
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LAYERSVG: LAYER-WISE SEMANTIC EDITABLE
SCALABLE VECTOR GRAPHICS SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scalable Vector Graphics (SVG) is a lightweight and editable image format.
Converting complex raster images into semantically layered and editable SVGs
presents a longstanding challenge. Existing vectorization methods primarily fo-
cus on holistic image conversion, producing a single, uneditable SVG, but ne-
glecting SVG layering that is crucial for SVG editing. Although some approaches
attempt simple layer extraction, they are often limited to basic icons or individ-
ual strokes. To address these limitations, we propose LayerSVG, a novel method
capable of top-down, semantic layer-wise vectorization of complex raster images.
Our method employs a layer-elimination strategy to progressively decompose lay-
ers, extract semantic objects and inpaint obscured regions from top to bottom. For
robustly determining object occlusion relationships, we design a robust three-stage
judgment mechanism, ensuring high accuracy and automated extraction. Further-
more, for optimal stroke allocation across multiple layers, we propose an adaptive
path allocation mechanism, which considers layer area and complexity to effi-
ciently utilize the finite SVG path budget. Extensive experiments, encompassing
fidelity tests and diverse editing tasks, and comprehensive computational resource
analysis, demonstrate that LayerSVG not only achieves powerful reconstruction
and versatile editable layers, but also runs efficiently. This fills a critical gap in the
field of semantically editable SVG conversion from raster images.

1 INTRODUCTION

Semantic Layers Generated SVGs Free EditingOriginal Image

… …

Figure 1: Overview of our LayerSVG. The in-
put image is first decomposed into semantic lay-
ers, which are then converted to SVGs through the
Masked-SuperSVG model. The occluded regions
of the image is inpainted and the semantic layered
SVGs can be edited freely.

Scalable Vector Graphics (SVG) is a common
file format for representing graphics. Unlike
raster images, SVG builds graphics by a se-
ries of commands to generate a given image.
Its advantages include smaller file size, scaling
without quality loss, and support for layer edit-
ing, making it widely used in icon design, con-
ceptual diagramming, and asset management.
Although SVG is widely used in design, web,
and application development, its importance is
often underestimated. Photoshop (PS), for in-
stance, cannot automatically decompose a com-
plex image into semantic layers, and raster-
based editing causes quality loss after repeated
exportation, which do not occur with SVG. The
limited SVG support underscoring the need for
high-quality, editable SVG generation.

To enable SVG generation and editing, current research has focused on creating high-quality, ed-
itable SVGs. In the field of image vectorization, researchers have invested significant effort into
converting raster images to high-fidelity, single SVGs, demonstrating notable advancements through
deep learning methods Reddy et al. (2021); Liu et al. (2017); Zhu et al. (2024); Wang et al. (2024).
To further enhance editability, some approaches have attempted coarse-to-fine, layer-wise gener-
ation strategies Ma et al. (2022); Hu et al. (2024) or focused on extracting strokes from simple
icons Du et al. (2023); Yang et al. (2016); Wu et al. (2025). Other recent works, based on Visual

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Language Models (VLMs) Yang et al. (2025) or Diffusion Models Xing et al. (2024), have enabled
Text-to-SVG, as well as Image-to-SVG generation controlled by textual prompts.

Among these efforts, SVG layering is a critical task for effective editing. In image editing, oper-
ations are typically performed on a per-layer basis to ensure that manipulating one asset does not
affect other parts of the image. For human users, two key requirements for layer editing are essen-
tial. First, layers must be complete, meaning that moving a top layer should reveal a seamlessly
filled-in background underneath. Second, the assets must be semantically separable, as human users
need to perform operations like translation, recombination, or local deformation on specific, seman-
tically meaningful objects, not on individual strokes. Consequently, transforming complex images
into editable SVGs requires true layer-wise vectorization, which goes beyond simple coarse-to-fine
generation or stroke extraction. It demands the ability to convert a complex raster image into a high-
fidelity, truly layer-editable SVG file. However, prior methods could only achieve either coarse-to-
fine generation on a single image or vectorize simple icons into a few strokes, and thus they could
not achieve layer-by-layer editing based on semantic objects.

To achieve editable, semantic-aware layer-wise vectorization on real-world raster images with intri-
cate occlusion relationships, we propose LayerSVG, a novel top-down, layer-wise image vectoriza-
tion model. To achieve layer decomposition, our model innovatively employs an inpainting model
to progressively eliminate topmost objects and predict obscured region, thereby inversely achieving
layer separation. This layering approach ensures that external regions remain unaffected and that the
background is seamlessly completed after an asset is moved. However, this strategy poses a chal-
lenge for correctly identifying occlusion relationships. Therefore, to precisely address the problem
of identifying occlusion, we leverage image depth information and design a depth-guided, three-
stage judgment mechanism to select the most suitable topmost semantic mask. This mechanism
combines global layer information with critical local edge information, along with both a prior and
a posterior validation, ensuring both accuracy and efficiency. Subsequently, during the layer-wise
SVG conversion process, and given that image vectorization requires a predefined total number of
paths, we introduce an adaptive path allocation mechanism. This mechanism comprehensively
considers layer area and complexity to ensure efficient utilization of path resources. Finally, we
use our model to process complex images from various sources and conduct experiments on basic
transformations, asset recombination, and local deformations, which robustly validate LayerSVG’s
powerful reconstruction capabilities and its ability to generate truly layer-editable SVG files. De-
spite the multi-stage design, LayerSVG remains computationally efficient. In practice, most images
can be processed to the final layered SVG within about one minute on a single RTX 3090 GPU.

Our main contributions are summarized as follows:

• We propose LayerSVG, a novel top-down, layer-wise image vectorization model that pro-
gressively separates layers and processes semantic objects based on depth information,
generating independently editable layered SVGs.

• We design a robust Three-Stage Judgment Mechanism for determining occlusion relation-
ships among semantic masks, making it well-suited for layer decomposition tasks involving
images with depth information.

• We introduce an Adaptive Path Allocation Mechanism that effectively solves the problem
of optimally distributing a given total number of paths among individual layers in layer-
wise vectorization.

2 RELATED WORK

2.1 IMAGE VECTORIZATION

Image vectorization aims to convert raster images into Scalable Vector Graphics (SVG), which are
composed of vectors and filled colors. Existing image vectorization methods can be broadly catego-
rized based on their approach and output:

Traditional and deep regression-based methods form the foundation of image vectorization.
Algorithm-based approaches typically fall into mesh-based strategies (e.g., Zhou et al. (2014);
Liao et al. (2012)) or curve-based methods (e.g., Dai et al. (2013); Selinger (2003); Adobe Inc.
(2024a)). Deep regression-based methods, such as Im2Vec Reddy et al. (2021) and Raster2Vec Liu

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al. (2017), aim for direct mapping using modules like VAE and LSTM. Subsequent works like
LIVE Ma et al. (2022), as well as others Zhu et al. (2024); Wang et al. (2024), utilize gradient-based
optimization of SVG parameters for improved quality. Among these, SuperSVG Hu et al. (2024)
introduces advanced vectorization models for fast and high-precision image-to-SVG conversion.
However, these methods fundamentally produce a single, semantically indivisible SVG file, offering
no support for independent semantic element editing or multi-layer manipulation.

