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Abstract

Cross-Validation (CV) is the default choice for estimate the out-of-sample per-
formance of machine learning models. Despite its wide usage, their statistical
benefits have remained half-understood, especially in challenging nonparametric
regimes. In this paper we fill in this gap and show that, in terms of estimating
the out-of-sample performances, for a wide spectrum of models, CV does not
statistically outperform the simple “plug-in” approach where one reuses training
data for testing evaluation. Specifically, in terms of both the asymptotic bias and
coverage accuracy of the associated interval for out-of-sample evaluation, K-fold
CV provably cannot outperform plug-in regardless of the rate at which the paramet-
ric or nonparametric models converge. Leave-one-out CV can have a smaller bias
as compared to plug-in; however, this bias improvement is negligible compared to
the variability of the evaluation, and in some important cases leave-one-out again
does not outperform plug-in once this variability is taken into account. We obtain
our theoretical comparisons via a novel higher-order Taylor analysis that dissects
the limit theorems of testing evaluations, which applies to model classes that are
not amenable to previously known sufficient conditions. Our numerical results
demonstrate that plug-in performs indeed no worse than CV in estimating model
performance across a wide range of examples.

1 Introduction

Cross-validation (CV) is considered the default choice for estimating the out-of-sample performance
of machine learning models [54, 31, 4] and more general data-driven optimization models [13]. Its
main rationale is to evaluate models using a testing set that is different from training, so as to provide
a reliable estimate of the model generalization ability. Leave-one-out CV (LOOCV) [5, 7], which
repeatedly evaluates models trained using all but one observation on the left-out observation, is a
prime approach; however, it is computationally demanding as it requires model re-training for the
same number of times as the sample size. Because of this, K-fold CV, which reduces the number
of model re-training down to K times (where K is typically 5–10), becomes a popular substitute
[34, 42].

Despite their wide usage, the statistical benefits of CV have remained understood mostly for para-
metric models. In nonparametric regimes, especially those involving slow model convergence rates,
their general performances as well as comparisons with the naive “plug-in” approach, i.e., simply
reuses all the same training data for model evaluation, stay essentially open. Part of the challenge
comes from the subtle inter-dependence of model convergence rates and other characteristics with
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Figure 1: Evaluation biases and coverage probabilities of interval estimates (with nominal level
90%) for the mean-squared error evaluation of a fitted random forest regressor (default setup in
scikit-learn in [49] with n0.4 subsamples in each tree), across 500 experimental replications. The
bar chart shows the evaluation bias, defined as the absolute mean difference between the estimated
and true performance (the vertical line at the top of each bar shows the corresponding standard error).
The lines show the coverage probabilities.

the correlation between training and validation sets across folds. Consequently, existing results are
either based on limit theorems designed to “center” at the average-of-folds instead of full-size model
[60], or restricted to specific models (e.g., linear) [7, 9] or specific (fast) rates [57]. Our goal in this
paper, on a high level, is to fill in the challenging regimes beyond these established results, and as
such answer the question: Are LOOCV and K-fold CV a “must-use” in estimating out-of-sample
model performance in general and, if not, then under what situations are they worthwhile?

More precisely, in this paper we conduct a systematic analysis to compare the accuracies in estimating
model performances using LOOCV, K-fold CV and plug-in. We focus on the asymptotic bias and
coverage accuracy of the associated interval estimate for the out-of-sample evaluation. Our main
messages are: First, in terms of these asymptotic criteria, K-fold CV never outperforms plug-in,
regardless of the rate at which a parametric or nonparametric model converges. Second, while
LOOCV can have a smaller bias than plug-in, this bias improvement can be negligible compared
to the evaluation variability and therefore, in a range of important cases, LOOCV again does not
outperform plug-in. In particular, we show that all parametric models, as well as some nonparametric
models including random forests and kNN with sufficient smoothness, fall into this range. Since
LOOCV requires significantly more computation resources, this raises the caution that its use is not
always necessary, despite its robust performance for model evaluation.

As a simple illustration, Figure 1 shows the evaluation quality of the squared error of a random
forest regressor using 2-fold CV, 5-fold CV, LOOCV and plug-in. We see that 2- and 5-fold CVs
suffer from larger biases than plug-in (shown in the bar chart) especially for large sample sizes, and
correspondingly also significantly poorer coverages of the associated interval estimates (shown by the
lines). On the other hand, LOOCV exhibits smaller biases than plug-in, but these do not transform
into better coverages since the bias improvement is negligible compared to the statistical variability
in the evaluation. Both intervals provide valid coverage guarantees for large sample sizes (shown by
the lines). We highlight that this example is not a “cherry pick”: Section 5 and Appendix F show
similar conclusions for a wide array of numerical examples.

We close this introduction by briefly discussing our technical novelty. Our analysis framework to
conclude all our comparisons is propelled by a novel higher-order Taylor analysis on the out-of-
sample evaluation that account for the dependence between the trained model and the testing data. In
contrast to merely sufficient conditions in the literature, under which plug-in and CV variants exhibit
low biases and valid coverages, this analysis helps us provide a complete breakdown of how bias
and coverage depend on the convergence rate of the model at hand. This in turn fills in the gap in
understanding which methods outperform which others, in regimes that have appeared challenging
for previous works.

2 Problem Framework

We consider the supervised learning setting with observations Dn := {(Xi, Yi)}i∈[n] drawn i.i.d.
from the joint distribution P(X,Y ) := PX × PY |X . We obtain a predictor ẑ(x) = A(Dn;x) as a

2



function of x with the output domain Z , through a training procedure A on Dn. We are interested in
evaluating the out-of-sample performance EP(X,Y )

[ℓ(ẑ(X);Y )], where ℓ(z;Y ) : Z × Y 7→ R is the
cost function. This evaluation can be a point estimate, or more generally an interval estimate I(α) that
covers EP(X,Y )

[ℓ(ẑ(X);Y )] with 1−α probability, i.e., we aim to satisfy PDn(EP(X,Y )
[ℓ(ẑ(X);Y )] ∈

I(α)) ≈ 1 − α, where the outer probability PDn is with respect to the data Dn used to construct
ẑ(·). We focus on the low-dimensional asymptotic setting where n → ∞ and X ,Y,Z are of fixed
dimensions and defer discussions to other regimes in Section 6.

Regarding the scope of our setup, ℓ can be the loss function for supervised learning (e.g., squared
loss, cross-entropy loss), in which case ẑ naturally denotes the predicted label and (X,Y ) denotes the
feature-label pair. More generally, ℓ can denote a downstream optimization objective in a decision-
making problem, in which case Y denotes a random outcome that affects the objective given the
contextual information X . This latter setup, which is called contextual stochastic optimization
[13, 51], can be viewed as a generalization of supervised learning from building prediction models
to prescriptive decision policies. For example, in the so-called newsvendor problem in operations
management, the cost refers to monetary loss of a retailer determined by the order quantity z, and
covariate X refers to the market condition that drives stochastic demand Y [8, 13]. Our framework
in this paper applies to both the traditional supervised learning and prescriptive data-driven decision-
making settings.

We consider three main methods: plug-in, LOOCV, and K-fold CV. We denote Âm and Im(α) as
the point estimate and (1 − α)-level interval estimate, using method m ∈ M = {p, loocv, kcv}
referring to plug-in, LOOCV and K-fold CV respectively. For convenience, we denote P∗ as the
true joint distribution P(X,Y ) and P̂n = (1/n)

∑n
i=1 δ(Xi,Yi) as the empirical distribution, and we

denote c(z) and cn(z) as the out-of-sample performance EP∗ [ℓ(z(X);Y )] and the plug-in evaluation
of the out-of-sample performance EP̂n

[ℓ(z(X);Y )] for any decision mapping z(x) respectively. We
present our considered point and interval estimates, where the latter are all written in the form
Im(α) = [Âm − z1−α/2σ̂m/

√
n, Âm + z1−α/2σ̂m/

√
n],∀m ∈ M with:

Âp = cn(ẑ), σ̂p =

√
1

n

∑
i∈[n]

(ℓ(ẑ(Xi);Yi)− Âp)2, (1)

Âkcv =
1

n

∑
k∈[K]

∑
i∈Nk

ℓ(ẑ(−Nk)(Xi);Yi), σ̂kcv =

√
1

n

∑
k∈[K]

∑
i∈Nk

(ℓ(ẑ(−Nk)(Xi);Yi)− Âkcv)2, (2)

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution, {Nk, k ∈ [K]} is
the collection of K equal-length partitions of [n] (for simplicity we assume n is divisible by K)
and ẑ(−Nk)(·) := A(D(−Nk); ·), with D(−Nk) denoting the data set that leaves out {(Xi, Yi)}i∈Nk

.
For the K-fold CV estimates, Âkcv and Ikcv, we always assume K is fixed with respect to n (e.g.,
K = 2, 5, 10). On the other hand, Âloocv and Iloocv(α) are defined by setting K = n in (2). Note
that there are alternative approaches to construct the interval estimates (e.g., nested cross validation in
Appendix G.3), but the above are the most natural and have been shown to have statistical consistency
properties as well as superior empirical performance over other intervals [10].

We impose the following regularity and optimality conditions on the cost function:

Assumption 1 (Smoothness of Expected Cost) For any x ∈ X , v(z;x) := EPY |x [ℓ(z;Y )] is twice
differentiable with respect to z everywhere, where PY |x is the conditional distribution of Y given x.

Assumption 2 (Regularity of Cost Function) For any y ∈ Y , ℓ(z; y) is twice differentiable with
respect to z for every y. Moreover, |ℓ(z; y)|, ∥∇zℓ(z; y)∥2 are uniformly bounded in z ∈ Z and
almost surely in y.

Assumption 3 (Optimality Conditions) Z is a bounded open set. The best mapping z∗o(x) that
minimizes v(z;x),∀x ∈ X satisfies the first and second-order optimality conditions. More precisely,
∀x ∈ X ,∇zv(z

∗
o(x);x) = 0, and ∇zzv(z

∗
o(x);x) is positive definite.

While Assumption 2 is standard, we can relax it further to some non-smooth objectives including
piecewise linear functions (e.g., ℓ(z;Y ) = |z − Y |); see Assumption 5 in Appendix B.2. The other
assumptions above are commonly used in stochastic optimization [25, 29, 38]. We further allow
constrained problems in Assumption 6 in Appendix B.2.
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Example 1 The function ℓ(z;Y ) = (z−Y )2 (ℓ2-regression), compact set Y , and z∗o(x) = E[Y |X =
x] with Z = {z : |z| < B} for any B > maxx∈X z∗o(x) satisfy Assumptions 1, 2 and 3.

Next, we distinguish between parametric and nonparametric models in Definitions 1 and 2 below,
leaving further details on technical regularity conditions in Appendix B.3.

Definition 1 (Parametric Model) ẑ(x) = G(θ̂;x), where θ̂ = argminθ∈Θ

∑n
i=1 ℓ(G(θ;Xi);Yi) +

λnR(θ) for some regularization function R(θ). Regularity conditions of G(θ;X) are provided in
Assumption 7 in Appendix B.3.1, which are satisfied by linear models (Example 2 of Section 3).

Definition 2 (Nonparametric Model) ẑ(·) is obtained through ẑ(x) ∈
argminz∈Z

∑
i∈[n] wn,i(x)ℓ(z;Yi) with weights {wn,i(x)}i∈[n] depending on Dn and x.

Regularity conditions of wn,i(·) are provided in Assumption 8 in Appendix B.3.2, which are satisfied
by the classical k-Nearest Neighbor (kNN) and forest learners (Examples 3, 4 of Section 3).

Define z∗(·) := A(D∞; ·) as the oracle best model using the training procedure A with infinite data
D∞. We now define the notion of convergence rate order for model ẑ(·):

Definition 3 (Convergence Rate) For a model ẑ(·), we say it has a convergence rate of order
γ ∈ (0, 1/2] if EDn

[∥ẑ(x)− z∗(x)∥2] = Θ(n−γ) for almost every x. Furthermore, we say ẑ(·) has a
bias and variability convergence rate γb, γv respectively if EDn

[∥EDn
[ẑ(x)]− z∗(x)∥2] = Θ(n−γb)

and EDn
[∥ẑ(x)− EDn

[ẑ(x)]∥2] = Θ(n−γv ) for almost every x. Consequently, γ = min{γb, γv}.

The overall convergence order γ of ẑ(·) is determined by both its bias γb and variability γv , whichever
dominates. For parametric models in Definition 2, we naturally have γ = γv = 1/2 (see Proposition
1 in Appendix B.3.1). However, unless {G(θ;x) : θ ∈ Θ} contains the model z∗o(·) that optimizes
v(z; ·), there is a discrepancy between z∗o(·) and the limiting model z∗(·). For nonparametric models
in Assumption 2, both γb and γv depend on the hyperparameter configuration and are often smaller
than 1/2. When their hyperparameters are properly chosen (e.g. Theorems 5 - 9 in [13]), we have
z∗(·) = z∗o(·) thanks to the nonparametric power in eliminating model misspecification.

Lastly, we introduce the following stability conditions:

Definition 4 (Stability) Denote two leave-one-out (LOO) stability notions αn, βn by:

(Expected LOO Stability) αn := max
i∈[n]

{
(EP∗,Dn

[∥ẑ(X)− ẑ(−i)(X)∥2]) 1
2

}
, (3)

(Pointwise LOO Stability) βn := max
i∈[n]

{
EDn

[|ẑ(Xi)− ẑ(−i)(Xi)|]
}
, (4)

where the expectation in (3) is with respect to both the data Dn, used to construct ẑ and ẑ(−i), and
P∗ that generates X , while (4) has expectation taken with respect to only Dn.

Stability notions are first proposed in [15, 28, 45] and commonly used to provide generalization
guarantees for CV [37, 39] as well as refined bounds under more relaxed stability in [16, 1, 2]. We
assume the following:

Assumption 4 (LOO Stability) ẑ(·) satisfies the expected LOO stability with αn = o(n−1/2).

This condition holds for many models in Definitions 1 and 2 [15, 28, 17] and is often imposed for
the validity of plug-in and CV, e.g. in [10, 18]. For illustration, we provide an example of 1-NN in
Appendix B.4.

3 Main Results

We present our main results on the evaluation bias and interval coverage for plug-in, K-fold CV and
LOOCV. Unless specified otherwise, E and P in the following are taken with respect to Dn.

Theorem 1 (Bias) Suppose Assumptions 1, 2, 3 and 4 hold. Recall γ, γv in Definition 3. Then, for
ẑ(·) in Definitions 1 and 2:

E[c(ẑ)− Âp] = Θ(n−2γv ) > 0,E[c(ẑ)− Âkcv] = Θ(n−2γ) < 0,E[c(ẑ)− Âloocv] = o(n−1) < 0.
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Theorem 2 (Coverage Validity) Suppose Assumptions 1, 2, 3 and 4 hold. Recall M =
{p, kcv, loocv}. Then, for ẑ(·) and z∗(·) in Definitions 1 and 2:

• If γ > 1/4, then: limn→∞ P(c(ẑ) ∈ Im) = limn→∞ P(c(z∗) ∈ Im) = 1− α, for m ∈ M.

• If γ ≤ 1/4, then limn→∞ P(c(z∗) ∈ Im) < 1− α for m ∈ M.

– limn→∞ P(c(ẑ) ∈ Ip) ≤ 1 − α, where equality holds if and only if βn = o
(
n−1/2

)
(or

γv > 1/4).
– limn→∞ P(c(ẑ) ∈ Ikcv) < 1− α.
– limn→∞ P(c(ẑ) ∈ Iloocv) = 1− α.

In the following, we use Theorems 1 and 2 to compare plug-in, K-fold CV and LOOCV, and highlight
our novelty relative to what is known in the literature. In a nutshell, the regime γ ≤ 1/4 has been
wide open and comprises our major contribution and necessitates our new theory described in Section
4.

Comparing plug-in and K-fold CV. Theorems 1 and 2 together stipulate that plug-in is always
no worse than K-fold CV in terms of estimating out-of-sample performance. In terms of evaluation
bias, plug-in is optimistic while K-fold CV is pessimistic. For such a bias direction, optimistic bias
refers to underestimating the expected cost. Plug-in suffers such bias since it is estimated on the same
training data. In contrast, pessimistic bias refers to overestimating the expected cost. CV suffers such
bias since CV is unbiased for the evaluation using fewer training samples than the whole dataset, and
appears more erroneous than it should be compared to the true evaluation using the whole dataset. For
parametric models, since γ = γv = 1/2, their biases in Theorem 1 are both Θ(n−1). This recovers
the results in [30, 36] in which case the bias is negligible when constructing intervals. However, this
bias size is unknown for general nonparametric models in the literature. For these models, our new
results show that the bias of plug-in is Θ(n−2γv ) which is no bigger than that of K-fold CV since
γ ≤ γv. This behavior arises because, even though plug-in incurs an underestimation of Θ(n−2γv )
due to the reuse of training and evaluation set, K-fold CV loses efficiency due to a loss of training
sample from the data splitting, thus leading to an even larger bias of Θ(n−2γ).

