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ABSTRACT

Generating motion in line with text has attracted increasing attention nowadays.
However, open-vocabulary human motion generation still remains touchless and
undergoes the lack of diverse labeled data. The good news is that, recent studies
of large foundation models (e.g., CLIP) have demonstrated superior performance
on few/zero-shot image-text alignment, largely reducing the need for manually
labeled data. In this paper, we take the advantage of CLIP for open-vocabulary
3D human motion generation in a zero-shot manner. Specifically, our model is
composed of two stages, i.e., text2pose and pose2motion. For text2pose, to ad-
dress the difficulty of optimization with direct supervision from CLIP, we propose
to carve the versatile CLIP model into a slimmer but more specific model for
aligning 3D poses and texts, via a novel pipeline distillation strategy. Optimiz-
ing with the distilled 3D pose-text model, we manage to concretize the text-pose
knowledge of CLIP into a text2pose generator effectively and efficiently. As for
pose2motion, drawing the inspiration of the advanced language model, we pretrain
a transformer-based motion model, which makes up for the lack of motion dy-
namics of CLIP. After that, by formulating the generated poses from the text2pose
stage as prompts, the motion generator can generate motions referring to the poses
in a controllable and flexible manner. The code will be released here.

1 INTRODUCTION

Motion generation has attracted increasing attention due to its practical value in the fields of virtual
reality, video games and movies. As the motion capture techniques become mature, motion data can
be collected with fewer human efforts (Mahmood et al., 2019). However, when it comes to labeling
the collected motions, the diversity of textual descriptions is usually affected by the labeling instruc-
tions and the backgrounds of the crowd annotators, which might introduce unexpected selection
biases (Pearl & Mackenzie, 2018) and limit its generality. The scarcity of diverse textual descrip-
tions for different motions is one of the major obstacles to open-vocabulary motion generation.
Nevertheless, the recent works on large-scale multi-model foundation models, e.g., CLIP (Radford
et al., 2021b) or ALIGN (Jia et al., 2021), have shown the surprising capability to align diverse text
and images in a few/zero-shot manner and largely reduce the need for manually labeling. Equipped
with the foundation models, classical methods for text-to-image generation (Gal et al., 2021; Frans
et al., 2021; Ramesh et al., 2022) and robotic vision grasping (Shridhar et al., 2022), are able to
generalize to unseen textual descriptions or objects during inference. However, these methods stay
at the level of using the feature representation ability of the foundation model. In this work, we
take a step further and concretize the knowledge of the well-known foundation model, i.e., CLIP, to
facilitate the zero-shot open-vocabulary 3D human motion generation.

The foundation model, CLIP (Radford et al., 2021b), is a language-image pretrained model for
aligning images and texts. However, since it only trained with static images, it implies that CLIP
lacks the knowledge of motion dynamics for motion generation and can only be used for static pose
generation. To this end, it’s reasonable to leverage CLIP for static pose generation and then com-
bine it with the motion dynamics learned from the collected motion data to generate the complete
motion (Hong et al., 2022b). In this paper, we adopt a two-stage text2motion generation model
for zero-shot Open-vocabulary human Motion Generation, termed as OhMG. OhMG consists of
two stages, i.e., text2pose and pose2motion stages. Briefly, text2pose translates a textual motion
description into the signature pose of the motion, which is then served as a condition input to the
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Figure 1: An overall sketch of OhMG. A text is fed to the text2pose generator to obtain a signature
pose at the text2pose stage. Then, the pose can combined with other information, e.g., the text and
the other poses, to create a motion prompt for the pretrained motion model to generate a motion.

pose2motion stage to obtain the complete motion. The overall sketch of OhMG is illustrated in
Fig. 1. In the following, we further elaborate on each stage of our method.

