula et al., 2021; Deng et al.,
2020; Lenz et al., 2015; Bansal et al., 2016; Jin et al., 2020). After the identification step, control
commands are computed with either online optimization, e.g. with model predictive control (Fu et al.,
2016) or linear quadratic regulators (Deng et al., 2020; Bansal et al., 2016), or offline optimization,
with supervised (Desai et al., 2020), self-supervised (Jatavallabhula et al., 2021; Lenz et al., 2015;
Jin et al., 2020), or reinforcement learning (RL) (Chebotar et al., 2019; Nagabandi et al., 2018).
Despite achieving good performance on multiple demonstrators and on physical platforms, the main
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limitation of the aforementioned methods is the separation of the identification and control step. This
separation can be particularly problematic for complex systems subject to time-varying forces, e.g.
contact or wind, where a large number of training samples might be required to learn sufficiently
accurate models. In addition, it remains unclear whether an accurate model is needed in the states that
are not observed during task execution. To account for this limitation, model-based RL approaches
learn a model of the system and a control policy jointly (Heess et al., 2015; Fu et al., 2016; Hafner
et al., 2019a;b; Nagabandi et al., 2018). Motivated by the sample efficiency of model-based RL, we
extend this idea and design a specialized algorithm that can adapt a sensorimotor policy to a target
domain in a sample efficient way.

We present a theoretical framework to rigorously analyze the underlying adaption problem. In light
of this framework, we lay out a taxonomy of existing approaches and show that prior works either
optimize the objective indirectly or minimize an upper bound. We propose a fully differentiable and
sample-efficient framework that directly minimizes the adaptation error. Akin to model-based RL,
we learn a model of the system and a controller jointly. However, in contrast to traditional model-
based RL, we optimize the model and control error via gradient descent: we adapt prior knowledge
about the system dynamics from interactions with the target domain; and we use self-supervised
backpropagation-through-time (Grzeszczuk et al., 1998; Deisenroth & Rasmussen, 2011; Parmas,
2018; Degrave et al., 2019; Clavera et al., 2018; Jin et al., 2020) to tune the controller to the new
domain. These two design decisions allow to both handle arbitrary changes in the dynamics and
minimize the number of samples that are required in the target domain. In our framework both
the controller and the simulator can learn from arbitrary inputs, for example solely from visual
observations.

The proposed framework is agnostic to the system and task. We empirically validate it on several
problems: (i) balancing an inverted pendulum on a cart (standard task in RL known as CartPole),
(ii) navigating towards a 3D target with a fixed-wing aircraft (Oettershagen et al., 2014), and (iii)
tracking a trajectory with a quadrotor (Kaufmann et al., 2020). In all of these problems, the system is
subject to either time-invariant or time-variant disturbances that are only present in the target domain
and should be identified and counteracted with as few samples as possible. We demonstrate that these
disturbances can be identified from arbitrary inputs (low-level states, images, and state-action history)
and that the resulting differential simulator can successfully adapt the controller to the target domain
in a self-supervised fashion. We empirically show comparable or better results with respect to prior
works in terms of performance on the downstream task and sample complexity in the target domain.

2 THEORETICAL DERIVATION AND PROPOSED APPROACH

In the following, we formulate the problem of adapting a policy π : S × S −→ A from a source
domain with dynamics f̂ : S × A −→ S to a target domain with dynamics f∗ with a possibly
different state space. We assume that the source dynamics f̂ are differentiable and known a priori:
this encode prior knowledge about the system. Conversely, the target dynamics f∗ are unknown and
possibly discontinuous. We also assume that unlimited samples can be drawn from the source domain
(which is practically a simulator of the system), but only a limited sample budget is available from
the target domain. We define the task as a discrete time, continuous-valued optimization problem:

min
π
J∗(π) = Eρ(π)

[ t=T∑
t=0

C(f∗
(
st, π(st, νt+1)

)
, νt+1)

]
, (1)

where C is a cost depending on a reference νt+1 ∈ S and the robot state st ∈ S; ρ(π) is the distri-
bution of possible state-reference pairs {(s0, ν0), . . . , (sT , νT )} induced by the policy π. The robot
state is initialized to the provided reference (s0 = ν0). As typical in the control literature (Borrelli
et al., 2017), we define C as the `p-norm of the difference between the next state and the reference, i.e.
C(f∗

(
st, π(st, νt+1)

)
, νt+1) = ‖f∗

(
st, π(st, νt+1)

)
− νt+1‖p. For the sake of simplicity, we drop

the norm factor p in the rest of the derivation. Similarly, we disregard the control cost ‖π(st, vt)‖
which is often added to C, because it does not affect the following derivations.
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2.1 BOUNDING THE ADAPTATION ERROR J∗(π)

We now derive an upper bound on the performance of the controller in the target domain J∗(π). First,
we decompose J∗(π) over time using the linearity of expectation:

J∗(π) = Eρ(π)
[ t=T∑
t=0

‖f∗
(
st, π(st, νt+1)

)
− νt+1‖

]
=

t=T∑
t=0

E(st,νt+1)‖f
∗(st, π(st, νt+1)

)
− νt+1‖

(2)
In the following, we derive a bound for the rightmost term of Equation equation 2 component-wise.
Here and in the rest of the paper, we drop the time argument for the sake of simplicity of notation:

Es,ν‖f∗
(
s, π(s, ν)

)
− ν‖ = Es,ν‖f∗

(
s, π(s, ν)

)
− f̂

(
s, π(s, ν)

)
+ f̂

(
s, π(s, ν)

)
− ν‖

≤ Es,ν‖f∗
(
s, π(s, ν)

)
− f̂

(
s, π(s, ν)

)
‖+ Es,ν‖f̂

(
s, π(s, ν)

)
− ν‖ (3)

We define π̂ as the optimal controller in the source domain with dynamics f̂ , i.e.,

π̂(s, v) := arg min
π

Es,ν‖f̂(s, π(s, ν))− ν‖. (4)

It is important to note that the reference ν might be infeasible for the dynamics f̂ . Thus, even the
optimal controller can be subject to an error ζs,ν :

∀s, ν ∈ S ∃ ζs,ν ≥ 0 : ‖f̂(s, a)− ν‖ ≤ ζs,ν ∀a ∈ A. (5)

We further define the expected difference between the predictions of the source and target dynamics
f̂ and f∗ during execution of a policy π as δs,ν,π . Specifically,

δs,ν,π := Es,ν‖f̂(s, π(s, ν))− f∗(s, π(s, ν))‖. (6)

We now derive a bound for the error of a policy π that was trained in the source domain and is then
applied to the target domain.