The above comparisons are inherited to interval coverage. While plug-in and K-fold CV both exhibit
asymptotically exact coverage for parametric models (included in the case γ > 1/4), their coverages
differ for nonparametric models, with plug-in still always no worse than K-fold CV. Specifically,
when γ ≤ 1/4, K-fold CV incurs invalid coverage, whereas plug-in still yields valid coverage as
long as γv > 1/4. This is because, in this regime, the bias of K-fold CV is bigger than its variability
to affect coverage significantly while the bias of plug-in remains small enough to retain coverage
validity. In the literature, [21, 18] show valid coverage using plug-in under some stability conditions,
but it is unclear regarding their applicability to general models. On the other hand, for CVs, central
limit theorems and hence coverage guarantees have been derived generally, but they are centered at
the average performance of trained models across folds [42, 10, 26], and thus bear a gap between
such an averaged performance and the true model performance. Recently, [56, 7] further show
CV intervals can provide coverage guarantees when γ > 1/4, but they do not touch on the case
γ ≤ 1/4. Moreover, all the literature above do not demonstrate an explicit difference between K-fold
and LOOCV in their results [7, 57, 10]. From these, our results on the regime γ ≤ 1/4 where
we characterize and conclude the difference between K-fold and LOOCV appear the first in the
literature.

Comparing plug-in and LOOCV. When comparing with plug-in, LOOCV has a smaller, and pes-
simistic, bias o(1/n). However, this bias improvement can be negligible compared to the evaluation
variability captured in interval coverage, specifically when γ > 1/4 (which includes all parametric
models) and when γ ≤ 1/4, γv > 1/4. In the latter case in particular, the bias of plug-in, even though
larger than LOOCV, is small enough to ensure valid coverage.

We visually summarize our discussions on biases and interval coverages in Figure 2. In particular,
Figure 2(a)(b) display our new contributions on both plug-in and CVs under slow rate γ. We also
see that plug-in intervals provide valid coverages for (b)(c), while K-fold CV is only valid for (c)
and LOOCV is valid across (a)(b)(c).
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Figure 2: Concept plots of interval coverages of c(ẑ), and also c(z∗), for our considered approaches
across model rates, where the black line represents the value of the expected cost and a point is
considered covered if it falls within the corresponding interval.

Examples. We exemplify the above insights with several specific models. Denote dx, dy as
the dimensions of X and Y . We consider a regression problem with ℓ(z;Y ) = (z − Y )2 and
dx = 4, dy = 1, where P∗ ∈ P with:

P = {PX = U([0, 1]4),PY |x = N(f(x), 1),∀x with Lipschitz continuous f(x)}. (5)

We consider the worst-case instance of P∗, in the sense that γb, γv take the smallest attainable values
in Chapter 3 of [33].

Example 2 ((Regularized) Linear-ERM [8]) G(θ;x) = θ⊤x, λn = 1, R(θ) = ∥θ∥22 satisfy As-
sumption 1. Specifically, γ = γv = 1/2, and all of plug-in, K-fold CV and LOOCV provide valid
coverages for c(ẑ).

Example 3 (kNN-Learner) Denote the nearest index set NDn,x(kn) = {i|Xi is a kNN of x}. Then
wn,i(x) = 1{i∈NDn,x(kn)} satisfies Assumption 2 with hyperparameter kn. Specifically, γv =

− log kn/(2 log n) and γb = log(kn/n)/(4 log n) (from Chapter 6 in [33]). If kn = ω(
√
n),

then LOOCV and plug-in provide valid coverages for c(ẑ); otherwise, only LOOCV provide valid
coverages.

Example 4 (Forest Learner) Consider a forest F = {τ1, . . . , τT }, where each τi : Rdx 7→
{1, . . . , Li} is a (tree) partition of Rdx into Li regions. Then wn,i(x) =

∑T
j=1 1{τj(Xi)=τj(x)}/T

satisfies Assumption 2, where the hyperparameter is the subsampling ratio β < 2/3 in each tree.
Specifically, γv = (1−β)/2 from [57] and γb < 1/6 (from Lemma 5 in Appendix B.1). Then LOOCV
and plug-in provide valid coverages for c(ẑ).

We summarize our theoretical comparisons in this section in Table 1, the first half of which shows
our general comparisons in terms of both evaluation bias and interval coverage, while the second half
illustrates our considered examples.

Table 1: Asymptotic bias and coverage for each approach, where ✓and ✗ denote valid and invalid
coverages. o(·),Ω(·) and ω(·) follow the standard big O notation.

- Bias Coverage Validity

Model Specifications c(ẑ)− Âp c(ẑ)− Âkcv c(ẑ)− Âloocv Ip Ikcv Iloocv

General
γ > 1/4 o(n−1/2) o(n−1/2)

o(n−1)
✓ ✓ ✓

γb ≤ 1/4, γv > 1/4 o(n−1/2) ω(n−1/2) ✓ ✗ ✓

γv ≤ 1/4 Ω(n−1/2) Ω(n−1/2) ✗ ✗ ✓

Specific
dx = 4

Linear-ERM Θ(n−1) Θ(n−1)

o(n−1)

✓ ✓ ✓

kNN with kn = Θ(n1/4) Θ(n−1/8) Θ(n−1/8) ✗ ✗ ✓

kNN with kn = Θ(n2/3) Θ(n−2/3) Θ(n−1/12) ✓ ✗ ✓

Forest with β = 0.4 Θ(n−0.3) ω(n−1/6) ✓ ✗ ✓

Finally, we point out that Theorem 2 also shows, in addition to our evaluation target c(ẑ), the coverage
on the oracle best performance c(z∗). The latter is generally a different quantity than c(ẑ), but it
plays an important role in our analysis. When γ > 1/4, c(ẑ) and c(z∗) are very close and an interval
for c(ẑ) is also valid to cover c(z∗). On the other hand, when γ ≤ 1/4, the statistical discrepancy
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between c(ẑ) and c(z∗) is too large for any interval estimates of c(ẑ) to be valid for c(z∗), but
nonetheless LOOCV and plug-in for γv > 1/4 can still validly cover c(ẑ) thanks to their small
evaluation biases.

4 Roadmap of Theoretical Developments

We present the main theoretical ideas to show Theorems 1 and 2. Before going into details, we
highlight the main novelties of our analyses: First, the biases for general nonparametric models
in Theorem 1, which are unknown in the literature, require a different Taylor analysis compared
with the parametric case available in [30]. Second, parts of Theorem 2 come from verifying the
central limit theorems (CLTs) in [18, 10]. However, [18] only shows that CLTs hold for c(ẑ) when
αn, βn = o(n−1/2) and does not show exactly when CLT fails; [10] only gives CLTs for CVs with
a different center than c(ẑ), c(z∗). In this regard, our main technical contribution is to fill in these
theoretical gaps and characterize necessary conditions, instead of merely sufficient conditions, to
conclude interval (in)validity across the entire spectrum.

4.1 Evaluation Bias

One key component of Theorem 1 hinges on the characterization of optimistic bias for plug-in,
namely EDn [cn(ẑ)− c(ẑ)], which captures the underestimation amount of the objective value relative
to the truth when using an empirical estimator:

Lemma 1 (Plug-in Bias) Suppose Assumptions 1, 2, 3 and 4 hold. For ẑ(·) in Assumption 2,
EDn

[cn(ẑ)]− EDn
[c(ẑ)] = Θ(n−2γv ) < 0.

The proof of Lemma 1 relies on a novel second-order Taylor expansion centered at the deterministic
decision zn(x) := E[ẑ(x)] on both the empirical gap cn(ẑ)− cn(zn) and the true gap c(zn)− c(ẑ) in
nonparametric models ẑ(·). Here, we do not center them at the limiting decision z∗(x) compared with
the parametric setup from [4, 36] since in nonparametric models, ẑ(·)− zn(·) already captures the
variability term that leads to the plug-in evaluation bias. Besides, in these nonparametric models, we
need to further analyze the second-order difference E[∥ẑ(x)− zn(x)∥22] and E[∥ẑ(Xi)− zn(Xi)∥22],
which requires a more involved analysis through a comparison on the asymptotic expansion terms of
ẑ(·)− zn(·). To understand the optimistic bias further, we provide a constructive proof for kNN with
an optimistic bias Θ(1/kn) in Proposition 4 in Appendix D.1.

The results for CVs follow from the observation that K-fold CV (where here K can be any number
up to n) gives an unbiased evaluation for the model trained with n(1− 1/K) samples:

Lemma 2 (CV Bias) Suppose Assumptions 1, 2, 3 and 4 hold. For ẑ(·) in Definitions 1 and 2,
EDn

[Âkcv]− EDn
[c(ẑ)] = Θ(K−1n−2γ) > 0,EDn

[Âloocv]− EDn
[c(ẑ)] = o(n−1) > 0.

4.2 Interval Coverage

The proof of Theorem 2 hinges on the following equivalences of conditions among stability, conver-
gence rate, and coverage validity. For plug-in, we have:

Theorem 3 (Equivalence among Stability, Convergence Rate and Coverage Validity for Plug-in)
Suppose Assumptions 1, 2, 3 and 4 hold. Then the following three conditions are equivalent:

S1 : βn = o(n−1/2), S2 : lim
n→∞

P(c(ẑ) ∈ Ip) = 1− α, S3 : γv > 1/4.

Theorem 3 is shown through three components of arguments, where the first two are our new technical
contributions:

(1) S3 is sufficient for S1. Intuitively, a faster rate of γv means that the effect of one data point is
usually small, implying a fast pointwise stability. This result follows from a refined decomposition
of the variability term ẑ(x)− ẑ(−i)(x) through the influence of each point based on the asymptotic
expansions of ẑ(·) in Assumption 2. We examine its bias and variability respectively, with formal
results provided in Proposition 5 in Appendix E.1.1.
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(2) S3 is necessary for S2. Since the variability of the interval width does not differ significantly
(Lemma 7 in Appendix C), only the bias would lead to interval invalidity. From Lemma 1, if S3 does
not hold, i.e., γv ≤ 1/4, then EDn [cn(ẑ)− c(ẑ)] = Θ(n−1/2) and this implies that S2 does not hold
from Proposition 6 in Appendix E.1.2.

(3) S1 is sufficient for S2. This follows from a direct verification of Lemma 2 in [18] to ensure
asymptotic normality for plug-in and the small variability of the interval width (Lemma 7 in Ap-
pendix C). Furthermore, due to a small difference between c(ẑ) and c(z∗) (Lemma 6 in Appendix C),
the plug-in interval can also cover the quantity EDn

[c(ẑ)] and c(z∗) if γ > 1/4 (i.e. Corollary 1 in
Appendix E.1.4).

In the above, we show that the condition βn = o(n−1/2) or γv < 1/4 is a necessary and sufficient
condition to ensure a valid plug-in interval if Assumption 4 holds. Note that [18] demonstrate that in
a specific nonparametric model, Assumption 4 is a necessary condition for the coverage invalidity of
plug-in by providing a counterexample (Lemma 3 there). Our results are not directly comparable to
theirs. First, we assume Assumption 4 throughout the entire paper and show that plug-in does not
provide valid coverage guarantees when another stability notion, βn, is large. Second, our results
apply to a more general class of nonparametric models in Assumption 2 instead of the particular
models and cost functions ℓ in [18].

Theorem 4 (Equivalence between Convergence Rate and Coverage Validity for CV) Suppose
Assumptions 1, 2, 3 and 4 hold. Then for K-fold CV, the following two conditions are equivalent:

S4 : γ > 1/4, S5 : lim
n→∞

P(c(ẑ) ∈ Ikcv) = 1− α.

For LOOCV, we always have limn→∞ P(c(ẑ) ∈ Iloocv) = 1 − α. However, limn→∞ P(c(z∗) ∈
Im) < 1− α,∀m ∈ {kcv, loocv} if γ ≤ 1/4.

To understand the necessary condition for K-fold CV, since γ is small, the difference between the
expected performance between the decision ẑ(x) and ẑ(−Nk)(x) is not negligible, leading to a larger
overestimate of performance from c(ẑ) compared with the interval width. However, following the
stability condition from Assumption 4, LOOCV can still provide a valid coverage guarantee for
c(ẑ), since the difference between cn(ẑ) and Âloocv is always op(n−1/2). In contrast, the sufficient
condition for S5 follows by the asymptotic normality of CV through verifying Theorem 1 in [10].

5 Numerical Experiments

Setups. We consider two synthetic experiments to validate our theoretical results: (1) Regression
problem: ℓ(z;Y ) = (z−Y )2; (2) Conditional value-at-risk (CVaR) portfolio optimization: ℓ(z;Y ) =
zv + 1

η (−z⊤p Y − zv)
+ with Z = {z = (zp, zv)|1⊤zp = 1, zp ≥ 0} for some η ∈ (0, 1). In the

regression example, we consider ridge regression, kNN with kn = Θ(n2/3), and Forest with β = 0.4
(recall Example 4). In portfolio optimization, we consider sample average approximation (SAA,
which belongs to Assumption 1) and kNN with kn = Θ(n1/4). We run plug-in, 5-fold CV and
LOOCV with nominal level 1− α = 0.9. For each setting, we evaluate the following metrics with
500 experimental repetitions: (1) Coverage Probability (cov90): coverage probability of c(ẑ) with
parentheses denoting that of c(z∗); (2) Interval Width (IW); and (3) bias: Difference between c(ẑ)

and the midpoint of the interval E[c(ẑ)]− E[Â·].

Full experimental setup details are deferred to Appendices F.1 and F.2 with results of more K-fold CV
results with K = 2, 10, 20. Moreover, we present a real-world regression dataset in Appendix F.3.

Results. Table 2 shows that, in terms of coverage, parametric models including ridge regression and
SAA cover both c(ẑ) and c(z∗) when n is large, across all methods. On the other hand, nonparametric
models (kNN and Forest) incur invalid coverages, due to their slow rates γ < 1/4. When using kNN
with kn = Θ(n1/4), only LOOCV provides valid coverage for c(ẑ) (nearly 90%) while plug-in and
5-CV fail when n becomes larger. When using Forest and kNN with kn = Θ(n2/3), plug-in is valid
while 5-CV does not work. This matches the theoretical coverage guarantees in Table 1.

Table 2 also reports interval widths and biases to understand how some of the intervals fail. Lengths
are comparable across each method, with plug-in usually shorter than LOOCV and 5-CV. This can be
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attributed to that plug-in approximates ẑ(·) better while extra variability arises from the data splitting
in CVs, an observation in line with those in [18]. Biases are relatively large for nonparametric models
for all methods. However, when n is large, both kNN with kn = Θ(n2/3) and the Forest provide
valid coverage for plug-in, attributed to the small bias relative to interval width, but not the case for
other approaches (e.g., 5-CV for Forest).

