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Abstract

Robustness against uncertain and ambiguous inputs is a critical challenge for deep learning
models. While recent advancements in large scale vision language models (VLMs, e.g. GPT-
40) might suggest that increasing model and training dataset size would mitigate this issue, our
empirical evaluation shows a more complicated picture. In this work, we sanity check whether
modern VLMs pass the two most “classic” uncertainty quantification challenges: Anomaly
detection and classification under inherently ambiguous conditions, we find that newer and
larger VLMs indeed exhibit improved robustness compared to earlier models, but still suffer
from a tendency to strictly follow instructions, often causing them to hallucinate confident
responses even when faced with unclear or anomalous inputs. Remarkably, for natural images
such as ImageNet, this limitation can be overcome without pipeline modifications: simply
prompting models to abstain from uncertain predictions enables significant reliability gains,
achieving near-perfect robustness in several settings. However, for domain-specific tasks
such as galaxy morphology classification, a lack of specialized knowledge prevents reliable
uncertainty estimation. Finally, we propose a simple mechanism based on caption diversity
to reveal a model’s internal uncertainty, enabling practitioners to predict when models will
successfully abstain without relying on labeled data.

1 Introduction

Uncertainty quantification of neural networks is an important problem widely studied by the deep learning
community, especially in real-world, safety-critical settings such as self-driving cars (Bojarski et al., 2016)
and medical imaging (Esteva et al., 2017). Traditional vision models often struggle with uncertainty
quantification (Nixon et al., 2019; Guo et al., 2017; Minderer et al., 2021; Gal & Ghahramani, 2016; Ovadia
et al., 2019), largely due to their training regime: These models are typically small-scale and trained on
specific, highly curated datasets for single tasks. Consequently, when faced with out-of-distribution (OOD)
inputs, they frequently make incorrect yet highly confident predictions, posing significant risks in downstream
decision-making systems.

To systematically evaluate the uncertainty quantification ability, two of the most widely adopted workload
problems are inputs with corruption and OOD inputs from alternative datasets (see Sec. 2.1 for a more
thorough discussion). Under corrupted inputs, such as those found in CIFAR-10C (Hendrycks & Dietterich,
2019), models encounter covariate shift, leading to degraded accuracy, in which case a model with good
uncertainty quantification should lower its confidence accordingly, rather than maintaining overconfidence
despite deteriorating performance, a property known as calibration (Guo et al., 2017). OOD inputs typically
refer to inputs from a domain different from the training dataset (e.g. test a model trained on CIFAR-10
with SVHN digits), often having significant concept shift (i.e. entirely different label space). The goal of
the evaluation is to test whether a model can identify such inputs via flagging them as uncertain rather than
forcing misclassifications.

Vision language models (VLMs, Liu et al., 2023; Gao et al., 2023; Liu et al., 2024), such as GPT4o, on
the other hand, represent a paradigm shift in visual reasoning. These models leverage massive multimodal
datasets and undergo self-supervised pre-training followed by extensive instruction tuning, enabling them to
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perform diverse tasks in a zero-shot manner, using only the image and a natural language prompt at inference
time. Importantly, the vast pretraining corpora makes it unclear if the covariate shift and concept shift
challenge underlying the aforementioned two evaluation tasks would still hold for VLM, which raises the

question: Are the traditional evaluation tasks of corruption robustness and OOD detection meaningful for
VLMs?

We argue that these tasks still remain highly relevant to the problem of uncertainty quantification, albeit
under a new lens. While VLMs may no longer face clear-cut in-distribution v.s. out-of-distribution boundaries,
they still encounter practical challenges in handling visually ambiguous inputs, or anomaly inputs
that fall outside the semantic scope defined by a user prompt. These scenarios frequently arise in real-world
applications and can reveal significant reliability gaps. In Fig. 1, we present illustrative examples of these
challenges, adapted for CIFAR-10 domain.

Therefore, in this paper, we empirically studied VLMs behavior on these two problems (Sec. 3.1). We
begin by evaluating VLM performance on corrupted ImageNet images, finding that although out-of-the-box
performance reveals notable vulnerabilities, larger and newer VLMs exhibit improved robustness (Fig. 2a).
Furthermore, we show that prompting the models explicitly to "reject ambiguous inputs' substantially
enhances their reliability, enabling the models to abstain from making predictions when appropriate (Fig. 2b).
Additionally, we study a classic anomaly detection setting using CIFAR-10 vs. non-CIFAR-10 images, where
the goal is to determine whether models can correctly reject inputs that fall outside the specified label space,
where we again find that simple prompting is sufficient for models to identify and reject anomalies. Lastly,
building on these findings, we extend our analysis to more domain-specific and specialized tasks, such as ECG
signal classification and galaxy image recognition, where we find that without sufficient domain expertise,
VLMs may show degraded or complete failure at providing reliable uncertainty quantification.

Additionally, we observe that VLM’s uncertain level about an input image (Sec. 3.2) can be revealed by
prompting the VLM to generate multiple captions for the input image under random sampling decoding,
where VLMs tend to generate more diverse captions for visually ambiguous samples, which is more likely to
be abstained, and vice versa. This insight allows us to predict the model’s ability to successfully perform
classification with rejection without relying on labeled ground truth.

Over the last decade, much research effort has been spent characterizing the robustness properties of deep
neural networks. Central to this research was the development of corruption benchmarks, such as CIFAR-10C,
which contaminates the original CIFAR-10 images with various kinds of noise. This was shown to be an
enduring benchmark, with SOTA accuracy for a traditional classifier hovering around 85% for CIFAR-
10C (Wang et al., 2020)!. In this work, we aim to answer the historical question: are these corruption
benchmarks like CIFAR-10C, as well as “OOD detection” benchmarks, now “solved”? for modern VLMs?
And if so, with what generation of VLM did they become “easy”? We find that VLMs have solved this
benchmark only relatively recently: models released in 2025 are rather robust, whereas earlier models, such
as Llama 3.2, still can easily fail without a proper prompt, despite presumably having seen these datasets
during training. We believe our study demonstrates an important lesson: Despite the clear superiority of
modern, large-model Al systems, do not assume they solve older benchmarks.