Another line of work attempts to extract individual strokes or simple layers from images. For in-
stance, some methods Du et al. (2023); Yang et al. (2016) decompose regions into linear gradient
layers or employ Monte Carlo Tree Search to guide decomposition. Others Wu et al. (2025) uti-
lize visual language models (VLMs) to identify occlusion relationships. However, these methods
are primarily suited for simpler inputs like icons instead of complex images that involve intricate
occlusions or rich depth information. Our LayerSVG addresses the limitations of the aforemen-
tioned approaches. It not only achieves high-fidelity reconstruction of complex image details but
also enables semantic-based, editable, multiple-layer SVG generation.

2.2 LAYER DECOMPOSITION

Layer decomposition is a crucial topic in image editing tasks. Just as with typical operations in
Photoshop Adobe Inc. (2024b), an image can only be efficiently and extensively edited after be-
ing decomposed into layers. Generative models are highly suitable for layer decomposition. Since
the introduction of LDM (Latent Diffusion Models) Rombach et al. (2022), numerous works have
explored inpainting and object removal based on diffusion models. Building upon pre-trained mod-
els Stability AI (2023), Attentive Eraser Sun et al. (2025) emphasizes attention mechanisms on the
background when inpainting the foreground, and PowerPaint Zhuang et al. (2024) trained a uni-
versal inpainting model using learnable task prompts. LaMa Suvorov et al. (2022) and its refined
models Kulshreshtha et al. (2022) leverage a rather simpler model based on FFC Chi et al. (2020),
achieving robust results in object removal tasks. Nevertheless, these existing layer decomposition
models universally require manual mask input, preventing automated decomposition of complex
images.To achieve automated and semantic decomposition of complex images, we innovatively in-
troduce Grounded-SAM Ren et al. (2024) for automated mask generation, utilize DepthAnything
Yang et al. (2024) to guide a Three-Stage Mask Selection Strategy, and then employ refined-LaMa
Kulshreshtha et al. (2022) for top-down object removal.

3 METHOD

(c)

LayerSVG

(Ours)

(b)

SuperSVG

(a)

LayerVec

Figure 2: Comparison among LayerVec Wang
et al. (2024), SuperSVG Hu et al. (2024) and our
LayerSVG. More comparison can be seen in Ap-
pendix A.7.

Our objective is to achieve editable, semantic-
aware layer-wise vectorization, where each se-
mantic layer of an image is independently vec-
torized while preserving the integrity of its se-
mantic content. As illustrated in Figure 2
(c), even when lower semantic regions are oc-
cluded by upper layers, it is essential to vec-
torize the complete semantic information for
each layer. This capability is fundamental
for flexible SVG representations and enables
a wide range of advanced SVG editing opera-
tions. However, existing approaches primarily
focus on image reconstruction Li et al. (2020);
Hu et al. (2024) or employ coarse-to-fine iter-
ative refinement Wang et al. (2024); Ma et al.
(2022), without addressing the challenge of se-
mantic layer-wise vectorization. As shown in
Figure 2 (a)(b), these methods fail to disentan-
gle and vectorize independent semantic elements within complex scenes. To address these limita-
tions, we propose LayerSVG, a robust and comprehensive pipeline that automatically decomposes
raster images into semantically explicit, independently editable SVG layers, which significantly en-
hances the editing flexibility of vector graphics.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ViT

C
o
n
v

A
ttn

SuperSVG

DAM

Depth Map Prediction

RAM Tags

G-DINO

Object Detection Mask Segmentation

SAM 𝑵𝒗𝒊𝒔𝒊𝒃𝒍𝒆
∗

Stroke Allocation
Strategy

Three-Stage Mask Selection Strategy

Area Complexity

Generated
Layer-wise SVG

Iteration Depth

Detected boxes

Source image

Inpainted image

Top-down Elimination

B
o

tto
m

-u
p

 O
ve

rlay
0
0
0
0

Choose
Mask

Boundary validation Inpainting validation

Depth Map

LaMa-
refinement

Figure 3: An overview of the LayerSVG model. The pipeline begins with top-down, layer-by-layer
inpainting, using our innovative three-stage judgment mechanism to determine the layer order. The
inpainted image is then looped back to continue separating layers. Once the raster image for each
layer is extracted, an adaptive path allocation mechanism computes the optimal number of paths.
Finally, each layer is efficiently vectorized into an editable SVG via our adapted Masked-SuperSVG.

3.1 TOP-DOWN LAYER VECTORIZATION STRATEGY

While a naive intuition might suggest a bottom-up reconstruction for layer-wise vectorization, i.e.,
starting from the bottom layer and gradually perform vectorization towards the upper layers. This
approach faces a fundamental challenge: inferring the unknown underlying canvas for occluded
regions. We instead propose a top-down, iterative semantic removal strategy, which excels by
progressively removing the topmost visible object. To obtain complete, editable semantic layers and
vectorize them, directly removing and vectorizing a single layer would leave gaps in the image, be-
cause that layer previously occluded the content beneath. To extract the topmost layer while filling
the gaps left by removing the current top layer, we need to employ a model that inpaints these miss-
ing regions based on background context. For this inpainting task, we utilize LaMa-refinement Kul-
shreshtha et al. (2022) model, which is specifically designed for background inpainting.

Obtaining Semantic Masks. For fine-grained editing of complex images, operations are typically
applied at the granularity of semantic objects (SVG groups), rather than individual SVG strokes.
This necessitates the initial generation of accurate and semantically meaningful object masks. To
achieve this, we leverage RAM-Grounded-SAM Ren et al. (2024) to extract a comprehensive set of
semantically informed object masks from the input image, where we first utilize RAM to identify
semantic categories, then employ Grounding-DINO to detect the corresponding objects, and finally
apply SAM to generate precise semantic masks.

Determination of Top Mask. Accurately determining the re-drawing order of these masks and
ensuring subsequent inpainting quality is crucial. Prior layer-wise vectorization methods, often tar-
geting simpler icon-like images, tend to infer 2D layer coverage relationships algorithmically Du
et al. (2023); Favreau et al. (2017). However, our approach handles complex, multi-object images
that inherently contain rich depth information, which is vital for resolving object occlusions. We
believe this depth information must be fully utilized. Therefore, we integrate the depth estimation
model Depth-Anything v2 Yang et al. (2024) to determine the topmost layer, which will be elabo-
rated in the next subsection. The selected topmost layer is then removed, and the newly exposed
background needs to be inpainted (to ensure the integrity of the underneath layer).

Obscured Region Inpainting. Upon removal of the topmost layer, a previously obscured re-
gion is revealed. To seamlessly fill this region, we perform an inpainting process using LaMa-
refinement Kulshreshtha et al. (2022) (Fig. 3 middle), which is specifically designed for high-quality
background completion.

Layer-wise Vectorization. After all semantic layers are extracted and re-ordered, we vectorize
them one by one. While traditional vectorization methods are often optimized for full, regular-sized
images, effectively vectorizing multiple irregularly shaped semantic object masks presents unique
challenges. To address this, we introduce Masked-SuperSVG, an adaptive improvement to the ad-
vanced SuperSVG Hu et al. (2024) model. Our modifications include directly incorporating mask
information during the SLIC Achanta et al. (2012) superpixel segmentation and applying a penalty
term in the refinement stage for paths that extend beyond the mask boundaries. Furthermore, we
propose a novel adaptive path allocation scheme, which will be detailed in a subsequent subsection.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 THREE-STAGE MASK SELECTION STRATEGY

To obtain the correct top-level object mask, we propose a novel three-stage verification method that
balances efficiency and accuracy, which is shown in Figure 3 (middle).