Table 2: Evaluation performance of different methods, where boldfaced values mean valid coverage
for c(ẑ) (i.e., within [0.85, 0.95]) and boldfaced values in parantheses mean valid coverage for c(z∗).
IW and biases for kNN and Forest in the regression problem are presented in unit ×103. Results
on other sample sizes and numerical reports on standard errors can be found in Tables 3 and 4 in
Appendix F.

method n Plug-in 5-CV LOOCV

- - cov90 IW bias cov90 IW bias cov90 IW bias

Regression Problem (dx = 10, dy = 1)

Ridge 1200 0.77 (0.95) 0.16 0.02 0.55 (0.31) 0.18 -0.08 0.78 (0.90) 0.17 0.00
2400 0.85 (0.97) 0.11 0.01 0.84 (0.92) 0.12 -0.02 0.86 (0.95) 0.12 -0.00
4800 0.88 (0.93) 0.08 0.00 0.89 (0.92) 0.08 -0.01 0.89 (0.92) 0.08 0.00

kNN n2/3 2400 0.84 (0.00) 1.63 0.08 0.78 (0.00) 1.68 -0.38 0.85 (0.00) 1.64 -0.01
4800 0.87 (0.00) 1.11 0.03 0.66 (0.00) 1.14 -0.37 0.86 (0.00) 1.11 -0.03
9600 0.88 (0.00) 0.75 0.02 0.61 (0.00) 0.77 -0.28 0.88 (0.00) 0.76 -0.01

Forest 2400 0.77 (0.00) 1.77 0.26 0.66 (0.00) 1.83 -0.37 0.72 (0.00) 1.80 0.01
4800 0.86 (0.00) 1.19 0.47 0.47 (0.00) 1.24 -0.32 0.85 (0.00) 1.20 -0.03
9600 0.85 (0.00) 0.73 0.11 0.42 (0.00) 0.76 -0.28 0.90 (0.00) 0.75 -0.02

CVaR-Portfolio Optimization (dx = 5, dy = 5)

SAA 1200 0.82 (0.88) 0.04 0.00 0.82 (0.87) 0.04 0.00 0.89 (0.88) 0.04 -0.01
2400 0.90 (0.89) 0.02 -0.00 0.91 (0.89) 0.02 -0.00 0.92 (0.89) 0.02 -0.01

kNN n1/4 2400 0.00 (0.00) 0.17 1.72 0.76 (0.00) 0.34 -0.08 0.92 (0.00) 0.33 -0.00
4800 0.00 (0.00) 0.12 1.43 0.72 (0.00) 0.23 -0.04 0.88 (0.00) 0.22 -0.00
9600 0.00 (0.00) 0.09 1.11 0.66 (0.00) 0.15 -0.03 0.89 (0.00) 0.14 0.000

6 Discussions, Limitations and Future Directions

We close this paper with some guidance to practitioners in light of the results we have obtained, as
well as cautionary notes on the limitations of our study and future directions.

Guidance to Practitioners. In estimating out-of-sample model performances, our results suggest
the following practical guidance in choosing different methods. First, in terms of the magnitude of
bias, LOOCV is always smaller than plug-in, while plug-in is no larger than K-fold CV. Despite this
bias ordering, the adoption of a method over another should also take into account the variability and
computational demand, specifically:

• For parametric and nonparametric models with a fast rate (γ > 1/4, including the so-called sieve
estimators in [19] when the true function f(x) is 2dx-th continuously differentiable under P in
(5)), the biases in all three considered procedures, plug-in, LOOCV and K-fold CV, are negligible
compared to the variability captured in interval coverage. Correspondingly, all three intervals
provide valid statistical coverages. Among them, plug-in is the most computationally efficient and
should be preferred.

• For nonparametric models with a slow rate but small variability (γv > 1/4, γ ≤ 1/4), which
include kNN with kn = ω(

√
n) in Example 3 and the forest learner in Example 4, the biases in

plug-in and LOOCV are negligible but K-fold is not. Correspondingly, both plug-in and LOOCV
provide valid coverages but K-fold CV does not. Since plug-in is computationally much lighter
than LOOCV, it is again preferred.

• For nonparametric models with slow rate (γv ≤ 1/4), which include kNN with kn = Θ(
√
n) in

Example 3, only LOOCV has a negligible bias and provides valid coverages, and hence should be
adopted.
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Our comparisons in model evaluation show that plug-in is preferable to K-fold CV, both statistically
and computationally since plug-in works across a wider range of models and does not require
additional model training. The above being said, we caution that, in terms of the direction of the
bias, plug-in is optimistic while K-fold CV is pessimistic, and so the latter can be preferred if a
conservative evaluation is needed to address high-stake scenarios. On the other hand, LOOCV
provides valid coverages for the widest range of models, but it is computationally demanding.

Due to such computational complexity, some alternatives, including approximate leave-one-out
(ALO) [12, 32], bias-corrected K-fold CV [30, 3] and bias-corrected plug-in [27, 35], aim to
control computation load while retaining the statistical benefit of LOOCV through analytical model
knowledge. For example, ALO approximates each leave-one-out solution using the so-called influence
function in parametric models. However, these ALO approaches are difficult to generalize in our
problem setup due to difficulties in approximating the analytical form of influence function in
nonparametric models (e.g., random forest). Other variants of cross-validation, e.g., fold number
increasing with n [5], can potentially help improve the statistical-computational tradeoff and we leave
the investigations of these procedures as future work.

Model Evaluation versus Model Selection. We caution the distinction between model evaluation
and selection, namely the selection of hyperparameter among a class of models. Depending on what
this class is, our model evaluation comparisons may or may not translate into the performances
in model selection. On a high level, this is because the evaluation bias may be correlated among
different hyperparameter values and ultimately leading to a low error in the selection task. A general
investigation of this issue in relation to model rates appears open, even though specific cases have
been studied [5]. For example, it has been pointed out that K-Fold CV can perform better for ridge
or lasso linear models than plug-in for model selection [43, 56, 22]. We provide further discussions
on the failure cases of the plug-in procedure for model selection in Appendix G.1.

Asymptotic versus Nonasymptotic Behaviors. Our results are asymptotic and there is an obvious
open question on extending to finite-sample results. Nonetheless, our results still shed light on the
finite-sample performances of different approaches. For example, our numerical results, which show
finite-sample coverage behaviors in Figure 1 and Table 2, conform to our asymptotic theories. Note
that there are some non-asymptotic intervals based on concentration inequalities with exact coverage
guarantees [2, 23, 16]. However, they may be too loose as they are derived from a worst-case analysis.

High-Dimensional Problems. As we mentioned in Section 2, our paper focuses on the asymptotic
setting where n → ∞ and X ,Y,Z are of fixed dimensions. Future work includes investigating
different model evaluation approaches under other regimes, including high-dimensional settings
where both the dimension and sample size go to infinity. We provide some preliminary discussions
of our three considered procedures in high-dimensional settings in Appendix G.2. In particular,
in these situations, [9] find that standard cross-validation procedures (2) give low coverages and
design a nested cross-validation procedure to remedy. However, this latter procedure is designed for
high-dimensional parametric models and does not help in the slow rate regimes of nonparametric
models in our setting. We provide further comparisons in Appendix G.3.

Smoothness and Stability. Despite the relative generality of our scope, we have assumed sufficient
model smoothness and stability. Future work includes relaxations of these conditions to broader
model classes and cost functions. This is also related to the extension of our analyses to ALO
approaches, as these approaches require explicit smoothness, namely gradient-type estimates on the
models, as well as other advanced CV approaches in, e.g., [7, 9].
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Appendix
A Other Related Work and Discussions

Plug-in Approaches in Standard Stochastic Optimization. In the classical stochastic optimization
without covariates, the interval of optimal model performance is constructed centered at the plug-in approach
set as the empirical objective solved by the sample average approximation [53]. Furthermore, to address the
low coverage probability of the naive interval [44, 52, 11, 41], later literature improves the interval construction
when the cost objective is nonsmooth and the variance estimate is unstable. In general, constructing the interval
in the non-contextual case is generally easy compared with estimating the currentperformance of a function
ẑ(·) or z∗(·) in the contextual stochastic optimization due to slow rates and easy violations of the asymptotic
normality.

Generability of models with γ < 1/4. In general, many nonparametric models converge with a rate
of γ ≤ 1/4. When ℓ(z;Y ) denotes the ℓ2 loss, models such as sieve estimators [19] satisfy the fast rate
γ > 1/4. However, to the best of our knowledge, these models are difficult to implement in the general
contextual stochastic optimization problem arising from decision complexity. Standard benchmarks there in
Assumption 2 may still suffer from γ < 1/4 (also imply from Lemma 5 as follows), surging the need for
studying the evaluation approaches under these regimes.

B Details in Section 2.

B.1 Technical Lemmas

We list the following technical lemmas as well as discussions on their positions in this paper.

Lemma 3 (Standard M-estimator Result, from Theorem 5.21 in [55]) For each θ in an open subset of Eu-
clidean space. Let x 7→ mθ(x) be a measurable function such that θ 7→ mθ(x) is differentiable at θ0 for almost
every x with derivative ∇xmθ0(x) and such that for every θ1, θ2 in a neighborhood of θ0 and a measurable
function K(x) with EP∗ [K

2(x)] < ∞:

|mθ1(x)−mθ2(x)| ≤ K(x)∥θ1 − θ2∥.
Furthermore, assume that the map θ 7→ EP∗ [mθ(x)] admits a second-order Taylor expansion at a point of
maximum θ0. If θ̂

p→ θ̂0, then:

√
n(θ̂ − θ0) = −V −1

θ0

1√
n

n∑
i=1

∇xmθ0(Xi) + op(1).

In particular, the sequence
√
n(θ̂ − θ0) is asymptotically normal with mean zero and covariance matrix

V −1
θ0

EP∗ [∇xmθ0(x)∇xmθ0(x)
⊤]V −1

θ0
.

We refer readers to Theorem 5.31 in [55] under constrained cases.

Lemma 3 justifies the convergence rate of standard parametric learners. This result is the convergence in
distribution for θ̂ in Lemma 3. Compared to the moment convergence condition we use in Definition 3, we
apply the standard theory for the moment convergence of M -estimator ([59, 47, 20]), we can transform the
convergence in distribution for θ̂ in Lemma 3 to the moment convergence result by: EDn [n∥θ̂ − θ∗∥22] < ∞
since values of the cost function and its gradient are all bounded from Assumption 2. Therefore, in the following,
we only list the result of convergence in distribution.

Lemma 4 (Lyapunov Central Limit Theorem, extracted from Theorem 27.3 in [14]) Suppose
{X1, . . . , Xn, . . .} is a sequence of independent random variables, each with finite expected variance σ2

i .
Define s2n =

∑n
i=1 σ

2
i . If for some δ > 0, Lyapunov condition limn→∞(1/s2+δ

n )
∑n

i=1 E[∥Xi − µi∥2+δ
2 ] = 0

is satisfied, then we have:
1

sn

n∑
i=1

(Xi − µi)
d→ N(0, 1).

This Lyapunov CLT gives asymptotic normality guarantees when the variance of Xi is not bounded, which
happens frequently when it comes to the asymptotic expansion in nonparametric models.

Lemma 5 (Minimax Nonparametric Lower bounds, extracted from Theorem 3.2 in [33]) Consider the
class of distributions of (X,Y ) such that:
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1. X is uniformly distributed in [0, 1]dx ;

2. Y = f(X) + ϵ, where ϵ is the standard normal; And X and ϵ are independent.

3. f(X) is globally Lipschitz continuous such that for all x1, x2 ∈ Rdx , we have: |f(x1)− f(x2)| ≤
C∥x1 − x2∥.

We call that class of distributions by PC , then we have:

lim inf
n→∞

inf
fn

sup
(X,Y )∈PC

EDn [∥fn − f∥2]

C
2dx

2+dx n
− 2

2+dx

≥ C1 > 0,

for some constants C1 independent of C.

Consider ℓ(z;Y ) = (z − Y )2. Then any estimated ẑ(·) = fn(·) from Dn satisfies such lower bound. Recall
the bias-variance decomposition of ∥fn(·)− f∥2, as long as ẑ(·) converges to z∗o(·), then γ ≤ 1

2+dx
, that is,

either γB ≤ 1
2+dx

or γV ≤ 1
2+dx

. This justifies the rate of γB in Example 4.

B.2 Technical Regularity Conditions

We first list our extensions of assumptions to nonsmooth and constrained problems, which are both natural in
literature [58, 29]:

Assumption 5 (Regularity of Cost Function) For any y ∈ Y , ℓ(z;Y ) is differentiable with respect to z
almost everywhere. |ℓ(z;Y )| ≤ M0 and ∥∇zℓ(z;Y )∥2 ≤ M1 uniformly in z ∈ Z and almost surely in y.
Furthermore, ℓ(z;Y ) can be written as a composite function f(h(z; y)), where h(z; y) : Rdz × Rdy 7→ R is
twice differentiable with respect to z everywhere in z for any y ∈ Y; f(·) : R 7→ R has finite non-differentiable
points and is twice differentiable almost everywhere.

Note that ℓ(z;Y ) = |z − Y | satisfy such condition.

Assumption 6 (Optimality Conditions with Constraints) The decision space Z and the optimal solution
satisfy the following:

1. Z ⊂ Rdz is open in the form {z ∈ Rdz : gj(z) ≤ 0, j ∈ J1; gj(z) = 0, j ∈ J2} with J = J1 ∪ J2

and gj(z), ∀j ∈ J twice differentiable with respect to z for any z. For any x, α∗
j (x; z) is twice

differentiable with respect to z near z∗o(x).

2. The KKT condition holds for the oracle problem. That is, for any given x, the optimal decision
z∗o(x)(:= argminz∈Z v(z, x)) exists and is unique for almost every x, with z∗o(x) and its Lagrange
multiplier {α∗

j (x; z)}j∈J satisfying the first-order condition:

∇zv(z
∗
o(x);x) +

∑
j∈J

α∗
j (x; z

∗
o(x))∇zgj(z

∗
o(x)) = 0, ∀x ∈ X ;

and the complementary slackness condition α∗
j (x; z

∗
o(x))gj(z

∗
o(x)) = 0, ∀j ∈ J, x ∈ X .

3. For any x ∈ X , ∇zz v̄(z
∗
o(x);x) := ∇zzv(z

∗
o(x);x)+

∑
j∈J α∗

j (x; z
∗
o(x))∇zzgj(z

∗
o(x)) is positive

definite.

B.3 Examples and Justifications of Parametric and Nonparametric Models

B.3.1 Parametric Models

We assume G(θ;x) can be any parametrized decision with respect to θ and x, which includes linear and more
complicate models in both supervised learning, and contextual stochastic optimization problems [8, 50]:

Assumption 7 (Additional Conditions in Assumption 1, adapted from Assumption 7 in [29]) Suppose As-
sumption 6 holds. And for models in Assumption 1, for any x ∈ X , G(θ;x) is twice differentiable and Lipschitz
continuous with respect to θ in a neighborhood of θ∗ := argminθ∈Θ EP∗ [ℓ(G(θ;X);Y )] (exists and unique).
We allow either of the following two scenarios:

1. When Z is a unconstrained set (i.e. Assumption 3), ∇θEPX [v(G(θ∗;x);x)] = 0. And
∇θθEPX [v(G(θ;x);x)] is invertible for any θ ∈ Θ and positive definite at θ = θ∗;
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2. When Z is a constrained set (i.e., Assumption 6), suppose for any x ∈ X , α∗
j (θ;x) is twice differen-

tiable with respect to θ near θ∗; At the point θ = θ∗, G(θ∗;x) and its Lagrange multiplier α∗
j (θ

∗;x)
satisfy the first-order condition:

∇θEPX v(G(θ∗;x);x) +
∑
j∈J

EPX [α∗
j (θ

∗;x)gj(G(θ∗;x))] = 0;

and the complementary slackness condition α∗
j (θ;x)gj(G(θ;x)) = 0,∀j ∈ J, ∀θ ∈ Θ, ∀x ∈ X .

And ∇θθEPX [v̄(G(θ;x);x)(:= ∇θθv(G(θ;x);x)+
∑

j∈J α∗
j (x)∇θθgj(G(θ;x)))) is invertible for

any θ ∈ Θ and positive definite at θ = θ∗;

3. In Assumption 1, the first-order optimality condition holds for the empirical θ̂; And we assume
λn/n

d→ C for some C as n goes to infinity. R(θ) is twice continuously differentiable for any θ ∈ Θ
and ∇2

θθR(θ) is uniformly bounded for any θ ∈ Θ.

These conditions are naturally imposed to investigate the constrained stochastic optimization problem in [25, 29].
We verify that γ = 1/2 for parametric models.

Proposition 1 (Convergence Rate in Parametric Models) For parametric models in Assumption 1, we have
γ = γv = 1/2.

Proof of Proposition 1. For simplicity, we only consider the unregularized case. In the setup of Assumption 1,
assume the following two minimization problems have unique solutions with:

θ̂ = argmin
θ∈Θ

n∑
i=1

c(G(θ;Xi);Yi), θ∗ = argmin
θ∈Θ

EP(X,Y )
[c(G(θ;X);Y )].

Suppose Assumption 7 holds. Then combining Lemma 3 we have:

1. If Z is an unconstrained set, we have:

√
n(θ̂ − θ∗) = −

[
∇θθEP(X,Y )

[ℓ(G(θ;X);Y )
]−1 1√

n

n∑
i=1

∇θℓ(G(θ∗;Xi), Yi) + op(1);

2. If Z is an constrained set, following Corollary 1 of [25], we have:

√
n(θ̂ − θ∗) = −PT

[
∇θθEP(X,Y )

[ℓ(G(θ;X);Y )
]−1

PT
1√
n

n∑
i=1

∇θℓ(G(θ∗;Xi), Yi) + op(1),

where PT = I −A⊤(AA⊤)†A and A denotes the matrix of with rows EPX [∇gj(G(θ∗;x))], j ∈ J .