2 Background and related work
2.1 Improving models’ robustness against uncertain inputs

Neural networks often struggle with input uncertainty due to their training methodology. When trained on
carefully curated datasets with minimal ambiguity, models develop a tendency to produce high-confidence
predictions for all inputs, regardless of their clarity or relevance. This behavior creates significant reliability
concerns when deploying these models in real-world scenarios where inputs may be ambiguous, corrupted,
or entirely outside the scope of the model’s expertise. To systematically evaluate models’ behavior under
uncertain inputs, the deep learning community has identified two primary testing paradigms:

IThis result is for methods that do not see noise / corruption during training, only clean images.
2When we say “solved”, we mean robust by default or with minor modifications.
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Model * ResNet trained on VLM prompted to classify inputs
Task clean CIFAR-10 into CIFAR-10 categories

Challenge: Test inputs contain covariate shifts Challenge: Test inputs are inherently visually ambiguous
CIFAR-10C Failure pattern: Model makes overconfident ~ Failure pattern: VLM fails to recognize ambiguity and
classification  predictions despite degraded performance. responds with incorrect guesses, rather than abstaining
Seen at training time: No Seen at training time: Unknown but very likely

Challenge: Test inputs contain concept shifts ~ Challenge: Inputs fall outside the semantic scope of
CIFAR-10v.s. Failure pattern: Model faithfully classifies CIFAR-10 categories.
not CIFAR-10  non-CIFAR-10 images (OOD) into CIFAR-10 Failure pattern: VLM fails to detect anomaly inputs and
categories. instead generates hallucinated results.
Seen at training time: No Seen at training time: Unknown but very likely

Figure 1: Classic uncertainty quantification tasks revisited in the VLMs era. Using CIFAR-10 as
an example, we illustrate how corrupted inputs and inputs from outside CIFAR-10 concepts expose different
challenges and failure modes in small supervised models vs. large vision language models (VLMs, e.g. GPT4o)
prompted to do classification, despite sharing the same evaluation data.

« Distribution / covariate shift occurs when a model encounters inputs from a different distribution
than its training data, while maintaining the same label space. Examples include synthetic corruptions
or stylistic variations (ImageNet-C/P, Hendrycks & Dietterich, 2019), or alternative data collection
pipelines (ImageNet-V2, Recht et al., 2019). In these scenarios, models often show degraded accuracy, as
these inputs are outside their capacity, while maintaining high confidence predictions. Such a dangerous
combination will provide misleading signals for downstream decision-making, whereas ideally, a model
should elicit some signals indicating its “unsureness” and express confidence proportional to its likelihood
of correctness (Guo et al., 2017).

o Concept shift (OOD/anomaly detection) typically considers anomaly inputs coming from entirely
different datasets with non-overlapping label spaces than the training distribution. For instance, a digit
classifier might encounter images of animals or vehicles. In such cases, the desired behavior is for the model
to recognize the mismatch and refuse classification entirely, rather than confidently assigning inputs to
irrelevant categories. This capability, often called OOD /anomaly detection, is crucial for safe deployment
in open-world environments (Nalisnick et al., 2018; 2019b).

Standard deep neural networks without specialized training typically fail at both tasks. Researchers have
developed numerous approaches to address these limitations. The central idea of many of these methods lies
around tweaking the training loop in a way such that the model becomes capable of eliciting uncertainty
information through the statistics (e.g. entropy) of the predictive distribution, such as Bayesian neural
networks (MacKay, 1992; Neal, 2012; Graves, 2011; Blundell et al., 2015; Gal & Ghahramani, 2016; Maddox
et al., 2019; Aitchison, 2020a;b; Daxberger et al., 2021a;b; Nalisnick et al., 2019a; Izmailov et al., 2021;
Wenzel et al., 2020), deep ensemble (Lakshminarayanan et al., 2017; Abe et al., 2022; D’Angelo & Fortuin,
2021), outlier exposure (Hendrycks et al., 2018), with which practitioners can be aware of when distribution
shift / anomaly inputs shows up. There are also methods aiming at improving the models’ generalization to
certain distribution shift, such as test time adaptation (Wang et al., 2020; Wang & Aitchison, 2023; Schirmer
et al., 2024; Nado et al., 2020; Schneider et al., 2020) for improving accuracy against corrupted inputs, and to
anomaly inputs, such as open set classification (Geng et al., 2020) or meta learning (Hospedales et al., 2021).

Initially, one might think that such tasks pose little challenge for VLMs, based on two arguments:

1. No clear OOD boundary: Traditional models (e.g. ResNet trained on CIFAR-10) face clear distribution
boundaries; in contrast, VLMs trained on extensive and diverse multimodal datasets inherently blur these
distinctions.

2. Scaling improves uncertainty quantification: Prior observations suggest that simply scaling models
and datasets can significantly mitigate uncertainty quantification problems. Indeed, prior studies highlight
improvements in OOD detection (Fort et al., 2021) and calibration under distribution shift (Minderer
et al., 2021) with larger-scale models.
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Classify the provided image into the following ten categories ...
Prompt Notice that if you find an image ambiguous and cannot confidently classify
it, return "unknown" as the label.

Llama 3.2 11B Qwen 2 7B Qwen 2.53B Qwen 2.57B Qwen 2.5 72B GPT4o-mini
Model  (Sep2024)  (Sep 2024) (Feb 2025)  (Feb 2025) (Feb 2025)
Dog Person Automobile None of None of the None of the
Model the above provided classes given classes
; output apply
unknown unknown unknown unknown unknown unknown

(a) VLMs are prompted to classify a noisy cat ImageNet-C image into CIFAR-10 categories. Black monospaced text
shows the standard prompt and the corresponding output. Red text shows the appended explicit rejection prompt and
the resulting output. Older and smaller models (e.g. Llama and Qwen 2.5 3B) hallucinate labels without the rejection
prompt, whereas larger models often reject uncertain inputs even without explicit instructions.

—— w/o rejection (black prompt) ---- w/ rejection (black + red prompt)
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(b) We prompt different VLMs (columns) to classify the same 1,000 samples subset of Gaussian noise-corrupted
ImageNet into CIFAR-10 categories, under various corruption intensities (x-axis). Under standard prompt (black
part in top of 2a only), the accuracy (among all samples the models output a proper label) decreases as corruption
intensifies (solid lines). When models are explicitly prompted to reject ambiguous inputs (black and red parts), the
accuracy for classified samples becomes significantly higher (dashed lines). The bottom row shows the corresponding
rejection rates for each model: The models reject more inputs as corruption levels increase.

Figure 2: VLMs show degraded performance under corrupted inputs, allowing rejection helps
maintain reliability. Top row demonstrates VLMs’ outputs for a selected sample with or without a rejection
prompt appended. Bottom row shows the classification accuracy under standard prompt without (solid line)
vs. with (dashed line) rejection instruction prompt appended.