Theorem 1. Let the source dynamics f̂ be Lipschitz-continuous with factor L in the set of observed
states, i.e.

‖f̂(s, a1)− f̂(s, a2)‖ ≤ L · ‖a1 − a2‖ (7)

Then with π̂, ζs,ν , and δs,ν,π as defined above, it holds that

Es,ν‖f∗
(
s, π(s, ν)

)
− ν‖ ≤ δs,ν,π + L · Es,ν‖π(s, ν)− π̂(s, ν)‖+ Es,ν [ζs,v]. (8)

Proof.

Es,ν‖f∗
(
s, π(s, ν)

)
− ν‖ ≤

(3)
Es,ν‖f∗

(
s, π(s, ν)

)
− f̂

(
s, π(s, ν)

)
‖+ Es,ν‖f̂

(
s, π(s, ν)

)
− ν‖

=
(6)
δs,ν,π + Es,ν‖f̂

(
s, π(s, ν)

)
− f̂

(
s, π̂(s, ν)

)
+ f̂

(
s, π̂(s, ν)

)
− ν‖

≤ δs,ν,π + Es,ν‖f̂
(
s, π(s, ν)

)
− f̂

(
s, π̂(s, ν)

)
‖+ Es,ν‖f̂

(
s, π̂(s, ν)

)
− ν‖

≤
(5,7)

δs,ν,π + L · Es,ν‖π(s, ν)− π̂(s, ν)‖+ Es,ν [ζs,v]

Theorem 1 shows that the controller performance J∗(π) in the target domain is upper bounded
by two terms: the dynamics mismatch between source and target domain δs,ν,π and the difference
between the actions taken by π and the actions taken by the optimal controller π̂ in the source domain,
i.e. the optimality cost of π. The rightmost term of Equation equation 8, Es,ν [ζs,v], is constant for
fixed dynamics f̂ , and represents the unavoidable error due to the reference infeasibility. Therefore,
optimizing J∗(π), entails minimizing the first two terms of Equation equation 8. Based on the insights
of Theorem 1, we lay out a taxonomy of prior works by analyzing the terms of Equation equation 8
targeted by each method.
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Figure 1: Framework for joint dynamics grounding and policy learning. The parameters φ of the
residual ∆φ are trained to account for the distance between f̂ and f∗. The policy is then tuned on the
updated dynamics in a self-supervised fashion.

Observation 1. Es,ν‖f∗
(
s, π(s, ν)

)
− ν‖ can be optimized directly with respect to π via Monte-

Carlo estimates of the gradient. This does not require f∗ to be differentiable and enables long-term
planning, but requires extensive sampling in the target domain. This approach is used by both
model-free RL (Schulman et al., 2017) and some specific instances of model-based RL (Chen et al.,
2018; Heess et al., 2015; Hafner et al., 2019a;b).

Note that it is possible to first identify f∗, i.e. to minimize δs,ν,π from observations in the target
domain, and then to train the policy by minimizing Es,ν‖f̂

(
s, π(s, ν)

)
− ν‖ via sampling. However,

this separation might be sub-optimal, since it removes the coupling between the two error terms.

Observation 2. Many model-based RL algorithms (Fu et al., 2016; Deng et al., 2020; Bansal et al.,
2016; Nagabandi et al., 2018) optimize the nonlinear controller cost Es,ν‖f̂

(
s, a
)
− ν‖ online with

respect to actions a, e.g. via iLQR or MPC.

In this case adaptation is also addressed by minimising the identification cost δs,ν,π. This can be
done either separately from the control cost (Deng et al., 2020; Bansal et al., 2016) or jointly (Fu
et al., 2016). One drawback for these methods is that actions are selected through online optimization,
which could be both prohibitively slow and difficult to solve for non-convex dynamics depending on
high-dimensional observations.

Observation 3. Imitation learning methods solve the control task by imitating an expert πexp
and minimising Es,ν‖π(s, ν) − πexp(s, ν)‖ with gradient descent and data-set aggregation tech-
niques (Ross et al., 2011; Kaufmann et al., 2020; Pan et al., 2018). These methods minimize an upper
bound of J∗(π), since

Es,ν‖f∗
(
s, π(s, ν)

)
− ν‖

≤ δs,ν,π + L · Es,ν‖π(s, ν)− π̂(s, ν)‖+ Es,ν ζs,v
≤ δs,ν,π + L · Es,ν‖π(s, ν)− πexp(s, ν)‖+ L · Es,ν‖πexp(s, ν)− π̂(s, ν)‖+ Es,ν ζs,v

Thus, the adaptation problem is optimized independently from the imitation problem, leading to
high sample complexity in the target domain. In summary, prior work minimizes an upper-bound or
an approximation of the control cost, and generally optimizes the identification problem separately.
Motivated by this observation, we propose to jointly optimize the components of equation 3.

2.2 GRADIENT-BASED JOINT DYNAMICS GROUNDING AND POLICY LEARNING

We propose a fully differentiable framework to adapt a policy πθ from a source to a target domain
(see Figure 1). The initial policy can be trained with any algorithm, since we have an infinite
sample budget with the source dynamics. According to Equation equation 3, the adaptation process
entails optimizing two components: an identification and control cost. We jointly optimize these
two components in an alternating process: f̂ is trained to minimize the distance to f∗ from samples
collected during the execution of the current policy πθ in the target domain, and then πθ is tuned
on the updated f̂ . We repeat this process for dN/Be times, where N is the total sample budget in
the target domain and B is the number of samples collected at each iteration. A typical training
procedure is visualized in appendix A.2.
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Algorithm 1: Jointly dynamics grounding and policy learning
while |Ddynamics| ≤ N do

Execute πθ in f∗ for B steps to collect Ddynamics = {(st, at, s∗t+1)}
Minimize Ldynamics(φ) =

