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ABSTRACT

Safe multi-objective reinforcement learning (Safe MORL) seeks to optimize per-
formance while satisfying safety constraints. Existing methods face two key chal-
lenges: (i) incorporating safety as additional objectives enlarges the objective
space, requiring more solutions to uniformly cover the Pareto front and maintain
adaptability under changing preferences; (ii) strictly enforcing safety constraints
is feasible for single or compatible constraints, but conflicting constraints prevent
flexible, preference-aware trade-offs. To address these challenges, we cast Safe
MORL within a multi-party negotiation framework that treats safety as an exter-
nal regulatory perspective, enabling the search for a consensus-based multi-party
Pareto-optimal set. We propose a multi-party Pareto negotiation (MPPN) strat-
egy built on NSGA-II, which employs a negotiation threshold ε to represent the
acceptable solution range for each party. During evolutionary search, ε is dynami-
cally adjusted to maintain a sufficiently large negotiated solution set, progressively
steering the population toward the (εefficiency, εsafety)-negotiated common Pareto
set. The framework preserves user preferences over conflicting safety constraints
without introducing additional objectives and flexibly adapts to emergent scenar-
ios through progressively guided (εefficiency, εsafety). Experiments on a MuJoCo
benchmark show that our approach outperforms state-of-the-art methods in both
constrained and unconstrained MORL, as measured by multi-party hypervolume
and sparsity metrics, while supporting preference-aware policy selection across
stakeholders.

1 INTRODUCTION

Multi-objective reinforcement learning (MORL) addresses decision-making problems with multiple,
often conflicting objectives (Dulac-Arnold et al., 2021). Since no single policy can be optimal
across all objectives simultaneously, existing approaches are typically divided into two categories.
Single-policy MORL (Chen et al., 2021; Skalse et al., 2022; Kyriakis & Deshmukh, 2022) reduces
the multi-objective problem to a scalar one by applying predefined weights, allowing standard RL
algorithms to be used directly. However, this scalarization produces a policy tailored to a fixed
preference, limiting adaptability across tasks. Multi-policy MORL (Yang et al., 2019; Chen et al.,
2019; Xu et al., 2020; Hayes et al., 2022), on the other hand, aims to approximate the Pareto front
(PF) by learning a set of non-dominated policies, thereby supporting diverse objective preferences
and enabling flexible policy selection in practice.

While MORL has shown promising progress, incorporating safety considerations introduces new
challenges. Safe MORL (Huang et al., 2022) aims to optimize multiple objectives while ensuring
that agents adhere to safety requirements, thereby preventing hazardous behaviors during training
and deployment. One natural formulation is to treat safety as an additional objective alongside per-
formance goals. This enables explicit exploration of safety–performance trade-offs but increases the
dimensionality of the objective space, leading to an exponential growth of the Pareto set and making
full coverage intractable. Alternatively, safety can be enforced as a hard constraint, giving rise to
constrained MORL (CMORL) (Huang et al., 2022; Lin et al., 2024; Gu et al., 2025), which restricts
the search to policies that satisfy predefined safety conditions. This avoids dimensionality explosion
and directly guarantees safe behavior, but struggles with conflicting or overly strict constraints and
lacks adaptability in dynamic environments.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In practice, however, safety is not always absolute. Real-world decision making often requires
negotiating between efficiency and safety, where tolerating minor violations of certain safety con-
straints may yield significant performance gains. For example, as illustrated in Figure 1, cargo-
handling robots aim to maximize movement speed and payload capacity while maintaining body
stability and limiting energy consumption. Allowing slight violations in stability or energy us-
age can enable faster transport of larger loads, which may be desirable in time-sensitive sce-
narios. Such flexibility is difficult to achieve with CMORL, since hard constraints restrict the
feasible solution set and often eliminate practically useful trade-offs. Likewise, objective-based
MORL approaches may struggle to capture balanced solutions between efficiency and safety
when the inclusion of multiple safety objectives causes the Pareto set to expand excessively.

Efficient objectives:
   bearing weight 
   movement velocity ​
Safe constraints:
   energy cost
   body stability

​​Routine Tasks ​ ​​Emergency Tasks ​​

Efficient objectives:
   bearing weight 
   movement velocity ​
Safe constraints:
   energy cost
   body stability

Efficient objectives:
   bearing weight 
   movement velocity ​
Safe constraints:
   energy cost
   body stability

Figure 1: Trade-off between efficiency and safety.
Safety constraints are relaxed in emergency tasks
to prioritize efficiency objectives.

To address these limitations, we reconcep-
tualize Safe MORL as a multi-party nego-
tiation problem, where the safety objectives
and efficiency objectives are treated as sepa-
rate multi-objective decision parties rather than
as additional objectives in a single objective
space. This formulation enables the search for
a common Pareto set that balances efficiency
and safety while resolving potential conflicts
among safety constraints. Building on this
idea, we develop a negotiation-driven evolu-
tionary framework, MPPN-MORL, which inte-
grates multi-party Pareto negotiation into pol-
icy search without increasing the dimensional-
ity of the objective space. Our approach flexi-
bly adapts to user-specified preferences over both performance and safety, preserves diversity in the
solution set, and promotes fairness across parties. Extensive experiments on a multi-objective Mu-
JoCo benchmark demonstrate that MPPN-MORL achieves superior trade-offs between efficiency
and safety compared to existing MORL and CMORL methods, while effectively handling conflict-
ing safety constraints and supporting preference-aware policy deployment.

2 PRELIMINARIES

2.1 MULTI-OBJECTIVE DECISION-MAKING

A multi-objective decision-making (MODM) problem involves optimizing multiple, potentially con-
flicting objectives. Formally, it can be formulated as

min
πθ

Fπθ
= min

πθ

[f1(πθ), . . . , fm(πθ)] , (1)

where πθ denotes a parameterized policy, and fi(πθ) is the expected performance of πθ with respect
to the i-th objective, for i = 1, . . . ,m. Unlike single-objective settings, which seek a unique optimal
policy, MODM problems typically yield a set of Pareto-optimal solutions, each reflecting a different
trade-off among objectives.

2.2 CONSTRAINED MULTI-OBJECTIVE REINFORCEMENT LEARNING

Safe MORL extends MODM by enforcing safety constraints, restricting the set of admissible poli-
cies. Constrained MORL (CMORL) formalizes this idea using explicit cost functions. Specifically,
CMORL introduces p additional cost functions cm+1, . . . , cm+p, each mapping a state-action pair
(s, a) to a scalar cost. For a policy π, the expected cumulative cost under the (m+ i)-th function is
denoted as cm+i(π), which must satisfy

cm+i(π) ≤ di, ∀i = 1, . . . , p, (2)

where di is a predefined safety threshold. The objective in CMORL is to optimize the vector-valued
function F(π) representing performance across m objectives, while ensuring that π lies within the
safe policy set:

Πsafe = {π ∈ Π | ci(π) ≤ di, ∀i = m+ 1, . . . ,m+ p} , (3)
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from which the agent identifies a set of Pareto-optimal policies.

Gu et al. (2025) extend the Pareto frontier concept to safety-constrained MDPs. A policy π ∈ Πsafe
is safe Pareto-optimal if no other policy in Πsafe strictly improves all objectives without violating any
constraint. Thus, the central goal of CMORL is to efficiently find such policies, balancing objective
performance with constraint satisfaction.

3 METHOD

In this section, we introduce the modeling approach for MPMORL and present the MPPN-MORL
algorithm, which is capable of selecting appropriate Pareto-optimal policy sets based on the pref-
erences of multiple parties. We first describe the modeling framework for MPMORL, and then
elaborate on MPPN-MORL from two key aspects. The detail of MPPN-MORL is shown in Algo-
rithm 2 .

3.1 MULTI-PARTY MULTI-OBJECTIVE DECISION-MAKING

Multi-party multi-objective decision-making (MPMODM) models scenarios with multiple decision-
makers (DMs), where each DM optimizes its own set of objectives and at least one DM faces mul-
tiple, potentially conflicting goals. Such scenarios arise naturally in decentralized systems, multi-
departmental planning, and cooperative multi-agent environments where each party holds distinct
priorities.

In sequential decision-making under uncertainty, MPMODM can be formulated as a multi-party
multi-objective Markov decision process (MPMOMDP). In this work, we focus on two parties: the
safety side and the efficiency side. Formally, the problem is defined by the tuple

M = ⟨S,A, T, µ,Γ,R⟩ (4)

where S is the state space, A is the action space, T (s′ | s, a) denotes the state transition probability,
and µ is the initial state distribution. The discount factors are represented by Γ = γ1, γ2, where
γk = [γk

1 , . . . , γ
k
m] ∈ [0, 1]m denotes the discount vector for party k. The reward function is defined

as
R(s, a, s′) =

[
R1(s, a, s′), R2(s, a, s′)

]
, (5)

with Rk(s, a, s′) = [rk1 (s, a, s
′), . . . , rkm(s, a, s′)]⊤ representing the m-dimensional reward vector

for party k.