3.2.1 ORDERING BY MEDIAN OF DEPTH MAP

In the first stage, we perform a preliminary ordering of the masks. Each mask region is sorted
into an ordered list based on the median of its depth values, which can improve the efficiency of
subsequent operations. However, the candidate topmost mask identified at this stage is not always
the true topmost mask, as some occluded background regions might in fact be closer to the camera.
Therefore, we require the two subsequent validation steps.

3.2.2 VALIDATION OF DEPTH GRADIENT

𝑝

𝑝𝑖𝑛

𝑝𝑜𝑢𝑡

𝐷(𝑝𝑜𝑢𝑡) larger

𝒏𝑜𝑢𝑡(𝑝)

Figure 4: Illustration of the second-step valida-
tion. Points pin and pout are selected along the
outward normal direction of the edge nout(p).
Since the direction of the depth gradient aligns
with the outward normal direction, this sampling
point passes the validation.

In the second stage of our method, we intro-
duce a novel algorithm to robustly determine
whether a candidate mask truly represents a
foreground object. The core idea of this algo-
rithm is to assess the consistency between the
depth gradient direction at the object’s bound-
ary and the outward normal direction of the
mask edge, which is illustrated in Fig. 4. This
process can be formulated as:

Consistency(p) = sgn(∇D(p) · nout(p)), (1)

where D(p) is the depth value at pixel p,
∇D(p) is the depth gradient at p, and nout(p)
is the outward normal vector of the mask edge
at p. A positive value indicates consistency.

This approach represents the most fundamental
way to distinguish foreground from background, as it inherently focuses on the intrinsic properties
of the object’s boundary, unaffected by its interior. In practice, we first apply the Sobel operator to
the binary mask to obtain the edge normal directions. Next, we designate all points along the mask’s
boundary as sampling points. For each sampling point, we extend a small, fixed distance (set to 3
pixels through empirical experiments) along both the inward and outward normal directions to obtain
a pair of comparison points . For a given sampling point, if the depth of its outward comparison point
(D(pout)) is greater than the depth of its inward comparison point (D(pin)), then this sampling point
is considered validated. This condition directly reflects a drop in depth . A mask is collectively
deemed valid if the proportion of validated sampling points reaches a predefined threshold. Through
empirical experiments, we found setting this threshold to 0.75 achieves the best performance.

3.2.3 VALIDATION OF INPAINTING

While the first two stages effectively handle most cases, they are essentially based on prior knowl-
edge. To further ensure the robustness of subsequent processing, we introduce a posterior validation
based on inpainting results. In this stage, we perform a tentative inpainting of the current candidate
mask using the LaMa-refinement Kulshreshtha et al. (2022) model, which predicts the underlying
area obscured by the current object. Subsequently, we examine the depth values within the inpainted
area. If the median depth of this region significantly increases after inpainting, it indicates that the
foreground object has been successfully removed and replaced by a more distant background. This
validates that the mask is indeed a topmost layer and that the inpainting quality is acceptable. This
judgment method can be formulated as:

median(D(Rinpaint)) < median(D(Rorig)), (2)

where D(Rinpaint) and D(Rorig) are the depth value of the inpainted region before and after in-
painting. This posterior validation mechanism is important because it compensates for the inherent
limitations of relying purely on prior knowledge, enhancing the pipeline’s ability to handle complex
occlusions. On one hand, some complex and coupled occlusion relationships are difficult to capture

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

entirely through local sampling based on depth gradients. On the other hand, while deep learning-
driven inpainting models are powerful, they are not perfect and can sometimes produce blurriness.
This validation ensures that our pipeline does not enter a vicious cycle of accumulating errors due
to incorrect removals, contributing to the semantic accuracy of the final layered SVG output.

3.3 ADAPTIVE STROKES ALLOCATION STRATEGY

Models which convert raster images to SVG typically require a predefined total number of paths
to constitute the SVG. In our task, which involves handling multiple semantic objects, how to ef-
ficiently and intelligently allocate this given total path count becomes a core resource optimization
challenge. Manually allocating path is both time-consuming and prone to subjective judgment. Con-
versely, simply averaging the total path count across layers inevitably leads to an insufficient number
of paths for complex layers, resulting in detail loss, while wasting path resources on simpler layers,
ultimately impacting overall visual fidelity.

To address this resource allocation problem, we propose a novel adaptive path allocation strategy
based on a layer’s intrinsic visual characteristics, which is shown in Figure 3 before the vectorization.
We posit that the optimal number of paths required for each layer is primarily determined by its
visual complexity. This complexity is quantified by two factors: layer area (Ai) and internal image
patch complexity (Ci). For image patch complexity, we calculate the total gradient magnitude within
the layer’s internal gradient field using the Sobel operator. Based on these two factors, we calculate
a normalized weight wi for each layer, which reflects its relative demand for the total path count:

wi = (1− β) · Ai∑
j Aj

+ β · Ci∑
j Cj

, (3)

where β represents the importance weight of image patch complexity in the weight calculation
(which is set to 0.8 through empirical experiments), and

∑
i means adding up the values of all

layers. All values are normalized to ensure
∑

wi = 1. The allocated number of paths (Ni) for each
layer is then calculated as follows:

Ni = Ntotal · wi. (4)

This refined, adaptive path allocation strategy fully leverages each layer’s inherent visual charac-
teristics, thereby optimizing the use of the given total path count. Compared to simple average
allocation (detailed in ablation study), it not only significantly avoids the waste of path resources but
also ensures that critical details and complex textures are effectively reconstructed across layers.

4 EXPERIMENTS

4.1 IMAGE VECTORIZATION QUALITY COMPARISON

In this section, we evaluate the full image reconstruction quality of LayerSVG. The specific models
utilized are detailed in the Appendix. During the vectorization phase, all SVG paths are constructed
from four end-to-end connected cubic Bézier curves, each filled with an RGB color. We selected
1000 images from ImageNet for our experiments(50 images for LIVE due to the extremely long
optimization time). After processing these images with LayerSVG to decompose them into layers,
we render the resulting SVG layers and composite them to form a reconstructed raster image.

For comparison, we include a range of state-of-the-art methods, as shown in Table 1. All compar-
ison methods were run with their default configurations. We conducted three sets of experiments,
converting images into SVGs with target visible path1 counts N∗

visible of 500, 1,000, and 2,000 re-
spectively. The reconstruction quality was evaluated using: 1) MSE Distance and 2) PSNR; 3) SSIM
Wang et al. (2004); and 4) LPIPS Zhang et al. (2018).

The overall image reconstruction results are presented in Figure 5, which shows four main methods.
Upon closer visual inspection in the first and second rows, LayerSVG exhibits notably sharper object
edges due to its explicit layering process. Furthermore, thanks to LayerSVG’s adaptive path alloca-
tion mechanism, the reconstruction of smaller objects is often more complete and refined. Quanti-
tative image reconstruction metrics are provided in Table 1. Across all three specified path counts

1Definition is provided in the #supplementary material A.4

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Qualitative comparison with the state-
of-the-art methods under different numbers of
SVG paths.

Table 1: Quantitative comparisons. Bold and
underline for the best and the second best re-
sults.