Regularization cases can be derived similarly (like Theorem 3 in [40]). No matter in each case, following
Assumption 1 due to the bounded cost, gradient condition in Assumption 2, we have γ = 1

2
since E[∥ẑ(x)−

z∗(x)∥2] = E[∥G(θ̂;x)−G(θ∗;x)∥2] = Θ(∥θ̂ − θ∗∥2) = Θ(n−1/2). And since the dominating term is just

the variability term −
[
∇θθEP(X,Y )

[ℓ(G(θ;X);Y )
]−1

1√
n

∑n
i=1 ∇θℓ(G(θ∗;Xi), Yi), we have γv = 1/2. □

This G(θ;x) can be any function as long as it satisfies Assumption 7. Furthermore, {Gθ;x), θ ∈ Θ} does not
necessarily include the underlying best z∗o(x). Since the constrained expansion is similar than the unconstrained
version and the moment convergence can be implied from convergence in distribution, in the following, we
mainly focus on the unconstrained case of models satisfying Definitions 1 and 2.

B.3.2 Nonparametric Models

We consider the unconstrained optimization problem under Assumption 3. Especially, we denote E[ẑ(x)] (a
function over x) as the root of EDn [

∑
i∈[n] wn,i(x)∇zℓ(z;Yi)] = 0, ∀x and abbreviate it as zn(x) in the

following. Recall from Assumption 2, given Dn, we obtain the solution by:

ẑ(x) ∈ argmin
x∈X

∑
i∈[n]

wn,i(x)ℓ(z;Yi). (6)

Assumption 8 (Expansion Conditions) Suppose the following expansion holds for the decision obtained
from (6) for the corresponding wn,i:

ẑ(x)− zn(x) = −
H−1

Dn,x

n

∑
i∈[n]

wn,i(x)∇zℓ(zn(x);Yi) + op(n
−2γv ), (7)
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where HDn,x = ∇2
zzEDn [wn,i(x)ℓ(zn(x);Y )]. Intuitively, this result is obtained using similar routines as

M -estimator theory from Lemma 3 since ẑ(x) − zn(x) = op(1) and conditions for θ̂ and θ∗ there holds
similarly for ẑ(x)− zn(x) here. In the following for each specific learner, we classify it through the following
one of the two classes:

ẑ(x)− z∗(x) = Bn,x +
1

|N(Dn, x)|
∑

i∈N(Dn,x)

ϕx((Xi, Yi)) + op(n
−γv ), (8)

ẑ(x)− z∗(x) = Bn,x +
1

n

n∑
i=1

ϕn,x((Xi, Yi)) + op(n
−γv ), (9)

where Bn,x = Θ(n−γb) denotes the deterministic bias term across these two classes, i.e., zn(x)− z∗(x).

For the variability term:

• In the first case (8), for almost every x, we have: E[ϕx((X,Y ))] = 0, E[∥ϕx((X,Y ))∥22] <
∞, |N(Dn, x)| = Θ(n2γv ); Furthermore, for i ∈ [n], we have: EXi [ϕXi((Xi, Yi))] = 0 and
E[∥ϕXi((Xi, Yi))∥22] < ∞.

• In the second case (9), for almost every x, we have: EP(X,Y )
[ϕn,x((X,Y ))] =

0, (EP(X,Y )
[∥ϕn,x((X,Y ))∥22])

1
2 = Θ(n

1
2
−γv ), ∀x; Furthermore, for i ∈ [n], we have:

EXi [ϕn,Xi((Xi, Yi))] = 0 and (EXi [∥ϕn,Xi((Xi, Yi))∥22])
1
2 = O(n1−2γv ).

Therefore, ϕn,x((Xi, Yi)) = H−1
Dn,xwn,i(x)∇zℓ(zn(x);Yi), where wn,i(x) depends on Xi.

In the following, we verify a number of nonparametric models satisfying (8) or (9). Specifically, we show that
Examples 3, 4 satisfy these conditions and present their convergence rates γ, γb, γv and corresponding ϕ as
follows.

Example 3. Recall ẑ(x) obtained from Example 3 with a hyperparameter kn, then if we choose kn =

min{Cnδ, n− 1} for some C, δ > 0 from Theorem 5 of [13], ẑ(x) converges to z∗o(x).

Proposition 2 (Convergence Rate of kNN Learner) In kNN learner, we denote Bn,x ≤ CEx̃[∥z∗(x̃) −
z∗(x)∥] = O

((
kn
n

) 1
dx

)
, where x̃ is the nearest sample among n

kn
random points near the covariate x

and and the order of Bn,x can be tight with respect to n from Lemma 5.

The variability term can be regarded as the empirical optimization over a problem where the underlying random
distribution is a mixed distribution over kn conditional distribution with equal weights near the current covariate
x. Furthermore:

ẑ(x)− zn(x) = −
H−1

kn,x

kn

∑
i∈NDn,x(kn)

∇zℓ(zn(x);Yi) + op(k
−1
n ), ∀x. (10)

where Hkn,x = ∇2
zzEDn(kn,x)[ℓ(zn(x);Y )] is the expectation over all the possible datasets Dn and the

kn neighbors around x. Therefore, VDn,x = Op

(
1√
kn

)
following the M -estimator theory of empirical

optimization due to kn samples around. There, ϕx((Xi, Yi)) = −H−1
kn,x∇zℓ(zn(x);Yi) from (8).

One can show that (10) is a special case of (8). In this case, the convergence rate of ẑ(·) − z∗(·) =

Op

((
kn
n

)1/dx ∨ 1√
kn

)
with p being some parameter. Tuning the best kn = Θ(n

2
dx+2 ) yielding the con-

vergence rate γ = 1
dx+2

. This result may attain the lower bound of estimation even in the regression (i.e.
Lemma 5 above) such that γ = p

dx+2p
. Therefore, the learner usually belongs to the slow rate regime (γ < 1

4

when dx is large).

On the other hand, for a number of other nonparametric models, we verify the condition that (9) holds and check
the corresponding rate γv, γb with c(z, Y ) = (z − Y )2 to illustrate basic properties of the learner for readers to
get familiarity, where z∗o(x) becomes E[Y |x] there.

Example 4. We recall existing results from [57, 6]:

Example 5 (Convergence Rate of Random Forest Regression) When we have no constraints, it reduces to
similar problems as in the mean estimation z∗(x) = E[Y |x] [57]. Then we can represent Bn,x = ẑ(x) −

E[ẑ(x)] = O

(
n
−πβ log(1−ω)

2dx log ω

)
and ϕn,x((Xi, Yi)) = sn (E[T |(Xi, Yi)]− E[T ]) through Hajek projection
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for some bounded random variable T such that 1
n
ϕn,x((Xi, Yi)) = Op(n

1−β
2 ). Here, where sn is the

subsample size with limn→∞ sn = ∞, limn→∞ sn logd(n)/n = 0 by Theorem 8 in [57] and Theorem 5 in [6]
for sn = nβ , where ω means the training examples are making balanced splits in the sense that each split puts
at least a fraction ω of observations in the parent node and π means that the probability that the tree splits on
the j-th feature is bounded from below at every split in the randomization.

In this case, this result above gives a convergence rate γv = 1−β
2

and γb ≥ −πβ log(1−ω)
2dx logω

. Certainly, this also
does not obey the lower bound result around the discussion in Lemma 5.

We demonstrate that some kernel estimators also satisfy our previous conditions:

Example 6 (Kernel Learner) wn,i(x) = K((Xi − x)/hn) with the hyperparameter hn and the kernel K(·),
where K : Rdx 7→ R with

∫
K(x)dx < ∞. Standard kernels include the naive kernel K(x) = 1∥x∥2≤r and

Gaussian kernel K(x) = exp(−∥x∥2).

Specifically, for the regression problem, we have:

Example 7 (Nadaraya-Watson Regression [13]) Consider the Nadaraya-Watson kernel regression ẑ(x) =∑n
j=1

Kh(x−Xj)∑n
i=1 Kh(x−Xi)

Yj for some Kh(x) = K(x/h)/h. This is the solution when ℓ(z;Y ) = (z − Y )2. Then

Bn,x = z∗(x)−E[ẑ(x)] and ϕn,x((Xi, Yi)) =
Khn (x−Xi)

Eξ[Khn (x−ξ)]
(Yi−E[Y |Xi]). If we choose hn = Θ(n

− 1
dx+2 ),

then (9) holds for many classical kernels, e.g. Gaussian kernel K(x) = exp(−∥x∥2) and naive kernel
K(x) = 1{∥x∥2≤r} for some constant r.

Proposition 3 (Convergence Rate of Kernel Regression) Suppose X follows a uniform distribution
[−1, 1]dx and Y = f(X) + g(X)ϵ for the normal ϵ with some bounded functions f(X), g(X). When
we take Kh(x) = 1{∥x∥2≤h} (See more details in Chapter 5 of [33]), then Bn,x = O(hn) and VDn,x =

Op(n
−1/2h

−dx/2
n ) as long as we tune hn such that hn → 0 and nhdx

n → ∞ as n → ∞. And
1
n

∑n
i=1 ϕn,x((Xi, Yi)) = Op(n

−1/2h
−dx/2
n ) with:

ϕn,x((Xi, Yi)) = (Yi − E[Y |Xi])1{∥x−Xi∥2≤hn}h
−dx
n = Op(h

−dx/2
n )

ϕn,Xi((Xi, Yi)) = (Yi − E[Y |Xi])h
−dx
n = Op(h

−dx
n ).

In this case, the convergence rate of ẑ(·)− z∗(·) =
(
n−1/2h

−dx/2
n ∨ hn

)
. We obtain γ ≤ 1

dx+2
when setting

hn = Θ(n
− 1

dx+2 ). This usually belongs to the slow rate regime (γ < 1
4

).

Remark 1 (Usage of Regularity Condition in Assumption 8) In the following proof, when it comes to non-
parametric models, we split it into two conditions that all the nonparametric models that satisfy (8), where we
replace it with (10) if needed since so far we only consider kNN learner in such category, or (9) should work.

B.4 Examples of Stability Conditions

Example 8 (Expected LOO Stability of kNN Model) For Example 3 with kn = 1, we can reparametrize the
data-driven decision (i.e. ẑ(x)) by

ẑ(x) =

n∑
j=1

1x∈Rj argmin
z∈Z

ℓ(z;Yj),

where Rj ⊆ X is the region (neighborhod of Xj) such that the closest point from {Xi}i∈[n] is Xj . Then since
the decision is bounded ∥z∥ ≤ C from Assumption 3, we have:

E[(ẑ(X)− ẑ(−i)(X))2] ≤ C2(P(Rj))
2 = O

(
1

n2

)
.

Thus αn = C
n

in the 1-NN Model.

More generally, if kn = o(n), the stability condition there can be shown through a symmetry technique from
[24] to obtain αn = O

(√
kn/n

)
= o(1/

√
n).

Example 9 (Expected LOO Stability of Parametric Models) Suppose the objective ℓ(z;Y ) is strongly con-
vex and Assumptions 2 and 3 hold. Then αn = O(1/n) in a standard empirical risk minimization approach
from [15], which includes all the parametric models we discuss.
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C Proofs in Section 3

The technical details of Theorem 1 and Theorem 2 have been specified in Section 4:

Proofs of Theorem 1. This follows from a combination of the results in Lemma 1 and Lemma 2. □

Proofs of Theorem 2. This follows from a combination of the results in Theorem 3 and Theorem 4. □

Before going to the detail proofs of evaluation bias and coverage guarantees for both plug-in and CV estimators,
we first mention two lemmas that will be used in the following detailed results:

Lemma 6 (Performance Gap) Suppose Assumptions 1 and 3 hold. For ẑ(·) in Definitions 1 and 2, we have
c(ẑ)− c(z∗) = Op(n

−2γ). And EDn [c(ẑ)]− c(z∗) = C/n2γ + o
(
n−2γ

)
for some C > 0.

To show this result, we take a second-order Taylor expansion for v(z;x) at z∗o(x) and notice the first-order term
can be eliminated through Assumption 3 without or with constraints.

Lemma 7 (Validity of Variability in Plug-in and Cross-Validation Approaches) Denote σ2 =
VarP∗ [ℓ(z∗(X);Y )]. Suppose Assumptions 1 and 3 hold. Then variance estimators σ̂2

p in (1) satisfy

σ̂2
p

L1→ σ2; And σ̂2
kcv in (2) satisfy σ̂2

kcv
L1→ σ2.

This result shows the width of each interval does not vary significantly in terms of Θ(n−1/2) and demonstrates
the need to study the bias for each approach to distinguish between them.

Proof of Lemma 6. First, we consider the nonparametric models in Assumption 2 where z∗(x) = z∗o(x).

Case 1: Z is an unconstrained set (Assumption 3). We take the second-order Taylor expansion at the center
z∗(x) for the inner cost objective v(z;x) = EPY |x [ℓ(z;Y )], ∀x. That is,

EP∗ [ℓ(ẑ(X);Y )]− EP∗ [ℓ(z
∗(X);Y )]

= EPX [∇zv(z
∗(x);x)(ẑ(x)− z∗(x))] +

1

2
EPX [(ẑ(x)− z∗(x))⊤∇2

zzv(z;x)(ẑ(x)− z∗(x))]

+ o(EPX∥ẑ(x)− z∗(x)∥2).

(11)

From Assumption 3, the first-order term above becomes zero since ∇zv(z
∗(x);x) = 0. And for the second-

order term above, we have: 0 ⪯ Hxx ⪯ λUIdx×dx∀x for some λU > 0 from Assumption 3. This implies
that:

0 ≤ 1

2
EPX [(ẑ(X)− z∗(X))⊤∇2

zzv(z;x)(ẑ(X)− z∗(X))] ≤ λUdx
2

EPX [∥ẑ(X)− z∗(X)∥2].

Therefore, we have EP∗ [ℓ(ẑ(X);Y )]− EP∗ [ℓ(z
∗(X);Y )] = Θ(∥ẑ − z∗∥22,Px).

Case 2: Z is a constrained set (Assumption 6). Recall ∇zz v̄(z
∗
o(x);x) := ∇zzv(z

∗
o(x);x) +∑

j∈J α∗
j (x; z

∗
o(x))∇zzgj(z

∗
o(x)) Similarly, we take the second-order Taylor expansion at the center z∗(x) for

the inner cost v(z;x). For each x ∈ X , we obtain:

v(ẑ(x);x)− v(z∗(x);x)

= ∇zv(z
∗(x);x)(ẑ(x)− z∗(x)) +

1

2
(ẑ(x)− z∗(x))⊤∇zzv(z

∗(x);x)(ẑ(x)− z∗(x)) + o(∥ẑ(x)− z∗(x)∥2),

= −

(∑
j∈J

α∗
j (x)∇zgj(z

∗(x))

)
(ẑ(x)− z∗(x)) + o(∥ẑ(x)− z∗(x)∥2)

+
1

2
(ẑ(x)− z∗(x))⊤

(
∇zz v̄(z

∗(x);x)−
∑
j∈J

α∗
j (x)∇zzgj(z

∗(x))

)
(ẑ(x)− z∗(x)),

(12)
where the second equality follows by the KKT condition from Assumption 6. And if we take the second-order
Taylor expansion for gj(z) at the center z∗(x) for each j ∈ J and x ∈ X , we have:

gj(ẑ(x))− gj(z
∗(x)) = ∇zgj(z

∗(x))(ẑ(x)− z∗(x))

+
1

2
(ẑ(x)− z∗(x))⊤∇zzgj(z

∗(x))(ẑ(x)− z∗(x)) + o(∥ẑ(x)− z∗(x)∥2)
(13)

The left-hand side above in (13) converges to 0 since gj(ẑ(x))− gj(z
∗(x))

p→ 0,∀j ∈ B from the first-order
expansion of gj(z) and ẑ(x)

p→ z∗(x) in Definition 2. Summing the terms of (13) over j ∈ J with each weight
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being α∗
j (x) and plugging it back into (12) to cancel ẑ(x)− z∗(x) out in the first-order term, we have:

v(ẑ(x);x)− v(z∗(x);x) =
1

2
(ẑ(x)− z∗(x))⊤∇zz v̄(z

∗(x);x)(ẑ(x)− z∗(x))

+
∑
j∈J

α∗
j (x)(gj(z

∗(x))− gj(ẑ(x))) + o(∥ẑ(x)− z∗(x)∥2)

=
1

2
(ẑ(x)− z∗(x))⊤∇zz v̄(z

∗(x);x)(ẑ(x)− z∗(x)) + o(∥ẑ(x)− z∗(x)∥2).
(14)

where the second equality above holds by (13). Then we integrate the left-hand side over x ∈ X with the
underlying measure PX and obtain:

c(ẑ)− c(z∗) =
1

2
EPX [(ẑ(x)− z∗(x))⊤∇zz v̄(z

∗(x);x)(ẑ(x)− z∗(x))] + o(∥ẑ − z∗∥22,PX ).