At the text2pose stage, a text2pose generator learns to generate text-consistent 3D poses under the
supervision of CLIP. However, as mentioned above, CLIP is not pretrained for aligning texts and
3D poses. To make use of CLIP, a promising workaround is to project the 3D human model to 2D
images and then apply CLIP to measure the alignment between the images and the input text (Hong
et al., 2022b). When the whole pipeline is implemented in a differentiable manner, the input pose
of the pipeline should be able to adjust and fit the input text via gradient descent. Unfortunately, in
practice, we found it difficult to optimize the poses with this pipeline directly. The potential reason
could be that, by using CLIP, there could be various images to present the same text (Ramesh et al.,
2022; Zhou et al., 2022). And the rendered 2D images of the 3D human model might not be the
optimal ones. In this case, optimization with CLIP might adjust the 3D pose in an unexpected direc-
tion. Furthermore, the pipeline is complex and requires substantial computing resources, which also
hampers the optimization process. To address these problems, we propose a novel knowledge dis-
tillation method, termed pipeline distillation, which learns an end-to-end neural network to replace
the complex pipeline. By learning from substantial poses and their output of the pipeline, pipeline
distillation carves out a smaller but more specific model of CLIP for aligning 3D poses and texts.
In our experiments, by using the distilled model, optimization becomes significantly efficient and
we manage to learn a text2pose generator for generating open-vocabulary poses. Interestingly, we
found that the text2pose generator can be trained without any real-world text or pose explicitly.

As for the stage of pose2motion, a motion generator is required to synthesize the motion containing
the given/condition poses. Previous work (Hong et al., 2022b) adopts the decoder of a pretrained
motion VAE and searches in its latent space for preferable motion. The latent code is updated
via gradient descent to minimize the distance between the poses of the decoded motion and the
condition poses. However, this method requires iterative updates during deployment, which is time-
consuming. Further, since the latent space of the motion, VAE is high-dimensional and not neces-
sarily convex, the generated motion is difficult to optimize. Differently, we view the relationship
between poses and motion as the relationship between words and sentences in the field of natural
language processing. And we pretrain a motion model via mask-and-reconstruction self-supervised
learning as used in the advanced language model (Devlin et al., 2018). And during inference, the
condition poses can be treated as the unmasked poses to prompt the motion model (Brown et al.,
2020; Han et al., 2021) to synthesize the rest of the poses, resulting in a complete motion. We find
that the motion model is easy and flexible to control to generate diverse motions for the given poses.

Overall, the contributions of our OhMG are as follows. For text2pose stage: 1) We propose a novel
text2pose generator that mines the knowledge from the foundation model, i.e., CLIP. 2) To overcome
the difficulty of optimization, we propose a pipeline distillation strategy that turns the complex
pipeline into a slimmer model for aligning 3D poses and texts. As for pose2motion stage: 3) We
consider the motion generation as the same as the language modeling and pretrain a motion model
via mask-and-reconstruction self-supervised learning. 4) Inspired by prompt design for probing
knowledge from pretrained model (Han et al., 2021), we reformulate the condition poses as prompts
to leverage the motion model to generate motion in a controllable and flexible manner.

2 RELATED WORK

Conditional Motion Generation. There are several large-scale motion capture datasets (Cai et al.,
2022; 2021; Ionescu et al., 2014; Mahmood et al., 2019; Mehta et al., 2016; Varol et al., 2017;
von Marcard et al., 2018), which are in forms of 3D keypoints or parameters of 3D human model
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SMPL (Pishchulin et al., 2017). For conditional motion generation, some works (Aggarwal &
Parikh, 2021) focus on music-conditioned motion synthesis. While DVGANs (Lin & Amer, 2018),
Text2Action (Ahn et al., 2018) and Language2Pose (Ahuja & Morency, 2019) generate motions
conditioned on short texts using fully annotated data. Action2Motion (Guo et al., 2020) and Actor
(Petrovich et al., 2021) condition the motion generation on pre-selected action classes. However,
these methods require large amounts of data (Hong et al., 2022a) with annotations of action classes
or language descriptions, which limits their applications.

Zero-shot Text-driven Generation. The ability to zero-shot generalize to unseen categories is
first shown by (Reed et al., 2016). CLIP and DALL-E (Radford et al., 2021b) further show the
incredible text-to-image synthesis ability by excessively scale-up the size of training data. Benefiting
from the zero-shot ability of CLIP, many amazing zero-shot text-driven applications (Frans et al.,
2021; Patashnik et al., 2021; Peng et al., 2021b) are being developed. Combining CLIP with 3D
representations like NeRF or mesh, zero-shot text-driven 3D object generation (Jain et al., 2022;
Jetchev, 2022; Michel et al., 2022; Sanghi et al., 2021) and manipulation (Peng et al., 2021a) have
also come true in recent months.

CLIP aided Methods. Neural networks have successfully learned powerful latent representations
coupling natural images with natural language describing it (He & Peng, 2017; Radford et al.,
2021a). A recent example is CLIP (Radford et al., 2021a), a model coupling images and text in
deep latent space using a constructive objective (Hadsell et al., 2006). By training over a hundred
million images and their captions, CLIP gained a reach semantic latent representation for visual con-
tent. This expressive representation enables high-quality image generation and editing, controlled
by natural language (Gal et al., 2021; Frans et al., 2021). Even more so, this model has shown
that connecting the visual and textual worlds also benefits purely visual tasks (Vinker et al., 2022),
simply by providing a well-behaved, semantically structured, latent space.