#Paths Method MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑

500

LIVE Ma et al. (2022) 0.0039 24.10 0.4467 0.7983
DiffVG Li et al. (2020) 0.0069 21.42 0.5319 0.6671

Adobe Adobe Inc. (2024a) 0.0067 21.82 0.5595 0.6939
Potrace Selinger (2003) 0.0208 17.85 0.5115 0.6920

SuperSVG Hu et al. (2024) 0.0044 24.80 0.4452 0.7687
LayerSVG (Ours) 0.0042 24.98 0.4348 0.7866

1,000

LIVE Ma et al. (2022) 0.0030 26.61 0.4341 0.8230
DiffVG Li et al. (2020) 0.0039 25.04 0.4812 0.7751

Adobe Adobe Inc. (2024a) 0.0057 23.48 0.4696 0.7466
Potrace Selinger (2003) 0.0167 19.57 0.4409 0.6807

SuperSVG Hu et al. (2024) 0.0032 26.03 0.4075 0.8111
LayerSVG (Ours) 0.0031 26.33 0.4009 0.8281

2,000

LIVE Ma et al. (2022) 0.0025 26.98 0.3994 0.8431
DiffVG Li et al. (2020) 0.0036 25.88 0.4683 0.7710

Adobe Adobe Inc. (2024a) 0.0033 26.23 0.3961 0.7229
Potrace Selinger (2003) 0.0160 19.65 0.4355 0.6997

SuperSVG Hu et al. (2024) 0.0024 27.25 0.3648 0.8446
LayerSVG (Ours) 0.0024 27.52 0.3610 0.8660

move

move

move

shrink
enlarge

swap

rotate
reorder

rotate

Figure 6: Basic Layer-wise Editing Operations: (a) translation, (b) rotation, (c) scaling, and (d) layer
reordering applied to individual semantic layers.

(500, 1000, and 2000), our LayerSVG method demonstrates reconstruction quality that significantly
surpasses traditional approaches, while remaining remarkably close to the non-layered SuperSVG
method, demonstrating the superiority of our approach in achieving approximately lossless layering.

4.2 SVG EDITING

Unlike raster image editing, SVG editing is inherently lossless. For example, in PS, if a portion
of the image is downscaled and then exported, that region will permanently lose resolution. In
contrast, editing based on SVG does not incur such risks. We conducted three types of experiments,
including basic editing, composition, and selective region transformation, encompassing fidelity
tests and diverse editing tasks.

Basic Editing – Translation, Rotation, Overall Scaling and Layer Reordering. We selected
six representative images and performed practical edits on them for demonstration, and the editing
methods are shown in Figure 6. As can be observed, the background remains well-filled and seam-
less after the object’s displacement, without any visual incongruity. In the fourth image, we swapped
the positions of two bottles and applied a rotation transformation; the transformed result maintains
the same visual harmony as the original image. For the second and third images, we performed
scaling transformations, resizing designated objects to our desired dimensions. Notably, due to the
inherent properties of SVG, scaling operations do not require interpolation algorithms. This ensures
that even if the same object undergoes multiple edits and re-exports, there is no loss of resolution.

Composition – Combining layers from different images. Figure 7 showcases an example of
extracting and composing elements from seven distinct images. Such a feature offers immense po-
tential for creative applications, empowering designers and content creators to build custom asset
libraries, rapidly prototype new scenes by combining various elements, or even construct novel vi-
sual narratives. This significantly streamlines workflows in areas such as graphic design, interactive
media, and content generation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Decompose

Recombine

Figure 7: Layer Composition. We first decompose several raster images (top row) into semantic
SVG layers. These layers are then treated as editable assets, which can be rearranged and combined
to form new images (bottom row).

Figure 8: Selective Region Deformation. We ap-
ply CPAB transformations to selectively deform
specific regions within SVG layers.

Selective Region Transformation – Deforma-
tions. Building upon LayerSVG, we propose
a selective region transformation method that
enables transformation of specific SVG regions
while preserving the integrity of unrelated ar-
eas, as shown in Figure 8. The top row repre-
sents the original images, and the bottom row
represents the transformed results. Note that
the points are for illustrative purposes only and
represent a subset of all the control points used
in the deformation.

Our approach adapts Continuous Piecewise-
Affine Based (CPAB) transformations Freifeld
et al. (2017) Detlefsen (2018) to work directly
with SVG shape parameters within individual
layers decomposed by LayerSVG. CPAB trans-
formation represents deformations through velocity fields defined over a tessellated domain, en-
suring smooth and invertible transformations. We first isolate the target layer from the LayerSVG
decomposition, then extract control points from specified source regions within this layer, including
all path endpoints and Bézier curve control points in these regions. These extracted points serve
as source constraints in the CPAB framework, where each point xsrc

i is mapped to a correspond-
ing target position xtgt

i through CPAB deformation fields. This approach ensures that geometric
modifications are confined to the intended region while completely preserving other layers.

4.3 COMPUTATION RESOURCE ANALYSIS

Table 2: Computation Resource Analysis. The
time consumption of most cases is below 1 min.

Time
Path

500 1000 2000

Mask and Inpainting/s 0.65 0.67 0.71
Vectorization/s 14.12 15.32 16.17

Layer Merging/s 0.18 0.31 0.50
Posterior Correction/s 6.44 11.13 26.09

Total (w.o. correction)/s 20.96 27.72 38.09
Total/s 27.40 38.85 64.18

Even though LayerSVG employs a relatively
complex pipeline, its time and memory con-
sumption remains fully acceptable. To verify
this, we conducted a series of computational re-
source analyses. We selected 10 representative
images (provided in the supplementary mate-
rial A.5), with an average semantic layer count
of 6.1. This is relatively high (as most images
contain fewer than 5 semantic layers), meaning
that the chosen samples tend to consume more
time than typical cases.

We evaluated three different path budgets (500, 1000, and 2000), and the average per-step runtime
as well as the total runtime for the sampled images are reported in Table 2. As shown, in most cases
LayerSVG completes processing within 60 seconds, and during coarse generations which do not
need precise number of paths, the efficiency can be further improved, which is considerably more
efficient compared to optimization-based layered methods Wang et al. (2024); Ma et al. (2022) that
may require more than 10 minutes. In addition, we measured GPU memory consumption throughout

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

w.o.

Depth Gradient

Validation

Ours

w.o.

Inpainting

Validation

Ours

Cannot

Pass

Inpainting

Validation

w.o.

Stroke

Allocation

Ours

🙁

😄

1) Ablation on Validation of Depth Gradient 2) Ablation on Validation of inpainting 3) Ablation on Path Allocation Strategy

Incomplete inpainting Unexpected inpainting Larger MSE

Figure 9: Ablation study on 1) Validation of Depth Gradient, 2) Validation of inpainting, and 3) Path
Allocation Strategy.
the process. The memory usage remains around 9.34 GB for most of the time and peaks at 12.54
GB, indicating that our method can be executed on consumer-grade GPUs.

4.4 ABLATION STUDY

It is important to note in advance that our ablation studies are difficult to evaluate using quantitative
metrics. The reason is that the ablations primarily affect the completion of regions occluded in the
original images (invisible), for which no ground truth is available, making it challenging to establish
suitable evaluation metrics. For a more detailed analysis of these ablation studies, please refer to the
supplementary material A.6.

Ablation Study on Validation of Depth Gradient. We first validate the importance of Depth
Gradient Validation. Without this step, we directly proceed to inpainting validation based on the
preliminary depth-value ordering of the masks. If the median depth value of a region decreases after
inpainting, it’s immediately deemed a suitable mask. Under this operation, the depth values within
the region are more likely to influence the judgment. Specifically, as shown in Figure 9 1), the model
selects the clothing on the woman on the left, resulting in the extraction of an unwanted object for
editing, and the inpainted result is poor. In contrast, our standard pipeline successfully extracts the
entire person, which is the desired object for editing.