∑
(st,at,s∗t+1)∈Ddynamics

‖f̂(st, at) + ∆(st, at, φ)− s∗t+1‖
while π(θ) not converged do

Sample reference r0, . . . , rn, set s0 ←− r0
for t=0. . . n-k do

at, . . . , at+k = πθ(st, νt+1, . . . , νt+k)

ŝt+1 = f̂(st, at) + ∆(st, at), ŝt+2 = f̂(ŝt+1, at+1) + ∆(ŝt+1, at+1) . . .
Add ŝt+1, . . . , ŝt+k and νt+1, . . . , νt+k to Dc
if ‖ŝt+1 − rt+1‖ > δdiv then st+1 ←− rt+1 ;

end
Minimize Lcontrol(θ) =

∑
(st,νt)∈Dc

‖st − νt‖
Increase δdiv

end
end

Dynamics grounding. To minimize δ, i.e. the difference between f̂ and f∗, we collect tuples of
state, action, and next state observed through interaction with the target dynamics. Formally :

Ddynamics = {(st, ut, s∗t+1) | t ∈ [1..B], s∗t+1 = f∗(st, ut)}, (9)

This dataset is used to minimize difference of source and target domain by training a state-residual
network ∆ with the following loss function:

Ldynamics(φ) =
∑

(st,ut,s∗t+1)∈D

‖f̂(st, ut) + ∆φ(st, ut)− s∗t+1‖, (10)

where φ are the parameters of the network ∆φ that accounts for effects that are not modeled in f̂ . If
desired, f̂ can also be parametrized in order to determine estimated properties of the system, e.g. the
robot’s mass or moment coefficients. The network ∆φ can be conditioned on any kind of information,
for example images, and can account for arbitrary unmodeled dynamics effects in the target domain.

Policy learning. We use gradient descent to tune the policy πθ with the current dynamics f̂ .
Specifically, we minimize the loss

Lcontrol(θ) =
1

|Dc|
∑

(s,ν)∈Dc

‖f̂
(
s, πθ(s, ν)

)
− ν‖, (11)

where θ are the parameters of πθ and Dc is a set of state-reference pairs collected from interaction
with the current f̂ . In contrast to MPC or iLQR, we can optimize πθ offline on the entire interaction
data Dc. This optimization is done with stochastic optimization algorithms. To favour short-term
planning, we train πθ in a receding-horizon fashion. Specifically, the controller predicts k = 10
actions at once from the current state and the next k references, where k is the horizon length. These
k actions are used to forward-propagate the dynamics for the horizon length. The differences between
the output of the dynamics and the reference over the horizon is then back-propagated to update θ. We
additionally use a curriculum learning strategy to improve training. To do so, we set a threshold τdiv
such that if ‖ŝt+1 − νt+1‖ > τdiv after executing action at, the agent is reset to νt+1. The threshold
τdiv is increased over time. Therefore the robot will learn to follow the reference from gradually
more distant states as training proceeds. More details of the training procedure are available in the
appendix. An overview of the complete policy adaptation pipeline is provided in algorithm 1.

3 EXPERIMENTS

We evaluate our approach on three diverse systems and tasks: CartPole balancing, trajectory tracking
with a quadrotor, and flying to a 3D target with a fixed-wing aircraft. We design our evaluation
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procedure to answer the following questions: (1) How does performance and sample efficiency
compare to model-based and model-free approaches in both low-dimensional (Sections 3.2.1) and
high-dimensional (Section 3.2.3) problems? (2) Does joint learning of dynamic grounding and control
improve convergence (Section 3.2.2)?

3.1 EXPERIMENTAL SETUP

In the CartPole balancing task, a pole must be balanced by moving a cart. We use a model derived
from first principles (Barto et al., 1983) as source dynamics f̂ , and allow for continuous actions in
the range [−1, 1] corresponding to ±30N. Since the reference trajectory only consists of a single
state (i.e. upright position of the pole), we linearly interpolate from the current state to the end
state to generate a continuous reference [νt+1, . . . , νt+k]. The second task consists of tracking a
3D trajectory with a quadrotor. In this problem, we use the first-principles model provided by the
Flightmare simulator (Song et al., 2020) as source dynamics f̂ . For training and testing, we generate
random polynomial trajectories with a maximum speed of 5ms . We evaluate performance based on
50 test trajectories not seen during training.

Finally, for reaching the 3D target with a fixed-wing aircraft, we also use a first-principles model
for the source dynamics (Beard & McLain, 2012). Fixed-wing aircrafts can fly significantly faster
than quadrotors, but are less maneuverable and thus more challenging to control. In our experiment,
the aircraft is initialized with an initial velocity of 11.5ms in the x-direction, and is tasked to reach a
target at a distance of x = 50m, with y and z deviations from the initial position uniformly sampled
from [−5, 5]m. We evaluate performance with 30 target locations that have not been seen during
training. Similar to the CartPole balancing task, the reference trajectory only consists of a single
state, i.e. the target, and we generate a continuous reference [νt+1, . . . , νt+k] by linear interpolation
from the current to the target state. Our approach works despite this approximation of the reference
trajectory which might even be infeasible. This is further validated by the CartPole swing-up task in
appendix A.5.

For all our experiments, we design a target domain by adding time-invariant and time-variant forces
to the source domain. Such forces represent typical disturbances encountered when applying those
systems in the real world (e.g. aereodynamic drag and contact forces). We perform all our experiments
in PyTorch. Technical details are in appendix A.1 and the provided source code.

3.2 COMPARISON TO MODEL-BASED AND MODEL-FREE RL

We now compare our method to three strong baselines: (i) the model-free RL algorithm Proximal
Policy Optimization (PPO) Schulman et al. (2017), (ii) the model-based model-free hybrid (MBMF)
proposed by (Nagabandi et al., 2018) which applies Model Predictive Control on a learnt dynamics
model, and (iii) the probabilistic-ensembles-with-trajectory-sampling (PETS) algorithm (Chua et al.,
2018). The PPO baseline is available from the stable-baselines PyPI package (Raffin et al.,
2019) under the MIT license. The second is available in our supplementary code and was adapted to
use a non-linear programming solver to predict optimal actions instead of a simple random-sampling
shooting method. The PETS implementation was taken from the mbrl toolbox (Pineda et al.,
2021). All methods have access to the same inputs, produce the same type of output, and are tuned
individually with grid-search on a held-out validation set. We evaluate the methods on three tasks of
increasing difficulty: adaptation to a time-invariant linear disturbance, to a time-variant non-linear
disturbance, and a time-variant non-linear disturbance only observable from images. We evaluate
different approaches in terms of policy performance J∗(π) and sample complexity in the target
domain. For details on the baselines and further results see appendix A.3.