Closer to our method are works that utilize the richness of CLIP outside the imagery domain. In
the 3D domain, CLIP’s latent space provides a useful objective that enables semantic manipulation
(Sanghi et al., 2021; Michel et al., 2022) where the domain gap is closed by a neural rendering.
CLIP is even adopted in temporal domains (Luo et al., 2021; Fang et al., 2021) that utilize large
datasets of video sequences that are paired with text and audio. MotionCLIP (Tevet et al., 2022)
takes the advantage of the power representation ability of CLIP and utilizes a limited amount of
human motion sequences that are paired with text to learn a text2motion generator. Most related to
us, AvatarCLIP is the first work for zero-shot open-vocabulary human motion generation. Unlike
ours, their work still relies on the representation of CLIP for matching and fails to use CLIP for
optimization.

3 PRELIMINARIES

In this paper, we investigate the zero-shot open-vocabulary human motion generation by mining
the text-pose knowledge from the CLIP (Radford et al., 2021b). Specifically, the most important
tool used in our method is CLIP there are several key concepts/tools used in our method, including
the foundation model CLIP. In the following, we briefly introduce the task and the frequently-used
notations as well as the CLIP model.

Task description and notations. Open-vocabulary 3D human motion generation takes in a natural
language motion description d (for example, ”Amy is shooting a basketball”) and searches for a
motion m in line with d. A motion is a sequence of 3D poses, m = [pt]t=1:T , where p is the 3D
pose, t stands for the timestep and T is the maximum length of a motion. The representation of
3D pose p can be in different formats, e.g., an axis-angle representation pa ∈ RJ×3, an 6D-rotation
representation pr ∈ RJ×6 or an latent representation pl ∈ R32 of VPoser (Pavlakos et al., 2019).
Here, J denotes the number of used joints in the human model and VPoser is a popular pretrained
pose VAE model. Any of these representations can be used to generate 3D human meshes. In
this paper, we use a popular parametric human model, SMPL, for its strong interpretability and
compatibility with modern graphics platforms. SMPL (Loper et al., 2015) is a parametric human
model driven by large-scale aligned human surface scans (Pishchulin et al., 2017). We can feed the
pose parameters to SMPL to obtain meshes v, denoted as v = MSMPL(p). Meshes v are represented
by a set of 3D positions of the vertices. Note that, SMPL model also requires other input, such as
faces and body shapes, which are set as default and ignored for brevity in our paper.
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Figure 2: Pipeline distillation. The upper part is the original pipeline for extracting pose feature for
alignment. Our pipeline distillation adopt a end-to-end neural network, i.e., pose encoder, which
takes in the same input and learns to predict the output of the pipeline.

CLIP. CLIP (Radford et al., 2021b) is a vision-language pre-trained model trained with large-scale
image-text datasets. It consists of an image encoder Eo and a text encoder Ed. Here, we use o
to denote image and d to represent text. The encoders are trained in the way that the latent codes
of paired images and texts are pulled together and unpaired ones have pushed apart. Formally, the
CLIP loss function is defined as

LCLIP(o,d) = −
∑

i=1:B

logPr(oi|di)−
∑

i=1:B

logPr(di|oi), (1)

where o and d is the sets of images {oi}i=1:B and texts {di}i=1:B , and B is the batch size. Pr is the
softmax probability of the oi given di in a batch, vice versus. Particularly, to calculate Pr(oj |di),
the cosine similarity between text feature foi = Eo(oi) and each image feature fdj

= Ed(dj) of the
batch data are calculated, and the temperature-softmax operation is applied to the cosine similarities.
Formally, for calculating Pr(oj |di):

cossim(fi, fj) =
fT
i fj

|fi||fj |
, Pr(oi|di) =

exp
(
cossim(foi , fdi

)/H
)∑

exp
(
cossim(foj , fdi)

)
/H

, (2)

where H is the temperature to adjust the sensitivity of softmax. By optimizing Equ. (1), CLIP
learns a joint latent space where images and texts are well-aligned relatively. For convenience, we
use CLIP score to stand for the cosine similarity between text and image features from CLIP.