Ablation Study on Validation of Inpainting. We then validate the importance of Inpainting Val-
idation. This step serves as a posterior validation, significantly enhancing our model’s robustness.
If the inpainting validation module is omitted, as shown in Figure 9 2), the model selects the sandy
area, which has lower depth values than the grass. However, this is merely a visual foreground-
background effect, and the sand does not genuinely cover the grass. Consequently, the final in-
painting result is poor. With inpainting validation added, the model checks whether the inpainting
contributes to a decrease in depth value, thereby filtering out such undesirable results.

Ablation Study on Path Allocation Strategy. Finally, we validate the importance of our Path
Allocation Strategy, which is based on layer area and image patch complexity. This strategy enables
our model to intelligently distribute a given total number of paths among individual layers. If we
remove this strategy and instead use an average allocation method, it will lead to both a shortage
and waste of paths across different layers. This can be clearly observed in the Mean Squared Error
(MSE) error map. As shown in Figure 9 3), after removing the path allocation mechanism, the small
fish in the image becomes unusually detailed. However, some main parts of the scene exhibit flaws
due to an insufficient allocation of paths.

5 CONCLUSION

We propose LayerSVG, a novel model capable of semantic layer-wise vectorization of complex
raster images. To precisely manage the occlusion order between layers, we introduce a novel depth-
guided three-stage judgment mechanism. Furthermore, addressing the optimized allocation of paths
among layers during vectorization, we designed an adaptive path allocation strategy. The combina-
tion of these innovations enables LayerSVG to produce editable assets that are both visually faithful
to the original image and semantically meaningful. Comprehensive experimental results demon-
strate LayerSVG’s excellent robustness, high fidelity, and powerful editability, filling a gap in the
field of converting raster images into semantically editable SVGs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our primary objective is to advance the field of editable Scalable Vector Graphics for beneficial
applications, such as icon design, concept diagramming, and asset management. We believe this
technology holds significant potential for positive contributions across various industries. We rec-
ognize, however, that large-scale datasets may contain inherent societal biases, which our models
could inadvertently learn. We are committed to promoting transparency regarding this limitation
and encourage future research to focus on identifying and mitigating such biases to ensure equitable
performance across diverse demographic groups.

To foster the responsible application of our work, we intend to release our code and models under a
Responsible AI License, which explicitly prohibits malicious uses, such as creating non-consensual
content, disseminating misinformation, or engaging in harassment. We believe that cultivating an
open and collaborative research environment is essential for establishing shared norms and technical
safeguards that will guide the deployment of generative technologies for the benefit of society. By
making our methodology publicly accessible, we also aim to contribute positively to the research
ecosystem, enabling the community to develop more effective detection and content provenance
techniques.

REPRODUCIBILITY STATEMENT

To promote transparency and facilitate independent verification of our work, we are making detailed
descriptions of our methodology, experimental setup, and resources available to the research com-
munity. The following measures have been taken to support reproducibility and encourage further
progress in the field.

• Code and Models: The source code for LayerSVG will be publicly released upon pub-
lication of this paper. It will be hosted on GitHub under an open-source license and will
include inference scripts. As LayerSVG is a training-free method, no training scripts are
provided. All pretrained models utilized in our experiments are based on openly available
architectures.

• Datasets: Our evaluation made use of images that we believe were intended by their au-
thors to be freely usable and redistributable. Nevertheless, we are dedicated to respecting
individual privacy and will comply with any requests to remove content from those who do
not wish their images to be included.

• Implementation Details: A complete description of key implementation details and hyper-
parameters is included in the main body of the paper. Additional supporting information,
including a full listing of hyperparameters needed to replicate our primary experiments,
can be found in the appendix.

REFERENCES

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and Sabine Süsstrunk. SLIC superpix-
els compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 2274–2282, Nov 2012. doi: 10.1109/tpami.2012.120. URL
http://dx.doi.org/10.1109/tpami.2012.120.

Adobe Inc. Adobe Illustrator, 2024a. https://www.adobe.com/products/
illustrator.html.

Adobe Inc. Adobe Photoshop, 2024b. https://www.adobe.com/products/photoshop.
html.

Black Forest Labs. FLUX public release, 2024. https://huggingface.co/
black-forest-labs/FLUX.1-Fill-dev.

Lu Chi, Borui Jiang, and Yadong Mu. Fast fourier convolution. Advances in Neural Information
Processing Systems, 33:4479–4488, 2020.

10

http://dx.doi.org/10.1109/tpami.2012.120
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev
https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wen Dai, Tao Luo, and Jianbing Shen. Automatic image vectorization using superpixels and
random walkers. In 2013 6th International Congress on Image and Signal Processing (CISP),
Dec 2013. doi: 10.1109/cisp.2013.6745296. URL http://dx.doi.org/10.1109/cisp.
2013.6745296.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255, 2009.

Nicki S. Detlefsen. libcpab. https://github.com/SkafteNicki/libcpab, 2018.

Zheng-Jun Du, Liang-Fu Kang, Jianchao Tan, Yotam Gingold, and Kun Xu. Image vectorization
and editing via linear gradient layer decomposition. ACM Transactions on Graphics (TOG), 42
(4):1–13, 2023.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. Photo2clipart: Image abstraction
and vectorization using layered linear gradients. ACM Transactions on Graphics (TOG), 36(6):
1–11, 2017.

Oren Freifeld, Soren Hauberg, Kayhan Batmanghelich, and John W Fisher. Transformations based
on continuous piecewise-affine velocity fields. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2017.

Teng Hu, Ran Yi, Baihong Qian, Jiangning Zhang, Paul L Rosin, and Yu-Kun Lai. Supersvg:
Superpixel-based scalable vector graphics synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 24892–24901, 2024.

Prakhar Kulshreshtha, Brian Pugh, and Salma Jiddi. Feature refinement to improve high resolution
image inpainting. arXiv preprint arXiv:2206.13644, 2022.

Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. Differentiable vector
graphics rasterization for editing and learning. ACM Transactions on Graphics (TOG), 39(6):
1–15, 2020.

Zicheng Liao, H. Hoppe, D. Forsyth, and Yizhou Yu. A subdivision-based representation for vector
image editing. IEEE Transactions on Visualization and Computer Graphics, 18(11):1858–1867,
Nov 2012. doi: 10.1109/tvcg.2012.76. URL http://dx.doi.org/10.1109/tvcg.
2012.76.

Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Furukawa. Raster-to-vector: Revisiting floor-
plan transformation. In 2017 IEEE International Conference on Computer Vision (ICCV), Oct
2017. doi: 10.1109/iccv.2017.241. URL http://dx.doi.org/10.1109/iccv.2017.
241.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding DINO: Marrying DINO with grounded pre-training
for open-set object detection. In European conference on computer vision, pp. 38–55. Springer,
2024.

Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev, Nikita Orlov, Yun Fu, and Humphrey
Shi. Towards layer-wise image vectorization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16314–16323, 2022.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. Im2Vec: Synthesizing vector
graphics without vector supervision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7342–7351, 2021.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, et al. Grounded SAM: Assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

11

http://dx.doi.org/10.1109/cisp.2013.6745296
http://dx.doi.org/10.1109/cisp.2013.6745296
https://github.com/SkafteNicki/libcpab
http://dx.doi.org/10.1109/tvcg.2012.76
http://dx.doi.org/10.1109/tvcg.2012.76
http://dx.doi.org/10.1109/iccv.2017.241
http://dx.doi.org/10.1109/iccv.2017.241

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Peter Selinger. Potrace: a polygon-based tracing algorithm, 2003.