3.2.1 ADAPTATION TO TIME-INVARIANT LINEAR FORCES

We consider a benchmark problem for flying vehicles, which is to estimate and counteract a linear
translational drag acting on the platform (Faessler et al., 2017; Franchi et al., 2018). This force is
modeled as as v̇ ←− v̇ − r · v where v is the three dimensional velocity and r = 0.3 the drag factor
for the quadrotor and the fixed-wing systems. Performance is evaluated with the average tracking
error. For the CartPole balancing task we assume a constant force along the x-axis of the system, and
evaluate performance based on stability of the cart, i.e. how fast the system moves along the x-axis.
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Policy pretrained in f̂ Finetuned (samples in f∗)
Domain PPO MBMF PETS Ours PPO MBMF PETS Ours

CartPole
L ≈ 56.7

Source 0.04 0.01 0.24 0.05 (60K) (50) (400) (50)
Target 0.63 0.35 unstable 1.02 0.08 0.02 0.26 0.09

Quadrotor
L ≈ 8.3

Source 0.36 0.03 0.18 (*) 0.05 (150K) (1K) (2.5K) (1K)
Target 0.42 0.28 0.38 (*) 0.56 0.4 0.03 0.1 (*) 0.07

Fixed-wing
L ≈ 41.2

Source 0.09 0.0 0.24 0.01 (150K) (2K) (5K) (2K)
Target 0.43 0.08 8.39 0.07 0.09 0.01 0.27 0.02

Table 1: Performance comparison when the source and target domain differ of a time-invariant force,
i.e. linear velocity drag for quadrotor and fixed-wing aircraft, and a lateral force on the pendulum.
We measure performance in terms of average distance to the reference (in m) and the velocity of
the cart (in m/s) respectively. We additionally report the Lipschitz constant L of the systems to give
an idea of their dynamics. In this simple scenario, all methods nearly regain their performance in
the target domain after finetuning, but the the model-based RL baselines and our method require
significantly less interaction with the target domain. For the standard deviations see appendix A.3.1.

In these experiments, we assume that the exact functional of the disturbance in f∗ is unknown.
Both for the MBMF and ours, the dynamics f̂ are grounded by training the network ∆φ (cf. Equa-
tion equation 10). We represent ∆φ by a two-layer MLP with tanh activation and 64 hidden nodes.

The results of these experiments are available in Table 1. All approaches perform similarly in the
adaptation task, but PPO requires a significantly larger sample budget than MBMF and our method
(e.g. 150 vs 1K samples). For an example of the convergence of PPO see appendix A.3.2. Online
optimization via MBMF obtains slightly better performance than our approach after fine-tuning.
This is in line with previous findings (Faessler et al., 2017), which show that velocity drag can be
accurately counteracted with online optimization. The PETS algorithm (Chua et al., 2018) instead
achieves very good sample efficiency, but no comparable performance could be achieved for the two
more complex tasks of controlling flying vehicles. The quadrotor was simplified significantly to
achieve good performance (marked (*) in Table 1): Instead of tracking an arbitrary polynomial at
∼ 3ms , we track only a single reference trajectory at lower speed (1ms ) with PETS. In contrast to that,
we show in appendix A.6 that our controller for the quadrotor generalizes to acrobatic maneuvers at
up to 5ms . Finally, our approach also achieves lower runtime than other model-based RL approaches
(appendix A.4).

3.2.2 THE ADVANTAGES OF JOINT OPTIMIZATION BY MEANS OF TIME-VARIANT FORCE
SCENARIOS

200 400 600 800 1000
Sample budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
el

ta
 (d

yn
am

ic
 g

ap
)

Data collected with
random controller
MBMF controller
ours

(a) Dynamics gap
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(b) Policy performance

Figure 2: Evolution of the dynamics mismatch cost δs,ν,π and the policy performance J∗(πθ) in
function of samples collected with the target dynamics. Three policies are used for data collection: a
random controller, and an MBMF controller, and the policy πθ, which is jointly trained. Coupling the
control and dynamic learning process favours sample efficiency.
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Our approach tightly couples the identification and policy learning problems during training. In this
section, we show that joint optimization improves sampling efficiency in the target domain. We
perform this analysis on the scenario of time-variant non-linear forces. Specifically, in the target
domain we apply a force of 2 cos t along the x-axis during the quadrotor flight, and a force of
2(sin t + 1) along the x-axis of the CartPole system. Since the force is time-variant, it cannot be
identified from a single state st. Therefore, we provide the history of the last 5 states and actions
to both πθ and the state-residual network ∆φ. Both the policy and state residual networks are
parametrized by a 2-layer MLP with 64 hidden units and tanh activations.

First, we analyse the effect of the data collection policy on the performance of the quadrotor. We
use the dynamics mismatch cost δ and the policy performance J∗(πθ) as metrics for a quantitative
analysis. Data in the target domain is then collected with three policies: a random policy, a MBMF
controller, and our iteratively trained policy πθ. The results in Figure 2 show that using data collected
with the policy πθ results in quicker adaptation to the target dynamics. Doing joint identification and
control leads to up to 16% and 33% better policy performance than collecting data with an MBMF
or a random policy, respectively. Complementary results for the fixed-wing aircraft can be found
in A.2.1. These findings confirm the intuition that for complex systems the model only needs to be
accurate in the states observed during task execution, but not necessarily accurate in the unobserved
regions of the state space.

100 200 500 1k ... 100k 500k
Sample budget

0.0

0.1

0.2

0.3

0.4

* ( )

PPO
MBMF
Ours

Figure 3: CartPole subject to a time-variant force.