A policy πθ : S → A guides the agent’s behavior. For each party k ∈ {1, 2}, its performance is
evaluated using a vector of expected discounted returns:

Jk
i,πθ

= Eτ∼πθ

[ ∞∑
t=0

(γk
i )

trki (st, at, st+1)

]
, i = 1, . . . ,m. (6)

Let Jk
πθ

= [Jk
1,πθ

, . . . , Jk
m,πθ

]⊤ be the m-dimensional return vector for party k. The goal of MP-
MORL is to identify a set of policies {πθ} that approximates the joint two-party Pareto front, which
balances trade-offs between the safety side and the efficiency side.
Definition 3.1 (One-Party Pareto Dominance). Given two solutions X,Y ∈ X and the objective set
Fk of the k-th DM, X is said to Pareto dominate Y with respect to DM k, denoted as X ≺k Y ,
if fk,i(X) ≤ fk,i(Y ) for all i ∈ {1, . . . ,mk} and there exists at least one j such that fk,j(X) <
fk,j(Y ).
Definition 3.2 (Multi-Party Pareto Dominance). Given two solutions X,Y ∈ X , X is said to multi-
party Pareto dominate Y , denoted as X ≺MP Y , if X ≺k Y holds in the local objective space of
each DM k.
Definition 3.3 (Multi-Party Pareto Front). Let X be the solution space. The multi-party Pareto front
(MP-Pareto front) is defined as the set of solutions that are not multi-party Pareto dominated by any
other solution in X , i.e.,

PFMP = {X ∈ X |∄Y ∈ X s.t. Y ≺MP X} . (7)

In other words, a solution X belongs to the multi-party Pareto front if there does not exist another
solution Y that is better than X in the objective spaces of all decision makers simultaneously.
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Different from traditional MORL, where Pareto optimality is defined with respect to a centralized
objective space, MPMORL introduce a perspective-dependent notion of optimality. A solution re-
garded as globally Pareto optimal may appear suboptimal from the standpoint of an individual DM
with unique preferences. MPMORL requires identifying solutions that not only balance multiple
objectives but also ensure diversity and fairness among all participating DMs.

Example: Consider a robotic cargo transportation task in which a robot delivers goods from a
workstation to a designated target area. In this scenario, two DMs focus on different aspects of the
robot’s policy: the efficiency party emphasizes transportation speed and payload capacity, whereas
the safety party prioritizes energy consumption and body stability.
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Figure 2: Performance of different policies under MPMORL modeling and CMORL modeling.

As shown in Figure 2 , when modeled as a conventional MORL problem, each policy constitutes a
Pareto-optimal solution. However, individual DMs may have diverging preferences: the efficiency
party favors polices π2, π3 and π5, while the safety party favors polices π2, π4, and π5. Although all
policies are Pareto-optimal in the multi-objective sense, under the multi-party perspective, policies
π1, π3 and π4 are dominated by policies π2 and π5. Therefore, the multi-party Pareto front includes
π2 and π5, eliminating solutions that appear optimal in the centralized view.

When facing conflicting safety constraints, CMORL must perform optimization within a fixed con-
straint space, thus failing to find all Pareto solutions. While feasible, it lacks the diversity required
for negotiation among DMs and cannot effectively resolve conflicts between objectives.We con-
ducted a toy experiment using three representative algorithms in this environment, and the results
are presented in the Appendix D.1 .

3.2 MULTI-PARTY PARETO NEGOTIATION-BASED NON-DOMINATED SORTING

In MPMODM, the goal is generally to identify a common Pareto set that satisfies all parties. How-
ever, such common solutions are often limited. To enlarge the set of negotiable policies while
respecting individual preferences, one or both parties may relax their acceptance criteria. We model
this process as a bargaining game, where both parties start from an initial compromise level ε and
iteratively negotiate toward their reference thresholds (εefficiency, εsafety). During this negotiation,
the framework ensures that solutions maintain both high quality and uniform coverage, providing a
balanced compromise between efficiency and safety.

To address multi-objective decision-making in multi-party scenarios, we propose a multi-party
Pareto negotiation (MPPN) framework that extends the classical Pareto concept. The detailed pro-
cedure of this algorithm is presented in Algorithm 1 . The key idea is to relax the strict dominance
relation by introducing an ε-compromise degree with respect to a shared reference solution, allowing
each DM to accept solutions that are not strictly superior but still fall within an acceptable margin
of improvement relative to this baseline.

Specifically, for each DM, ε-dominance is evaluated against a predefined reference reward vector
rref. A candidate solution r is said to ε-dominate the reference if, within the DM’s objective sub-
space, it satisfies r ⪰ε rref, meaning that its performance is no worse than ε · rref across all relevant
objectives (accounting for optimization direction via element-wise scaling) and strictly better in
at least one. This mechanism prevents excessive rejection of solutions due to minor differences
and provides a negotiation margin centered on a common target, enabling more practical and sta-

4
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Algorithm 1 Multi-party ε-dominance Sorting
Input: Candidate set C with rewards {rj}, reference solution rref , compromise vector ε = [ε1, ε2],
objective partitions {J1, J2}, joint threshold τ
Output: Joint ε-front Fjoint, local fronts {F1,F2}

1: Initialize Fjoint ← ∅, F1 ← ∅, F2 ← ∅
2: for each solution rj ∈ C do
3: if rj ε-dominates rref w.r.t. J1 and J2 then
4: Add rj to Fjoint

5: else if rj ε-dominates rref w.r.t. J1 or J2 then
6: Add rj to F1 or F2

7: end if
8: end for
9: if |Fjoint| ≥ τ then

10: Shrink ε← max(ε ∗∆ε, εmin)
11: end if
12: return Fjoint,F1,F2

ble preference modeling under conflicting interests.As shown in Figure 3, by reducing the value
of (εefficiency, εsafety), safety constraints can be appropriately relaxed in exchange for tightening
policies toward higher-performance regions.

Safety J1

J2

ε

negotiation space

Efficiency J3

J4
feasible solution

Efficiency J3

J4
feasible solution

Safety J1

J2

εdecrease

negotiation space

Efficiency J3

J4

ε

feasible solution

εdecrease

Figure 3: The reward space under ε-dominance varies in accordance with the outcomes of the nego-
tiation process.

To retain appropriate policies during the evolutionary process, we have designed a multi-party non-
dominated sorting (MPNDS) method under ε-dominance. This MPNDS approach constructs a rank-
ing dictionary for each DM, which records the Pareto front level of each individual from the perspec-
tive of that DM. For ε-dominance, the Pareto level is defined as the minimum policy value that can
ε-dominate the reference policy. We then calculate the sum of the levels of each individual across
all DMs, and stratify and sort the individuals in ascending order based on the aggregated total level
value. This strategy effectively mitigates the dominant impact of overly strict preferences from a
single DM on the overall ranking, and better integrates the perspectives of all participating parties.
By adopting a level summation mechanism to aggregate multi-party negotiation opinions, MPPN
can identify solutions that more fairly reflect the diverse and even potentially conflicting objectives
of various stakeholders.

By dynamically tightening ε, the algorithm transitions from broad exploration to focused exploita-
tion. Initially large to allow diverse policies near rref, ε decays only when enough solutions satisfy
the condition for all DMs. If one party fails to improve, ε for the other party is temporarily relaxed
to explore better policies.

Overall, the multi-party ε-nondominated sorting first identifies locally preferred solutions within
each DM and then integrates them to form a global ranking. This yields a set of ε-nondominated
solutions that balance conflicting objectives while maintaining diversity and fairness.

3.3 MULTI-PARTY PARETO NEGOTIATION FOR SAFE MORL

To address conflicts among objectives from multiple parties, we propose MPPN-MORL, which
incorporates a multi-party negotiation mechanism into evolutionary search. Inspired by NSGA-
II(Storn & Price, 1997), the algorithm replaces genetic operators with differential evolution for
efficiency and substitutes standard Pareto dominance with an ε-dominance criterion to enable nego-
tiation.

5
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MPPN-MORL initializes a population of candidate policies, evaluates their multi-objective rewards,
and assigns party-specific compromise parameters ε to guide negotiation. In each generation, off-
spring are generated via differential evolution and combined with parents. Solutions are compared
against a reference under the negotiation-based dominance criterion. Jointly dominant solutions
tighten ε to enforce stricter optimality, while if none exist, each party updates its own dominant set,
preserving individual preferences.

Population diversity is maintained by prioritizing ε-dominated solutions and filling remaining
slots based on crowding distance. This iterative process continues until termination, yielding a
negotiation-based Pareto front that balances cooperation and competition, reflecting both individual
preferences and mutual consensus.

4 THEORETICAL ANALYSIS

This section provides a unified analysis of how the proposed negotiation mechanism guides the
search toward high-quality multi-party Pareto solutions. Our results build on (i) the nesting structure
of party-wise acceptable sets and (ii) the contraction induced by shrinking ε. All related theoretical
derivations and proofs are provided in Appendix E .