However, upon closer investigation, these arguments do not fully hold:

1. Indeed the distribution shift challenges represented by some of the dataset, such as ImageNet-V2/P may no
longer be applicable for VLMs, there still exists certain real-world uncertainties, such as corruptions caused
by sensor malfunctions or accidental user uploads, that can be simulated by datasets like ImageNet-C 3
and anomaly detection settings, that remain practically significant.

2. State-of-the-art large-scale VLMs may exhibit non-negligible issues due to their instruction-following
nature (Sharma et al., 2023), when no special prompt is included, they frequently resort to incorrect or
random predictions when faced with uncertain or anomalous inputs

3Corrupted inputs are typically seen as a distribution shift from clean training distribution, but the “noise inherent
in the observations” (definition of aleatoric uncertainty, Kendall & Gal, 2017) also introduces ambiguous visual cues,
making the corrupted inputs hard to recognize visually.
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Image Prompt

Your task is to classify the given ECG signal into the normal case and the

abnormal cases. Note that if the signal does NOT look like ECG signal or cannot

be classified into either of the categories, return ““unknown" as the answer.

Reasoning: The given ECG signal appears to have a Reasoning: The given image appears to be a geometric
regular rhythm with no significant deviations from the figure with multiple lines intersecting at various points.
expected pattern of a normal ECG. The waves (P, QRS, However, it does not resemble any standard ECG

T) are present and consistent with each other, indicating (Electrocardiogram) signal pattern. An ECG signal typically
that there are no signs of arrhythmia or other shows a series of waves representing the electrical activity
abnormalities. of the heart over time, which is not present in this image.
Answer: normal Answer: unknown

Figure 3: Enabling the rejection option allows VLM to pick out anomaly inputs, preventing
hallucination. When prompted to classify a random line image into normal v.s. abnormal ECG signal,
certain VLM (Qwen 2.5 3B) would generate hallucinated results (left), potentially caused by its tendency
towards strictly following instructions (Sharma et al., 2023). However, when the prompt explicitly permits
rejecting non-ECG input (additional red texts in the prompt), the same model correctly identifies the input
as anomalous and responds with Unknown (right).

Importantly, conventional methods for improving robustness, such as Bayesian neural networks or ensemble
techniques, are impractical for VLMs due to the enormous computational overhead required for fine-tuning.
Similarly, test-time interventions like test time adaptation or temperature scaling are difficult to implement
given the black-box nature of many of these models.

Encouragingly, we discovered that the implicit uncertainty quantification capabilities embedded in VLMs,
derived from their instruction-following behavior, offer a simple yet effective solution. Directly prompting
VLMs to reject uncertain inputs rather than forcing classification significantly enhances their robustness
without necessitating architectural changes or specialized training. This implicit form of uncertainty handling
capitalizes on the model’s inherent ability to condition its behavior on input instructions, thus providing
practitioners with a straightforward approach to improving reliability in practical deployments.

2.2 Uncertainty quantification in large language models

A large body of work investigates uncertainty quantification in large language models (LLMs), in the absence
of multimodal inputs. One line of research explores the confidence score elicted by the model itself, where
models are prompted to express their own certainty about their outputs (Kadavath et al., 2022). Another class
of methods leverages sampling-based approaches, such as measuring the number of semantic clusters among
independently sampled completions to infer semantic consistency and model confidence (Kuhn et al., 2023;
Nikitin et al., 2024). We hypothesize that such techniques are transferable to multimodal tasks, including
those we examine. However, as shown in our experiments, prompting the model with an additional line of
instruction that enables rejection is sufficient for the task we considered. Nevertheless, the aforementioned
approaches could augment this with more explicit and a numerically-scored uncertainty estimates.

2.3 Uncertainty quantification in vision language models

Several recent works have explored uncertainty quantification in the context of vision-language embedding
models such as CLIP (Radford et al., 2021) and DINO (Caron et al., 2021), focusing on the quality and
uncertainty of the learned representations (Miao et al., 2024; Fillioux et al., 2024; Cui et al., 2024). However,
these embedding models are not the focus of our work, we are studying LlaVA (Liu et al., 2023) style full
VLM that can follow natural language instructions.

In the domain of full VLMs, a few studies examine their uncertainty estimation capabilities. For instance,
Kostumov et al. (2024) and Groot & Valdenegro-Toro (2024) investigate the calibration of VLMs on standard
Visual Question Answering (VQA) benchmarks, paralleling the calibration protocols established in the LLM
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Image Caption Image Caption
1§ The image shows a red car that has been severely The image shows a spiral galaxy with a distinct bar
4 damaged, likely in an accident... structure running through its center...

The image shows a spiral galaxy with a prominent

The image shows a red car with significant front- pir: .
central bulge and a distinct spiral structure...

end damage, likely after a collision or accident...

] Clear
Clear — ye image shows a damaged red car with visible edge on The image depicts a spiral galaxy with a prominent,
car dents and a broken windshield. .. disk  well-defined bar structure running through its center.

The image appears to show a street scene with a

) The image depicts a spiral galaxy with a bright, diffuse
vintage-style tram or trolley in the foreground...

central core and a visible disk structure.

The image depicts a colorfil and vibrant indoor
setting with numerous people gathered in what

The image depicts a spiral galaxy with a prominent
central bulge and a disk structure..

. appears to be a festive or celebratory atmosphere... Ambiguous
Ambiguous unbarred The image shows a spiral galaxy with a prominent
car The image appears to be a pixelated or heavily spiral central bulge and a spiral arm structure extending
distorted photograph of a street scene... outward.
(a) ImageNet-C (b) Galaxy Zoo

Figure 4: VLMs generate diverse captions for ambiguous images. We prompt Qwen2.5 7B to
“generate a description” given an input image under different random seeds. Clean image from ImageNet
receives consistent captions while its corrupted version having a diverse set of captions (top left v.s. bottom
left). For the galaxy image where annotators show significant disagreement on whether there exist spiral arms
(bottom right), VLMs fail to have diversity in the caption, indicating that the model does not understand the
ambiguity, likely due to limited domain knowledge.

literature discussed in the previous section. However, these works focus on standard benchmarks where there
is limited inherent uncertainty in the inputs. Recent work Miyai et al. (2024a;b) introduce the concept of
Unsolvable Problem Detection (UPD), where the goal is to determine whether a given image-question pair is
unanswerable. Their Intrinsically Visual Question Detection (IVQD) task is most similar to our anomaly
detection setup, in which a mismatch between the question and image indicates an uncertain or ambiguous
case. However, our evaluation differs in construction: while they rely on manually annotated datasets, we
automatically generate our test data in a manner aligned with classic out-of-distribution (OOD) detection
literatures, enabling more scalable evaluation. Moreover, their work focuses on uncertainty arising from
the interplay between visual and textual modalities, our experiments additionally studies the ambiguity
and uncertainty from images alone. Zhang et al. (2024) considers the interaction of VLMs with corrupted
image, similar to our work, however their goal is to perform hallucination detection by checking VLMs output
variability under various corrupted versions of the same input, while our work aims at evaluating VLMs’
robustness against corrupted inputs.