Second, Figure 3 visualizes the sample efficiency
of our joint approach compared to MBMF and
PPO. For a fair comparison, both the MBMF and
our method use exactly the same ∆φ network.
Here, our approach clearly outperforms the on-
line optimization baseline in terms of both control
performance and sample efficiency. Indeed, with
a 1K sample budget, our approach reduces the
velocity error by 24% with respect to the MBMF.
This indicates that for higher-dimensional prob-
lems online optimization can struggle to find op-
timal solutions.

3.2.3 VISION-BASED CONTROL

Finally, we repeat the same experiment as in the previous paragraph, but condition the network ∆φ

and the policy πθ only on a history of the last 5 images and actions. We represent both ∆φ and πθ as
a 4-layer convolutional network with kernel size 3 and ReLU activations. We additionally pretrain a
differentiable renderer network Ψ that transforms the system state st (not accessible to πθ and ∆φ)
into a 3rd-person-view image of the CartPole. This network is used for training the controller in a
receding-horizon fashion. We parametrize Ψ via a 4-layer MLP with [32, 128, 256] hidden nodes and
tanh activation; it outputs an image of size 120× 100. The results of this experiment are presented in
Table 2. In this case, online optimization in the image space either does not converge or returns poor
solutions, both in the source and in the target domain. In contrast, our method and the model-free
baseline (PPO) both obtain very good performance.However, our approach can adapt the policy with
a fraction of the sample budget (1K vs 230K samples) while obtaining a 29% better performance in
the target domain. This experiment shows that our approach combines the best of both worlds. It can
leverage prior knowledge about the system to increase sample efficiency and at the same time retain
the flexibility of model-free methods to cope with high-dimensional inputs.

Domain PPO (0) MBMF (0) Ours (0) PPO (230K) MBMF (1K) Ours (1K)

Source 0.28 ± 0.23 unstable 0.15 ± 0.11 - - -
Target unstable unstable unstable 0.39 ± 0.29 unstable 0.29 ± 0.17

Table 2: Image-based control and identification for the task of CartPole balancing. We report the
sample budget in parentheses. The source and target domains differ by a time-variant non-linear
force. Our approach outperforms the baselines in terms of performance and sample efficiency.

8
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4 RELATED WORK

Adaptive control for real-world dynamics Many works regard the transfer to a target domain
in the context of robust adaptive control (Ioannou & Sun, 2012). Next to optimization methods
for adaptive model predictive control (Dean et al., 2018; Dougherty & Cooper, 2003; Song et al.,
2019), also learning approaches for robust and safe control were proposed (Berkenkamp et al., 2016;
Dean et al., 2019; Zhang et al., 2020) and tested in real-world settings. Kaufmann et al. (2020)
learn a controller in simulation with environment randomization and abstract representations in
order to transfer it to the real world. In contrast to our work and optimization based methods for
adaptive control, robust control deals with uncertainties and noise in the environment (Saltık et al.,
2018). Analyzing the robustness of our method with respect to noisy state observations, or leveraging
uncertainty methods for sim-to-real scenarios may be an interesting opportunity for future work.

Grounded simulation learning In the context of reinforcement learning, Farchy et al. (2013)
introduced ”grounded simulation learning” (i.e. altering the simulator to better match the real world).
Hanna & Stone (2017) extend this work and learn an action transformation (GAT) from data for
simulator grounding. Recently, Desai et al. (2020) showed that grounded action transformation can
be formulated as an imitation from observation problem. These works are similar to ours in the sense
that the simulator is altered to match the target dynamics. However, action transformations can not
account for arbitrary changes in the dynamics. Similarly, for simple identification tasks it is sufficient
to estimate parameters of the target system from data (Chebotar et al., 2019), whereas in this work
also external disturbances were considered.

Differentiable programming (DP) Neural ODEs (Chen et al., 2018) have inspired DP approaches
for control, and several differential physics simulators were developed (Hu et al., 2019; Qiao et al.,
2020; Gradu et al., 2021). To adapt to changes in the dynamics system, Heiden et al. (2019; 2020)
extend a differentiable physics simulator with neural networks, however not in the context of control
tasks. Other DP approaches where proposed for solving non-linear system identification and optimal
control (Jatavallabhula et al., 2021; Jin et al., 2019) and show that it outperforms state-of-the-
art control methods. We arrive at a similar conclusion, but our work jointly optimizes for both
identification and control.

5 DISCUSSION

While there is a large body of work on domain adaptation for image recognition tasks, the same
problem in the context of sensorimotor control has received little attention. However, efficient
adaptation of sensorimotor policies could have fundamental implications for several real-world
applications. While a lot of industrial robots have operated in controlled and constrained environments,
modern robots require more flexibility and are deployed in a variety of more natural and unconstrained
environments. Hence, they need to quickly adapt to novel conditions (e.g. environment effects, contact
dynamics, human-robot interaction) that cannot always be anticipated. In this work, we analyze
this domain adaptation problem. We use our framework to review existing methods and motivate
a novel approach which jointly minimizes the control and identification cost with gradient descent.
Through controlled experiments, we show that our approach maintains the sample efficiency of online
optimization methods while keeping the flexibility of offline model-free algorithms.

We see a number of opportunities for future work. First, the presented methodology is only demon-
strated on control tasks with a relatively short horizon (up to 5 s in the future). We hypothesize
that combining differentiable programming with stochastic gradient descent could be beneficial for
sample efficient domain adaptation in long-term planning problems, e.g. maze navigation (Wijmans
et al., 2020; Hafner et al., 2019b). Second, we believe that our methodology can be used to enable
autonomous operation of systems that are very difficult to model and control, e.g. bio-inspired
robots (Ajanic et al., 2020; Karásek et al., 2018). Overall, we hope that this work will inspire
future research at the intersection of machine learning and robotics on the task of few-shot domain
adaptation.
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STATEMENT OF REPRODUCIBILITY

The source code to reproduce all experiments is provided in the supplementary material and will be
published upon acceptance. All dependencies are available under the MIT license as discussed in
subsection 3.2. Our code further includes the checkpoints for the best-performing model for each
CartPole, quadrotor and fixed-wing aircraft. The data is collected in simulation and mostly generated
on the fly. Hence, we consider our work fully reproducible with the information in the README as
well as the training details given in appendix A.1.
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A APPENDIX

A.1 HYPERPARAMETERS AND TRAINING DETAILS

We tested our method on three dynamic systems that are visualized in Figure 4: a quadrotor, a
fixed-wing aircraft, and the CartPole task. Our framework is implemented in Pytorch, enabling the
use of autograd for backpropagation through time. All source code is attached, and the parameters can
be found as part of the source code in the folder configs. Example videos for all three applications
are also attached in the supplementary material. In the following we provide details on training and
evaluation.