4.1 THEORETICAL PROOF OF ε-NEGOTIATION CONVERGENCE

We first briefly outline the convergence properties of the proposed ε-dominance negotiation mech-
anism with dynamic shrinking. The key idea is that, as the tolerance ε shrinks, the set of mutually
acceptable solutions becomes strictly nested, and the evolutionary search progressively focuses on
higher-quality regions. Leveraging a time-scale separation between the population mixing and ε-
shrinking steps, we can guarantee that the population converges toward the strictest joint Pareto
set.

Formally, let S(ε) denote the joint ε-acceptable set. Starting from an initial large tolerance ε0 and
iteratively shrinking to εT , the nested structure ensures:

S(ε0) ⊇ S(ε1) ⊇ · · · ⊇ S(εT ). (8)
Under standard assumptions on the evolutionary algorithm (irreducibility, retention, and sufficient
mixing), the population is guided layer by layer into stricter subsets, eventually approximating
S(εT ) with high probability. A detailed proof of this layered convergence is provided in Appendix
E.1 .

4.2 HARD SAFETY CONSTRAINTS

For hard safety constraints, we enforce them by fixing εsafety = 0, ensuring that the safety agent’s
acceptable set does not shrink. A detailed proof is provided in Appendix E.2 .

4.3 ε-SHRINKING LEADS TO IMPROVED MULTI-PARTY PARETO SOLUTIONS

The key idea behind the improvement is twofold. First, as the negotiation tolerance ε shrinks, the
joint acceptable set S(ε) becomes strictly smaller and less complex, reducing the solution-space
that the evolutionary algorithm must explore. Second, a smaller, lower-complexity set increases
the probability that a fixed-budget algorithm samples representative high-quality solutions in every
region of S(ε). Full technical details and proofs are provided in Appendix E.3 .

5 EXPERIMENTS

5.1 EVALUATION METRICS

In MORL, the most commonly used evaluation metric is the hypervolume (HV) and Sparsity (SP)
(Xu et al., 2020; Basaklar et al., 2023; Hu & Luo, 2024; Liu et al., 2025). To evaluate the overall
performance in MPMORL scenarios, we employ the Multi-Party Hypervolume (MPHV) and Multi-
Party Sparsity (MPSP). Assume that for each DM, an approximated Pareto front Lk is obtained in an
mk-dimensional objective space, where k ∈ {1, . . . ,K} indexes the parties and Mk is the number
of solutions in Lk. Let rk ∈ Rmk be the reference point for the k-th party. The HV for Lk is defined
as:

HV (Lk) = δ
(
H(Lk, rk)

)
, (9)

6
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where
H(Lk, rk) = {w ∈ Rmk | ∃j, rk ⪯ w ⪯ Lk,j} , (10)

Lk,j is the j-th solution in Lk, and δ(·) denotes the Lebesgue measure in Rmk . The relation⪯ is the
weak Pareto dominance operator, meaning that for two vectors a, b ∈ Rmk , a ⪯ b holds if and only
if ai ≤ bi for all objectives i. HV measures the volume of the region dominated by the approximated
Pareto set Lk and bounded by the reference point rk, where a larger HV indicates better convergence
and diversity properties of the approximation.

By introducing the negotiation thresholds (εefficiency, εsafety), MPHV aggregates the HV of all parties
with preference weights, reflecting the overall performance of the approximated Pareto sets. Its
calculation formula is expressed as follows:

MPHV = (1− εefficiency) ·HV (Lefficiency) + (1− εsafety) ·HV (Lsafety). (11)

The SP metric is further introduced to evaluate the distribution of solutions along the approximated
Pareto front. Unlike HV, which focuses on convergence and overall coverage of the objective space,
SP emphasizes the evenness of solution spacing, reflecting how well the algorithm maintains di-
versity across objectives. Formally, let L = {z1, . . . , zM} be the approximated Pareto front in an
m-dimensional objective space, where M is the number of solutions. For each objective dimension
k ∈ {1, . . . ,m}, the solutions are sorted in descending order by their k-th objective value. The
sparsity is then computed as:

SP (L) =
1

M − 1

m∑
k=1

M−1∑
j=1

(zj,k − zj+1,k)
2
, (12)

where zj,k denotes the k-th objective value of the j-th solution after sorting. A lower SP value
indicates that the solutions are more evenly distributed along the Pareto front. Therefore, SP serves
as a complementary indicator to HV, as it directly measures the diversity of solutions rather than the
dominated volume.

Analogous to MPHV, we extend SP to the multi-party setting by defining the Multi-Party Sparsity
(MPSP). Specifically, MPSP aggregates the sparsity values of all parties under negotiation thresh-
olds, capturing the overall evenness of solution distribution across different parties. Its formulation
is given as:

MPSP = (1− εefficiency) · SP (Lefficiency) + (1− εsafety) · SP (Lsafety). (13)

This metric reflects the overall quality of the Pareto approximations across all parties. A higher
MPHV indicates that the solutions perform well on average for individual parties, maintaining good
convergence and diversity. In contrast, a lower MPSP value signifies that the algorithm achieves
a well-spread set of solutions for each party and avoids clustering or large gaps between adjacent
solutions.

5.2 ENVIRONMENT SETTINGS

Based on the MuJoCo (Todorov et al., 2012) and MO-MuJoCo (Xu et al., 2020) benchmark, we
developed a MPMO MuJoCo benchmark to evaluate the performance of the proposed algorithms
within the MuJoCo framework. This benchmark consists of six continuous robotic locomotion
control tasks: MP-HalfCheetah, MP-Walker, MP-Hopper, MP-Pusher, MP-Swimmer, and MP-
Humanoid. Each task involves two decision-making parties, namely the safety party and the ef-
ficiency party, where each party is associated with two distinct objectives.

We also conducted tests in discrete environments on the commonly used Fruit Tree Navigation
(FTN) benchmark (Yang et al., 2019) with different depths. We divided the six objectives into two
parties, where each party optimizes three objectives.

The definitions of objectives and reward formulations for all experimental environments are detailed
in Appendix C .

5.3 BASELINES

To demonstrate the advantages of the MPMORL formulation and to evaluate the effectiveness of
the proposed MPPN-MORL algorithm, we conducted experiments against leading methods from

7
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both domains. For CMORL, we first adopted LP3 (Huang et al., 2022) as a baseline algorithm. We
also adopted the state-of-the-art algorithm CR-MOPO (Gu et al., 2025). For MORL, we employed
PGMORL (Xu et al., 2020), advanced approach designed for continuous state–action spaces. We
also selected MOAC (Zhou et al., 2024) and MOCHA (Hairi et al., 2025), the latest cutting-edge
methods in the field of MORL, to conduct comparative experiments. Notably, CR-MOPO-S (Gu
et al., 2025), which reformulates the safety constraint in CR-MOPO as an additional objective, can
also be viewed as a MORL algorithm.

We also conducted comparative experiments on the FTN environment against the Envelope (Yang
et al., 2019) and PD-MORL (Basaklar et al., 2023) algorithms.

Furthermore, to evaluate the effectiveness of the MPPN-MORL algorithm, we performed an ablation
study in which the MPPN component is removed, and only the MPNDS (Liu et al., 2020) component
is employed during the evolutionary process; this variant is referred to as MPPN-ablated.

Further details regarding the algorithmic procedures and parameter settings of the baseline methods
are provided in the supplementary material.

5.4 RESULTS

We evaluate the proposed methods on the developed continuous control benchmark MPMO-MuJoCo
and discrete benchmark MP-FTN. Figure 4 illustrates the MPHV and MPSP curves during training
for all methods in the MP-HalfCheetah environment. Table 1 reports the evaluation results across
all continuous environments. Table 2 presents the comparative performance of MPPN-MORL and
other methods in discrete environments. The MPPN-MORL algorithm employs an initial negotiation
vector of (0.5, 0.5) . The results for other initial negotiation vectors can be found in Appendix D.2 .

Figure 4: The MPHV and MPSP curve for the MP-HalfCheetah environment. The shaded region
represents the standard deviation across six independent experimental runs.

Table 1: Experimental results of MP-MuJoCo environments. Each algorithm was independently
executed six times under identical experimental conditions, reporting the mean± standard deviation.
LP3 and MOAC output a single policy and thus cannot calculate MPSP.