Then we consider parametric models in Assumption 1 if we suppose Assumption 6 holds. Here, the limiting
decision z∗(x) is often not equal to z∗o(x). When we do not have constraints We analyze the first-order term
above and have: EPX [Gx(ẑ(x)− z∗(x)] = 0 under Definitions 1 and 2. asp:add-param-decision

When Z is unconstrained, in Equation (11), the first-order optimality condition in Assumption 7 gives rise to
EPX [∇zv(z

∗(x);x)(ẑ(x)− z∗(x))] = 0. And the analysis under Assumption 1 follows similarly as the case
of Assumption 2. The only difference being that we directly analyze c(ẑ) − c(z∗) over x ∈ X . When Z is
constrained, the first-order optimality condition in : ∇zc(z

∗) +
∑

j∈J EP∗ [α
∗
j (θ

∗; z∗(x))∇zgj(z
∗(x))] = 0

In both cases, we obtain EP∗ [ℓ(ẑ(X);Y )]− EP∗ [ℓ(z
∗(X);Y )] = Θ(∥ẑ − z∗∥22,Px).

Then since EPY |x [∥ẑ − z∗∥22,Px ] = Θ(n−2γv ). Then we have:

EDn [c(ẑ)]− c(z∗) = C/n2γ + o(n−2γ),

which finishes the proof. □

Proof of Lemma 7. We establish the L1 convergence of the empirical variance term σ̂2
p to the true variance

VarP∗ [ℓ(z∗(X);Y )]. Applying the L1-LLN to ℓ(z∗(X); y) since the cost function is bounded, we have:

1

n

n∑
i=1

(ℓ(z∗(Xi);Yi)− c(z∗))2
L1→ VarP∗ [ℓ(z∗(X);Y )]

since Dn is i.i.d. and z∗(X) is independent with Dn. Therefore, we need to show that the following term
converges to 0:

EDn

[∣∣∣∣ 1n
n∑

i=1

[
(ℓ(ẑ(Xi);Yi)− cn(ẑ))

2 − (ℓ(z∗(Xi);Yi)− c(z∗))2
] ∣∣∣∣
]

≤ EDn

[∣∣∣∣(ℓ(ẑ(Xi);Yi)− cn(ẑ))
2 − (ℓ(z∗(Xi);Yi)− c(z∗))2

∣∣∣∣]
≤ EDn

[∣∣∣∣ℓ2(ẑ(Xi);Yi)− ℓ2(z∗(Xi);Yi)

∣∣∣∣]+ EDn

[∣∣∣∣c2n(ẑ)− c2(z∗)

∣∣∣∣]
+ 2EDn [|ℓ(ẑ(Xi);Yi))cn(ẑ)− ℓ(z∗(Xi);Yi)c(z

∗)|].

(15)

For the first term on the right-hand side in (15), we have:

EDn

[∣∣∣∣ℓ2(ẑ(Xi);Yi)− ℓ2(z∗(Xi);Yi)

∣∣∣∣] ≤ 2M0EDn

[∣∣∣∣ℓ(ẑ(Xi);Yi)− ℓ(z∗(Xi);Yi)

∣∣∣∣]
≤ 2M0M1EDn [|ẑ(Xi)− z∗(Xi)|] → 0.

For the second term on the right-hand side in (15), we have:

EDn

[∣∣∣∣c2n(ẑ)− c2(z∗)

∣∣∣∣] ≤ EDn

[∣∣∣∣c2n(ẑ)− c2n(z
∗)

∣∣∣∣]+ EDn

[∣∣∣∣c2n(z∗)− c2(z∗)

∣∣∣∣]
≤ 2M0M1EDn [|ẑ(Xi)− z∗(Xi)|] + 2M0EDn [|cn(z

∗)− c(z∗)|] → 0.

For the third term on the right-hand side in (15), we have:

EDn [|ℓ(ẑ(Xi);Yi))cn(ẑ)− ℓ(z∗(Xi);Yi)c(z
∗)|]

≤ EDn [|cn(ẑ)(ℓ(ẑ(Xi);Yi)− ℓ(z∗(Xi);Yi))|] + EDn [|ℓ(z
∗(Xi);Yi)(cn(ẑ)− c(z∗))|]

≤ M0M1EDn [|ẑ(Xi)− z∗(Xi)|] +M0EDn [|cn(ẑ)− cn(z
∗)|] +M0EDn [|cn(z

∗)− c(z∗)|] → 0.
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Therefore, we show that the variance estimator of the plug-in estimator converges.

In terms of the convergence of σ̂kcv , following the same routine as before, we also only need to show:

EDn

∣∣∣∣ 1n ∑
k∈[K]

∑
i∈Nk

(
(ℓ(ẑ(−Nk)(Xi);Yi)− Âkcv)

2 − (ℓ(z∗(Xi);Yi)− c(z∗))2
) ∣∣∣∣


≤ 1

n

∑
k∈[K]

∑
i∈Nk

EDn

[∣∣∣∣(c(ẑ(−Nk)(Xi);Yi)− Âkcv)
2 − (c(z∗(Xi);Yi)− c(z∗))2

∣∣∣∣] .
Then we can use the same error decomposition as in (15) and show that L1-consistency. □

D Proofs of Evaluation Bias in Section 4.1

D.1 Evaluation Bias of the Plug-in Estimator

Proof of Lemma 1. We first consider the case where ℓ(z;Y ) is twice differentiable with respect to z for all Y .
And the proof generalizing to the piecewise twice differentiable function satisfying Assumption 2 is the same as
in the parametric setup following Theorem 3 from [36],

The bias for parametric models is provided in Theorem 1 from [36] where γ = 1/2 and the bias is Θ(n−1/2).
For nonparametric models that satisfy Definition 2, recall the definition of zn(x), and we define:

T1 =
1

n

n∑
i=1

ℓ(ẑ(Xi);Yi)−
1

n

n∑
i=1

ℓ(zn(Xi);Yi)

T2 = E[ℓ(zn(X);Y )− ℓ(ẑ(X);Y )].

We expand the term inside the expectation as:

E[ 1
n

n∑
i=1

ℓ(ẑ(Xi);Yi)]− E[ℓ(ẑ(X);Y )] = E[T1] + E[T2] + E

[
1

n

n∑
i=1

ℓ(zn(Xi);Yi)− E[ℓ(zn(X);Y )]

]
,

= E[T1] + E[T2],

Then the second equality follows by zn(·) is a deterministic mapping and the observation that {(Xi, Yi)}i∈[n]

are i.i.d.

(i) Consider the nonparametric model with respect to the expansion scenario in (9). For (9), we have: ẑ(x) −
zn(x) =

1
n

∑n
i=1 ϕn,x((Xi, Yi)) + op(n

−2γv ). And that higher-order term op(n
−γv ) can be ignored since we

only focus on the term with the order of o(n−2γv ). More detailedly, ignoring the o(∥ẑ(·)−zn(·)∥22) = o(n−2γv )
term, we take second-order Taylor expansions to both terms T1 and T2.

For the term T1, we have:

E[T1] = E
[
1

n

n∑
i=1

∇zℓ(zn(Xi);Yi)
⊤(ẑ(Xi)− zn(Xi))

+
1

2n

n∑
i=1

(ẑ(Xi)− zn(Xi))
⊤∇2

zzℓ(zn(Xi);Yi)(ẑ(Xj)− zn(Xj))

]
=

1

n
E[∇zℓ(zn(Xi);Yi)

⊤ϕn,x((Xi, Yi))] +
1

2
E[(ẑ(Xi)− zn(Xi))

⊤∇2
zzℓ(zn(Xi);Yi)(ẑ(Xi)− zn(Xi))],

where the second equality above follows by:

E

[
1

n

n∑
i=1

∇zℓ(zn(Xi);Yi)
⊤(ẑ(Xi)− zn(Xi))

]

= E

[
1

n

n∑
i=1

∇zℓ(zn(Xi);Yi)
⊤(

1

n

n∑
i=1

ϕn,Xi((Xi, Yi)))

]

=
1

n2

n∑
i=1

E[∇zℓ(zn(Xi);Yi)
⊤ϕn,Xi((Xi, Yi))] +

1

n2

∑
i ̸=j

E[∇zℓ(zn(Xi);Yi)
⊤ϕn,Xi((Xj , Yj))]

= −E[∇zℓ(zn(X);Y )⊤ϕn,X((X,Y ))]

n
+ 0 = −E[∇zℓ(zn(X);Y )⊤ϕn,X((X,Y ))]

n
,

(16)
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where the third equality above in (16) follows by the independence of the model index under i and j under the
conditional expectation. More specifically, ∀i ̸= j, we have:

E[∇zℓ(zn(Xi);Yi)
⊤ϕn,Xi((Xj , Yj))] = E(Xi,Yi)E(Xj ,Yj)[∇zℓ(zn(Xi);Yi)

⊤ϕn,Xi((Xj , Yj))]

= E(Xi,Yi)[∇zℓ(zn(Xi, Yi))
⊤E(Xj ,Yj)[ϕn,Xi((Xj , Yj))]]

(a)
= 0.

The equality (a) above follows by the fact that conditioned on any covariate x, E(X,Y )[ϕn,x((X,Y ))] = 0.
This implies the last equality of (16).

For the term T2, we have:

T2 = E[∇zℓ(zn(X);Y )⊤(ẑn(X)− z(X))]− 1

2
E[(ẑ(X)− zn(X))⊤∇2

zzℓ(zn(X);Y )(ẑ(X)− zn(X))]

= 0− 1

2
E[(ẑ(X)− zn(X))⊤∇2

zzℓ(zn(X);Y )(ẑ(X)− zn(X))],

where the first equality of T2 follows by the chain rule of the conditional expectation under the stochastic Dn:

E[∇zℓ(zn(X);Y )⊤(ẑ(X)− zn(X))] = EP∗ [∇zℓ(zn(X);Y )⊤Eẑ[ẑ(X)− zn(X)]] = 0,

On the other hand, we show that the second-order term of right-hand side of E[T1] and E[T2] is o(n−2γ). We
only consider the case of dz = 1. This is because generalizing to the case of dz > 1 only requires to sum over
each elementwise component from the matrix (ẑ(x)− zn(x))(ẑ(x)− zn(x))

⊤.

We first consider bounding the difference as follows:

EPX ,ẑ[∥ẑ(X)− zn(X)∥2]− EPX ,ẑ[∥ẑ(Xi)− zn(Xi)∥2]

= E

[∥∥∥∥ 1n
n∑

i=1

ϕn,X((Xi, Yi))

∥∥∥∥2
]
− E

[∥∥∥∥ 1n
n∑

j=1

ϕn,Xi((Xj , Yj))

∥∥∥∥2
]
+ o(n−2γv )

=
1

n2

∑
i∈[n]

EPX ,Xi [ϕ
2
n,x((Xi, Yi))]−

1

n2

 ∑
j∈[n],j ̸=i

EXi,Xj [ϕ
2
n,Xi

((Xj , Yj))] + EXi [ϕ
2
n,Xi

((Xi, Yi))]

+ o(n−2γv )

= − 1

n2

(
EXi [ϕ

2
n,Xi

((Xi, Yi))]− EPX ,Xi [ϕ
2
n,x((Xi, Yi))]

)
+ o(n−1+1−2γv ) = o(n−2γv ),

(17)
where the second equality above follows by expanding

(
1
n

∑n
i=1 ϕn,x((Xi, Yi))

)2 and(
1
n

∑n
i=1 ϕn,Xi((Xi, Yi))

)2 such that the inner product terms of Xi and Xj cancels out. Then we
apply the result from Assumption 2 to obtain the result in (17).

Then we consider the noise difference that incorporates the Hessian matrix, that is putting ∇zzℓ(zn(Xi);Yi)
into ẑ(Xi) − zn(Xi) and ∇zz[ℓ(zn(X);Y )] into ẑ(X) − zn(X). Note that if we take ∇zzℓ(zn(X);Y ) =
g((X,Y ))g((X,Y ))⊤, then we can replace the original influence function ϕn,X((X,Y )) with
ϕn,X((X,Y ))g((X,Y )), which does not affect the order of the influence function with respect to n
since g((X,Y )) is of the constant level. Then it reduces to the similar analysis in (17) as the term
EPX ,ẑ[∥ẑ(X)− zn(X)∥2]− EPX ,ẑ[∥ẑ(Xi)− zn(Xi)∥2].

Therefore, based on the two results above, the numerator part of the only bias term in (16) becomes:

− EP(X,Y )
[∇zℓ(zn(X);Y )⊤ϕn,X((X,Y ))]

= EP(X,Y )
[∇zℓ(zn(X);Y )⊤H−1

n,Xwn,x(X)∇zℓ(zn(X);Y )]

= EPX [wn,X(X)EPY |xTr[H−1
n,x · ∇zℓ(zn(X);Y )∇zℓ(zn(X);Y )⊤]]

= EP(X,Y )
[Tr[H−1

n,X · ∇zℓ(zn(X);Y )∇zℓ(zn(X);Y )⊤]] = Θ(EP(X,Y )
[wn,x(X)]−1) = Θ(n1−2γv ).

where Hx = ∇zzEPY |x [wn,x(X)ℓ(zn(x);Y )] and the last equation follows from (9).

(ii) Consider the nonparametric model with respect to the expansion scenario in (10). Consider the expansion
of E[T1] and T2, following the similar proof calculations to cancel out the term EPX ,ẑ[∥ẑ(X)− zn(X)∥2]−
EPX ,ẑ[∥ẑ(Xi)− zn(Xi)∥2] and plugging in the expansion, we have:

E[T1 + T2] =
n

kn
Tr[E[H−1

kn,Xi
ℓ(zn(Xi);Yi)ℓ(zn(Xi);Yi)

⊤]] = Θ

(
n

kn

)
= Θ(n1−2γv ).

Therefore, in both cases, −E[∇zℓ(zn(X);Y )⊤ϕn,X ((X,Y ))]

n
= Θ(n−2γv ) > 0, which finishes the proof.
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Proposition 4 (Optimistic Bias for kNN) Suppose Assumptions 1, 2 and 3 hold. Consider kNN estimators in
Example 3, then there exists one P(X,Y )(n) for each n such that the bias term EDn [cn(ẑ)−c(ẑ)] = Θ (1/kn) =

Θ(n−2γv ).

In the proof of Proposition 4, we construct P(X,Y )(n) as a mixture distribution where the marginal support PX

of each component is separate and the conditional distribution PY |x for x within each component is the same.
Then to analyze the bias, we need to focus on the bias within each component, which reduces a well-known
problem to the plug-in bias for the standard stochastic optimization (e.g., [46, 36]) with a Θ(1/n) bias with
n samples; In our kNN case, we have kn effective samples used to obtain ẑ(Xi) for each i ∈ [n], therefore
constituting an Θ(1/kn) bias.

We state the following non-contextual bias lemma before diving into Proposition 4:

Lemma 8 (Optimistic Bias in Stochastic Optimization from [46, 36]) Suppose Assumptions 1, 2, 3 holds.
Consider the sample average approximation (SAA) solution ẑ(x) = ẑ, ∀x ∈ X , where:

ẑ ∈ argmin
z∈Z

1

n

n∑
i=1

ℓ(z;Yi),

Then: E[ 1
n

∑n
i=1 c(ẑ;Yi)] = E[c(ẑ;Y )] + C

n
+ o

(
1
n

)
for some C < 0.

Proof of Proposition 4. For each pair choice n and kn, we construct an example of P(X,Y ). W.l.o.g., we assume
kn := n

2kn
∈ Z and construct the following multi-cluster distribution PX =

∑
i∈[kn]

1
kn

1X∈RiU(Ri), where
U(Ri) denotes the uniform distribution over the region Ri, the area of each |Ri| being the same. We can partition
the regions {Ri}i∈[kn] such that diam(Ri) < d(Ri, Rj), ∀i and j ̸= i. Therefore, E[

∑n
i=1 1Xi∈Rj ] = 2kn, ∀j.

And each conditional distribution Y |X ∼
∑

i∈[kn] P
i
Y 1X∈Ri for kn distributions {Pi

Y , i ∈ [kn]}.