Stability AI. Stable diffusion public release, 2023. https://stability.ai/news/
stable-diffusion-public-release.

Wenhao Sun, Xue-Mei Dong, Benlei Cui, and Jingqun Tang. Attentive Eraser: Unleashing diffusion
model’s object removal potential via self-attention redirection guidance. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 20734–20742, 2025.

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky.
Resolution-robust large mask inpainting with Fourier convolutions. In Proceedings of the
IEEE/CVF winter conference on applications of computer vision, pp. 2149–2159, 2022.

Zhenyu Wang, Jianxi Huang, Zhida Sun, Daniel Cohen-Or, and Min Lu. Layered image vectoriza-
tion via semantic simplification. arXiv preprint arXiv:2406.05404, 2024.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–
612, 2004.

Ronghuan Wu, Wanchao Su, and Jing Liao. LayerPeeler: Autoregressive peeling for layer-wise
image vectorization. arXiv preprint arXiv:2505.23740, 2025.

Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, and Qian Yu. SVGDreamer: Text
guided SVG generation with diffusion model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4546–4555, 2024.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10371–10381, 2024.

Ming Yang, Hongyang Chao, Chi Zhang, Jun Guo, Lu Yuan, and Jian Sun. Effective clipart image
vectorization through direct optimization of bezigons. IEEE Transactions on Visualization and
Computer Graphics, pp. 1063–1075, Feb 2016. doi: 10.1109/tvcg.2015.2440273. URL http:
//dx.doi.org/10.1109/tvcg.2015.2440273.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Fukun Yin, Jiaxu Zhang, Liao Wang, Gang
Yu, Xingjun Ma, and Yu-Gang Jiang. OmniSVG: A unified scalable vector graphics generation
model. arXiv preprint arXiv:2504.06263, 2025.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 3836–3847, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 586–595, 2018.

Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin,
Tong Luo, Yaqian Li, Shilong Liu, et al. Recognize anything: A strong image tagging model.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1724–1732, 2024.

Hailing Zhou, Jianmin Zheng, and Lei Wei. Representing images using curvilinear feature driven
subdivision surfaces. IEEE Transactions on Image Processing, 23(8):3268–3280, Aug 2014. doi:
10.1109/tip.2014.2327807. URL http://dx.doi.org/10.1109/tip.2014.2327807.

Haokun Zhu, Juang Ian Chong, Teng Hu, Ran Yi, Yu-Kun Lai, and Paul L Rosin. SAMVG: A multi-
stage image vectorization model with the segment-anything model. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4350–4354.
IEEE, 2024.

Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan, and Kai Chen. A task is worth one word:
Learning with task prompts for high-quality versatile image inpainting. In European Conference
on Computer Vision, pp. 195–211. Springer, 2024.

12

https://stability.ai/news/stable-diffusion-public-release
https://stability.ai/news/stable-diffusion-public-release
http://dx.doi.org/10.1109/tvcg.2015.2440273
http://dx.doi.org/10.1109/tvcg.2015.2440273
http://dx.doi.org/10.1109/tip.2014.2327807

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 OVERVIEW

In this supplementary material, more details about the proposed LayerSVG method and more exper-
imental results are provided, including:

• More details about settings of models and parameters (Section A.2).

• Comparison among the inpainting methods (Section A.3).

• Method to achieve fair comparison between method with and without layer-wise effect
(Section A.4).

• Images used for the Computation Resource Analysis (Section A.5).

• More cases and quantitative results of ablation studies (Section A.6).

• Comparison with another method: LayerVec Wang et al. (2024) (Section A.7).

• More results and comparison of our method (Section A.8).

• More implementation details of our experiments (Section A.9).

A.2 SETTINGS OF MODELS AND PARAMETERS

In this section, we provide a detailed overview of the pretrained models and parameter settings
used in our method. As mentioned in the main paper, our task is editable, semantic-aware, layer-
wise vectorization. This process involves four sub-tasks that require pretrained models: semantic
layer recognition and extraction, depth information acquisition, gap inpainting, and raster image
vectorization. Based on empirical experiments, the parameters we used for evaluating the quality of
vectorized images are shown in Table 3. The specific meaning of these parameters will be explained
below.

Task Model Parameter

Label Recognition Recognize Anything Tram = 0.8
Object Detection Grounding-DINO Tbox = 0.2

Tiou = 0.5
Mask Segmentation Segment Anything –
Depth Prediction DepthAnything V2 –
Inpainting LaMa-refine –
Image Vectorization Masked SuperSVG λ = 1

Irefine=5

Table 3: The pretrained models used for each sub-task in our pipeline, along with their adjustable
parameters, are detailed above.

For semantic layer recognition and extraction, we use RAM-Grounded-SAM Ren et al. (2024), a
pipeline that combines three models specifically for semantic image segmentation. In this process,
three parameters must be set manually. The detection results from RAM Zhang et al. (2024) and
Grounding-DINO Liu et al. (2024) must exceed a certain confidence threshold to be output, with
their respective thresholds controlled by Tram and Tbox. Since Grounding-DINO might generate
multiple detection boxes for the same object, we also perform Non-Maximum Suppression (NMS)
to filter out detection boxes with an Intersection over Union (IoU) greater than a certain threshold,
Tiou. All three of these parameters have a range of 0-1. Other parameters are set to their default
configurations. The pretrained weights for the models are all open-source.

For the depth information acquisition task, we use Depth-Anything-v2 Yang et al. (2024). This
model has no adjustable parameters, and its pretrained weights are open-source.

For the gap inpainting task, we use LaMa-refinement Kulshreshtha et al. (2022). This model has no
adjustable parameters, and its pretrained weights are open-source.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

For the layer-wise vectorization task, we use SuperSVG Hu et al. (2024), a model that converts a
raster image into an SVG. The basic unit of an SVG output by SuperSVG is a stroke. Each stroke has
27 parameters: the first 24 parameters are the coordinates for 12 points that define four connected
cubic Bézier curves (where 4 points determine the start and end positions, and 8 points control the
curve direction), and the last three parameters are the RGB color for the enclosed region. When
using SuperSVG, the total number of paths must be specified. The final number of output paths
will be close to this total (based on our experimental observations, the final output path count is
usually within a 5% margin of error of the total). SuperSVG’s prediction is divided into a coarse
stage and a refinement stage. We set the number of optimization iterations for the refinement stage
Irefine to 5, which is the default configuration. To handle images with masks, we made two changes
to the official SuperSVG script. First, when performing SLIC-based superpixel segmentation, we
restricted the segmentation range to within the mask. Second, because SVG paths are parameterized,
the paths predicted during SuperSVG’s coarse stage do not necessarily lie strictly within the mask.
Therefore, we added a penalty term in the refinement stage for strokes that fall outside the mask,
which can be formulated as follows:

L =
1

|M |

∑
p∈M

(Op − Ip)
2 + λ

∑
p/∈M

O2
p

 . (5)

Here, the adjustable parameter λ represents the weight of the penalty term, and Op represents the
pixel value of our predicted path rendering at position p, and Ip is the pixel value of the original
input image at the same position. The total loss L is composed of two main terms. The first term is a
mean squared error loss, originally used in the SuperSVG model, which measures the reconstruction
fidelity of the output within the target mask M . The second term, weighted by λ, is a penalty term
we introduced.