(a) Quadrotor (b) Fixed-wing drone (c) CartPole

Figure 4: Experiments are conducted on three diverse dynamic systems and tasks: Tracking a
trajectory with a quadrotor, passing through a target with a fixed wing drone, and balancing a pole on
a cart. The OpenAI Gym renderer was used for simple 2D visualizations.

A.1.1 QUADROTOR

Our implementation of a quadrotor environment is loosely based on the implementation provided at
https://github.com/ngc92/quadgym (MIT license). However, our model of the quadrotor
is a Pytorch implementation of the equations in the Flightmare simulator Song et al. (2020). We
also provide an interface to test our models in Flightmare, and a video of our model controlling a
quadrotor in Flightmare is attached in the supplementary material. In all our experiments, we set the
time between the discrete time steps to 0.1s.
Furthermore, for training and testing we generate 10000 random polynomials of 10s length, where
all trajectories are guaranteed to be feasible to track with the used platform. From this dataset, 1000
trajectories are left out as a test set to ensure that the policy generalizes to any given reference. The
maximum desired velocity on such a reference trajectory is usually around 3− 5m/s, whereas the
average velocity is 1− 2m/s.

Policy network At each time step, the current state and the next reference states are given as input
to the network. As the current state, we input the velocity in the world frame and in the body frame,
the first two columns of the rotation matrix to describe the attitude (as recommended in Zhou et al.
(2019)), and the angular velocity. For the reference, we input the next 10 desired positions relative to
the current drone position, as well as the next 10 desired velocities (in the world frame).
The state is first passed through a linear layer with 64 neurons (tanh activation), while the reference is
processed with a 1D convolutional layer (20 filters, kernel size 3) to extract time-series features of
the reference. The outputs are concatenated and fed through three layers of 64 neurons each with
tanh activation. The output layer has 40 neurons to output 10 four-dimensional actions. Here, an
action corresponds to the total thrust T and the desired body rates ωdes to be applied to the system.
The network outputs are first normalized with a sigmoid activation and then rescaled to output a
thrust between 2.21N and 17.31N (such that an output of 0.5 corresponds to 9.81N ) and body rates
between −0.5 and 0.5.

Loss function The loss (equation 11) is a weighted MSE between the reached states and the
reference states. The weights are aligned to the ones used for the optimization-based MBMF, namely
a weight of 10 for the position loss, 1 for the velocity, 5 to regularize the predicted thrust command
and 0.1 for the predicted body rates as well as the actualy angular velocity. Formally, these weights
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yields the following loss:

L =

10∑
k=1

10·(xt+k,π−xt+k,ν)2+(ẋt+k,π−ẋt+k,ν)2+5·(Tk−0.5)2+0.1·(ωk,des−0.5)2+0.1·ωt+k

where xt is the position at time step t, ẋt is the velocity, and the subscript π indicates the states
reached with the policy while the subscript ν denotes the positions and velocities of the reference.
T and ωdes correspond to the action after sigmoid activation but before rescaling (such that values
lie between 0 and 1), and ωt is the actual angular velocity of the system at each state. The loss is
minimized with the Pytorch SGD optimizer with learning rate 10−5 and momentum 0.9.

Curriculum learning As explained in subsection 2.2, we use a curriculum learning strategy with a
threshold τdiv on the allowed divergence from the reference trajectory. We set τdiv = 0.1m initially
and increase it by 0.05m every 5 epochs, until reaching 2m. Additionally, we start by training on
slower reference trajectories (half the speed). Once the quadrotor is stable and tracks the full reference
without hitting τdiv , the speed is increased to 75% of the desired speed and τdiv is reset to 0.1m. This
is repeated to train at the full speed in the third iteration.

A.1.2 FIXED-WING DRONE

We implemented a realistic model of the dynamics based on the equations and parameters described
in Beard & McLain (2012) and Waldock et al. (2018). In our discrete-time formulation, we set
δt = 0.05s.

Reference trajectory In contrast to the reference trajectories for the quadrotor, the reference for
the fixed-wing aircraft is only given implicitly with the target position. As an approximate reference,
we train the policy to follow the linear trajectory towards the target point. In the following, the term
”linear reference” will be used to refer to the straight line from the current position to the target point.
At each time step, we compute the next 10 desired states as the positions on the linear reference while
assuming constant velocity.

Policy network Similar as for the quadrotor, the state and reference are pre-processed before being
input to the network policy. The state is normalized by subtracting the mean and dividing by the
standard deviation per variable in the state (mean and standard deviation are computed over a dataset
of states encountered with a random policy). This normalized state together with the relative position
of the 10-th desired state on the reference are passed to the policy network as inputs. Using all 10
reference states as input is redundant since they are only equally-distant positions on a line.
The state and the reference are each separately fed through a linear layer with 64 neurons and then
concatenated. The feed-forward network then corresponds to the one used for the quadrotor training
(three further layers with 64 neurons each and an output layer with 40 neurons). The output actions
are also normalized with sigmoid activations and then scaled to represent thrust T ∈ [0, 7]N , elevator
angle a1 ∈ [−20, 20]◦, aileron angle a2 ∈ [−2.5, 2.5]◦ and rudder angle a3 ∈ [−20, 20]◦.

Loss function. As for the quadrotor, we align the loss function to the cost function of the online
optimization model predictive control in the MBMF baseline. The MSE between the reached positions
and the target positions on the linear reference is minimized while regularizing the action, formally

L =

10∑
k=1

10 · (xt+k,π − xt+k,ν)2 + 0.1 · ((ak,1 − 0.5)2+, (ak,2 − 0.5)2 + (ak,3 − 0.5)2) ,

where t is the current time step and xt+k,π is the position of the aircraft after executing the k-th action
(Tk, ak,1, ak,2, ak,3), and xt+k,ν is the corresponding reference state. The loss is minimized with an
SGD optimizer with learning rate of 10−4 and momentum of 0.9.