3 Methods

3.1 Evaluation of VLM'’s implicit uncertainty quantification ability

Our main contribution centers on assessing VLMs’ ability to recognize and express uncertainty through rejecting
problematic inputs, when performing image classification tasks through natural language prompting. Drawing
inspiration from the literature on out-of-distribution robustness (Sec. 2.1), we design two complementary
evaluation tasks:

Anomaly detection with prompting This task evaluates a model’s ability to identify inputs that fall
outside the provided category definitions. We prompt the model to reject inputs that do not belong to any of
the specified categories. For evaluation, we treat samples inside the given categories as the negative class and
other samples as the positive class, employing standard binary classification metrics: precision (what fraction
of rejected inputs are actual anomalies) and recall (what fraction of all anomalies are successfully rejected),
to measure performance.

Classification with rejection against ambiguous inputs with prompting In this task, we present
models with inputs that exhibit varying degrees of inherent ambiguity, making them potentially classifiable
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into multiple categories. We then explicitly prompt the model to reject inputs it finds difficult to classify
into a single category. Our hypothesis is that as ambiguity increases, models without a rejection option will
resort to random guessing, leading to increased error rates. Conversely, models with a rejection option can
abstain from classification rather than make low-confidence predictions. To evaluate performance, we measure
accuracy on the subset of non-rejected samples, with the ideal behavior being perfect accuracy after rejection,
demonstrating the model’s ability to recognize when it might make errors.

While these evaluation paradigms root in the study of out-of-distribution robustness, a concept not applicable
to VLMSs, they still represent real-world challenges that VLMs must overcome in practical applications.
Additionally, unlike previous approaches that required model modifications or specialized training, our method
for uncertainty quantification leverages the inherent capabilities of VLMs through just prompting. It is also
worth noting that our method for quantification uncertainty is émplicit in that our model only has a binary
option: Classify the inputs or reject, instead of eliciting a continuous score for uncertainty level.

3.2 Caption diversity for understanding the underlying mechanism of rejection

When adopting uncertainty quantification methods for non-black-box models, we typically have access to a
continuous score that reflects how uncertain the model finds a given input to be. Common examples include
the degree of disagreement among ensemble components (Abe et al., 2022), the typicality of a test input
relative to the training distribution (Nalisnick et al., 2019b), or the distance of test inputs from the training
data measured in a kernel space (Liu et al., 2020; Immer et al., 2021). In contrast, when VLMs are prompted
to reject ambiguous inputs, the only available feedback is binary: whether the input was classified or rejected.
This raises a critical question, can we have a “uncertainty score” that tells us how uncertain an image is for
a particular VLM, such that the higher score an input receives, the more likely it will be rejected by a VLM.

We propose using caption diversity as a reflection for VLM’s uncertainty in an input. Intuitively, when a
model encounters an ambiguous image, one permitting multiple plausible interpretations, it produces a more
diverse set of captions across independent generations (under random sampling decoding). Conversely, clear
and unambiguous images yield consistent descriptions. To quantify this, we compute a caption diversity
score by first embedding all generated captions with a sentence transformer model (all-mpnet-base-v2
from Reimers & Gurevych, 2019), then calculating one minus the averaged pairwise cosine similarity among
the embeddings.

Our experiments indeed support this hypothesis (Fig. 4a and Fig. 5): As input images become more ambiguous
due to higher corruption level, the overall caption diversity increases. Additionally, the images model chooses
to reject consistently exhibits higher caption diversity than the classified ones.

Beyond serving as an analytical tool, caption diversity also offers a practical mechanism for predicting
rejection behavior without labeled data. By examining the relationship between diversity scores and input
ambiguity, practitioners can assess whether a model is likely to abstain from unreliable predictions. Notably,
our experiments reveal that for specialized domains requiring expert knowledge, such as galaxy morphology,
models generate low-diversity captions even for ambiguous inputs, failing to recognize their own uncertainty
(Fig. 4b) and leading to ineffective rejection (Fig. 6).

Lastly, it is worth noting that visually ambiguous images are not the only type of input that could trigger
diverse captions. When the inputs contain a significant amount of information, e.g. an image of a scene with
hundreds of people, the model may also output diverse captions under random decoding where different
random samples capture different perspectives/details of the inputs (Chan et al., 2023).

4 Experiments

In this section, we empirically evaluate the two tasks proposed in Sec. 3.1 on the following families of VLMs:
GPT4o-mini (Achiam et al., 2023), Llama 3.2 (Dubey et al., 2024), and Qwen 2/2.5 (Wang et al., 2024a; Bai
et al., 2025). GPT4o-mini has a version of 2024-07-18, Llama 3.2 is released in September 2024, Qwen 2
and 2.5 are released in September 2024 and February 2025 respectively. For the Qwen2.5 72B, we use the
official released AWQ quantized version.
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Figure 5: Caption diversity reflects model uncertainty under ambiguous inputs. We empirically
verified the hypothesis from Sec. 3.2. Top: As corruption increases, caption diversity rises across all models,
indicating greater uncertainty. Bottom: Rejected samples exhibit higher caption diversity than classified ones,
suggesting that diversity of independently-generated captions correlates with models’ internal uncertainty
level for an input and the tendency for rejecting it when prompted.