4 OHMG: OPEN-VOCABULARY HUMAN MOTION GENERATION

As shown in Fig. 1, our method includes two stages, i.e., text2pose and pose2motion. For the first
stage, we probe the versatile CLIP to distill its text-pose knowledge. In this stage, we found that
it’s difficult to adjust the pose with the original CLIP via gradient descent. And we propose a novel
pipeline distillation to address the problem. For pose2motion, we draw the inspiration from advance
nature language model pretraining (Devlin et al., 2018). We pretrain a transformer-based (Petrovich
et al., 2021; Vaswani et al., 2017) motion model by mask-and-reconstruction self-supervised learn-
ing. And for generating motion in a controllable and flexible manner, we reformulate the condition
poses from text2pose stage as prompt (Brown et al., 2020) to the pretrained motion model. In the
following, we elaborate on each part in detail.

4.1 TEXT2POSE

To generate a pose given text, it requires a multi-model feature space where the features of texts
and poses are well aligned. However, there lacks a multi-model pretrained models for aligning 3D
poses and texts. A promising workaround is to render the 3D pose into multi-view images and then
use CLIP to measure the alignment between images and text. The illustration of this process is in
the upper part of Fig. 2.To address the difficulty of optimization using the complex pipeline as well
as reducing the computation costs, we propose a a novel pipeline distillation strategy to learn an
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Figure 3: Training process of text2pose generator. During training, either text features extracted
from real-world texts or random noises can be used as input features. The text2pose generator takes
in the input features and predicts the pose parameters supervised by CLPP.

efficient and effective pretrained model for 3D pose and text. In the following, we describe how
pipeline distillation is conducted. After that, we elabrate how to use the pretrained model for 3D
pose and text to learn a text2pose generator.

Pipeline Distillation. As discussed above, it’s non-trivial to conduct gradient descent for optimizing
the pose with the original complex pipeline. In this part, we propose the simplified complicated
pipeline into a simple end-to-end neural network. In other words, we train a multimodel pretrained
model for 3D poses and text based on existing model for images and texts. To our best knowledge,
this work is the first to conduct distillation strategy to address the optimization problem, and it is
also the first work to pretrain a model for aligning 3D pose and text. To distinguish from CLIP, we
name our distilled model for 3D pose and text as CLPP which stands for Contrastive Language-Pose
Pretraining. Note that, CLPP still use the original text encoder Ed of CLIP but replacing the image
encoder Eo with pose encoder Ep.

To train CLPP, we samples poses from the AMASS dataset (Mahmood et al., 2019), and the poses
are processed through the above-mentioned pipeline to obtain the final pose features, denoted as f∗

p .
After that, the poses and their pose features are taken as the inputs and targets for training the pose
encoder, i.e., Ep. The pipeline distillation loss is formulated as :

LEp
(p, f∗

p ) = ||Ep(p)− f∗
p ||2 − cossim

(
Ep(p), f

∗
p

)
, (3)

where the first term of Equ.(3) is for reducing the element-level distance between the predicted
feature and the target feature. While the second term of Equ.(3) is to reduce the angular difference
between the features. The overall training sketch is shown in Fig. 2.

Generalized Text2Pose Generator. Unlike the prior work which conducts optimization/matching
after having a text (Hong et al., 2022b), our text2pose generator follows the conventional deep
learning method that trained generator can handle various text requests. Moreover, benefit from low
computation cost with CLPP, we manage to optimize the generator using a similar loss as CLIP loss
(Equ.(1)) which requires a large batch size (Radford et al., 2021b). Since we replace CLIP with
CLPP, we use LCLPP instead. And we found that using LCLPP is much more stable than maximizing
the CLIP score between text and pose. Formally, fd denotes a batch of text features fd1

, ..., fdB

extracted using Ed, and Gt2p represents the text2pose generator. The loss function is:

Lt2p(Gt2p(fd), fd) = LCLPP

(
Ep

(
Gt2p(fd), fd

))
+ ||Gt2p(fd)||, (4)

where . The second term of the loss function is used to regulate the predicted latent pose to close
to the prior distribution of VPoser. However, from Equ.(4), we need to obtain various d to extract
fd for training. Fortunately, we can easily collect substantial motion descriptions on the internet.
Furthermore, it occurs to us that we can also randomly sample fd from a random distribution, e.g.
uniform distribution or Gaussian distribution. In our experiment, we found that by training with
random sampled fd, the text2pose generator can be generalized to the real text and obtain surpris-
ingly good performance. This observation reveals the potential of our method to distill other kinds
of knowledge from CLIP without training textual descriptions.