Under the event E = {
∑n

i=1 1Xi∈Rj ≥ kn, ∀j}, each in-sample decision ẑ(Xi) only selects the data from the
same region and incurs the same optimistic bias as the SAA method. Recall ẑ(Xi) from Example 3 is equivalent
to the SAA method using that kn samples since it uses the data from the same Y distribution as Xi conditioned
on each Xi (i.e. some Pi

Y ). That is ẑ(Xi) ∈ argminj∈Ni,kn
ℓ(z;Yj) for the kn nearest covariates X with

indices Ni,kn , which includes Yi and other kn − 1 points from the same cluster.

Recall the result from the general optimistic bias result in the uncontextual stochastic optimization (Lemma 8).
Since ẑ(Xi) only involves kn samples around Xi, we immediately have:

E[ℓ(ẑ(Xi);Yi)|E ] = E[ℓ(ẑ(X);Y )|E ] + Θ

(
1

kn

)
,

Then we show P(E) ≈ 1 when n is large, which follows from a union of kn Chernoff bounds with the
multiplicative form applying to n random variables {1Xi∈Rj}i∈[n] ∀j ∈ [kn]. That is:

P(Ec) = P(
n∑

i=1

1Xi∈Rj < kn, ∃j) ≤
∑

j∈[kn]

P(
n∑

i=1

1Xi∈Rj < kn) ≤ kn exp(−2kn/8),

which converges to 0 exponentially fast with respect to the sample size n since we set kn = Ω(nδ) for some
δ > 0. Therefore, we have:

E[ 1
n

n∑
i=1

ℓ(ẑ(Xi);Yi)] = E[ℓ(ẑ(Xi);Yi)]

= E[ℓ(ẑ(Xi);Yi)|A]P(A) + E[ℓ(ẑ(Xi);Yi)|Ac]P(Ac)

= E[ℓ(ẑ(X);Y )|A]P(A) + o

(
C

kn

)
+ E[ℓ(ẑ(X);Y )|Ac]P(Ac) + P(A)

C

kn

= E[ℓ(ẑ(X);Y )] + Θ

(
1

kn

)
,

where the third equality follows by the fact that: |E[ℓ(ẑ(Xi);Yi)|Ac]− E[ℓ(ẑ(X);Y )|Ac]|P(Ac) = o
(

1
kn

)
from the comparison between the exponentially tail and kn = Ω(nδ). □

D.2 Evaluation Bias of Cross-Validation Estimator

Proof of Lemma 2. We first consider the K-fold CV for any fixed K. Note that from Lemma 6, Following the
performance gap result from Lemma 6, we have:

c(ẑ)− c(z∗) =
C

n2γ
+ o

(
n−2γ) , γ <

1

4
.

23



Since K-fold CV is an unbiased estimate of model performance trained with n(1 − 1/K) samples, then we
have:

E[Âkcv] = EDn [c(ẑ
(−Nk))] = c(z∗) + C/(n(1− 1/K)2γ) + o(n(1− 1/K))−2γ)

Then comparing the two equations above, if we ignore the terms of o(n−2γ) for any fixed K, we have:

E[Âkcv − c(ẑ)] =
C

n2γ(1− 1
K
)2γ

− C

n2γ

=
C

n2γ
((1− 1/K)−2γ − 1)

≥ C

n2γ

(
1

1− 2γ/K
− 1

)
=

C

n2γ
· 2γ

K − 2γ
.

where the first inequality follows by Bernouli’s inequality that (1 + x)r ≤ 1 + rx for r ∈ [0, 1] and x ≥ −1.
For the other side, we have:

E[Âkcv − c(ẑ)] =
C

n2γ
((1− 1/K)−2γ − 1) ≤ C

n2γ

(
(1 +

2

K
)2γ − 1

)
≤ 4γC

Kn2γ
,

where the first inequality follows from (1− x)−1 ≤ 1 + 2x when x ∈ (0, 1
2
] and the second inequality applies

the Bernouli’s inequality again. Therefore, the bias of K-fold CV is Θ(K−1n−2γ).

Then we consider LOOCV, which can be directly calculated through the proof of Lemma 6. Suppose we are
in the unconstrained case but we take the second-order Taylor expansion with Maclaurin remainder to both
c(ẑ(−i))− c(z∗) and c(ẑ)− c(z∗). This obtains:

E[c(ẑ(−i))− c(ẑ)] = E[c(ẑ(−i))]− c(z∗)− (E[c(ẑ)]− c(z∗))

=
1

2
E[(ẑ(−i)(x)− z∗(x))⊤Hẑ(−i)(ẑ

(−i)(x)− z∗(x))]− 1

2
E[(ẑ(x)− z∗(x))⊤Hẑ(ẑ(x)− z∗(x))],

=
1

2
E[(ẑ(−i)(x)− z∗(x))⊤(Hẑ(−i) −Hẑ)(ẑ

(−i)(x)− z∗(x))]

+ Θ(E[∥ẑ(−i)(x)− z∗(x)∥2]− E[∥ẑ(x)− z∗(x)∥2]) = Θ(n−1−2γ) + o(1/n).

where Hz = ∇2
zzc(λ(x)z

∗ + (1 − λ(x))z) as the Maclaurin remainder with λ(x) ∈ [0, 1], ∀x. And the
last equality follows by the continuity of Hz and then recall the stability condition such that EDn,P∗ [∥ẑ(x)−
ẑ(−i)(x)∥] = Θ(n−1) and apply to both terms. □.

E Proofs of Variability in Section 4.2

E.1 Variability of the Plug-in Estimator

E.1.1 S3 is sufficient for S1

Proposition 5 (Fast Rate Implies Stability) Suppose Assumptions 1, 2, 3 and 4 hold. For ẑ(·) in Assumption 2

with γv > 1/4, then βn = o
(
n−1/2

)
.

Proof of Proposition 5. Note that ∀i ∈ [n], we have:

EDn [|ẑ(Xi)− ẑ(−i)(Xi)|] = EDn [|(EDn [ẑ(Xi)]− EDn [ẑ
(−i)(Xi)])

+ (ẑ(Xi)− E[ẑ(Xi)])− (ẑ(−i)(Xi)− E[ẑ(−i)(Xi)])|]

≤ (EDn [ẑ(Xi)]− EDn [ẑ
(−i)(Xi)])

+ EDn [|(ẑ(Xi)− E[ẑ(Xi)])− (ẑ(−i)(Xi)− E[ẑ(−i)(Xi)])|],

where the first part denotes the bias difference and the second part denotes the variance difference. Then we
need to show the two differences term are of order o(n−1/2). We divide them into two lemmas (Lemma 9 and
Lemma 10). Then the result holds. □

Lemma 9 (Bias Stability) When αn = o(n−1/2) and γv > 1
4

, EDn [ẑ(Xi)] − EDn [ẑ
(−i)(Xi)] = o(n−1/2)

for ẑ(·) in Assumption 2.
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Proof of Lemma 9. First, notice that: EDn [ẑ
(−i)(Xi)] = EPX ,Dn [ẑ

(−i)(x)] since Xi and ẑ(−i) are independent.
And we have E[ẑ(x)− ẑ(−i)(x)] = o(n−1/2) from αn = o(n−1/2). Therefore, we only need to show:

EPX ,ẑ[ẑ(Xi)− ẑ(x)] = o(n−1/2).

In the following two cases, we decompose the influence expansion for the two estimators.

When ẑ(·) satisfies (8) (or (10) specially): Note that γv > 1
4

is equivalent to saying kn = w(n1/2). From (10),
∀i ∈ [n], we have:

E[ẑ(x)]− EPX [zn(x)] = −E

H−1
kn,x

kn

∑
i∈NDn,x(kn)

∇zℓ(zn(x);Yi)

+ o(k−1
n )

= −EPX

H−1
kn,x

kn
EDn

 ∑
i∈NDn,x(kn)

∇zℓ(zn(x);Yi)

+ o(k−1
n ) = o(k−1

n ),

where the second equality follows by the definition of zn(x) such that EDn [
∑

i∈NDn,x(kn) ∇zℓ(zn(x);Yi)] =

0. In contrast, ignoring the term o(k−1
n ) in the derivation, we have:

E[ẑ(Xi)]− EPX [zn(Xi)] = −E

H−1
kn,Xi

kn

∑
j∈NDn,Xi

(kn)

∇zℓ(zn(Xj);Yj)

+ o(k−1
n )

= −E

H−1
kn,Xi

kn

∑
j∈NDn,Xi

(kn),j ̸=i

∇zℓ(zn(Xj);Yj)

− 1

kn
E
[
H−1

kn,Xi
∇zℓ(zn(Xi);Yi)

]
= 0− 1

kn
E
[
H−1

kn,Xi
∇zℓ(zn(Xi);Yi)

]
= − 1

kn
E
[
H−1

kn,Xi
∇zℓ(zn(Xi);Yi)

]
where the third equality follows by Xi and {Xj}j∈[n],j ̸=i are independent and using the same argument as the
previous ones EDn [

∑
i∈NDn,x(kn) ∇zℓ(zn(x);Yi)] = 0. Therefore, we have:

E[ẑ(Xi)− ẑ(x)] = − 1

kn
EDn

[
H−1

kn,Xi
∇zℓ(zn(Xi);Yi)

]
+ o(kn) = Θ(kn) = o(n−1/2).

When ẑ(·) satisfies (9) or (7), following similar results as in kNN models, E[ẑ(x)]− E[zn(x)] = o(n−2γv ) =

o(n−1/2). Besides, we have:

E[ẑ(Xi)]− EPX [zn(Xi)] = − 1

n
E[H−1

Dn,Xi
wn(Xi, Xi)∇zℓ(zn(Xi);Yi)]

= − 1

n
E[H−1

Dn,Xi
∇zℓ(zn(Xi);Yi)] = o(n−2γv ) = o(n−1/2).

Lemma 10 (Variance Stability) When αn = o(n−1/2) and γv > 1
4

, EDn [|(ẑ(Xi) − E[ẑ(Xi)]) −
(ẑ(−i)(Xi)− E[ẑ(−i)(Xi)])|] = o(n−1/2) for ẑ(·) in Assumption 2.

Proof of Lemma 10. When ẑ(·) satisfies (8) (or (10) specifically): Ignoring the o(k−1
n ) terms across equalities,

we have:
(ẑ(Xi)− E[ẑ(Xi)])− (ẑ(−i)(Xi)− E[ẑ(−i)(Xi)])

= −
H−1

kn,Xi

kn

∑
j∈NDn,Xi

(kn)

∇zℓ(zn(Xj);Yj) +
H−1

kn−1,Xi

kn−1

∑
j∈NDn−1,Xi

(kn−1)

∇zℓ(zn−1(Xj);Yj)

= −
H−1

kn,Xi

kn
∇zℓ(zn(Xi);Yi) +

(
H−1

kn−1,Xi

kn−1
−

H−1
kn,Xi

kn

) ∑
j∈NDn,Xi

(kn),j ̸=i

(∇zℓ(zn(Xj);Yj)−∇zℓ(zn−1(Xj);Yj)) .

We take the expectation to the two terms on the right-hand side. For the first term, we have:

E

[
|
H−1

kn,Xi

kn
∇zℓ(zn(Xi);Yi)|

]
≤

EXi [H
−1
kn,Xi

∇zℓ(zn(Xi);Yi)]

kn
= Θ(k−1

n ).
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For the second term, we have:

E

∣∣∣∣
(
H−1

kn−1,Xi

kn−1
−

H−1
kn,Xi

kn

) ∑
j∈NDn,Xi

(kn),j ̸=i

(∇zℓ(zn(Xj);Yj)−∇zℓ(zn−1(Xj);Yj))

∣∣∣∣


= EXi

[∣∣∣∣
(
H−1

kn−1,Xi

kn−1
−

H−1
kn,Xi

kn

)∣∣∣∣
]
EDn\Xi

∣∣∣∣ ∑
j∈∈NDn,Xi

(kn),j ̸=i

(∇zℓ(zn(Xj);Yj)−∇zℓ(zn−1(Xj);Yj))

∣∣∣∣


where the first equality follows by Xi and {Xj}j ̸=i are independent. On one hand, we know H−1
kn−1,Xi

=

Hkn,Xi + o(1), which implies that: EXi

[∣∣∣∣ (H−1
kn−1,Xi

kn−1
−

H−1
kn,Xi
kn

) ∣∣∣∣] = o(k−1
n ). On the other hand:

EDn\Xi

∣∣∣∣ ∑
j∈∈NDn,Xi

(kn),j ̸=i

(∇zℓ(zn(Xj);Yj)−∇zℓ(zn−1(Xj);Yj))

∣∣∣∣


≤ knLEDn\Xi
[|zn(Xi)− zn−1(X)|] = o(knn

−1/2).

Combining these two arguments, we have: EDn [|(ẑ(Xi) − E[ẑ(Xi)]) − (ẑ(−i)(Xi) − E[ẑ(−i)(Xi)])|] =
Θ(k−1

n ) + o(n−1/2) = o(n−1/2) for kNN models.

When ẑ(·) satisfies (9) or (7), we use the notation in Assumption 2. Then variability difference becomes:

EDn [|(ẑ(Xi)− E[ẑ(Xi)])− (ẑ(−i)(Xi)− E[ẑ(−i)(Xi)])|]

= E

∣∣∣∣ 1nϕn,Xi((Xi, Yi)) +
∑
j ̸=i

(
ϕn,Xi

n
− ϕn−1,Xi

n− 1

)
((Xj , Yj))

∣∣∣∣


≤ E [|ϕn,Xi((Xi, Yi))|]
n

+
1

n− 1
E

∣∣∣∣∑
j ̸=i

(ϕn,Xi − ϕn−1,Xi)((Xj , Yj))

∣∣∣∣


+
1

n(n− 1)

∑
j ̸=i

E[|ϕn,Xi((Xj , Yj))|]

= O(n−2γv ) +O(n− 1
2 · n−γv ) +O(n−1 · n1/2−γv ) = O(n−2γv ).

where the second equality follows by the fact that E[|ϕn,x((X,Y ))|] = O(n1−2γv ) from Assumption 8; the
second term {(ϕn,x − ϕn−1,x((Xj , Yj))|}j∈[n],j ̸=i are n − 1 i.i.d. random variables with each mean 0 and
variance E[|(ϕn,x − ϕn−1,x)((Xj , Yj))|2] < ∞. Then the central limit theorem and uniform convergence

imply: 1
n−1

E
[∣∣∣∣∑j ̸=i(ϕn,Xi − ϕn−1,Xi)((Xj , Yj))

∣∣∣∣] = O(n−1/2). This finishes our proof for the variability

stability for nonparametric models. □

E.1.2 S3 is necessary for S2

Proposition 6 (Optimistic Bias Implies Coverage Invalidity) Suppose Assumptions 1, 2 and 3 hold. When
EDn [B] = EDn [cn(ẑ)− c(ẑ)] = Ω(n−1/2), S2 does not hold.

Proof of Proposition 6. When the evaluation bias E[Bn] = Ω(n− 1
2 ), we show that we cannot have:

√
nB

d→
N(0, σ2).

Recall from the proof of Lemma 1, we have: B = T1+T2+cn(zn)−c(zn). We can verify that VarDn [T1+T2] =

o(n−2γv ) through the same analysis as in Lemma 1. Therefore, we have: n2γ(T1 + T2)
d→ n2γE[T1 + T2] =

Θ(1) > 0 by Chebyshev inequality. Denote the right-hand side of the convergence limit as C > 0. Besides
√
n(cn(zn) − c(zn))

d→ N(0, σ2) from CLT and zn(·)
p→ z∗(·). Therefore, if γ = 1/4, we have:

√
nB

d→
N(C, σ2); if γ < 1/4, we have: n2γB

d→ C. In both cases, Ip cannot provide a valid coverage guarantee for
c(ẑ). □

E.1.3 S1 is sufficient for S2

Proposition 7 (Stability Implies Coverage) Suppose Assumptions 1, 3 and 4 hold. Then S1 implies S2.
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Lemma 11 (CLT for Plug-in Estimator) Suppose Assumptions 1, 2, 3 and 4 hold. If βn = o(n−1/2), then

the plug-in estimator Âp in (1) satisfies
√
n(Âp − c(ẑ))

d→ N(0, σ2).

Proof of Proposition 7. This result directly follows by the combination of Lemma 11 and Lemma 7. □.