A.3 SELECTION OF THE INPAINTING MODEL

A variety of models are capable of performing inpainting, most of which are based on the latent dif-
fusion model (LDM) Rombach et al. (2022), such as different versions of Stable Diffusion Stability
AI (2023), FLUX Black Forest Labs (2024), and others. Several approaches have further enhanced
inpainting capabilities through specialized retraining, including ControlNet Zhang et al. (2023), At-
tentive Eraser Sun et al. (2025), and PowerPaint Zhuang et al. (2024). These models generally
rely on multi-step LDM inference, which is computationally intensive. More critically, experiments
reveal their most significant drawback: they occasionally generate a new object in place of the re-
moved one, rather than plausibly reconstructing the background. Although methods incorporating
additional training can partially mitigate this issue, the problem still occurs with non-negligible prob-
ability, even when using the official demos of these approaches. In contrast, although LaMa Suvorov
et al. (2022) is an earlier method, it faithfully performs background completion without ever gen-
erating new objects. Moreover, its improved variant, LaMa-refinement Kulshreshtha et al. (2022),
addresses the issue of blurry inpainting results. Therefore, we select LaMa-refinement as our in-
painting model.

A.4 METHOD TO ACHIEVE FAIR COMPARISON

A unique challenge arises when comparing the reconstruction quality across different methods, par-
ticularly regarding the stroke count. Readers might question how LayerSVG determines the final
number of strokes in the reconstructed image. Although we allocate strokes based on our adaptive
strategy, the actual number of visible strokes in the final rendered image may deviate from the allo-
cated total due to stroke overlaps and occlusions, as shown in Figure 10. A visible stroke is defined
as a stroke which is not fully occluded by other strokes due to the layer effect. To ensure a fair
comparison of reconstruction quality by strictly controlling the final visible stroke count N∗

visible
across all methods, we developed a specific calibration algorithm. It is crucial to note that this cal-
ibration process is solely for experimental fairness and significantly reduces inference efficiency; it
is not part of LayerSVG’s standard single-image processing pipeline.

To accurately determine the visible stroke count Nvisible (noting that Nvisible needs to be calcu-
lated, which is different from the pre-defined N∗

visible) for a rendered SVG image, we employ a
color mapping strategy:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Invisible
strokes

Figure 10: The strokes located in the position where the shell occupies will be occluded by other
strokes, resulting in a reduction of total number of visible strokes.

Original image Color map

Figure 11: An image and its color map of the composited SVG. Each color of the color map is
allocated different RGB color ID and represents a visible stroke.

1. While rendering each SVG layer, a unique RGB color ID is assigned sequentially to every
stroke within that layer, generating a color map, as shown in Figure 11.

2. The color IDs for each subsequent layer resume counting from the last ID of the previous
layer, ensuring that every stroke across all layers in the final composite image has a distinct
color ID.

3. After the rendered layers are composited into a single raster image, we count the number
of unique color IDs present in this image. This count represents the visible stroke count
Nvisible.

It should be noted that this method tends to slightly overestimate the truly contributing strokes, as
even a stroke with a small visible portion will be counted. The target final visible stroke count
N∗

visible cannot be directly pre-specified for methods involving occlusion. Therefore, we first calcu-
late an initial prior total stroke count (N0

total) based on the ratio of the current layer’s total area to
the original image’s total area:

N0
total = N∗

visible ·
∑

i Si

Simg
, (6)

where Si is the area of layer i, and Simg is the total image area. N0
total (including N1

total, N
2
total, ...)

is the number which we feed to the formula of the adaptive path allocation strategy which mentioned
in the main paper:

Ni = Ntotal · wi. (7)

The visible stroke count N0
visible derived from allocating strokes based on N0

total typically approx-
imates N∗

visible (through the color map method mentioned above), but is not strictly equal. In cases
where N0

visible significantly deviates from N∗
visible, we perform a posterior correction. In this

stage, Ntotal is recalculated based on the ratio of the target visible stroke count to the initially ob-
tained visible stroke count:

N1
total = N0

total ·
N∗

visible

N0
visible

. (8)

Our experimental results indicate that in the vast majority of cases, performing this posterior correc-
tion within two iterations is sufficient to reduce the error to less than 10%.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 12: The images used for the Computation Resource Analysis.

A.5 IMAGES USED IN COMPUTATION RESOURCE ANALYSIS

In this subsection, we present the set of ten images used for the Computation Resource Analysis, as
shown in Figure 12. These images predominantly consist of complex scenes with multiple objects,
yet LayerSVG is able to process all of them efficiently.

A.6 MORE DETAILS ABOUT ABLATION STUDIES

In the main text, we conducted ablation studies on the Depth Gradient Judgment, inpainting, and
Path Allocation Strategy. However, we only provided a single bad-case image for each experiment.
Here, we present more bad-case examples for the first two ablations (for the inpainting results for
regions not present in the original image cannot be quantitatively measured). We also provide quan-
titative metrics for the third ablation.

Ablation Study on Validation of Depth Gradient. We first validate the importance of Depth
Gradient Validation. Without this step, we directly proceed to inpainting validation based on the
preliminary depth-value ordering of the masks. If the median depth value of a region decreases after
inpainting, it’s immediately deemed a suitable mask. Under this operation, because the check for
depth changes at the edges is skipped, the depth values within the region are more likely to influence
the judgment. Specifically, an object might indeed be in front of another but not be the true topmost
mask (meaning there are still other objects to be removed above it), as shown in Figure 16. This
leads to the extraction of unintended regions.

Ablation Study on Validation of inpainting. We then validate the importance of the third step in
our three-stage judgment process: Inpainting Validation. This step serves as a posterior validation,
significantly enhancing our system’s robustness when dealing with unusual scenarios. If this step
is omitted, masks that have passed the first two judgment steps are directly fed into the inpainting
model, and their inpainting results are accepted as final. As shown in Figure17, there are cases where
the depth gradient aligns with the outward normal direction (so they can pass the depth gradient
validation), yet the inpainting model fails to produce the desired outcome.

Ablation Study on Path Allocation Strategy. Finally, we validate the importance of our Path Al-
location Strategy, which is based on layer area and image patch complexity. This strategy enables
our system to intelligently distribute a given total number of paths among individual layers. If we
remove this strategy and instead use an equal distribution method, it will lead to both a shortage
and waste of paths across different layers. This can be clearly observed in the reconstruction quality
metrics. To valid this, we selected 1000 images from ImageNet for our experiments. After process-
ing these images with LayerSVG to decompose them into layers, we render the resulting SVG layers
and composite them to form a reconstructed raster image. The total numbers of visible strokes are
both 1000. As shown in Table 4, when paths are distributed equally, the model wastes a significant
number of strokes on very small and minor layers, while the main subjects receive an insufficient
allocation, so that the metrics are much worse than our full method.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

#Paths Method MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑

1,000
w.o. stroke allocation 0.0049 24.37 0.4268 0.6809

LayerSVG (Ours) 0.0031 26.33 0.4009 0.8281

Table 4: Quantitative comparisons. Bold for the better results.

1.
Fine grained editing
experiment and
comparison with
LayerVec

Source point Target point

LayerSVG (Ours)

LayerVec

It can be seen that our method can achieve a fine grained editing.
The changed region does not affect the background and other
regions. However, SVGs produced by LayerVec usually contain
large strokes in background, resulting in a severe deformation of
the whole SVG.

In this experiment, we try to conduct a fine grained edition on the
generated SVGs, which is the ear of the cat in this case. Our
approach adapts Continuous Piecewise-Affine Based (CPAB) [2] to
work directly with SVG shape parameters.