Model CIFAR-10 v.s. Not CIFAR-10 ECG v.s. Not ECG
Precision ¥ Recallt F11 Precision{ Recall! F11
Llama 3.2 11B 0.991 0.718 0.833 0.698 0.308 0.426
Qwen 2 7B 0.964 0.757 0.848 0.998 0.994 0.996
Qwen 2.5 3B 0.993 0.782 0.875 0.598 1.000 0.749
Qwen 2.5 7B 0.982 0.967 0.974 0.907 0.972 0.939
Qwen 2.5 72B 0.976 0.986 0.981 0.398 1.000 0.570
GPT4o-mini 0.964 0.974 0.969 0.360 1.000 0.529

Table 1: VLMs can perform anomaly detection. Results are evaluated using precision, recall, and
F1-score across two anomaly detection tasks where anomaly inputs are considered positive cases. In both
tasks, VLMs achieve high recall, successfully identifying most anomalous inputs. However, for the ECG task,
models exhibit lower overall performance (lower F1), primarily due to low precision caused by over-rejection
by frequently abstaining even on valid inputs.

For all experiments, we treat all models as black boxes, where we compute the metrics by looking at the
output string without using the information from the logits. Unless explicitly stated, we use deterministic
sampling for querying the VLMs. For experiments that use multiple generations from random decoding, we
use a temperature of 0.6, a top-P of 0.95, and top-K of 50 for all models. We conduct all experiments on an
internal cluster of Nvidia H100s and A100s.

The complete prompt used are shown in Appendix. A. We conduct ablation study over the prompting style
(Appendix. E): Broadly, we find that the ability of rejection is sensitive to prompting style for Llama and
Qwen2, but the rest models are less sensitive to the prompting mode.

4.1 Anomaly detection
We begin by examining anomaly detection tasks across two datasets:

CIFAR-10 v.s. Not CIFAR-10: We selected images from ImageNet (Deng et al., 2009) with concepts
overlapping with CIFAR-10 categories as the target classification samples (detailed class mapping shown
in Appendix. B), then considered images outside these concepts as anomalies. We prompted the models
to perform classification on target samples, i.e. those classifiable into CIFAR-10 categories, and to identify
and reject the anomalous samples outside CIFAR-10 concepts. This setup is known to be challenging for
OOD/anomaly detection methods (Yang et al., 2023) as the anomalous samples are visually very similar to
classifiable samples, since they come from the same dataset. We construct the evaluation dataset with 3,000
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Figure 6: Classification with rejection fails on Galaxy Zoo. As annotator disagreement level increases
(higher input ambiguity), VLMs’ accuracy degrades, but do not effectively utilize rejection to improve
performance (top left). Caption diversity and confidence remain flat (bottom row), indicating that models
fail to recognize the uncertainty in this domain, likely due to insufficient domain knowledge.

images in total, composed of 1,800 classifiable images and 1,200 anomaly ones, where a random classifier
would give a precision of 0.4 and a recall of 0.5.

ECG v.s. Not ECG: We used ECG signals from the PTB database (Wagner et al., 2020), treat the signals
as images, prompting the VLM to classify signals as normal or abnormal, as well as identifying and rejecting
anomaly inputs, which we construct with randomly generated line patterns (example shown in the top left
panel of Figure 2, detailed in Appendix. C). Our evaluation dataset consists of 500 images each from the
normal, abnormal, and anomaly categories, therefore, a random guess baseline should have a precision and
recall value of 1/3

Fig. 3 illustrates a representative example from the ECG vs. not ECG experiment. Without explicit
instructions to reject anomaly inputs, certain VLMs (e.g., Qwen 2.5 3B) hallucinate answers when presented
with random lines, attempting to force classification despite the input clearly not being an ECG. However,
when the prompt is augmented with a single line allowing rejection of non-ECG inputs (highlighted in red in
the prompt), the same model correctly identifies the input as anomalous and responds with Unknown.

The quantitative results are shown in Table. 1, where we evaluate the performance using precision, recall,
and F1 value as discussed in Sec. 3.1. For the CIFAR-10 vs. Not CIFAR-10 task, all models achieve high
precision larger than 0.96, indicating that models are not showing “over refusal”, but with varying recall
rates, indicating some models (e.g. Qwen2.5 v.s. Qwen 2) can more reliably identify anomalous inputs when
instructed to do so than others. For ECG vs. Not ECG task, overall performance drops significantly as
indicated by the lower F1 value. Llama 3.2 11B shows limited ability to identify anomalous ECG inputs
(0.308 recall), while Qwen 2 and Qwen 2.5 models demonstrate remarkable precision and recall. Interestingly,
GPT4o0-mini shows perfect recall but lower precision (0.360), suggesting a tendency toward over-rejecting
valid ECG signals as anomalous.

4.2 Classification with rejection under ambiguous inputs

For classification with rejection, we consider the following two problems: Classifying corrupted ImageNet
images into CIFAR-10 categories and morphological classification of Galaxy Zoo images. The reason behind
choosing these two datasets is that they have ground truth ambiguity levels provided, such that we could
better understand how VLM behaves as the level of uncertainty varies.

Classify ImageNet-C into CIFAR-10 categories Similar to the anomaly detection setting, we again
selected some classes from ImageNet that overlaps with CIFAR-10 categories (detailed in Appendix. B), then
we used their corrupted version to introduce ambiguity in the input, we considered 4 types of corruption:
Gaussian noise, defocus blur, pixelated, all from ImageNet-C (Hendrycks & Dietterich, 2019), and pixmix
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from Hendrycks et al. (2022). For all corruption types and levels, we use the same 1,000 randomly selected
images.

Classification of Galaxy Zoo images We considered Galaxy Zoo 2, a crowdsourced dataset for galaxy
morphological classification. Importantly, each image comes with an annotator agreement score (leaf_prob
in the metadata table), where a low agreement score implies that an image is ambiguous among classes due
to, e.g. unclear visual features. We select a 5,000 sample subset from the dataset and prompt the model to
classify them into the four categories provided from Galaxy MNIST (Walmsley, 2022). We present more
details on dataset construction in Appendix. D.

We begin by looking at the VLM’s behavior on images corrupted by Gaussian noise, as shown in Fig. 2. Before
explicit prompting VLMs to reject ambiguous samples, we first look at VLM’s behavior when prompted
naively just to classify the image, where we find that some models can already reject highly noised inputs
(Fig. 2a) instead of hallucinating an answer, however if we look at their accuracy, we can see that it still
drops significantly as corruption level increases (solid line, Fig. 2b). Now when they are explicitly prompted
to reject ambiguous samples, the accuracy among classified samples becomes much higher, indicating that
the models are internally aware of the uncertainty in the input, but it needs to be “activated” via prompting.
We observe similar results for other corruption types shown in Appendix. F. Additionally, we studied caption
diversity (Sec. 3.2), for each image, we prompt the model to independently generate 20 captions. Broadly, we
find that as the corruption level increases, the overall caption diversity increases (Fig. 5 top); additionally,
rejected samples are those that receive higher caption diversity (Fig. 5 bottom, red v.s. blue lines), indicating
that indeed caption diversity reflects VLMs’ internal uncertainty level on input images, aligning with our
hypothesis.