4.2 POSE2MOTION

In our paper, we consider the motion similar to a language sentence and learn a pretrained motion
model and reformulate the condition pose as a prompt of the motion model to generate motion in a
controllable and flexible manner.

5



Under review as a conference paper at ICLR 2023

𝑒𝜇𝑒𝜇 𝑒Σ𝑒Σ

+ + + + +

𝜇𝜇

Transformer EncoderTransformer Encoder

𝑃1, … , 𝑃𝑘 … , 𝑃𝑇𝑃1, … , 𝑃𝑘 … , 𝑃𝑇

Random 

Masked
෨𝑃1, … , ෨𝑃𝑘, … , ෨𝑃𝑇

+ + +

Reparametrize 𝑧𝑧 𝑃1′, … , 𝑃𝑘′ … , 𝑃𝑇′𝑃1′, … , 𝑃𝑘′ … , 𝑃𝑇′

Transformer DecoderTransformer Decoder

Position 

Encoding

ΣΣ

ACTOR-like Encoder Motion Model

Figure 4: Training process of motion model. On the left is an ACTOR-like Encoder that takes in
original motion and extracts the latent code. The right part is a conditional Motion VAE decoder
which takes in randomly masked input and the latent code to reconstruct the original motion.

Motion Model Pretraining. For pretraining a motion model, we draw the advanced self-supervised
learning of language model (Devlin et al., 2018), which randomly masks a certain proportion of
input data and learns to reconstruct the masked data. Our motion model also follows a similar
training strategy. Specifically, during training, random proportion of poses of a motion [pt]t=1:T

are masked by a learnable embedding emask ∈ R|p|. Formally, the new input p̃t is generated by
p̃t = ct × pt + (1 − ct) × emask, where ct ∈ {0, 1} is a binary random condition sampled for each
timestep t ∈ [1, T ]. When ct is true, the original pose is preserved. Otherwise, the pose is replaced
by the mask embedding.

Then a transformer-based motion model is learn to take in [p̃t]t=1:T and predict [p′t]t=1:T to recon-
struct the original motion [pt]t=1:T . However, since the proportaion of changed poses is random,
it causes the learning process unstable. To this end, we further draw the lessons from the AC-
TOR (Petrovich et al., 2021) and formulate our pretrained motion model as a conditional VAE. As
illustrated in Fig. 4.2, our model includes an ACTOR-like motion encoder and a motion model,
where the motion encoder takes in the original motion sequence and predicts the latent for the mo-
tion decoder to predict the reconstructed motion. Formally, the loss function is

Lmm(p′t, pt) = ||pt − p′t||2 + ||MSMPL(pt)−MSMPL(p
′
t)||+KL, (5)

where KL is the KL-divergence regularization term to pull the predicted latent to the prior normal
distribution. After pretraining the motion model, we only use the motion decoder for pose2motion
generation. In the following, we reformulate the poses to be similar as [p̃t]t=1:T to prompt the
motion model to generate motion.

Motion Prompt. Prompt is a newly rising topic (Brown et al., 2020; Sun et al., 2022; Han et al.,
2021) for adapting large foundation model to downstream applications (Jia et al., 2022; Chen et al.,
2022). The major motivation of prompt is to reformulate the downstream tasks into the form of
the training input of the foundation model. By this means, the pretrained foundation model can be
directly used for downstream tasks without finetuning. Inspired by this, with the pretrained motion
model, we can reformulate the condition posed by different prompt designs to generate motion in
a controllable and flexible manner. Formally, a prompt is a sequence of poses [p̃1]t=1:T filled with
emask. And we can change the prompt by replacing a pose p̃k of the prompt by the condition pose p,
i.e. p̃k = p. As shown in Fig. 1, we can control the generator to synthesize motion containing the
given poses at different positions by designing different prompts.

5 EXPERIMENTS

We first introduce the datasets and baseline methods used in our experiments. Next, we ablate the
pose generation, including the CLPP and text2pose generator. After that, we evaluate the perfor-
mance of the motion generation. For saving the room, we pose the visual results in Appendix, and
we strongly recommend the reader to view the Appendix for better understanding.

General Settings. We train our model on the AMASS motion dataset (Mahmood et al., 2019). It
unifies 15 different optical marker-based mocap datasets by representing them within a common
framework. The dataset contains more than 40 hours of motion data, spanning over 300 subjects,
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Table 1: The features difference and inference efficency of CLPP in comprison to original pipeline.
The arrow ↑ indicates the performance is better if the value is higher. Vice versus.