The proof of Lemma 11 follows from verifying the stochastic equincontinuity condition of the plug-in estimator
as follows:

Lemma 12 (General Result for Stochastic Equicontinuity of Plug-in Estimator, Lemma 2 of [18]) For
the estimator ĝ ∈ G which is function of v that is estimated through {Vi}i∈[n] and ĝ(−i) is estimated

through {Vj}j∈[n]\{Vi} and there exists some g0 such that ĝ
L2→ g0, denote A(V ; g) = Ev[a(v; g)] and

An(V ; g) = 1
n

∑n
i=1 a(Vi; g). Suppose we have the following condition:

Eĝ,ĝ(−i) [|a(Vi, ĝ)− a(Vi, ĝ
(−i))|] = o(n−1/2),∀i ∈ [n];

Eĝ,ĝ(−i),V [|a(V, ĝ)− a(V, ĝ(−i))|2] = o(n−1),∀i ∈ [n]

and for g1, g2 ∈ G, E[(a(V ; g1) − a(V ; g2))
2] ≤ LEv[∥g1 − g2∥q2] for some q < ∞. Then

√
n((A(ĝ) −

A(g0))− (Ân(ĝ)− Ân(g0))) = op(1).

Proof of Lemma 11. This result follows by considering c(ẑ) and c(z∗) as the empirical and population version
of the objective, i.e.,terms An(·) and A(·) there in Lemma 12. Compared with our notion, we need to verify the
following three conditions:

• Eẑ,ẑ(−i)E[|ℓ(ẑ(Xi);Yi)− ℓ(ẑ(−i)(Xi);Yi)|] = o(n−1/2);

• Eẑ,ẑ(−i)E[|ℓ(ẑ(X);Y )− ℓ(ẑ(−i)(X);Y )|2] = o(n−1);

• For any two measurable function z1(X), z2(X), we have:

EP∗ [(ℓ(z1(X);Y )− ℓ(z2(X);Y ))2] ≤ L(EPX [∥z1(X)− z2(X)∥])q,
for some L > 0 and q < ∞.

The first two results directly follow by the stability condition that αn, βn = o
(
n−1/2

)
and the conditions in

Assumption 2 that ∇zℓ(z;Y ) is bounded. And the third condition is verified through the first-order expansion
that:

EP(X,Y )
[(ℓ(z1(X);Y )− ℓ(z2(X);Y ))2] = EPX,Y [((∇zℓ(z̃(X);Y ))⊤(z1(X)− z2(X)))2]

≤ (EPX [EPY |X∥∇zℓ(z̃(X);Y )∥2])(EPX [∥z1(X)− z2(X)∥2])

≤ M2
1 (EPX [∥z1(X)− z2(X)∥2]),

where we take L ≥ EPX [EPY |x∥∇zℓ(z̃(X);Y )∥2] and q = 2 such that these conditions hold. □

E.1.4 Other Details

Corollary 1 (Coverage of Plug-in Estimator’s Interval) Suppose Assumptions 1, 2, 3,and 4 hold. If γ > 1/4,
Ip provides a valid coverage guarantee for c(ẑ), c(z∗),EDn [c(ẑ)].

For parametric models under Assumption 1, we have γ = 1/2 > 1/4, and the expected LOO stability notion is
satisfied. Therefore, Corollary 1 always holds for parametric models.

We first state the following result based on the standard Slutsky’s theorem:

Lemma 13 (Bias and CLT) For a random sequence An satisfying
√
n(An − A)

d→ N(0, σ2), if another

random term B = A+ op(n
−1/2), then

√
n(An −B)

d→ N(0, σ2).

Proof of Corollary 1. Note that if γ > 1/4, we have:
√
n(cn(ẑ) − c(ẑ))

d→ N(0, σ̂2) from Lemma 11.
Combining it with Lemma 7, it is easy to see that Ip provides a valid coverage guarantee for c(ẑ).

Furthermore, consider An = cn(ẑ) and A = c(ẑ). And if we set B = EDn [c(ẑ)] and c(z∗) respectively, then
we have: B = A+ op(n

−1/2) from Lemma 6. Then applying Lemma 13, we stil have:
√
n(cn(ẑ)− c(ẑ))

d→ N(0, σ2)
√
n(cn(ẑ)− EDn [c(ẑ)])

d→ N(0, σ2).

Therefore, Ip provides a valid coverage guarantee for c(z∗) and EDn [c(ẑ)]. □
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E.2 Variability of Cross-Validation Estimator

Before the proofs of the equivalence condition of cross-validation estimator (i.e. Theorem 4), we list the CLT for
cross-validation.

Lemma 14 (CLT of Cross-Validation) Suppose Assumptions 1, 2, 3 and 4 hold. Then Âkcv in (2) satisfies:
√
n(Âkcv − Ã)

d→ N(0, σ2) with Ã =
∑

k∈[K] EP∗ [ℓ(ẑ
(−Nk)(X);Y )]/K. Here the same result holds for

Âloocv by setting K = n.

Note that the asymptotic normality of cross-validation does not depend on γ. However, the center from the CLT
in Lemma 14 is different from c(ẑ) or c(z∗), and the convergence rate γ determines whether the difference is
small. Therefore, the validity of the interval for K-fold CV to cover c(ẑ) still depends on γ.

Before moving to prove Lemma 14, we introduce the following stability from the conditions in [10]. We will
show that this can be directly implied from our assumptions of the cost function and the expected LOO stability:

Definition 5 (Loss Stability) Continuing from the setup in the main body with Dn, we call the loss stability
[39] by:

αls
n :=

1

n

n∑
i=1

EP(X,Y ),Dn [(ℓ̄(ẑ(X);Y )− ℓ̄(ẑ(−i)(X);Y ))2],

where ℓ̄(ẑ(X);Y ) = ℓ(ẑ(X);Y )− Eẑ[ℓ(ẑ(X);Y )].

We rewrite Theorem 1 in [10] and replace the uniformly integrable condition with our assumptions (since the
bounded cost function condition in Assumption 2 directly implies the uniformly integrable condition there):

Lemma 15 (CV of CLT from Theorem 1 in [10]) Suppose Assumptions 1, 2, 3 and 4 hold. If αls
n = o(1/n).

Then we have: √
n(Âkcv − Ã)

d→ N(0, σ2).

Proof of Lemma 14. To show this result, we only need to verify the loss stability is o (1/n) above. This follows
by:

(ℓ(ẑ(X);Y )− Eẑ[ℓ(ẑ(X);Y )])2 − (ℓ(ẑ(−i)(X);Y )− Eẑ(−i) [ℓ(ẑ
(−i)(X);Y )])2

≤ 2(ℓ(ẑ(X);Y )− ℓ(ẑ(−i)(X);Y )))2 + 2(Eẑ[ℓ(ẑ(X);Y )]− Eẑ(−i) [ℓ(ẑ
(−i)(X);Y )])2.

For the first term of the right-hand side above, due to the bounded gradient of ℓ, following the first-order Taylor
expansion inside the square notation, we have:

(ℓ(ẑ(X);Y )− ℓ(ẑ(−i)(X);Y )))2 ≤ M2
1 (ẑ(X)− ẑ(−i)(X))2.

Then if we take expectation over X , the right-hand side reduces to M2
1α

2
n = o(1/n).

For the second term of the right-hand side above, we have:

(Eẑ[ℓ(ẑ(X);Y )]− Eẑ(−i) [ℓ(ẑ
(−i)(X);Y )])2

≤ Eẑ,ẑ(−i) [(ℓ(ẑ(X);Y )− ℓ(ẑ(−i)(X);Y ))2] ≤ M2
1Eẑ,ẑ(−i) [(ẑ(X)− ẑ(X))2].

Then if we take expectation over X , the right-hand side reduces to M2
1α

2
n = o(1/n). Therefore, we can apply

Lemma 15 to see that CLT for cross-validation holds. □

Proof of Theorem 4. We first consider the coverage validity of c(ẑ).

(i) LOOCV. Since Lemma 14 holds, in this case, we only need to show that the term:

1

n

n∑
i=1

EP∗ [ℓ(ẑ
(−i)(X);Y )]− EP∗ [ℓ(ẑ(X);Y )] = op(n

− 1
2 ). (18)

Then combining this with the Lemma 13, we obtain the valid coverage of LOOCV intervals for the c(ẑ). From
the first-order Taylor expansion to EPY |x [ℓ(z;Y )], we have:

1

n

n∑
i=1

EP∗ [ℓ(ẑ
(−i)(X);Y )]− EP∗ [ℓ(ẑ(X);Y )]

=
1

n

n∑
i=1

EPX [∇zEPY |xℓ(ẑ(X);Y )(ẑ(−i)(X)− ẑ(X))] + op
(
|ẑ(−i)(X)− ẑ(X)|

)
,

(19)
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Since the gradient of the cost function ∇zℓ(z;Y ) is bounded and following the stability condition:

EPX [|ẑ(−i)(X)− ẑ(X)|] = o
(
n−1/2

)
.

Therefore, plugging it back above into (19), we immediately see that 1
n

∑n
i=1 EP∗ [c(ẑ

(−i)(X);Y )] −
EP∗ [ℓ(ẑ(X);Y )] = op

(
n−1/2

)
there. Then applying Lemma 13 and Lemma 7 would obtain the result

of limn→∞ P(c(ẑ) ∈ Iloocv) = 1− α.

(ii) K-fold CV. For the part that S4 implies S5: if γ > 1/4, then we can show Ã− c(ẑ) = op(n
−1/2) too by

taking the Taylor expansion for each c(ẑ(−Nk))− c(z∗),∀k ∈ [K] and c(ẑ)− c(z∗). Then both terms are only

op(n
−1/2). Then using Lemma 13 with

√
n(Âkcv−Ã)

d→ N(0, σ2), we have:
√
n(Âkcv−c(ẑ))

d→ N(0, σ2).
Combining this with Lemma 7 obtains S5.

For the part that S5 implies S4, we prove by contradiction. Note that if γ ≤ 1/4, we have: n2γ(Ã− c(ẑ))
p→

C > 0 from the proof of Lemma 6. Then if γ = 1/4, we have
√
n(Âkcv − c(ẑ))

d→ N(C, σ2); if γ < 1/4, we
have: n2γ(Âkcv − c(ẑ))

p→ C. In both cases, S5 is invalid. Then we finish the proof.

Then we consider the coverage invalidity of c(z∗) and prove it by contradiction. Suppose otherwise
√
n(Âkcv −

c(z∗))
d→ N(0, σ2) (the coverage validity holds). If γ < 1/4, then n2γ(Âkcv − c(z∗))

d→ 0. Therefore,
n2γ(Âkcv − c(z∗))

p→ 0. However, recall Âkcv is the estimate of n(1 − 1/K) samples from Lemma 6, we
know, n2γ(Âkcv − c(z∗))

p→ C/(1− 1/K)2γ and contradict with the coverage validity condition; If γ = 1/4,

we still have n1/2(Âkcv − c(z∗))
p→ C/(1−1/K)2γ , which contradicts with

√
n(Âkcv − c(z∗))

d→ N(0, σ2).

Therefore, as long as γ ≤ 1/4, we do not have such coverage for c(z∗) in both K-fold and LOOCV approaches.
□

Furthermore, we may provide the coverage validity of CV intervals for c(z∗) as in the plug-in approach when
γ > 1/4.

Corollary 2 (Coverage of CV Intervals) Suppose Assumptions 1, 2, 3 and 4 hold. When γ > 1/4, both Ikcv
and Iloocv in (2) provide valid coverage guarantees for c(ẑ),E[c(ẑ)] and c(z∗).

Proof of Corollary 2. Since we are in the situation where Lemma 14 holds. Then when ẑ(·)− z∗(·) = op(n
− 1

4 ),
we only need to show that Ã− EP∗ [ℓ(z

∗(X);Y )] = op(n
− 1

2 ), which is given by the result already presented
such that EP∗ [c(ẑ

(−Nk)(X);Y ) − EP∗ [ℓ(z
∗(X);Y )] = O(∥ẑ(−Nk)(X) − z∗(X)∥2) = op(n

− 1
2 ) since

n− |Nk| = n (1− 1/K) = Θ(n). Then combining this with Lemma 13, that interval produced in Lemma 14
provides valid coverage guarantees for EP∗ [ℓ(z

∗(X);Y )]. The argument that the interval provides valid
guarantee for EP∗ [ℓ(ẑ(X);Y )] holds similarly. □

F Detailed Experimental Results in Section 5

The experiments were run on a normal PC laptop with Processor 8 Core(s), Apple M1 with 16GB RAM. It
took around 80 hours to run all the experiments including regression and portfolio study. All the optimization
problems, if cannot solved directly using scikit-learn, are implemented through the standard solver cvxopt.

We consider the regression and CVaR portfolio optimization problem. The latter two objectives are two classical
constrained contextual piecewise linear optimization problems. Each case we run m = 500 problem instances.
For the standard error reported in Figure 1 and the following tables, we calculate it as:

σx =
σ√
m

,

where σ is the standard deviation of each reported result (i.e. interval width, bias size). We report 1-sigma
standard error since the standard error of both interval width and bias scales are small.

The corresponding table with a full set of sample sizes n is shown as follows in Table 3.

F.1 Regression Study

Setups. We construct the synthetic dataset through the scikit-learn using make_regression function.
More specifically, we set 10 features and standard deviation being 1, and others being the default setup. We set
random seed from 0 - 500 to generate 500 independent instances. And we approximate c(ẑ) through additional
10000 independent and identicailly distributed test samples.
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Table 3: Evaluation performance of different methods, where boldfaced values mean valid coverage
for c(ẑ) (i.e., within [0.85, 0.95]) and boldfaced values in parantheses mean valid coverage for c(z∗).
IW and biases for kNN and Forest in the regression problem are presented in unit ×103.

method n Plug-in 2-CV LOOCV

- - cov90 IW bias cov90 IW bias cov90 IW bias

Regression Problem (dx = 10, dy = 1)

Ridge 600 0.76 (0.78) 0.24 0.04 0.08 (0.01) 0.33 -0.34 0.82 (0.59) 0.25 0.00
1200 0.77 (0.95) 0.16 0.02 0.55 (0.31) 0.18 -0.08 0.78 (0.90) 0.17 0.00
2400 0.85 (0.97) 0.11 0.01 0.79 (0.79) 0.12 -0.02 0.86 (0.95) 0.12 -0.00
4800 0.88 (0.93) 0.08 0.00 0.89 (0.92) 0.08 -0.01 0.89 (0.92) 0.08 0.00

kNN n2/3 600 0.81 (0.00) 3.78 0.31 0.66 (0.00) 4.19 -1.53 0.82 (0.00) 3.84 0.05
1200 0.80 (0.00) 2.48 0.12 0.43 (0.00) 2.72 -1.43 0.80 (0.00) 2.50 -0.03
2400 0.84 (0.00) 1.63 0.08 0.30 (0.00) 1.77 -1.21 0.85 (0.00) 1.64 -0.01
4800 0.87 (0.00) 1.11 0.02 0.12 (0.00) 1.20 -1.13 0.86 (0.00) 1.11 -0.03

Forest 600 0.74 (0.00) 4.13 0.82 0.57 (0.00) 4.73 -1.92 0.77 (0.00) 4.32 0.04
1200 0.77 (0.00) 2.71 0.40 0.41 (0.00) 3.06 -1.83 0.69 (0.00) 2.78 0.02
2400 0.77 (0.00) 1.77 0.26 0.29 (0.00) 1.97 -1.54 0.72 (0.00) 1.80 0.01
4800 0.86 (0.00) 1.19 0.15 0.10 (0.00) 1.33 -1.29 0.85 (0.00) 1.20 -0.03

CVaR-Portfolio Optimization (dx = 5, dy = 5)

SAA 600 0.68 (0.62) 0.05 -0.00 0.61 (0.65) 0.05 -0.00 0.71 (0.78) 0.05 0.00
1200 0.82 (0.88) 0.04 0.00 0.82 (0.87) 0.04 0.00 0.89 (0.88) 0.04 -0.01
2400 0.90 (0.89) 0.02 -0.00 0.91 (0.89) 0.02 -0.00 0.92 (0.89) 0.02 -0.01

kNN n1/4 600 0.00 (0.00) 0.31 2.41 0.83 (0.00) 0.81 -0.22 0.91 (0.00) 0.76 -0.05
1200 0.00 (0.00) 0.23 2.01 0.65 (0.00) 0.53 -0.21 0.92 (0.00) 0.50 -0.03
2400 0.00 (0.00) 0.17 1.72 0.42 (0.00) 0.35 -0.17 0.92 (0.00) 0.33 -0.00
4800 0.00 (0.00) 0.12 1.43 0.15 (0.00) 0.23 -0.17 0.88 (0.00) 0.22 -0.00

Models. We consider the following optimization models by calling the standard scikit-learn package:
(1) Ridge Regression Models, implemented through linear_model.Ridge(alpha = 1); (2) kNN, imple-
mented through KNeighborsRegressor with nearest neighbor number being ⌈2n2/3⌉; (3) Random Forest,
implemented through RandomForestRegressor with 50 subtrees and sample ratio being n−0.6.