Specifically, for SVG generated by both methods, we extract
control points from specified source regions (the yellow circle)
within this layer, including all path endpoints and Bézier curve
control points in these regions. These extracted points serve as
source constraints in the CPAB framework, where each point is
mapped to a corresponding target position through CPAB
deformation fields.

[2] Freifeld, Oren, et al. "Transformations based on continuous

piecewise-affine velocity fields." IEEE transactions on pattern

analysis and machine intelligence 39.12 (2017): 2496-2509.

Figure 13: It can be seen that our method can achieve a fine grained editing. The changed region
does not affect the background and other regions. However, SVGs produced by LayerVec usually
contain large strokes in background, resulting in a severe deformation of the whole SVG.

A.7 COMPARISON WITH LAYERVEC

LayerVec Wang et al. (2024) is a newly proposed layer-wise vectorization method. Abbreviation is
not offered in the paper, so we call it LayerVec. In this section, several experiments are conducted
to test the editing ability and reconstruction quality of LayerVec, and compare with our LayerSVG.
These experiments contain fine grained editing, layer-wise decomposition and layer-wise removal
and all show the advantage of LayerSVG. All SVGs produced by LayerVec consist of the default
256 paths.

Fine grained editing comparison. In this experiment, as shown in Figure 13, we try to conduct a
fine grained edition on the generated SVGs, which is the ear of the cat in this case. Our approach
adapts Continuous Piecewise-Affine Based (CPAB) Freifeld et al. (2017) to work directly with SVG
shape parameters. Specifically, for SVG generated by both methods, we extract control points from
specified source regions (the yellow circle) within this layer, including all path endpoints and Bézier
curve control points in these regions. These extracted points serve as source constraints in the
CPAB framework, where each point is mapped to a corresponding target position through CPAB
deformation fields.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

LayerSVG (Ours)

LayerVec

Source SVGs Decomposed layers

LayerSVG (Ours)

LayerVec

LayerSVG (Ours)

LayerVec

It can be seen that our method successfully decomposes the items.
In contrast, while we trying to decompose items with LayerVec, the
target strokes are often affected by strokes around them.

2.
Layer-wise
decomposition
comparison

In this experiment, we try to decompose the semantic parts of the
generated SVGs. Specifically, for each item to be decomposed, we
roughly draw a box (which can be seen on the images) and extract
the strokes overlapping with it.

Figure 14: It can be seen that our method successfully decomposes the items. In contrast, while we
trying to decompose items with LayerVec, the target strokes are often affected by strokes around
them.

Layer-wise decomposition comparison. In this experiment, we try to decompose the semantic
parts of the generated SVGs. Specifically, as shown in Figure 14, for each item to be decomposed,
we roughly draw a box and extract the strokes fully in it.

Layer-wise removal comparison. In this experiment, we try to gradually remove the semantic
parts of the generated SVGs. As shown in Figure 15, we remove the semantic parts extracted in last
experiment one by one and compare the left canvas.

A.8 MORE RESULTS OF OUR METHOD

To demonstrate the editable, semantic-aware, layer-wise vectorization capabilities of our method,
we show more comparisons of our layer-by-layer elimination effect with that of methods lacking
a layering approach. As Figures 18-21 show, our results maintain background integrity even after
multiple layers are removed, which highlights our powerful editability. There are also some results
of our method, as shown in Figure 22.

A.9 MORE IMPLEMENTATION DETAILS OF OUR EXPERIMENTS

All our experiments were conducted on a single RTX 3090 GPU. All images are publicly available
from sources including Imagenet Deng et al. (2009), CIVITAI, and Pinterest.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

LayerSVG (Ours)

LayerVec

Source SVGs Remove Layer 1 Remove Layer 2 Remove Layer 3

LayerSVG (Ours)

LayerVec

LayerSVG (Ours)

LayerVec

It can be seen that our method can keep the background
complete and consistent after the removal of layers, while
LayerVec often fill the background with one color.

3.
Layer-wise removal
comparison

In this experiment, we try to gradually remove the semantic parts
of the generated SVGs. We remove the semantic parts extracted
in last experiment one by one and compare the left canvas.

Figure 15: It can be seen that our method can keep the background complete and consistent after the
removal of layers, while LayerVec often fill the background with one color.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Source image

w.o.
Depth Gradient

Validation

Ours

Before inpainting After inpainting

w.o.
Depth Gradient

Validation

Ours

w.o.
Depth Gradient

Validation

w.o.
Depth Gradient

Validation

Ours

Before inpainting After inpaintingSource image

w.o.
Depth Gradient

Validation

Ours

Ours

w.o.
Depth Gradient

Validation

Ours

Figure 16: More ablation cases for Depth Gradient Validation. These images compare the output
of our full method (“Ours”) with the ablated version (w.o. depth gradient validation). Note that the
images before inpainting may differ between the two groups, as errors from the start of the iterative
process can accumulate.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

w.o.
Inpainting
Validation

Ours

w.o.
Inpainting
Validation

Ours

Source image Before inpainting After inpainting Before inpainting After inpaintingSource image

w.o.
Inpainting
Validation

Ours

w.o.
Inpainting
Validation

Ours

w.o.
Inpainting
Validation

Ours

w.o.
Inpainting
Validation

Ours

Figure 17: More ablation cases for Inpainting Validation. These images compare the output of our
full method (“Ours”) with the ablated version (w.o. inpainting validation). Note that the images
before inpainting may differ between the two groups, as errors from the start of the iterative process
can accumulate.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

SuperSVG

Portrace

LIVE

DiffVG

Adobe

LayerSVG

Full SVG Remove Layer 1 Remove Layer 2 Remove Layer 3

Figure 18: More comparison between our method and methods without layer division. It can be
seen that either empty gaps or incomplete items will appear after the removal of upper-layer strokes.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

SuperSVG

Portrace

LIVE

DiffVG

Adobe

LayerSVG

Full SVG Remove Layer 1 Remove Layer 2 Remove Layer 3

Figure 19: More comparison between our method and methods without layer division. It can be
seen that either empty gaps or incomplete items will appear after the removal of upper-layer strokes.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

SuperSVG

Portrace

LIVE

DiffVG

Adobe

LayerSVG

Remove Layer 1 Remove Layer 2 Remove Layer 3Full SVG

Figure 20: More comparison between our method and methods without layer division. It can be
seen that either empty gaps or incomplete items will appear after the removal of upper-layer strokes.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

SuperSVG

Portrace

LIVE

DiffVG

Adobe

LayerSVG

Remove Layer 1 Remove Layer 2 Remove Layer 3Full SVG

Figure 21: More comparison between our method and methods without layer division. It can be
seen that either empty gaps or incomplete items will appear after the removal of upper-layer strokes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Source Image Generated SVGs

Figure 22: More results of LayerSVG.

26

	Introduction
	Related Work
	Image Vectorization
	Layer Decomposition

	Method
	Top-Down Layer Vectorization Strategy
	Three-Stage Mask Selection Strategy
	Ordering by median of depth map
	Validation of depth gradient
	Validation of inpainting

	Adaptive Strokes Allocation Strategy

	Experiments
	Image Vectorization Quality Comparison
	SVG Editing
	Computation Resource Analysis
	Ablation Study

	Conclusion
	Appendix
	Overview
	Settings of Models and Parameters
	Selection of the Inpainting Model
	Method to Achieve Fair Comparison
	Images Used in Computation Resource Analysis
	More Details about Ablation Studies
	Comparison with LayerVec
	More Results of Our Method
	More Implementation Details of Our Experiments