However, this is not the case for Galaxy Zoo, the results are shown in Fig. 6, where we see that the accuracy
significantly drops as ambiguity level increases, but rejection option only provides marginal improvement,
indicating that the VLMs do not understand the ambiguity, such result is also predicted if we look at the
caption diversity, which stays constant as annotator diagreement level increases, in contrast to the pattern
for ImageNet-C images, an illustrative comparison is provided in Fig. 4. Notice that we also study just the
output confidence, i.e. we prompt the model to randomly generate multiple answers and look at the maximum
softmax probability of the averaged prediction vector, and again, we did not see any sign that the model
is aware of the ambiguity. We hypothesize that such task would require more domain specific knowledge
with customized image embedding model (Walmsley et al., 2022b; Parker et al., 2024), indeed as verified by
Wang et al. (2024b), a general purpose CLIP model significantly underperforms fine-tuned CLIP on galaxy
classification task, however building a VLM with domain knowledge goes beyond the scope of this work.

5 Conclusion

To summarize, our work revisits two classic uncertainty quantification evaluation settings: handling corrupted
inputs and anomaly detection, which are challenging for small-scale models trained from scratch due to the
inputs’ OOD nature. While the boundary of OOD may be less clear for VLMs, we argue that these tasks still
represent real-world challenges involving inherent data ambiguity and anomalousness, issues that cannot be
resolved through model scaling alone. We evaluate VLMs on these two problems and find that, for standard
benchmarks (e.g. ImageNet-C and CIFAR-10 vs. Not CIFAR-10), models generally perform well through
providing explicit rejection option in prompt.

However, in problems requiring specialized expert knowledge, such as galaxy classification, VLMs consistently
exhibit suboptimal performance, which highlights the importance of domain-specific foundation models:
These models are not only essential for achieving strong task performance but are also critical for ensuring
reliability. Without a proper understanding of the input domain, models struggle to recognize and quantify
uncertainty, since a good understanding of the input could be a necessary prerequisite for understanding the
uncertainty associated with it.
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6 Limitation

A key limitation of the current work is the lack of a solution for handling failure cases in classification with
rejection on the Galaxy Zoo dataset (Fig. 6). This issue likely stems from the model’s insufficient domain
knowledge of galaxy morphology. One potential direction for addressing this challenge is to augment VLMs
with expert knowledge, such as galaxy decision trees (Walmsley et al., 2022a), which explicitly guide the
model to extract relevant features from galaxy images in a step-by-step manner.
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A Prompt

A.1 Anomaly detection

CIFAR-10 v.s. not CIFAR-10

You are given an image, check if the image is from one of the following 10 classes

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck, if so,
classify the image into one of 10 classes, if not, label them as "unknown".

Think step by step, and give an answer in the following format:
Reasoning: <your_reasoning>
Answer: <your answer>

ECG v.s. not ECG

Your task is to classify the given ECG signal into the normal case and the
abnormal cases.

Note that if the signal does NOT look like ECG signal or cannot be classified into
either of the categories, return ‘‘unknown’’ as the answer.

Give an answer and step-by-step reasoning in the format:
Reasoning: <your_reasoning>
Answer: normal/abnormal/unknown

A.2 Classification with rejection under ambiguous inputs

ImageNet-C

You are given an image, the image belongs to one of the following 10 classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Please assign each an image a label from the 10 classes, think step by step, and
give an answer in the following format:

Reasoning: your_reasoning

Label: class_name

Notice that if you find an image very ambiguous and cannot confidently classify it
, return "unknown" as the label.

Galaxy Zoo classification

You are an expert astronomer specializing in galaxy morphology. You will be shown
images of galaxies and need to classify them into one of the following categories
by analyzing their visual characteristics:

1. smooth_round: Galaxies that appear completely or nearly circular, with a smooth
decrease in brightness from center to edge.

2. smooth_cigar: Galaxies that appear elongated and smooth, with an elliptical
shape resembling a cigar, showing a gradual decrease in brightness from center to
edge.

3. edge_on_disk: Galaxies viewed from the side, appearing as a thin line or disk

with a bright central bulge, similar to viewing a dinner plate from its edge.

4. unbarred_spiral: Spiral galaxies without a central bar structure, showing

distinct spiral arms emanating directly from the galactic center.
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Classify the galaxy into exactly one of the four categories listed above with step
by step reasoning.
Notice that if you find an image very ambiguous and cannot confidently classify it

>

return "unknown" as the label.

Your response should be structured as:

Reasoning: [Brief explanation of the key visual features that support this
classification]

Answer: [category_name] or unknown

A.3 Caption generation

ImageNet-C

You are given an image, please generate a short description of the image.

Galaxy Zoo

You are an expert astronomer specializing in galaxy morphology. Please generate a
concise description of the image that describes its key visual characteristics.
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B Mapping between CIFAR-10 and ImageNet classes

In the main text, we extensively consider the setting where we pick images from ImageNet (or its corrupted
version) that overlap with CIFAR-10 categories and prompt VLMs to classify the images into CIFAR-10
categories. The exact mapping is presented in Table. 2. Notice that here we ignored the deer and horse
categories from CIFAR-10 as we cannot find exact mapping in ImageNet categories.

Table 2: Mapping from CIFAR-10 categories to corresponding ImageNet classes (ImageNet class indices in
parentheses).