Batch size ↑ Inference speed (sec) ↓ MSE ↓ Cosine Sim. ↑
Original Pipeline 15 1.2068 - -

Pipeline Distillation 292350 0.0172 4.56e-4 0.9983

and more than 11000 motions. We down-sample the data to 30 frames per second and cut it into
sequences of length 60. For real-world texts for training and evaluation, we adapt the BABEL motion
description dataset (Punnakkal et al., 2021) by removing lengthy descriptions, resulting in a dataset
with the size of 4178. For SMPL model, we input the pose body with global rotation fixed, following
the same setting as in AvatarCLIP. Particularly, the checkpoint of CLIP, i.e. ”CLIP-ViT-B/32”, is
used for extracting both image features and text features.

Baselines. In the following, we enumerate the related baseline methods for pose and motion gener-
ation, respectively. Since this topic is new and there is only one prior work, i.e., AvatarCLIP (Hong
et al., 2022b), to the best of our knowledge, we mostly follow their baselines in this paper. To reduce
confusion, we use italic font for the names of the baselines. To evaluate the performance of text2pose
generation, the related baselines are listed in the following. 1) Matching (Hong et al., 2022b) uses
CLIP to match among a set of poses according to the texts. The poses are 4096 cluster poses from
AMASS using KMeans. 2) Optimize (Hong et al., 2022b) optimizes the pose parameters using the
complex pipeline described in our paper to maximize the CLIP score. 3) VPoserOptimize (Hong
et al., 2022b) is similar to Optimize but optimizes the latent pose of VPoser instead. As for text/pose
to motion generation. There are several approaches to achieving that. 1) Interpolation (Hong et al.,
2022b) linearly interpolates each pair of latent poses. 2) AvatarCLIP (Hong et al., 2022b) directly
optimizes in the latent space of a decoder of pretrained motion VAE by pulling the generate motion
close to the reference poses. 3) MotionCLIP (Tevet et al., 2022) is training with labelled data. It
trains a motion VAE and pushes the latent space close to both of text and image feature spaces of
CLIP. And during inference, MotionCLIP uses the text features from CLIP as the latent code and
decodes it into a motion.

5.1 TEXT2POSE GENERATION

At the stage of text2pose, there are two modules of interest, i.e., the pipeline distilled model for
aligning 3D poses and texts, namely CLPP, and the text2pose generator. As for CLPP, we measure
the difference between the predicted features and the actual features from the original pipeline.
Besides, we also testify to the efficiency of CLPP. The results are reported in Tab. 1. From the
results, we can observe that the CLPP can extract similar features as the original pipeline with
a small mean square error and high cosine similarity between the predicted and the ground-truth
features. Nevertheless, CLPP can obtain significant improvement in space occupancy and inference
speed by about 20,000x and 700x relative improvement on one NVIDIA V100 Tensor Core (32G).

Moreover, we also evaluate the effectiveness of CLPP in comparison to the original pipeline. Before
the analysis, we describe the metrics used in this part. As listed in Tab. 2, there are six metrics for
measuring CLIP score between the predicted poses and the texts, testifying whether the generated
pose are within real-world pose distribution (In-distrib.), evaluating the diversity of the generated
poses (Diverse). In-distrib. is the reconstruction error of VPoser and we multiply. And the latter
Top1, Top10 and Top50 stands for the accuracy of matching among all generated poses for all texts.
If the matched pose is the generated pose of the text using the baseline method, we say the matching
is accurate. Since the evaluation texts in BABAL contains many similar textual descriptions, top1
usually cannot reflect the actual performance of each method. To this end, we also include Top5 and
Top10 accuracies.

To evaluate the effectiveness of CLPP, we first show the difficulty of using the original pipeline for
optimization. In Tab. 2, we use (I) to stand for the random initialization without optimization. We
observe that the CLIP scores of Optimize, VPoserOptimize, Optimize (I) and VPoserOptimize (I)
are almost the same. And as pointed in Hong et al. (2022b), Matching among poses candidates
can obtain higher CLIP scores. Ideally, the optimization-based methods should at least achieve a
similar or higher CLIP score than direct matching. Thus, these observations imply that the original
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Table 2: Comparison among text2pose baselines. The arrow ↑ indicates the performance is better if
the value is higher. Vice versus.