Additional Results. Table 3 reports all results in the regression (and the portfolio optimization) case, which
is a superset of Table 2. In Table 4, we present the standard error of the interval width and bias for each method
used in Table 3. The bias size of plug-in and 2-CV are significant if we take the size of the standard deviation
into account. Here, the plug-in approach still has the smallest standard error of the bias and interval width.

Table 4: Interval Widths and Biases for each Evaluation Procedure for the Regression Problem (Mean
and Standard Error).

method n Plug-in 2-CV LOOCV

- - IW bias IW bias IW bias

Ridge 600 0.24±0.00 0.04±0.00 0.33±0.00 -0.34±0.01 0.25±0.00 0.00±0.00

1200 0.16±0.00 0.02±0.00 0.18±0.00 -0.08±0.00 0.17±0.00 0.00±0.00

2400 0.11±0.00 0.01±0.00 0.12±0.00 -0.02±0.00 0.12±0.00 -0.00±0.00

4800 0.08±0.00 0.00±0.00 0.08±0.00 -0.01±0.00 0.08±0.00 0.00±0.00

kNN 600 3778.22±47.28 314.75±63.46 4187.77±52.33 -1532.71±68.55 3840.78±48.04 -54.78±63.46

1200 2477.47±30.83 115.55±44.65 2718.83±33.69 -1428.88±49.23 2503.31±31.16 -34.28±44.70

2400 1628.36±19.84 80.66±27.45 1771.38±21.58 -1206.15±32.33 1638.95±19.97 -25.37±27.49

4800 1108.71±13.45 23.85±18.95 1199.71±14.53 -1130.71±24.16 1113.23±13.50 -27.48±18.99

Forest 600 4132.75±56.14 824.40±72.64 4733.39±61.46 -1917.23±91.12 4315.90±57.17 41.13±81.11

1200 2711.23±37.61 404.59±49.88 3062.29±41.06 -1832.96±70.97 2782.08±37.87 24.61±62.26

2400 1768.86±24.05 259.31±32.17 1966.98±26.35 -1543.64±55.67 1801.58±24.52 13.72±42.25

4800 1185.55±16.51 145.36±19.48 1328.21±17.97 -1287.63±42.28 1201.60±16.70 -10.49±31.94

We change the fold number to be 5, 10, 20 to allow variabilities in the fold number. We run all procedures again
and report results in Table 5. Although K-fold CV with a large number of K has better coverage when n is
small compared with that of 2-CV in Table 3, as n becomes larger, the coverage becomes smaller while the bias
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becomes more significant compared with the interval length. This indicates the bias decrease order is slower
than that of the interval and validates our theoretical results.

Table 5: Performance Evaluation of 5, 10, 20-CV Intervals compared with plug-in estimator in the
Regression Problem (Mean and Standard Error), where boldfaced values mean valid coverage for
c(ẑ) (i.e., within [0.85, 0.95]), IW and bias for each procedure are presented in unit ×103 and each
entry is averaged over 200 experiment repetitions.

method n Plug-in 5-CV 10-CV 20-CV

- - cov90 IW (bias) cov90 IW (bias) cov90 IW (bias) cov90 IW (bias)

Regression Problem (dx = 10, dy = 1)

Forest 1200 0.77 2.71 (0.40) 0.62 2.83 (-0.42) 0.65 2.81 (-0.48) 0.69 2.74 (-0.30)
2400 0.77 1.77 (0.26) 0.66 1.83 (-0.37) 0.60 1.76 (-0.29) 0.64 1.76 (-0.23)
4800 0.86 1.19 (0.15) 0.47 1.24 (-0.32) 0.56 1.26 (-0.38) 0.63 1.24 (-0.18)
9600 0.85 0.73 (0.11) 0.42 0.76 (-0.28) 0.52 0.73 (-0.22) 0.51 0.74 (-0.17)

19200 0.86 0.47 (0.07) 0.34 0.49 (-0.23) 0.42 0.48 (-0.13) 0.45 0.48 (-0.11)

kNN n2/3 1200 0.81 2.48 (0.12) 0.76 2.57 (-0.46) 0.77 2.51 (-0.46) 0.76 2.48 (-0.21)
2400 0.80 1.63 (0.08) 0.78 1.68 (-0.38) 0.72 1.62 (-0.29) 0.74 1.71 (-0.24)
4800 0.84 1.11 (0.03) 0.66 1.14 (-0.37) 0.70 1.15 (-0.21) 0.68 1.14 (-0.18)
9600 0.88 0.75 (0.04) 0.61 0.77 (-0.28) 0.69 0.70 (-0.15) 0.70 0.69 (-0.12)

19200 0.85 0.46 (0.04) 0.49 0.47 (-0.23) 0.66 0.46 (-0.09) 0.68 0.46 (-0.04)

CVaR-Portfolio Optimization (dx = 5, dy = 5)

kNN n1/4 2400 0.00 0.172 (1.716) 0.76 0.337 (0.079) 0.82 0.328 (0.035) 0.85 0.329 (0.028)
4800 0.00 0.126 (1.423) 0.74 0.221 (0.038) 0.79 0.218 (0.034) 0.80 0.217 (0.025)
9600 0.00 0.094 (1.108) 0.66 0.147 (0.029) 0.72 0.146 (0.028) 0.76 0.144 (0.021)

F.2 CVaR-Portfolio Optimization

Setups. We set η = 0.2, dx = dy = dz = 5 and PX = N(0,Σ) with (Σ)ij = 0.8|i−j|, ∀i, j. And the
conditional distribution (Y )i|x = 0.3× (Bx)i + 2| sin ∥x∥2|+ ϵ, ∀i ∈ [dz] for each ϵ ∼ N(0, 4).

Models. We consider the following optimization learners for the subsequent performance assessment: (1) Sam-
ple Average Approximation (SAA): We ignore features when making decisions but consider the same decision
space {z ∈ Z}. That is, for any covariate x, we output the same decision: ẑ ∈ argminz∈Z

1
n

∑
i∈[n][ℓ(z;Y )];

And the convergence rate γ = 1
2

; (2) kNN: We use the model from Example 3 with kn = min{3n
1
4 , n− 1}. In

this case, the convergence rate γv = 1
8

, which violates the validity condition of both plug-in and K-fold CV
intervals.

F.3 Regression Study in the Additional Real-World Dataset

We include one real-world dataset puma32H2 with 33 features and 1,000,000 samples as a regression task. We
report the coverage probability of plug-in, 2-CV, and 5-CV for a kNN model with kn = n2/3, where each entry
denotes the coverage probability estimated over 100 experimental repetitions for that procedure in Table 6. Here
each experimental repetition is conducted differently by shuffling the entire dataset. For a given sample size n,
the procedure is to select the first n rows as the training sample for each model and approximate the true model
performance c(ẑ) by averaging over the remaining samples in that dataset.

Table 6: Coverage Results of the method kNN in the dataset puma32H, where boldfaced values mean
valid coverage for c(ẑ) (i.e., within [0.85, 0.95]).

n 10000 20000 40000

Plug-in 0.94 0.93 0.90
2-CV 0.88 0.81 0.76
5-CV 0.91 0.86 0.81

In Table 6, the plug-in approach provides valid coverages in this case while 2-CV and 5-CV do not, especially
when n is larger (20000 and 40000). These results continue to validate our asymptotic theory.

2The dataset is available at https://www.openml.org/d/1210.
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G Further Discussion and Comparison

G.1 Additional Discussion in Model Selection

A difference between the model selection and model evaluation task we focus on in this paper is that in the
former, we focus on the performance rank between different models instead of the absolute performance value.
Intuitively, the accuracy of the performance rank depends on not only the evaluations of the compared models, but
also the inter-dependence between these evaluation estimates. This adds complexity to understanding the errors
made by each selection approach. There are some discussions for specific problems, such as linear regression,
classification, and density estimation (see, e.g., Section 6 in [5]). However, the theoretical understanding of
model selection remains wide open in general problems.

That being said, there are some model selection problems where plug-in easily leads to a naive selection.

• Selecting hyperparameters: Consider the best regularized parameter α in the ridge regression. Plug-in
always chooses α = 0 since it has the smallest training loss;

• Selecting the best model class: Consider the regression problem f̂ ∈ argminf∈Fi

∑n
i=1(f(Xi)−Yi)

2

for the nested classes F1 ⊂ F2 ⊂ F3, and we want to select the best Fi among the three classes.
Plug-in always selects the largest class, F3, since it has the smallest training loss.

In these problems, CV can select the regularization parameter or model class different from the naive choice. It
hints that CV could be better than plug-in for such a problem, but this is theoretically not well-understood in
general cases.

G.2 Additional Discussion in the High-Dimensional Setting

For the high-dimensional setting, i.e., feature dimension p and sample size n both go to infinity such that p/n
converges to a nonzero constant, besides specific problems like (generalized) linear regression, the problem
is wide open to our best knowledge. For linear models, we have the following result towards the bias of our
considered three procedures:

• For plug-in, when p > n, the predictor interpolates the training data so that the training loss becomes
zero (unless we add regularization); when p/n → c ∈ (0, 1), plug-in still suffers a large bias from
overfitting and cannot be used directly to construct the point estimator and confidence interval to
evaluate model performance. Some bias correction procedures ([27]) are proposed to construct
consistent point estimators in these high-dimensional scenarios.

• For K-fold CV, the point estimate also suffers from a non-vanishing bias [58] and may not be a good
choice for evaluating model performance.

• For LOOCV, recent literature [58, 48] shows that its bias goes to zero.

Despite the known results above for the bias, no theoretically valid coverage guarantees exist for high-dimensional
linear models in the literature, since almost all existing CV literature is based on some stability conditions and is
only valid under low-dimensional asymptotic regimes ([7, 9, 37] and ours).

For our three procedures, we validate claims for the point estimates above and also investigate the coverage
performance of interval estimates, using the same simulation data setup for ridge regression with α = 1 as in
our regression problems. We show the simulation results in Table 7, where both plug-in and 5-CV suffer from
large bias and have zero coverage. The bias of LOOCV is small but the LOOCV interval suffers from poor
coverage. These results indicate that constructing theoretically valid intervals remains open and challenging for
high-dimensional problems, and is important to devise improved CV or bias correction approaches.

Table 7: Evaluation performance of high-dimensional ridge regression (100 repetitions) in the
regression problem

(n, p) Plug-in 5-CV LOOCV

cov90 bias cov90 bias cov90 bias

(300, 200) 0.00 21.63 0.00 -48.72 0.59 -0.38
(900, 600) 0.00 4.62 0.00 -8.45 0.51 -0.03

(1800, 1200) 0.00 2.81 0.00 -5.75 0.58 -0.01
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G.3 Comparison with Nested Cross Validation

We elaborate on the discussion of the nested cross-validation and show it is not suitable under our slow rate
regime. Recall that the nested cross-validation (NCV) in [9] is designed for improving the covariance estimate
in high-dimensional regimes. Therefore, NCV does not help theoretically and empirically:

Theoretical Invalid Coverages. NCV does not offer valid coverages for nonparametric models theoreti-
cally: The interval length of NCV is controlled by

√
MSE. Due to the restriction

√
MSE ∈ [SE,

√
KSE]

in Section 4.3.2 in [9] (SE = Θ(n−1/2) is the standard error in their eq. (2)), this interval length is Θ(1/n1/2)
for a fixed K. In nonparametric models with γ < 1/4, this length is overly small compared with the bias of
NCV, which is Cn−2γ for a constant C > 0 smaller than that of (2) in our main body. This is despite that
the CV point estimator in [9] used bias correction in their eq. (9), that correction is for parametric models but
not nonparametric models. Then the bias in [9] dominates the interval length and leads to an invalid coverage
asymptotically. Furthermore, [9] does not provide rigorous theoretical guarantees on the valid coverage of their
interval (9), even in their own setting. They only correct the variance estimate for parametric models.

Empirical Poor Performance. NCV does not perform well empirically in our setting: This is expected
from the above explanation. We implement NCV with 5 and 10 folds for randomforest in the regression problem
with the same setup in Appendix F.1 and report results in Table 8. Here, plug-in, 5-CV, 10-CV correspond to
the intervals (2) in our paper. For NCV, we use Algorithm 1 in [9] (following their practical MSE restriction in
Section 4.3.2) and bias estimation in Appendix C of [9] to construct the interval for NCV (5-NCV and 10-NCV).

While the bias of NCV is controllable and the interval gives nearly valid coverage when n is small, the larger
bias order starts to exert effect when n is large, leading to a significant drop in the coverage of NCV which
becomes invalid.

Computational Inefficiency. Note that [9] does not focus on computation expense as we do in our paper
in comparing LOOCV with plug-in. As mentioned in [9], NCV is computationally very demanding, requiring
over 1000 random splits to stabilize the variance estimate and needs to refit in total 1000K times.

Table 8: Evaluation performance of NCV versus CV for the forest learner in the regression problem,
where boldfaced values mean valid coverage for c(ẑ) (i.e., within [0.85, 0.95]), IW and bias for each
procedure are presented in unit ×102 and each entry is averaged over 200 experiment repetitions.

n Plug-in 5-CV 5-NCV 10-CV 10-NCV

cov90 IW bias cov90 IW bias cov90 IW bias cov90 IW bias cov90 IW bias

10000 0.88 7.27 0.35 0.41 7.53 -4.36 0.81 15.06 -1.13 0.48 7.41 -2.65 0.80 13.86 -1.07
30000 0.86 3.73 0.22 0.38 3.82 -2.48 0.74 7.65 -0.56 0.29 3.80 -2.21 0.65 7.59 -1.15
100000 0.90 1.71 0.11 0.19 1.75 -2.25 0.53 3.51 -0.48 0.27 1.73 -1.26 0.56 3.45 -0.61
300000 0.88 0.92 0.08 0.13 0.93 -1.76 0.47 1.87 -0.28 0.26 0.92 -0.56 0.4 1.85 -0.31
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing
issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The
papers not including the checklist will be desk rejected. The checklist should follow the references and
precede the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each
question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area
chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)
with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While
"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper
justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or
"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not
grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is
often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer
[Yes] to a question, in the justification please point to the section(s) where related material for the question can
be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction in Section 1 clearly state the claims made with important
assumptions and limitations. The claims are supported by a matched theoretical result in Section 3 and
experimental results in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the strength of assumptions when they are imposed in Section 2
and provides concrete examples in Appendix B to elaborate on these assumptions. This paper also
discusses the limitations of the general setup from the asymptotic perspective and scope of model
evaluation instead of model selection in Section 6.

Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: The paper provides the full set of assumptions in Section 3 and some additional regularity
conditions in Appendix B with reference in the main body. For every important theoretical result, we
provide the proof sketch and intuition when we state each of them. And we leave other theoretical
statements and all the complete proofs in Appendix C, D and E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper discloses all the information needed to generate the synthetic data and the
test models when discussing the experiments in Appendix F. The point estimate and interval for each
evaluation approach are stated in the beginning of Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper provides sufficient instructions in Appendix F to reproduce the main ex-
perimental results and provide codes in the supplementary files in terms of all evaluation methods
mentioned in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper specifies a brief summary of the experimental setup along with the results in
Figure 1 and Section 5. This paper also provides all the training and test details at the beginning of the
Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars of one case for the interval widths and biases in Figure 1.
For the error bars of numerical results in the Section 3, we report them in Appendix F (e.g. in Table 4).
And we mention how the standard errors are calculated and specified in the beginning of Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper provides the details of the computational resources in the beginning of
Appendix F. Since it does not take too much time for all the whole setups of numerical experiments,
we only report the rough overall computational time to obtain all the numerical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of Ethics in every
respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Although the paper focuses on the foundation research on constructing reliable perfor-
mance guarantees for each evaluation approach, this paper discusses the potential positive societal
impact in some parts of Section 6 and the motivation for investigating these coverage guarantees in
Section 1. This helps people understand the utility of each evaluation approach and correctly and
efficiently select one that suits to their setup best.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original owners of assets including code and models (packages) are properly referred,
including the scikit-learn package and codes from other papers. Both are referred when they are
first mentioned (e.g. in Figure 1 and F).

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The proper guidance of replicating the numerical experiment results are provide in the
accompanying files.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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