CIFAR-10 Category ImageNet Classes (Indices)

Airplane Airliner (404), Warplane (895)
Automobile Beach Wagon (436), Convertible (511), Model T (661), Sports Car (817)
Bird Jay (10), Magpie (11), Eagle (12), Vulture (13),
Additional Birds (92, 93, 94, 95, 96)
Cat Tabby Cat (281), Tiger Cat (283), Persian Cat (284), Siamese Cat (285)
Dog Chihuahua (151), [Every 20th dog class up to] Mexican Hairless (268)
Frog Bullfrog (30), Tree Frog (31)
Ship Container Ship (510), Liner (628), Pirate Ship (724),
Schooner (780), Submarine (833)
Truck Fire Truck (555), Garbage Truck (569), Moving Van (675), Pickup Truck (717),

Police Van (734), Tow Truck (864), Trailer Truck (867)

19



Under review as submission to TMLR

C Anomaly ECG inputs construction

To construct anomaly inputs that are clearly not ECG signal, we use a two step routine: We begin by
randomly choose a random number generator

def get_random_number (size=128):

rng_list = [
np.random.normal, np.random.gamma, np.random.exponential,
np.random.poisson, np.random.uniform, np.random.chisquare,
np.random.geometric

]

rng = np.random.choice(rng_list)

return rng(0.6, size=size)

Then we generate a random line figure, with 128 points, as the anomaly inputs via

plt.plot(get_random_number(128), get_random_number (128), linewidth=0.8, c=’black’)
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D Galaxy Zoo explanation

Galaxy Zoo is a citizen science dataset, for each galaxy image, annotators are asked to follow the decision
tree (https://data.galaxyzoo.org/gz_trees/gz_trees.html) and perform classification for the galaxy
image based on the visual features. Importantly, the metadata of the dataset provides a property called
leaf_prob that describes the agreement level among annotators for the mostly agreed category. We later use
leaf_prob as a score that denotes the inherent ambiguity level of a given galaxy image.

To actually construct the dataset for evaluation VLM, we first select all images whose majority vote label
falls into one of the following categories:

smooth_round, smooth_cigar, edge_on_disk, unbarred_spiral

which are the four representative galaxy categories studied in Galaxy MNIST (Walmsley, 2022). Then we
randomly selected 5,000 images from the pool.

Then, based on the leaf_prob, we create three levels of disagree level

Leaf prob in (0.75, 1.0): Disagree level 1

Leaf prob in (0.5, 0.75): Disagree level 2
Leaf prob in (0.0, 0.5) : Disagree level 3

The distribution of categories and leaf_prob from the 5,000 samples are plotted in Fig. 4b
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Figure 7: Statistics of the 5,000 sample galaxy zoo datasets used in the experiments.
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E Ablation study: Effect of instruction prompt

Prompt method Allow rejection
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Figure 8: Ablation study on the prompting strategy. Similar to the setting studied in Fig. 2b, here we
consider different prompting strategies (line color, detailed in Appendix. E), and models (columns). The
second row illustrates the accuracy improvement, we can see that for certain old models, the prompting
strategy matters, but for other, especially the newer ones, it matters little.

Model Simple Direct Caption & Answer
Precision T Recall T Precision!T Recall? Precision? Recall 1

Llama 3.2 0.991 0.718 0.994 0.492 0.994 0.897
Qwen 2 0.964 0.757 0.994 0.215 0.992 0.917
Qwen 2.5 3B 0.993 0.782 0.994 0.549 0.993 0.725
Qwen 2.5 7B 0.982 0.967 0.992 0.837 0.992 0.972
Qwen 2.5 72B 0.976 0.986 0.969 0.992 0.987 0.987
GPT4o-mini 0.964 0.974 0.974 0.975 0.988 0.974

Table 3: Similar to the setting in Table. 1, but here we considered different prompting strategy, as discussed in
Appendix. E. Overall, smaller and older models such as Llama 3.2 and Qwen 2 are sensitive to the prompting
strategy, more powerful models are less sensitive (e.g. GPT40-mini and Qwen 2.5 72B).

We perform an ablation study where we vary the prompt that instructs the VLM to answer the query in a
certain way. To be more specific, we considered the following three regimes:

o Simple Simple and standard way: we prompt the model to provide step-by-step reasoning (Wei et al.,
2022) and then provide a classification answer.

¢ Direct We prompt the model to only output the classification answer, which prohibits the model from
generating any explicit intermediate verbal reasoning steps, including image caption.

o Caption & answer We explicitly prompt the model to always first caption the image, then answer the
question using both the caption and the image.

The goal is to understand whether:

o The model can perform the uncertainty quantification task through only reading the image (Direct
prompting)

e The model cannot understand the uncertainty by just reading the image, but would need to first caption
the image and then utilize the textual description to determine the level of ambiguity.
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In Fig. 8, we present accuracy with and without the rejection option (solid and dashed lines) in the first
row v.s. corruption level, the improvement of allowing the rejection option (second row) and the rejection
rate (third row) under different models (columns) and prompts (line colors). Particularly, for Llama 3.2
and Qwen2, the direct prompt (blue lines) shows almost no improvement when rejection option is enabled
and a low rejection rate, and the models only start to reject ambiguous inputs under Caption & answer
(green line), whereas for other models, the VLMs demonstrate the ability of rejection under all types of
prompts. This implies that these two models (Llama 3.2 and Qwen2) lack the ability to “silently” reason
about uncertainty, instead, they need to to first (be asked to) spell the image out, then use the textual feature
to determine uncertainty. The observation is again confirmed in the OOD detection task (Table. 3), the
metrics under the direct prompt for these two models are outperformed by the Caption & answer prompt.

Regardless, the ability of rejection from the latest models does not seem to be affected by the prompting
strategy. It is also worth noting that, the fact that these models can “silently” quantify uncertainty does
not rule out the possibility that they are verbal thinker internally: They could be “implicitly” using verbal
reasoning inside.

In the blocks below, we provide example outputs from Llama 3.2 and Qwen2.5 7B given a Gaussian noise
corrupted ship image, where Llama 3.2’s output varies significantly with prompts whereas Qwen2.5 7B shows
much higher stability

Llama3.2

Label: cat<|eot_id|>

**Problem Statement :**
We are given an image and asked to classify it into one of the following 10
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

*x Approach : xx*
To solve this problem, we will analyze the image step by step and make an educated
guess based on the visual features present in the image.

**Step 1: Observe the Image*x*
The image appears to be a low-resolution, pixelated photograph of a vehicle or an
animal. The image is too blurry to make out any distinct features.

**Step 2: Look for Cluesx*x
Upon closer inspection, we notice that the image has a dark body with a long,
curved shape protruding from it. This could be a tail or a limb.

**Step 3: Eliminate Impossible Classes**

We can eliminate the classes that do not match the visual features observed in the
image. For example, we can eliminate "airplane" and "ship" because they do not

have a curved shape or a dark body.

*x*Step 4: Make an Educated Guess*x*
Based on the remaining classes, we can make an educated guess. The image resembles
a cat, which has a dark body and a long, curved tail.

¥k Answer : *x*

Reasoning: The image is too blurry to make out any distinct features, but it
resembles a cat.