CLIP Score ↑ In-distrib. ↓ Diverse ↓ Top1 ↑ Top10 ↑ Top50 ↑
Matching 0.2615 0.0150 0.2877 0.0119 0.0821 0.2793

Optimize (I) 0.2446 8.5731 0.0416 0.000 0.0041 0.0138
Optimize 0.2468 8.6403 0.0446 0.0000 0.0041 0.0146

VPoserOptimize (I) 0.2441 0.0133 0.0434 0.0000 0.0025 0.0138
VPoserOptimize 0.2436 0.0142 0.0491 0.0000 0.0019 0.0113

Ours (TS) 0.2580 0.5891 0.0522 0.0117 0.0572 0.1606
Ours (TC) 0.2586 0.6243 0.0446 0.0108 0.0677 0.1620
Ours (NC) 0.2698 0.1217 0.0394 0.0883 0.3396 0.6261

Ours (NTC) 0.2697 0.1261 0.0402 0.0993 0.3562 0.6130
Ours (NLC) 0.2689 0.0138 0.0446 0.0792 0.3394 0.6601

Ours (NTLC) 0.2689 0.0138 0.0455 0.0828 0.3454 0.6857

pipeline fails to provide direct supervision for optimization. However, with CLPP, our methods can
all obtain similar or higher CLIP scores than Matching as shown in Tab. 2. For briefness, among our
experiments, (T) stands for using real-world texts as training data, (N) stands for using noise features
as training data, (S) represents optimization by maximizing CLIP score, (C) represents optimization
by minimizing LCLPP and (L) means training with L2-norm regularization of Equ.(4).
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Figure 5: CLIP scores of Ours (TS) and
Ours (TC) with CLPP at different iterations.

From the results in Tab. 2, we observe that in comparison
to VPoserOptimize, Ours (TS) can obtain significant im-
provement upon CLIP score. It implies that CLPP learns
the knowledge from CLIP and can effectively supervise
the optimization process. As for optimization by maxi-
mizing score, i.e., Ours (TS), or minimizing LCLPP, i.e.,
Ours (TC), we find that both manners result in similar
performance across different metrics. However, in our
experiments, maximizing the score is more sensitive to
the convergence of CLPP. As shown in Fig. 5, Ours (TS)
degrades severely when CLPP is only trained with 1e5
iterations while Ours (TC) can still achieve stable perfor-
mance. We contribute this stableness to the denser super-
vision feedback from not only the positive text-pose pair but also the negative pairs.

Later, we also conduct a series of experiments by testifying the feasibility of training with noise
features sampled from Gaussian or Uniform distribution without any real-world texts. Interestingly,
we found that Ours (NC) use of only noise features can outperform previous methods with real-
world texts significantly on all metrics. It’s worth noticing that, the texts used for training are testing
are the same as the previous methods with real-world texts. This implies that learning with out-
of-distribution random noises can generalize to in-distribution performance and even better. The
potential reason could be there is a subtle yet non-ignorable gap between CLPP and the original
pipeline. Therefore, learning with a small set of texts might be trapped by the gap. Therefore,
training with tremendous random noise can better make use of comprehensive feedback to jump out
of the gap. It also explains the source of the stableness of CLPP loss in the last paragraph. And
by regularizing the latent code of the predicted poses to close to the prior distribution of VPoser,
Ours (NLC) and Ours (NTLC) can predict in-distribution poses similar to the real-world poses of
Matching.

5.2 MOTION GENERATION

As for motion generation, our method learns a pretrain motion model following language modeling
and uses text-consistent poses to prompt the model for synthesizing complete motions. To evaluate
the performance of motion generation, we first evaluate the ability to synthesize dynamics-consistent
motion with the condition poses. After that, we evaluate the overall performance of text2motion
generation.

8
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Table 3: Evaluation for conditional motion generation. The arrow ↑ indicates the performance is
better if the value is higher. Vice versus.