Environments Metrics PGMORL MOAC MOCHA LP3 CR-MOPO CR-MOPO-S MPPN-MORL

MP-HalfCheetah-v4 MPHV 0.411±0.006 0.918 1.052 0.852 0.778±0.134 1.241±0.032 2.067±0.040
MPSP(10−2) 0.458±0.146 N/A 0.979 N/A 0.001±0.001 0.007±0.008 0.137±0.021

MP-Walker-v4 MPHV 0.000±0.000 0.949 1.009 0.000 1.518±0.013 0.294±0.037 2.897±0.784
MPSP(10−2) 3.136±1.343 N/A 53.113 N/A 0.195±0.019 0.246±0.070 0.190±0.088

MP-Hopper-v4 MPHV 0.273±0.273 0.357 1.225 0.000 1.235±0.034 1.376±0.094 1.451±0.008
MPSP(10−2) 0.828±0.488 N/A 13.999 N/A 0.012±0.018 0.191±0.032 3.003±0.673

MP-Pusher-v4 MPHV 0.142±0.029 0.401 0.589 0.063 0.398±0.041 0.753±0.062 0.816±0.007
MPSP(10−2) 6.093±2.731 N/A 6.768 N/A 0.015±0.002 0.014±0.003 0.087±0.020

MP-Swimmer-v4 MPHV 0.011±0.000 0.932 0.998 0.839 0.944±0.035 0.995±0.008 1.284±0.031
MPSP(10−2) 0.074±0.009 N/A 16.354 N/A 0.032±0.011 0.099±0.005 0.753±0.142

MP-Humanoid-v4 MPHV 1.720±0.330 1.988 2.308 0.000 1.508±0.275 1.847±0.194 2.761±0.361
MPSP(10−2) 0.381±0.030 N/A 5.138 N/A 0.002±0.001 0.000±0.000 0.694±0.032

On the MPHV metric, MPPN-MORL achieves the best performance across all MP-MuJoCo envi-
ronments. This result validates the effectiveness of the proposed algorithm in balancing the interests
of multiple parties. For the the discrete benchmark NP-FTN, MPPNMORL achieves the best MPHV
at depths 5 and 6, but at depth 7, it performs slightly worse than the PD-MORL method. However,
on the MPSP metric, the CR-MOPO algorithm achieves the best performance in three MP-MuJoCo
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Table 2: Comparison on the discrete benchmark NP-FTN in terms of MPHV and MPSP.

Fruit Tree Navigation (d=5) Fruit Tree Navigation (d=6) Fruit Tree Navigation (d=7)

MPHV MPSP MPHV MPSP MPHV MPSP

Envelope 219.150 0.020 188.770 0.020 196.840 0.020
PD-MORL 219.150 0.020 213.200 0.020 250.960 0.020
MPPNMORL 240.990 0.089 241.422 0.080 247.534 0.031

environments, and the CR-MOPO-S algorithm achieves the best performance in two MP-MuJoCo
environments, which can be attributed to their gradient-based optimization that yields a large num-
ber of dense policies. It is worth noting that MPPN-MORL exhibits relatively weaker performance
on the MPSP metric in both environments. This phenomenon is mainly attributed to the negoti-
ation mechanism of the algorithm, which places greater emphasis on global convergence during
optimization, resulting in a sparser distribution of solutions along the Pareto front and consequently
higher MPSP values. This indicates that MPPN-MORL has certain limitations in terms of solution
distribution.

To verify whether the proposed framework can leverage the advantages of policy gradient, we con-
ducted experiments integrating MOPPO into the framework in Appendix D.5 .

εsafety =0.2 εefficiency =0.8 εsafety =0.8 εefficiency =0.2

Figure 5: The Pareto policy sets ultimately obtained in MP-HalfCheetah environment with different
initial negotiation vectors. The red point means the multi-party Pareto policy.

J2 J2J4 J4εsafety =0.5 εefficiency =0.5

J1 J3 J1 J3

Safety Efficiency

Figure 6: MPNDS algorithm without the MPPN mechanism compares with the MPPN-MORL in
MP-HalfCheetah environment.

Across all environments, PGMORL and LP3 exhibit inferior performance, which may be attributed
to the difficulty of the predictive model in accurately guiding the policy when the number of objec-
tives is large. MOAC and MOCHA perform policy optimization by dynamically adjusting objective
weights, failing to capture the negotiation relationships among decision-making parties. CR-MOPO-
S consistently outperforms CR-MOPO, indicating that enforcing safety as a hard constraint limits
policy exploration.

Figure 5 compares the Pareto policy sets ultimately obtained with different initial negotiation vec-
tors. It can be observed that by relaxing the constraints of the safety party, significant improvements
can be achieved in performance objectives.

By removing the MPPN component, we obtain the multi-objective evolutionary reinforcement learn-
ing algorithm MPNDSRL. Figure 6 depicts the Pareto fronts obtained by MPPN-MORL and MP-
NDSRL for the two parties in the MP-Halfcheetah environment. MPPN-MORL achieves a better
balance between safety and efficiency, and finds a sufficient number of policies while achieving
better performance. In contrast, MPNDSRL only finds a very small number of common solutions,
which proves that our method can still achieve excellent results when common solutions are scarce.

9
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6 RELATED WORK

6.1 MORL AND CMORL

MORL tackles tasks with multiple conflicting objectives and mainly includes single-policy and
multi-policy approaches. Single-policy methods scalarize multiple rewards into a single objective
and apply standard RL to maximize it (Roijers et al., 2013), but they rely on expert-defined prefer-
ence weights (Van Moffaert et al., 2013; Abdolmaleki et al., 2020) that may vary with real-world
conditions. Multi-policy methods approximate the Pareto front by learning a set of policies under
different preferences (Roijers et al., 2014; Mossalam et al., 2016; Zuluaga et al., 2016). Typical
methods include PGMORL (Xu et al., 2020), which improves efficiency through predictive mod-
els and PPO updates but risks local minima; PD-MORL (Basaklar et al., 2023) obtains a unified
network covering the entire preference space through single-round training; PA2D-MORL (Hu &
Luo, 2024), which uses Pareto ascent directions for automatic optimization and better coverage; and
PSL-MORL (Liu et al., 2025), which employs hypernetworks to generate preference-conditioned
policies compatible with single-objective RL.

Despite these advances, existing MORL methods optimize multiple objectives only for a single
agent and cannot model multi-party interactions or conflicts. Consequently, they fail to capture the
negotiation dynamics and collective trade-offs essential in multi-stakeholder scenarios, leading to
suboptimal solutions.

CMORL further incorporates safety requirements into multi-objective optimization. LP3 (Huang
et al., 2022) jointly learns preferences and policies by treating task rewards and constraint costs as
independent objectives. PDOA (Lin et al., 2024) supports offline adaptation under unknown pref-
erences and safety thresholds by learning diverse policies and conservatively estimating preference
weights to mitigate violation risks. CR-MOPO (Gu et al., 2025) integrates conflict-aware gradients
and hard constraint corrections to ensure safety while efficiently approximating the Pareto front.

Nevertheless, CMORL still focuses on single-agent optimization, lacking mechanisms to model in-
teractions and negotiations among multiple parties. In contrast, MPMORL explicitly captures multi-
agent interactions and negotiation dynamics, offering superior modeling capability and adaptability
in complex multi-stakeholder environments.

6.2 MPMOP

MPMOPs aim to identify mutually optimal solutions for multiple DMs with diverse and often con-
flicting objectives, a critical challenge in many real-world scenarios. To address this, researchers
have developed various MPMOEAs by extending existing MOEA frameworks with ranking and se-
lection mechanisms for multi-party settings. OptMPNDS (Liu et al., 2020) ranks solutions by their
worst dominance level across all DMs, while OptMPNDS2 (She et al., 2021) refines this by treating
dominance levels from each DM as new objectives and applying a second non-dominated sorting
for finer evaluation. A theoretical analysis (Sun et al., 2025) further revealed the inefficiency of
traditional MOEAs, especially for NP-hard problems.

Despite the success of MPMOEAs in solving MPMOPs, no prior studies have integrated them
into RL. The proposed MPPN-MORL addresses this gap by reformulating MORL as an MPMOP,
thereby establishing the first link between these two research domains.

7 CONCLUSION

This paper reformulates MORL with safety constraints as a MPMORL problem and proposes an
evolutionary algorithm, MPPN-MORL, based on a multi-party Pareto negotiation mechanism. It
treats efficiency and safety as independent parties, maintaining separate Pareto fronts for each and
merging them via NBMPNDS. This reduces complexity from objective proliferation in traditional
MORL. Unlike CMORL, which enforces safety as a hard constraint and strictly limits exploration,
MPPN-MORL dynamically adjusts the trade-off between safety and efficiency, producing high-
quality compromise solutions. Experimental results demonstrate that across six MP-MuJoCo envi-
ronments, MPPN-MORL consistently achieves the highest MeanHV and SP metrics, significantly
outperforming state-of-the-art MORL and CMORL methods, while exhibiting superior balance and
diversity in strategies when handling conflicts between safety and efficiency.
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8 REPRODUCIBILITY STATEMENT

We have taken extensive efforts to ensure the reproducibility of our work. The proposed algorithms
and benchmark implementations have been anonymously submitted as supplementary materials and
will be publicly released upon publication.The benchmark environment setups are detailed. These
resources collectively enable independent verification and reproduction of our reported results.
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ment learning: Novel design techniques. In 2013 IEEE symposium on adaptive dynamic pro-
gramming and reinforcement learning (ADPRL), pp. 191–199. IEEE, 2013.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In In-
ternational conference on machine learning, pp. 10607–10616. PMLR, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in neural information processing systems,
32, 2019.

Tianchen Zhou, Fnu Hairi, Haibo Yang, Jia Liu, Tian Tong, Fan Yang, Michinari Momma, and Yan
Gao. Finite-time convergence and sample complexity of actor-critic multi-objective reinforcement
learning. In International Conference on Machine Learning, pp. 61913–61933. PMLR, 2024.