Finally, the curriculum is initialized to allow a divergence of 4m from the linear reference and
increased by 0.5m every epoch until reaching 20m. Note that in contrast to the quadrotor, the model
converges in few epochs.
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A.1.3 CARTPOLE

In the CartPole problem, a pole should be balanced on a cart by pushing the cart left and right, while
maintaining low cart velocity. The time step is again set to 0.05s. The state of the system can be
described by position x and velocity ẋ of the cart, as well as angle α and angular velocity α̇ of the
pole. The ”reference trajectory” is defined only by the target state, which is the upright position of
the pole, α = 0, α̇ = 0 and ẋ = 0.

Policy network Since the reference state is constant, it is sufficient for the policy to observe the
state at each time step. Here, we input the raw state without normalization. It is passed through a
five-layer MLP with 32, 64, 64, 32 and 10 neurons respectively. All layers including the output layer
use tanh activation, in order to scale the actions to values between −1 (corresponding to 30N force
to the left) and 1 (force of 30N pushing the cart to the right). As for the quadrotor and fixed-wing
drone, the next 10 (1-dimensional) actions are predicted.

Loss function To compute the loss with respect to a reference trajectory, we interpolate between
the current state and the target state. Note that the intermediate states are often infeasible to reach;
for example an increase of velocity might be required to reduce the pole angle. The interpolation
where both velocity and angle decrease is thus not realistic. As before, a weighted MSE between the
reference states and the actual states is computed, where the angle difference is weighted with a factor
of 10, the cart velocity with factor 3, and the angular velocity with factor 1. The loss is minimized
with SGD optimizer with learning rate 10−7.

A.2 ITERATIVE TRAINING

As described in subsection 2.2, we propose a training procedure that iterates between grounding the
dynamics and fine-tuning the controller. An example is shown Figure 5, where the quadrotor model
is fine-tuned to account for velocity drag (see subsubsection 3.2.1). The iterative algorithm starts
from a pre-trained policy that achieves low tracking error in f̂ but higher tracking error (0.42m, see
Table 1) in the target environment f∗ due to velocity drag. When no improvement was found for
five consecutive epochs in the dynamics or control test data performance, we switch to the other one
respectively. Before the dynamics model is trained, new data in f∗ is collected with the most recent
policy (always before red sections in Figure 5). Specifically, we start with 200 samples at epoch 0,
adding 200 additional samples at epoch 15, again at epoch 38, etc. Thus, overall only 1800 samples
in f∗ are used in this example.
It can be observed in Figure 5 that 200 samples are insufficient to fine-tune the dynamics model, but
with 400 samples already both δ as well as the tracking error decrease significantly. With a sample
budget of 1000, the tracking error is already below 0.1, almost matching the performance of our
best model in f̂ (tracking error of 0.05m). Observe also that fine-tuning the policy (blue parts) is
extremely fast thanks to differentiable programming.
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Figure 5: Iterative fine-tuning of model and policy. Here, a residual network ∆ is trained to account
for velocity drag in the target dynamics f∗ with low sample budget. The policy π is fine-tuned (blue
parts) by backpropagation through the updated dynamics model. When converged, the new policy π
is used to collect new samples in f∗ to further decrease the dynamic gap ∆ (red parts).

A.2.1 ADVANTAGES OF COUPLED TRAINING OF DYNAMICS AND CONTROL

In accordance to the experiment on the quadrotor shown in subsubsection 3.2.2, we test the perfor-
mance of coupled training also on the fixed-wing aircraft. A time-variant force of 2 cos t is applied
orthogonal to the initial flight direction. In Figure 6a we compare the dynamics error δ yielded when
collecting data with a random policy, the MBMF controller or our pre-trained policy. The mismatch
cost δ is reduced by up to 55% compared to the MBMF and up to 65% in contrast to a random policy.
The policy performance improves accordingly (Figure 6b). This result further supports the advantages
of joint dynamics and control optimization.
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Figure 6: Evolution of the dynamics mismatch cost δs,ν and the policy performance for tracking
a target point with a fixed-wing aircraft. Data in the target domain f∗ is collected with either a
random policy, a MBMF or our pre-trained policy. The error decreases faster when our joint learning
approach is used, confirming the result in subsubsection 3.2.2

A.3 MODEL-FREE AND MODEL-BASED BASELINES

The online-optimization model predictive control in the MBMF baseline is implemented with the
toolbox CasADi for numerical optimization, using its nonlinear programming solver. The same
reference trajectories and loss functions as for our neural controller are used.
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As a baseline for model-free RL, the PPO algorithm of the stable-baselines3 PyPI pack-
age Raffin et al. (2019) is used with the default parameters. The maximal episode length corresponds
to the length of the reference trajectory for the quadrotor, the time to pass the x-position of the target
point for the fixed-wing, and is infinite for the CartPole. In our experiments on PPO, we first pre-train
a policy in the environment corresponding to f̂ until convergence. We then start with the model
performing best in f̂ and fine-tune in the target domain, i.e. an environment corresponding to f∗. For
example, for the experiment in Table 1 the PPO baseline is fine-tuned in a modified environment with
velocity drag.

A.3.1 BASELINE COMPARISON WITH STANDARD DEVIATIONS

Table 3 complements the results from in Table 1 by including standard deviations.