1p↓ 2p↓ 3p↓ In-distrib.↓ Top1↑ Top10↑ Top50↑
MotionCLIP - - - 0.7943 0.0050 0.0419 0.1649
Interpolation 0.0900 0.0865 0.0868 0.5563 0.0029 0.0184 0.0804
AvatarCLIP 1.9022 2.4353 2.6163 0.3147 0.0014 0.0096 0.0421

Ours 0.6252 0.5219 0.4797 0.0877 0.0689 0.2054 0.4349

For evaluating pose2motion, we are interested in whether the given poses exist in the generated
motion. To this end, we construct three test sets for three different settings, i.e. 1-pose, 2-pose,
and 3-pose, where the prefix number indicates the number of given poses for generating a motion.
Among these experiments, we measure the minimal difference between the given poses and the
poses of the generated motion, formally,

K-pose(m, {pk}j=k:K) = 100/K
∑

k=1:K

min
pj∈m

||pk − pj ||2, (6)

where m is the generated motion and {pk}j=k:K is the condition poses. For multiple given poses,
we calculate have for each pose and use their average results. The results are shown on the left
of Tab. 3. From the results, we observe that the Interpolation method can obtain the best K-pose
results. The reason is straightforward Interpolation starts from the given poses and conducts linear
interpolation between each of them. The reason why there is still a small error for Interpolation
method is that interpolation is conducted on the latent space of VPoser. However, interpolation
does take motion dynamics into account. Besides, our method can obtain clear improvement upon
the strong baseline AvatarCLIP. Moreover, our method does not need iterative optimization during
deployment. It means that our method can better generate motion according to the given poses.

Finally, we evaluate the overall text2motion generation performance across supervised / zero-shot
methods using CLIP. Since all of these methods are CLIP-related, we evaluate whether the motion
is distinguished by CLIP by measuring the matching accuracy of all poses of all generated motions.
When the matched poses are located within the motion generated according to the text, we say the
matching is accurate. And we also calculate the Top1, Top10, and Top50. Moreover, to quantify
whether the generated motion follows real-world motion dynamics, we adopt another pretrained
motion VAE to calculate the reconstruction error (i.e., In-distrib.) of generated motions for different
methods. The smaller the reconstruction error is, the more likely the motion is within the training
distribution of the motion VAE. From the results in Tab. 3, we find that among all baselines, our
method obtains the best result in terms of In-distrib. as well as TopK accuracies by a clear mar-
gin. Worth noticing that, even though our method is not trained with paired data, it can outperform
MotionCLIP by mining text-pose knowledge from CLIP and using better motion generation archi-
tecture. According to the results of In-distrib., we observe that although Interpolation is easy to
control and preserve condition poses, it does not take motion dynamics into account and results in
poor In-distrib performance.

6 CONCLUSION

In this paper, we propose a zero-shot open-vocabulary human motion generation (OhMG) frame-
work, which leverages the text-pose knowledge from CLIP to build a text2pose generator and use
the generated pose to prompt a motion model to generate motion. Extensive experiments have testi-
fied that our text2pose generator can learn to generate pose supervised from our distilled CLPP. And
the motion generator can generate text-consistent motion by formulating the pose as a prompt to the
motion model.
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A APPENDIX

A.1 DISCUSSION AND LIMITATIONS

As foundation models become more mature and learn more real-world knowledge, it provides us
with new opportunities and challenges to a new learning paradigm. In this paper, we show one of the
possibilities that learning from the foundation model instead of learning from data. We believe such
attempts have an advantage over learning from data since the foundation model can better associate
multi-modality data to make better decisions. Particularly, in our method, we found that using noisy
training data can probe diverse knowledge out of the foundation model, which implies the feasibility
of building an agent that can actively and continuously learn knowledge from the foundation model
starting from chaos, i.e., noises, without manually feeding data which might limit the learnable
knowledge of the foundation model. By this means, the agent might be able to learn something that
is existed but we have not thought of yet or tasks we cannot formulate mathematically using our
current knowledge. The reason why we investigate leveraging the foundation model to zero-shot
motion generation is that we consider the foundation model as a promising world model of the real
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world, and the motion generation is one of the preliminary tasks for the agent to learn to interact
with the real world.

However, as one of the few pioneers, there are several aspects that can be improved in our work. One
is that CLIP learns from static image data and inherently lacks the capability to handle motion de-
scription. Using model dynamics learned from motion data can only compensate to a limited extent.
It cannot handle some difficult texts like a sentence having multiple successive motions. Although
this can be addressed by a divide-and-conquer strategy, it is a band-aid solution and resolves the
problems once and for all. We suppose the best practice is to use a better foundation model that is
able to handle the temporal description. There are several foundation models for aligning video and
texts, but we found that most of them are learning with limited types of video data and are not as
general as CLIP due to the difficulty of data collection for video training data. To this end, in our
paper, we still prefer CLIP for zero-shot learning. And we leave the research with other foundation
models in the future.

A.2 VISUAL RESULTS
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Figure 6: Visual results of text2pose baselines.
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Figure 7: Visual results of text2motion baselines.
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