Marcela Zuluaga, Andreas Krause, and Markus Püschel. e-pal: An active learning approach to
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A THE USE OF LARGE LANGUAGE MODELS

We used a large language model to assist in polishing the writing and checking for grammatical
issues.

B MPPN-SAFEMORL

In Algorithm 2 , we describe the whole procedure of our proposed MPPN-SafeMORL algorithm.
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Algorithm 2 Multi-Party NSDE with ε-Dominance and Priority Selection
Input: Number of iterations T , population size N , mutation factor F , crossover rate CR, initial
tolerance εinit, decay rate ∆ε, objective partitions {O1, O2}
Output: Final ε-dominant Pareto front F

1: Initialize empty population P ← ∅
2: for i = 1 to N do
3: Initialize random policy πi with parameters θi
4: Evaluate πi to obtain reward vector ri
5: Add (πi, θi, ri) to P
6: end for
7: Initialize tolerance vector ε = [εinit, εinit]
8: Compute reference solution rref
9: for t = 1 to T do

10: Q ← ∅
11: for i = 1 to N do
12: Generate offspring parameters θtrial using DE mutation and crossover with (F,CR)
13: Evaluate offspring to obtain rtrial
14: Add offspring (πtrial, θtrial, rtrial) to Q
15: end for
16: Combine populations: C ← P ∪Q
17: Extract rewardsR = {rj}j∈C
18: Identify ε-dominant fronts:

1. Find joint solutions rj such that rj ε-dominates rref for both DMs.
2. If none, update each DM’s front separately based on its own objective set Ok.

19: If joint ε-dominant solutions are found: update ε← ε ∗∆ε
20: Build next population Pt+1:

1. Add all individuals from ε-dominant fronts to Pt+1

2. If |Pt+1| < N , fill the remaining slots by applying crowding distance selection on
the rest of C

21: P ← Pt+1

22: end for
23: Extract final front F from P based on ε-dominance
24: return F

C EXPERIMENT SETUP DETAILS

For each episode, the reward (or cost) for each objective is computed as the average of the corre-
sponding per-step values over all time steps within that episode.

MP-Halfcheetah: In the MP-HalfCheetah environment, the safety party seeks to minimize energy
consumption and maintain the stability of the robot’s height, whereas the efficiency party aims to
maximize forward velocity while mitigating excessive oscillations. Energy consumption is quanti-
fied as the squared norm of the action vector:

Ci
e = −αa∥aicheetah∥2, (14)

where Ci
e denotes the energy consumption at time step i, αa is a scaling coefficient, and aicheetah

represents the action vector applied to the HalfCheetah at time step i.

Height stability is evaluated by the deviation of the robot’s height from a target value:

Ci
h =

∣∣Hi
cheetah −Hi

target

∣∣ , (15)

where Ci
h is the height stability cost at time step i, Hi

cheetah is the actual torso height of the HalfChee-
tah at time step i, and Hi

target is the predefined target height.

Forward velocity is represented by the absolute value of the robot’s horizontal velocity:

Ri
x =

∣∣V i
x

∣∣ , (16)

where Ri
x denotes the forward velocity reward at time step i, and V i

x is the horizontal velocity of the
HalfCheetah at time step i.
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Excessive oscillation is penalized using the absolute value of the robot’s vertical velocity:

Ri
y = −

∣∣V i
y

∣∣ , (17)

where Ri
y is the oscillation penalty at time step i, and V i

y represents the vertical velocity of the
HalfCheetah at time step i.

MP-Hopper: In the MP-Hopper environment, the safety party aims to minimize the robot’s angular
deviation around the z-axis and reduce energy consumption, while the efficiency party seeks to max-
imize forward velocity in the x-direction while minimizing vertical oscillations in the y-direction.

The angular deviation around the z-axis is quantified by the absolute value of the robot’s z-axis
angle:

Ci
z =

∣∣Θi
z

∣∣ , (18)

where Ci
z denotes the angular deviation cost at time step i, and Θi

z is the robot’s orientation angle
around the z-axis at time step i.

Energy consumption is measured as the squared norm of the action vector:

Ci
e = −αa|aihopper|2, (19)

where Ci
e denotes the energy consumption at time step i, αa is a scaling coefficient, and aihopper

represents the action vector applied to the Hopper at time step i.

Forward velocity is represented by the absolute value of the robot’s horizontal velocity in the x-
direction:

Ri
x =

∣∣V i
x

∣∣ , (20)

where Ri
x denotes the forward velocity reward at time step i, and V i

x is the horizontal velocity of the
Hopper at time step i.

Vertical oscillation is penalized using the absolute value of the robot’s velocity in the y-direction:

Ri
y = −

∣∣V i
y

∣∣ , (21)

where Ri
y is the oscillation penalty at time step i, and V i

y represents the vertical velocity of the
Hopper at time step i.

MP-Walker: In the MP-Walker environment, the safety party aims to minimize the absolute height
of the robot’s head and reduce the degree of body posture deviation, while the efficiency party seeks
to maximize forward velocity in the x-direction while minimizing energy consumption.

The head height cost is quantified by the absolute value of the robot’s head height:

Ci
z =

∣∣Zi
head

∣∣ , (22)

where Ci
z denotes the head height cost at time step i, and Zi

head is the vertical height of the Walker’s
head at time step i.

The body posture cost is measured by the absolute deviation of the robot’s posture:

Ci
p =

∣∣P i
walker

∣∣ , (23)

where Ci
p denotes the posture deviation cost at time step i, and P i

walker represents the robot’s body
inclination angle at time step i.

Forward velocity is represented by the absolute value of the robot’s horizontal velocity in the x-
direction:

Ri
x =

∣∣V i
x

∣∣ , (24)

where Ri
x denotes the forward velocity reward at time step i, and V i

x is the horizontal velocity of the
Walker at time step i.

Energy consumption is quantified as the squared norm of the action vector:

Ci
e = −αa|aiwalker|2, (25)

where Ci
e denotes the energy consumption at time step i, αa is a scaling coefficient, and aiwalker

represents the action vector applied to the Walker at time step i.
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MP-Swimmer: In the MP-Swimmer environment, the safety party aims to minimize energy con-
sumption and reduce the degree of body oscillation, while the efficiency party seeks to maximize
forward velocity in the x-direction while minimizing vertical velocity in the y-direction.

Energy consumption is quantified as the squared norm of the action vector:

Ci
e = −αa|aiswimmer|2, (26)

where Ci
e denotes the energy consumption at time step i, αa is a scaling coefficient, and aiswimmer

represents the action vector applied to the Swimmer at time step i.

Body oscillation is measured by the absolute value of the robot’s angular velocity:

Ci
o =

∣∣Ωi
swimmer

∣∣ , (27)

where Ci
o denotes the body oscillation cost at time step i, and Ωi

swimmer is the angular velocity of
the Swimmer at time step i.

Forward velocity is represented by the absolute value of the robot’s horizontal velocity in the x-
direction:

Ri
x =

∣∣V i
x

∣∣ , (28)

where Ri
x denotes the forward velocity reward at time step i, and V i

x is the horizontal velocity of the
Swimmer at time step i.

Vertical velocity is penalized using the absolute value of the robot’s velocity in the y-direction:

Ri
y = −

∣∣V i
y

∣∣ , (29)

where Ri
y is the vertical velocity penalty at time step i, and V i

y represents the vertical velocity of the
Swimmer at time step i.

MP-Pusher: In the MP-Pusher environment, the safety party aims to minimize energy consumption
and reduce the velocity of the robot’s end-effector, while the efficiency party seeks to minimize the
distance between the actuator and the object as well as the distance between the object and the target
position.

Energy consumption is quantified as the squared norm of the action vector:

Ci
e = −αa|aipusher|2, (30)

where Ci
e denotes the energy consumption at time step i, αa is a scaling coefficient, and aipusher

represents the action vector applied to the Pusher at time step i.

The end-effector velocity cost is measured by the absolute value of the end-effector’s velocity:

Ci
v =

∣∣V i
end

∣∣ , (31)

where Ci
v denotes the end-effector velocity cost at time step i, and V i

end is the velocity of the Pusher’s
end-effector at time step i.

The actuator-to-object distance is evaluated as the Euclidean distance between the actuator and the
object:

Ri
ao = −

∣∣P i
actuator − P i

object

∣∣ , (32)

where Ri
ao denotes the actuator-to-object distance reward at time step i, P i

actuator is the position of
the actuator at time step i, and P i

object is the position of the object at time step i.

The object-to-target distance is evaluated as the Euclidean distance between the object and the target
position:

Ri
ot = −

∣∣P i
object − P i

target

∣∣ , (33)

where Ri
ot denotes the object-to-target distance reward at time step i, P i

target is the predefined target
position, and P i

object is the object’s position at time step i.

MP-Humanoid: In the MP-Humanoid environment, the safety party aims to minimize energy con-
sumption and reduce contact impact, while the efficiency party seeks to maximize forward velocity
in the x-direction and enhance the humanoid’s health reward.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Energy consumption is quantified as the squared norm of the action vector:

Ci
e = −αa|aihumanoid|2, (34)

where Ci
e denotes the energy consumption at time step i, αa is a scaling coefficient, and aihumanoid

represents the action vector applied to the Humanoid at time step i.