Label: cat<|eot_id|>

The image appears to be a pixelated representation of a building, possibly a
skyscraper or high-rise structure. The dominant colors are shades of gray, with
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some red and green hues visible in the upper right corner. The overall effect is
one of a highly distorted or low-resolution image, making it difficult to discern
any specific details.

**¥Classification:**

Based on the description, I would assign the image the label "unknown" as it does
not clearly resemble any of the specified classes (airplane, automobile, bird, cat
, deer, dog, frog, horse, ship, or truck).<|eot_idl|>

Qwen 2.5 7B

unknown

Reasoning: The image appears to be a close-up of a textured surface with various
colors and patterns. It does not resemble any of the typical shapes or features

associated with the 10 classes provided (airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck). The image is too abstract and lacks distinct
characteristics that would allow for confident classification into one of these

categories.

Label: unknown

Description: The image appears to show a close-up view of a colorful, patterned
surface with geometric shapes and vibrant colors. The shapes seem to be arranged
in a grid-like pattern, possibly resembling tiles or a mosaic.

Label: unknown
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F Full results across all corruptions

Allow rejection
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Figure 9: Similar to the setting in Fig. 2b, but under different corruption types. The observation still holds:
Enabling rejection allows VLM to abstain ambiguous samples, providing nearly perfect accuracy for classified
samples. Additionally, caption diversity, as we predicted in Sec. 3.2, steadily increases as corruption level
intensifies.
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G Extended result on GalaxyZoo

We prompt the VLM (Qwen2.5 7B) to answer the first question in the decision tree using the following
prompt, where the red part denotes the prompt for rejection

Select one of these categories that best describes the image:

- features or disk: The image has any features at all, such as spiral arms, bars, dust
lanes.

- smooth: The image gradually fades in all directions from the center (it can have
tight bright core).

*xNotice that*x if you see features but cannot interpret the structure with confident,
return "Unknown".
*xNotice that*x if you are unsure between the options, return "Unknown".

Think step by step, answer the question in the following format:
Explanation: <your explanation here>
Answer: <your answer here>

In Figure. 10 and Figure. 11, we present example images with low and high consensus between annotators,
respectively, for the first question in the decision tree (https://data.galaxyzoo.org/gz_trees/gz_trees.
html). Broadly, we find that, unlike the observations in the main text, where the model fails to reject high
disagreement images, now the VLM becomes capable of rejecting inputs for which no consensus is reached
thanks to the simplicifcation of tasks and domain knowledge provided in the prompt.

P(Smooth): 0.40
P(Featured): 0.60

Explanation: The image appears to show a galaxy with a central bright
region and some fainter structures extending outward. There are hints
of spiral arms or other features, but they are not clearly defined or
easily interpretable.

Answer: Unknown

P(Smooth): 0.59

P(Featured): 0.41

Explanation: The image shows a galaxy with a distinct elongated shape
and a bright central region, which is characteristic of an elliptical
galaxy. There are no visible spiral arms, bars, or dust lanes that would
suggest it is a spiral galaxy. The brightness gradient is not smooth;
instead, there is a concentration of light towards the center, which is
typical for elliptical galaxies.

Answer: Unknown

P(Smooth): 0.67
P(Featured): 0.33

Explanation: The image shows a galaxy with a distinct elongated shape
and a faint glow extending along its length. There are no clear spiral
arms, bars, or dust lanes visible in this image. The brightness is
relatively uniform across the galaxy, without any noticeable bright core
or fading pattern.

Answer: Unknown

Figure 10: On images where annotators show disagreement (annotator voting probability shown on the top
of each image), VLM also rejects these samples by answering “Unknown”.
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P(Smooth): 0.95
P(Featured): 0.05

Explanation: The image appears to show a galaxy with a smooth, elongated
shape and a central bright region. There are no visible spiral arms,
bars, or dust lanes that would suggest the presence of features typical
of galaxies with active star formation or recent interactions.

Answer: smooth

P(Smooth): 0.89

P(Featured): 0.11

Explanation: The image appears to show a galaxy with a central bright
region and a fainter halo extending outward. There are no distinct
spiral arms, bars, or dust lanes visible in the image. The brightness
is more uniform across the galaxy, suggesting it might be a smooth
distribution rather than having specific structural features.

Answer: Smooth

P(Smooth): 0.92
P(Featured): 0.08

Explanation: The image appears to show a galaxy with a central bright
region and a fainter halo extending outward. There are no distinct
spiral arms, bars, or dust lanes visible in the image. The brightness
is concentrated in the center, which suggests a smooth distribution of
light.

Answer: Smooth

P(Smooth): 0.19
P(Featured): 0.81

Explanation: The image shows a galaxy with a distinct elongated shape
and a central bright region, which is characteristic of a spiral
galaxy. The structure appears to have spiral arms extending outward
from the central bulge.

Answer: features or disk

P(Smooth): 0.12
P(Featured): 0.88

Explanation: The image shows a galaxy with a distinct spiral structure.
There are visible spiral arms extending outward from the central
region, which is characteristic of spiral galaxies. The presence of
these spiral arms indicates that the galaxy has features.

Answer: features or disk

P(Smooth): 0.03
P(Featured): 0.97

Explanation: The image shows a galaxy with a distinct spiral structure,
which includes spiral arms extending outward from the central region.
There is also a bar-like feature running through the center of the
galaxy, which is a common structural element in many galaxies.

Answer: features or disk

||||||H|||||

Figure 11: On images where annotators show consensus (annotator voting probability shown on the top of
each image), VLM returns answers aligned with the majority vote results.
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H Licenses for existing assets

Datasets:

o ImageNet / ImageNet-C
License: Custom ImageNet Terms of Use (Non-commercial research only)
URL: https://www.image-net.org/download
o CIFAR-10
License: MIT License
URL: https://www.cs.toronto.edu/~kriz/cifar.html
o Galaxy Zoo / Galaxy MNIST
License: Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA 4.0)
URL: https://data.galaxyzoo.org/
« PTB-XL (ECG Dataset)
License: PhysioNet Credentialed Health Data License (Restricted; requires credentialed access)
URL: https://physionet.org/content/ptb-x1/

Models:

e GPT-40-mini
License: Proprietary (OpenAl Terms of Use)
URL: https://openai.com

o Llama 3.2 (Meta)
License: Meta Llama 3 Community License (Non-commercial research use only)
URL: https://ai.facebook.com/resources/models-and-libraries/llama

e« Qwen 2 / Qwen 2.5 (Alibaba)
License: Qwen License Agreement (Permits research and certain commercial uses)
URL: https://qwen.aliyun.com/
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