Policy pretrained in f̂ Finetuned (samples in f∗)
Domain PPO MBMF PETS Ours PPO MBMF PETS Ours

CartPole
L ≈ 56.7

Source 0.04 ± 0.04 0.01± 0.03 0.24 ± 0.10 0.05 ± 0.05 PPO (60K) MBMF (0.3K) PETS (400) Ours (50)
Target 0.63 ± 0.54 0.35 ± 0.06 unstable 1.02 ± 0.35 0.08 ± 0.06 0.02 ± 0.02 0.26 ± 0.08 0.09 ± 0.04

Quadrotor
L ≈ 8.3

Source 0.36 ± 0.10 0.03 ± 0.01 0.18 ± 0.08 (*) 0.05 ± 0.01 PPO (150K) MBMF (1K) PETS (2.5K) Ours (1K)
Target 0.42 ± 0.09 0.28 ± 0.04 0.38 ± 0.09 (*) 0.56 ± 0.07 0.40 ± 0.12 0.03 ± 0.02 0.1 ± 0.03 (*) 0.07 ± 0.01

Fixed-wing
L ≈ 41.2

Source 0.09 ± 0.05 0.0 ± 0.0 0.24 ± 0.15 0.01 ± 0.01 PPO (150K) MBMF (2K) PETS (5K) Ours (2K)
Target 0.43 ± 1.45 0.08 ± 0.08 8.39 ± 10.15 0.07 ± 0.10 0.09 ± 0.06 0.01 ± 0.02 0.27 ± 0.14 0.02 ± 0.03

Table 3: Performance comparison of model-free and model-based RL baselines on the CartPole,
quadrotor, and fixed-wing control tasks. Here, in addition to the results from in Table 1, the standard
deviation is shown.

A.3.2 CONVERGENCE OF MODEL-FREEL RL FINE-TUNED IN f∗

To give a better intuition on the sample budget of fine-tuning our model-free RL baseline, the
convergence of the PPO baseline for the fixed-wing drone is shown in Figure 7. Here, the training is
started from a pre-trained model that achieves strong performance in the source domain f̂ , but has
not seen any samples from the target domain f∗ yet. Thus, the distance of the drone from the target
point is initially 0.53m on average. During fine-tuning, the performance in the modified environment
f∗ is measured every 3000 samples on 40 runs with random target points. Only with more than 150k

steps in f∗, the model has regained the performance that could be achieved in f̂ , which is an average
error of 0.09m.

0 50000 100000 150000 200000 250000 300000
Number of steps

0.2

0.3

0.4

0.5

A
ve

ra
ge

 E
uc

l. 
di

st
an

ce
 fr

om
 ta

rg
et

Figure 7: Convergence of model-free PPO baseline, when fine-tuned in the target domain f∗ on a
fixed-wing aircraft. In contrast to our approach, model-free RL requires a much higher sample budget
to achieve similar performance in f∗ as in f̂ .
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A.3.3 TRAINING CONVERGENCE BY SAMPLE BUDGET

In order to further analyse how quickly the residual network learns to account for a dynamic mismatch,
we varied the number of samples collected in f∗ and observe the convergence of the dynamic loss.
For this experiment we again use the velocity drag scenario for the quadrotor (Table 1). Note that one
could also set translational drag itself as a trainable parameter, such that the drag is adjusted with
gradient descent. This leads to almost immediate closure of the dynamics gap. Here, we are instead
interested to estimate the ability of the residual network to account for arbitrary (black box) dynamic
changes.

Figure 8 shows the convergence when training the dynamics model with different dataset sizes. The
validation loss is computed on 200 validation samples that neither the controller nor the dynamics
model has seen during training. Although convergence is slower for smaller sample budgets, and
more overfitting can be observed, even with just 200 samples (20 seconds of flight) the loss converges
in fifty epochs.
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Figure 8: Learning to account for velocity drag of a quadrotor. The convergence of the mean squared
error between learnt dynamics and target dynamics during training is shown. With only 200 samples,
the error converges close to zero in 50 epochs. With 1000 samples, 10 epochs suffice to ground the
simulator.

A.4 RUNTIME COMPARISON TO MODEL-BASED RL METHODS

Model-based RL approaches oftentimes use online-optimization such as model predictive control
(MPC) to predict the next action. Our approach is instead trained in differentiable programming man-
ner and one action prediction is only a forward pass in the network. For example, our approach takes
0.00027s on average to output an action for the CartPole balancing task. Instead, our implementation
of the MBMF with a non-linear programming solver requires 0.005s, and the PETS algorithm (as
implemented in the MBRL-toolbox) even needs 2.2s on average. All times were computed on a
single CPU. While better implementations could increase performance, our approach stands out as a
method that achieves low sample complexity at very low runtime.

A.5 CARTPOLE SWING-UP

Our backpropagation-through-time approach depends on the existence of a reference trajectory. How-
ever, the reference trajectory does not need to be feasible. This is already shown in the experiments
with a fixed-wing aircraft, where we use a linear interpolation as the reference. To further support this
point, we conduct an experiment on the CartPole swing-up task. For a swing-up, the pendulum must
swing back and forth and can not follow a direct sequence of reference states towards the upright goal
state. Nevertheless, we train our controller with the same parameters and network as for the simple
balancing task (appendix A.1.3), and also with the same reference, namely an interpolation from
the current state to the goal state. We count a swing-up trial as a success if the pendulum angle is
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Max. speed Avg. tracking error (in m) Max. tracking error (in m)
Polynomials (train/test) ∼ 3 m/s 0.05 0.09

Power Loop 2.6 m/s 0.05 0.13
Power Loop 3.4 m/s 0.09 0.23
Power Loop 4.1 m/s 0.12 0.33
Power Loop 4.6 m/s 0.21 0.79
Power Loop 5.0 m/s 0.31 1.29

Table 4: High-speed flight with a quadrotor. Our trained controller can track the Power Loop trajectory
at a speed of up to 5ms−1.

less than 10◦ from the vertical position for at least 200 time steps, after an initial burn-in (swing-up)
period of 100 steps. Our method achieves a 100% success rate from randomized initial states after
training on 20000 samples. The x-position and velocity of the cart are also stable as desired (0.01m
from center and 0.29ms on average). For comparison, the PPO baseline needs 300000 samples to
achieve a 100% success rate, and requires more motion of the cart (0.74ms on average) although the
velocity is penalized.

A.6 HIGH-SPEED QUADROTOR FLIGHT

Controlling a quadrotor to follow an arbitrary trajectory in high speed is a challenging task. Our model
that was trained on 10000 random polynomial trajectories showed excellent ability to generalize to
unseen trajectories and to operate with a different desired speed. Here, we push the controller to its
limits by applying it at higher speed on an acrobatic maneuver proposed in Kaufmann et al. (2020),
namely the ”Power loop”. Table 4 demonstrates that our controller can successfully track the Power
loop at up to 5m/s. The increase in tracking error is expected since the observed states become more
and more different to the ones observed at training time as the speed increases.
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