Contact impact is measured by the magnitude of the external contact forces exerted on the humanoid:

Ci
c =

∣∣F i
contact

∣∣ , (35)

where Ci
c denotes the contact impact cost at time step i, and F i

contact represents the contact force
vector applied to the Humanoid at time step i.

Forward velocity is represented by the absolute value of the humanoid’s horizontal velocity in the
x-direction:

Ri
x =

∣∣V i
x

∣∣ , (36)

where Ri
x denotes the forward velocity reward at time step i, and V i

x is the horizontal velocity of the
Humanoid at time step i.

The health reward is quantified by the humanoid’s uprightness and stability:

Ri
h = Hi

humanoid, (37)

where Ri
h denotes the health reward at time step i, and Hi

humanoid is the environment-defined health
indicator of the Humanoid at time step i.

D ADDITIONAL EXPERIMENT RESULTS

D.1 RESULTS OF TOY EXPERIMENT OF CARGOROBOT

The three representative policies illustrate the distinct characteristics of MORL, CMORL, and MP-
MORL in the MP-CargoRobot environment. Table 3 shows the representative policies obtained by
different algorithms in the toy experiment on the MP-CargoRobot environment.The MORL solution
emphasizes overall efficiency, achieving relatively balanced performance across the four objectives,
particularly showing strong stability after scaling. In contrast, the CMORL solution reflects the ef-
fect of enforcing safety-related constraints: it yields substantially higher energy efficiency, but at
the cost of reduced speed and capacity, as expected when prioritizing constraint satisfaction. The
MPMORL solution lies between these two extremes. By incorporating multi-party preferences from
both the efficiency-oriented DM and the safety-oriented DM, the resulting policy preserves part of
the safety advantage while preventing excessive degradation in efficiency, demonstrating a nego-
tiated trade-off that neither single-party optimization can obtain. This comparison highlights how
multi-party negotiation can lead to solutions capturing balanced compromise among conflicting ob-
jectives.

Table 3: Performance comparison across the four objectives in the MP-CargoRobot environment.

Method speed capacity energy stability

MORL -0.60 -0.75 0.15 1.43
CMORL -1.50 -0.98 0.75 0.60
MPMORL -1.05 -1.35 0.30 1.13

D.2 RESULTS OF DIFFERENT INITIAL NEGOTIATION VECTORS

We conducted experiments with different initial negotiation vectors on the MP-HalfCheetah envi-
ronment, and the experimental results are presented in the figure 7 .

D.3 TRAINING TREND OF MPHV AND MPSP

We plotted the trends of MPHV and MPSP in the MP-HalfCheetah environment, presented in the
figure 8.
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εsafety =0.2 εefficiency =0.8 εsafety =0.3 εefficiency =0.7

εsafety =0.4 εefficiency =0.6 εsafety =0.6 εefficiency =0.4

εsafety =0.7 εefficiency =0.3 εsafety =0.8 εefficiency =0.2

Figure 7: MPPN-MORL with different initial negotiation vectors.

MP-HalfCheetah MP-HopperMP-Walker

MP-Pusher MP-Swimmer

Figure 8: The trends of MPHV and MPSP in the MP-Mujoco environment.

D.4 RESULTS OF THE MODIFIED JAIN INDEX.

To avoid the misleading effect that the classical Jain’s Fairness Index may award a high score when
both decision makers receive very small HV values, we adopt a scale-adjusted Jain fairness measure.

For two hypervolume values HVA and HVB , the classical Jain index is

Jclassic =
(HVA +HVB)

2

2(HV 2
A +HV 2

B)
. (38)

While this metric captures balance, it fails to penalize cases where HVA and HVB are both ex-
tremely small. In such cases, Jclassic ≈ 1 even though neither decision maker obtains a meaningful
solution set.

To correct this, we introduce a multiplicative scaling factor that depends on the total magnitude of
the hypervolumes:

S =
HVA +HVB

HVA +HVB + α
, (39)

where α > 0 is a tunable threshold controlling when the overall HV is considered sufficiently large.
The adjusted fairness becomes

Jadj = Jclassic ×
HVA +HVB

HVA +HVB + α
. (40)

The scaling factor S suppresses inflated fairness values when HVA+HVB is very small: If HVA+
HVB → 0, then S → 0, thus Jadj → 0, preventing false fairness. If HVA + HVB is large, then
S → 1, and Jadj recovers the classical Jain index.
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The hyperparameter α determines how quickly the metric transitions from penalizing small-HV
cases to rewarding genuinely balanced performance. It should be chosen according to the typical
HV scale of the environment.

This adjusted measure provides a more meaningful fairness evaluation in multi-party multi-objective
reinforcement learning by ensuring that fairness is recognized only when both balance and solution-
set quality are high.

Table 4 presents the adjusted Jain’s Fairness Index of different algorithms on the multi-player Mu-
JoCo environments.

Table 4: Results of Jain’s Fairness Index in MP-MuJoCo environments.

Environments PGMORL MOAC MOCHA LP3 CR-MOPO CR-MOPO-S MPPN-MORL

MP-HalfCheetah-v4 0.344±0.015 0.661 0.630 0.581 0.459±0.025 0.672±0.010 0.618±0.014

MP-Walker-v4 0.000±0.000 0.646 0.520 0.000 0.411±0.007 0.323±0.062 0.681±0.037
MP-Hopper-v4 0.040±0.040 0.706 0.200 0.000 0.703±0.012 0.724±0.019 0.743±0.002
MP-Pusher-v4 0.243±0.018 0.531 0.280 0.140 0.257±0.049 0.595±0.023 0.611±0.002
MP-Swimmer-v4 0.015±0.002 0.661 0.640 0.544 0.613±0.020 0.660±0.001 0.685±0.002
MP-Humanoid-v4 0.558±0.015 0.703 0.550 0.000 0.500±0.012 0.493±0.018 0.668±0.007

D.5 MPPNMORL COMBINED WITH POLICY GRADIENT ALGORITHM

We integrate MOPPO into the multi-party NSDE loop by performing a policy-gradient refinement
step for one selected party. After NSDE generates new candidate policies, MOPPO jointly opti-
mizes that party’s full objective vector while leaving the other parties’ objectives unchanged. The
updated policies are then re-evaluated on all objectives and passed to multi-party non-dominated
sorting. This hybrid design allows NSDE to preserve global exploration and multi-party Pareto
diversity, while MOPPO provides targeted local improvement for the chosen party, accelerating
convergence toward high-quality multi-party Pareto sets. Table 5 shows the experimental results of
MPPN-MORL combined with the MOPPO algorithm on the MP-MuJoCo environments. Algorithm
3 details the specific algorithmic procedure of integrating MOPPO into MPPN-MORL. The results
demonstrate that the policy gradient information provided by MOPPO effectively aids population
evolution, guiding the population toward higher-quality solution sets.

Table 5: Performance of MPPN-MORL with MOPPO across MP-MuJoCo environments.

Metrics MP-HalfCheetah-v4 MP-Walker-v4 MP-Hopper-v4 MP-Pusher-v4 MP-Swimmer-v4

MPHV 2.458 4.479 1.499 1.000 25.990
MPSP 0.0003 0.0009 4.5782 0.0006 0.6337

Algorithm 3 MP-NSDE with Party-Selective MOPPO

1: Initialize population P0 of policies
2: for g = 1, 2, . . . , G do
3: NSDE: Generate offspring Qg via mutation and crossover
4: Evaluate Qg on all parties’ objectives
5: MOPPO: Select a party k and a subset Sg ⊆ Qg

6: for each policy π ∈ Sg do
7: Collect trajectories with π
8: Construct the MOPPO objective using all objectives of party k
9: Update policy: π ← MOPPO Update(π)

10: end for
11: Re-evaluate all updated policies on every party’s objectives
12: MPNDS: Perform multi-party non-dominated sorting on Pg−1 ∪Qg

13: Select next population Pg

14: end for
15:
16: return multi-party Pareto set PG
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D.6 BEHAVIORAL ANALYSIS OF MULTI-PARTY PARETO POLICIES

The supplementary material contains behavioral visualization GIFs of policies from individual
single-party Pareto fronts and the joint two-party Pareto front. These visualizations reveal that poli-
cies on the safety party’s front tend to move slowly and cautiously, while policies on the efficiency
party’s front exhibit large, rapid movements. The policies on the joint Pareto front achieve an effec-
tive balance between these competing behaviors, demonstrating the negotiation outcome between
safety constraints and performance objectives.

D.7 COMPUTATIONAL EXPENSE ANALYSIS

The table 6 presents the total number of floating-point operations (FLOPs) required for one com-
plete run of three algorithms—MPPNMORL, CR-MOPO, and CR-MOPO-S—in the HalfCheetah
environment. As shown, MPPNMORL requires significantly fewer FLOPs than the other two algo-
rithms. This efficiency stems from its use of differential evolution to optimize policy parameters,
which avoids the computational overhead associated with policy gradient calculations.

Table 6: Computational cost (FLOPs) of different algorithms on MP-HalfCheetah-v4.

Metric MOAC MOCHA CR-MOPO CR-MOPO-S MPPN-MORL

FLOPs 3.65× 109 2.69× 1010 7.89× 1012 3.10× 1013 8.97× 105

D.8 RESULTS OF WILCOXON SIGNED-RANK TEST

To evaluate the statistical significance of MPPN-MORL relative to baseline methods, we employ the
Wilcoxon signed-rank test to conduct pairwise comparisons between MPPN-MORL and the better-
performing algorithms CR-MOPO-S and CR-MOPO. Table 7 presents the results of the Wilcoxon
signed-rank test comparing MPPN-MORL with CR-MOPO and CR-MOPO-S. It can be observed
that the improvement achieved by MPPN-MORL on the MPHV metric is statistically significant.

Table 7: Wilcoxon signed-rank test results for MPPN-MORL vs. baseline algorithms(threshold p =
0.05).

Comparison W-statistic p-value Significant?
MP-HalfCheetah-v4

MPPN-MORL vs. CR-MOPO 0.0 0.031 Yes
MPPN-MORL vs. CR-MOPO-S 0.0 0.031 Yes

MP-Walker-v4
MPPN-MORL vs. CR-MOPO 0.0 0.031 Yes
MPPN-MORL vs. CR-MOPO-S 0.0 0.031 Yes

MP-Hopper-v4
MPPN-MORL vs. CR-MOPO 0.0 0.031 Yes
MPPN-MORL vs. CR-MOPO-S 0.0 0.031 Yes

MP-Pusher-v4
MPPN-MORL vs. CR-MOPO 0.0 0.031 Yes
MPPN-MORL vs. CR-MOPO-S 1.0 0.062 No

MP-Swimmer-v4
MPPN-MORL vs. CR-MOPO 0.0 0.031 Yes
MPPN-MORL vs. CR-MOPO-S 0.0 0.031 Yes

MP-Humanoid-v4
MPPN-MORL vs. CR-MOPO 0.0 0.031 Yes
MPPN-MORL vs. CR-MOPO-S 0.0 0.031 Yes
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E DETAILED PROOFS OF THEORETICAL PROPERTIES

E.1 THEORETICAL JUSTIFICATION OF ε-NEGOTIATION CONVERGENCE

We now provide the theoretical justification addressing why the proposed ε-dominance negotiation,
combined with a dynamic shrinking mechanism, progressively guides the population toward su-
perior multi-party Pareto solutions. This analysis formally links the shrinking tolerance ε to the
convergence toward the true joint Pareto front.

Our proof framework relies on (i) the monotonic nesting of ε-acceptable solution sets and (ii) a time-
scale separation between the evolutionary search (population mixing) and the negotiation process
(ε-shrinking).

E.1.1 NESTED ε-ACCEPTABLE SETS

We first formalize the set of solutions that are acceptable to a single party, and then define the joint
set as the consensus (intersection) of these individual sets, directly matching the logic in Algorithm
1.

Definition E.1 (Party-wise ε-Acceptable Set). Let X be the solution space and Xref ∈ X be a
reference solution. For a party k ∈ {1, 2}, given its mk objectives {fk,1, . . . , fk,mk

} and a scalar
negotiation tolerance εk ≥ 0, the party-wise ε-acceptable set Sk(εk) is defined as:

Sk(εk) ≜ {X ∈ X | fk,i(X) ≤ fk,i(Xref) + εk, ∀i ∈ {1, . . . ,mk}} (41)

Sk(εk) contains all solutions that party k finds acceptable, allowing a uniform tolerance εk across
all its local objectives relative to the reference.

Definition E.2 (Joint ε-Acceptable Set). Given the party-wise tolerances ε = [ε1, ε2]
⊤, the joint

ε-acceptable set S(ε) is the set of solutions mutually acceptable to all parties. This set is the inter-
section of the individual party-wise sets:

S(ε) ≜ S1(ε1) ∩ S2(ε2) =
⋂

k∈{1,2}

Sk(εk) (42)

This set S(ε) is the formal representation of the Fjoint (Joint ε-front) sought by Algorithm 1.

This formulation leads to a crucial property: as the negotiation becomes stricter (i.e., ε shrinks), the
set of mutually acceptable solutions becomes monotonically smaller and nested.

Lemma 1 (Monotonicity of Nested Sets). Let εa = [ε1,a, ε2,a]
⊤ and εb = [ε1,b, ε2,b]

⊤ be two
tolerance vectors. If εa ≥ εb (component-wise, i.e., εk,a ≥ εk,b for all k), then their corresponding
joint acceptable sets are nested:

S(εa) ⊇ S(εb) (43)

Proof. We first show monotonicity for each party k. Let X ∈ Sk(εk,b). By Definition 41, fk,i(X) ≤
fk,i(Xref) + εk,b for all i ∈ {1, . . . ,mk}. Since εk,a ≥ εk,b, it follows that fk,i(X) ≤ fk,i(Xref) +
εk,b ≤ fk,i(Xref) + εk,a. This implies X ∈ Sk(εk,a). Thus, Sk(εk,a) ⊇ Sk(εk,b) for each k.

Now, let X be an arbitrary solution in the joint set S(εb). By Definition 42, X ∈ Sk(εk,b) for all
k ∈ {1, 2}. From our first step, we know Sk(εk,a) ⊇ Sk(εk,b). Therefore, X ∈ Sk(εk,a) for all k.
By Definition 42 again, X must be in the intersection of these sets: X ∈

⋂
k Sk(εk,a), which means

X ∈ S(εa). This proves S(εa) ⊇ S(εb).

E.1.2 LAYERED CONVERGENCE VIA TIME-SCALE SEPARATION

The MPPN algorithm dynamically shrinks ε to ε′ only when a sufficient number of solutions are
found in the current joint set S(ε) (i.e., |Fjoint| ≥ τ ). This mechanism relies on the following
standard assumptions regarding the evolutionary dynamics.

• Assumption 1 (Irreducibility): For any fixed ε, any solution X ∈ S(ε) can be generated
by the EA operators (e.g., differential evolution) from any population Pt in a finite number
of generations with non-zero probability.
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• Assumption 2 (Retention): The selection mechanism (elitism and non-dominated sorting)
ensures that if a solution X ∈ S(ε) is found, at least one representative X ′ ∈ S(ε) is
retained in the next generation’s population with high probability.

• Assumption 3 (Time-Scale Separation): For any fixed ε, the EA has a characteristic
mixing time, Tmix(ε), within which the population Pt is expected to find and provide rep-
resentative coverage of the set S(ε). The negotiation mechanism only shrinks ε at time
Tshrink (when |Fjoint| ≥ τ ), and we assume Tshrink > Tmix(ε).

These assumptions allow us to prove that the population is progressively guided into stricter subsets
of the solution space.

Theorem 1 (Layered Convergence to Stricter Pareto Sets). Let the sequence of tolerance vectors
generated by the shrinking mechanism be ε0, ε1, . . . , εT such that ε0 ≥ ε1 ≥ · · · ≥ εT . Let Pj

be the population that triggers the j-th shrink (i.e., Pj contains at least τ solutions from S(εj)).
Under Assumptions 1-3, the population Pt converges in probability to the final, strictest acceptable
set S(εT ):

lim
t→∞

Pt ⊆
T⋂

j=0

S(εj) = S(εT ) (44)

Proof. We proceed by induction on the negotiation steps j = 0, 1, . . . , T .

Base Case (j = 0): The algorithm begins with a large, lenient tolerance ε0. By Assumptions 1 and
2, the EA explores the solution space X . By Assumption 3 (Time-Scale Separation), the algorithm
runs for sufficient time (Tmix(ε0)) to find and populate the set S(ε0) before the shrink condition is
met. At time t0 = Tshrink(ε0), the population Pt0 provides representative coverage of S(ε0).

Inductive Step: Assume at negotiation step j, the algorithm has run for time tj and the population
Ptj provides representative coverage of S(εj). At time tj , the condition |Fjoint| ≥ τ is met, and the
tolerance is shrunk to εj+1.

By Lemma 1 (Monotonicity), we know that S(εj+1) ⊆ S(εj).

The population Ptj is already concentrated within S(εj). The EA search is now ”warm-started” and
focused on finding solutions that satisfy the new, stricter criteria of S(εj+1). Since S(εj+1) is a non-
empty subset of the region S(εj) already discovered, the search is guided toward this higher-quality
region.

By Assumption 3, the algorithm again runs for at least Tmix(εj+1) generations. Assumptions 1
and 2 ensure the EA will find and retain solutions within this new, smaller set S(εj+1). At time
tj+1 = tj + Tshrink(εj+1), the population Ptj+1 will provide representative coverage of S(εj+1).

By induction, the population Pt is proven to follow the sequence of strictly nested sets S(ε0) ⊇
S(ε1) ⊇ · · · ⊇ S(εT ). The final population P ∗ is thus contained within the strictest set achieved,
S(εT ).

Implication: This layered convergence demonstrates that the ε-shrinking mechanism is not merely
finding an approximation S(ε) for a fixed ε. Instead, it actively guides the evolutionary search by
iteratively tightening the acceptance criteria (as ε shrinks), forcing the population to converge from
a broad, lenient set of compromises toward the multi-party Pareto front.

E.2 ENSURING HARD SAFETY CONSTRAINTS

In many real-world safe reinforcement learning scenarios, the safety requirements of one party may
represent hard constraints that must never be violated. Formally, let the safety party be denoted as
k = 2, and let its constraint function be c(X) with a mandatory threshold d. The feasible region is
thus

Πsafe ≜ {X ∈ X | c(X) ≤ d}. (45)

In this subsection, we show that the MPPN framework can enforce these non-relaxable constraints
simply by setting the tolerance vector to ε = (1, 0).
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Lemma 2 (Safety Feasibility of S2(0)). For the safety party k = 2, if ε2 = 0, then its acceptable
set coincides exactly with the hard-constrained feasible region:

S2(0) = Πsafe. (46)

Proof. For party 2, the acceptable set from Definition 41 becomes

S2(0) = {X ∈ X | f2,i(X) ≤ f2,i(Xref), ∀i}. (47)

Since the safety objective f2,i(·) represents constraint violations (i.e., f2,i(X) = c(X) or monotone
transformations of c(X)), the condition

f2,i(X) ≤ f2,i(Xref)

enforces that no additional violation is allowed beyond the reference, and under the assumption that
Xref itself satisfies c(Xref) ≤ d, this is equivalent to

c(X) ≤ d, (48)

which is exactly the feasible region Πsafe. Therefore, S2(0) = Πsafe.

We now show that when ε = (1, 0), the joint acceptable set collapses to the safety-feasible region,
regardless of the efficiency party’s tolerance.
Theorem 2 (Joint Acceptable Set under Hard Safety Constraint). Let ε = (ε1, ε2) = (1, 0). Then
the joint acceptable set satisfies

S(ε) = S1(1) ∩ S2(0) = S1(1) ∩Πsafe ⊆ Πsafe. (49)

That is, every jointly acceptable solution is guaranteed to obey the hard safety constraint.

Proof. From Definition 42, the joint set is the intersection of party-wise constraints:

S(ε) = S1(1) ∩ S2(0).

By Lemma 2, S2(0) = Πsafe. Thus,

S(ε) = S1(1) ∩Πsafe.

Since S1(1) ⊆ X , their intersection is always a subset of Πsafe. Hence,

S(ε) ⊆ Πsafe,

which completes the proof.

The following theorem establishes that the layered convergence result from the previous subsection
remains valid under the hard-constraint case.
Theorem 3 (Layered Convergence within Hard-Constrained Feasible Region). Consider the shrink-
ing sequence ε0 ≥ ε1 ≥ · · · ≥ εT with εj = (1, 0) for all j. Under Assumptions 1–3, the
population converges in probability to the strictest joint acceptable set contained within the hard-
constrained feasible region:

lim
t→∞

Pt ⊆
T⋂

j=0

S(εj) = S(εT ) ⊆ Πsafe. (50)

Proof. Since ε2 = 0 for all j, each joint acceptable set satisfies

S(εj) = S1(ε1,j) ∩Πsafe ⊆ Πsafe.

By Lemma 1 (monotonicity), the sequence is nested:

S(ε0) ⊇ S(ε1) ⊇ · · · ⊇ S(εT ).

The proof of Theorem 2 (Layered Convergence) applies verbatim within this restricted domain by
simply restricting the search space from X to Πsafe. Assumptions 1–3 continue to hold in the
restricted domain because irreducibility, retention, and time-scale separation are properties of the
evolutionary operators and selection rules, not of the particular tolerance values.

Therefore, the population converges to S(εT ), which is itself a subset of Πsafe.
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These results show that when one party represents a non-negotiable safety requirement, simply set-
ting its tolerance to ε2 = 0 forces the entire MPPN negotiation and evolutionary search to remain
strictly within the hard-constrained feasible region, while still benefiting from the layered guidance
induced by iterative ε-shrinking on the efficiency side. Thus, the MPPN framework naturally ac-
commodates hard safety constraints without altering its algorithmic structure.

E.3 EPSILON-SHRINKING LEADS TO IMPROVED MULTI-PARTY PARETO SOLUTIONS

Beyond the layered convergence shown in Theorem 2, we now provide a formal justification that
the ε-shrinking negotiation mechanism in MPPN yields better multi-party Pareto solutions as the
negotiation progresses. Our analysis is grounded in two complementary properties:

1. the monotonic nesting of joint acceptable sets S(ε0) ⊇ S(ε1) ⊇ · · · , and
2. the decrease in solution-space complexity (as measured by metric covering numbers),

which improves the probability that an evolutionary algorithm discovers high-quality solu-
tions under fixed computational resources.

This result shows that the shrinking of ε does not merely tighten” acceptance criteria, but actively
improves the quality of the resulting negotiated Pareto sets.

E.3.1 SOLUTION-SPACE COMPLEXITY OF JOINT ACCEPTABLE SETS

Let Y denote the objective-space image of the solution space X under the joint objective vector.
For any δ > 0, define the standard metric covering number Ncov(A, δ) as the minimum number of
closed balls of radius δ required to cover a set A ⊆ Y .

We operate under one mild regularity condition:
Definition E.3 (Non-Degeneracy). A joint acceptable set S(ε) is said to be non-degenerate if it is
not contained entirely within a lower-dimensional manifold of Y; equivalently, its covering number
satisfies Ncov(S(ε), δ) <∞ for all δ > 0.

Under this condition, shrinking ε reduces the size and complexity of S(ε):
Lemma 3 (Strict Decrease in Covering Number Under Shrinking). Let εa ≥ εb component-wise,
and assume S(εb) is non-degenerate. If at least one inequality is strict, then for all δ > 0:

Ncov(S(εb), δ) > Ncov(S(εa), δ) . (51)

Proof. From Lemma 1 (nested sets), S(εb) ⊊ S(εa). Since S(εb) is non-degenerate, removing a
region of strictly positive local measure necessarily increases the minimum number of δ-balls needed
to cover the remainder (?). Thus Ncov is strictly larger for S(εb).

The covering number Ncov is therefore an intrinsic measure of the difficulty” of discovering good
solutions in S(ε). The next subsection connects this complexity to the performance of the evolu-
tionary search.

E.3.2 DISCOVERY PROBABILITY IMPROVES AS ε SHRINKS

Let Pt denote the population of the EA at generation t, and let Fjoint(t) denote its approximation
of S(ε). For a fixed computational budget (population size N and generation budget T ), the EA’s
ability to discover and cover S(ε) depends on its ability to sample at least one solution in each δ-ball
of the covering.

The following lemma formalizes this connection.
Lemma 4 (Discovery Probability and Covering Number). Under Assumptions 1–3, there exists a
constant c > 0 such that for any δ > 0 and any joint acceptable set S(ε), the probability that PT

contains at least one point in every δ-ball of a minimal cover of S(ε) satisfies:
P[dH(Fjoint(T ), S(ε)) ≤ δ] ≥ 1 − Ncov(S(ε), δ) exp(−cNT ). (52)

Proof. Since each δ-ball receives a sample with probability at least pδ ≥ 1 − exp(−cN) due to
Assumptions 1 (irreducibility) and 2 (retention), the probability that at least one ball in the cover
remains uncovered is bounded via a union bound, giving the stated expression.
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Combining Lemma 3 and Lemma 4 yields the main theoretical result.
Theorem 4 (Epsilon-Shrinking Improves Multi-Party Pareto Quality). Consider two tolerance vec-
tors εa ≥ εb with at least one strict inequality. Let the EA run under the same computational budget
(N,T ) for both tolerance choices. Then for any δ > 0:

P
[
dH

(
F (b)

joint(T ), S(εb)
)
≤ δ

]
(53)

> P
[
dH

(
F (a)

joint(T ), S(εa)
)
≤ δ

]
, (54)

where F (j)
joint denotes the joint front under tolerance εj .

Consequently, the expected quality of the obtained multi-party Pareto set (strictly) improves:

E
[
MPHV

(
F (b)

joint(T )
)]

> E
[
MPHV

(
F (a)

joint(T )
)]

. (55)

Proof. By Lemma 3, shrinking ε strictly increases the covering number:

Ncov

(
S(εb), δ

)
> Ncov

(
S(εa), δ

)
.

Substituting these into the probability bound of Lemma 4, we observe that the larger covering num-
ber strictly increases the failure term:

Ncov

(
S(ε), δ

)
exp(−cNT ).

Thus the success probability of covering the stricter set S(εb) under identical computational re-
sources is strictly higher. Since MPHV is monotone under Hausdorff improvement, its expected
value increases accordingly.

This theorem shows that the ε-shrinking process of MPPN does not merely guide convergence (The-
orem 2); it improves the quality of the resulting multi-party Pareto set by reducing solution-space
complexity and increasing the probability that the EA identifies the most valuable tradeoffs shared
by all parties.
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