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Abstract

State-Space Models (SSMs) have proven to be powerful tools for modeling long-
range dependencies in sequential data. While the recent method known as HiPPO
has demonstrated strong performance, and formed the basis for machine learning
models S4 and Mamba, it remains limited by its reliance on closed-form solutions
for a few specific, well-behaved bases. The SaFARi framework generalized this
approach, enabling the construction of SSMs from arbitrary frames, including
non-orthogonal and redundant ones, thus allowing an infinite diversity of possible
“species” within the SSM family. In this paper, we introduce WaLRUS (Wavelets for
Long-range Representation Using SSMs).We compare WaLRUS to HiPPO-based
models, and demonstrate improved accuracy and more efficient implementations
for online function approximation tasks.

1 Introduction

Sequential data is foundational to many machine learning tasks, including natural language processing,
speech recognition, and video understanding [1–3]. These applications require models that can
effectively process and retain information over long time horizons. A central challenge in this setting
is the efficient representation of long-range dependencies in a way that preserves essential features of
the input signal for downstream tasks, while remaining computationally tractable during both training
and inference [4].

Recurrent neural networks (RNNs) are traditional choices for modeling sequential data, but struggle
with long-term dependencies due to vanishing or exploding gradients during backpropagation through
time [4–6]. While gated variants like LSTMs [7] and GRUs [8] mitigate some issues, they require
significant tuning and lack compatibility with parallel processing, hindering scalability.

State-space models (SSMs) offer a linear and principled framework for encoding temporal information,
and have re-emerged as a powerful alternative for online representation of sequential data [9–16].
By design, they enable the online computation of compressive representations that summarize the
entire input history using a fixed-size state vector, ensuring a constant memory footprint regardless
of sequence length. A major breakthrough came with HiPPO (High-order Polynomial Projection
Operators), which reformulates online representation as a function approximation problem using
orthogonal polynomial bases [9]. This approach underpins state-of-the-art models like S4 and Mamba,
enabling compact representations for long-range dependencies [10, 11].

However, existing SSMs primarily rely on Legendre and Fourier bases, which, although effective
for smooth or periodic signals, struggle with non-stationary and localized features [9, 10]. These
challenges are especially evident in domains such as audio, geophysics, and biomedical signal
processing, where rapid transitions and sparse structure are common.

To address this limitation, the SaFARi framework (State-Space Models for Frame-Agnostic Represen-
tation) extends HiPPO to arbitrary frames, including non-orthogonal and redundant bases [13, 14, 17].
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Figure 1: An input signal comprising three random spikes is sequentially processed by SSMs and
reconstructed after observing the entire input. Only the wavelet-based SSM constructed using
WaLRUS can clearly distinguish adjacent spikes.

This generalization enables SSM construction from any frame via numerical solutions of first-order
linear differential equations, preserving HiPPO’s memory efficiency and update capabilities without
closed-form restrictions.

In this paper, we leverage the SaFARi method with wavelet frames to introduce a new model,
WaLRUS (Wavelets for Long-range Representation Using SSMs). We derive our model using
Daubechies wavelets with two variants: scaled-WaLRUS and translated-WaLRUS, designed for
capturing non-smooth and localized features through compactly supported, multi-resolution wavelet
decompositions [18]. These properties allow WaLRUS to retain fine-grained signal details typically
lost by polynomial-based models.

We also provide a comparative analysis of WaLRUS and existing HiPPO variants (see Fig. 1).
Empirical results demonstrate that the wavelet-based WaLRUS model consistently outperforms
Legendre and Fourier-based HiPPO models in reconstruction accuracy, especially on signals with
sharp transients. Furthermore, WaLRUS has been experimentally observed to be stably diagonalizable,
which is the key enabler of efficient convolution-based implementations and parallel computation
[13, 14].

These results highlight the practical advantages of WaLRUS models, particularly in scenarios where
signal structure varies across time and scale. By bridging multiscale signal analysis and online
function approximation, WaLRUS opens new directions for modeling complex temporal phenomena
across disciplines.

2 Background

Recent advances in machine learning, computer vision, and large language models have pushed the
frontier of learning from long sequences of data. These applications demand models that can (1)
generate compact representations of input streams, (2) preserve long-range dependencies, and (3)
support efficient online updates.

Classical linear methods, such as the Fourier transform, offer compact representations in the fre-
quency domain [19–23]. However, they are ill-suited for online processing: each new input requires
recomputing the entire representation, making them inefficient for streaming data and limited in
their memory horizon. Nonlinear models like recurrent neural networks (RNNs) and their gated
variants (LSTMs, GRUs) have been more successful in sequence modeling, but they face well-known
issues such as vanishing/exploding gradients and limited parallelization [4–6, 8]. Moreover, their
representations are task-specific, and not easily repurposed across different settings.

To resolve these issues, the HiPPO framework [9] casts online function approximation as a continuous
projection of the input u(t) onto a linear combination of the given basis functions G. At every time
T , it produces a compressed state vector c⃗(T ) that satisfies the update rule:

d

dT
c⃗(T ) = −A(T )c⃗(T ) +B(T )u(T ). (1)
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Here, A(T ) and B(T ) are derived based on the choice of polynomial basis and measure µ(t), which
defines how recent history is weighted. Two commonly used measures are:

µtr(t) =
1

θ
1t∈[T−θ,T ], µsc(t) =

1

T
1t∈[0,T ]. (2)

The translated measure µtr emphasizes recent history within a sliding window of length θ, while the
scaled measure µsc compresses the entire input history into a fixed-length representation.

Despite its strengths, HiPPO is restricted to only a few bases (e.g., Legendre, Fourier), and deriving
A(t) and B(t) in closed form is only tractable for specific basis-measure combinations.

SaFARi addressed this limitation by generalizing online function approximation to any arbitrary
frame [17]. A frame Φ(t) is a set of elements {ϕi(t)} such that one can reconstruct any input g(t) by
knowing the inner products ⟨g(t), ϕi(t)⟩. For a given frame Φ, its complex conjugate Φ, and its dual
Φ̃, the scaled-SaFARi produces an SSM with A and B given by:

∂

∂T
c⃗(T ) = − 1

T
Ac⃗(T ) +

1

T
Bu(T ), Ai,j = δi,j +

∫ 1

0

t′
∂

∂t
ϕi

∣∣∣∣
t=t′̃
ϕj(t

′)dt′, Bi = ϕi(1) (3)

while the translated-SaFARi produces an SSM with the A and B given by:

∂

∂T
c⃗(T ) = −1

θ
Ac⃗(T ) +

1

θ
Bu(T ), Ai,j = ϕi(0)ϕ̃j(0) +

∫ 1

0

∂

∂t
ϕi

∣∣∣∣
t=t′̃
ϕj(t

′)dt′, Bi = ϕi(1) (4)

In the appendix, we provide a some theoretical background on Eq. 3 and Eq. 4 from [17].

Incremental update of SSMs: The differential equation in Eq. 1 can be solved incrementally.
Following [9], we adopt the Generalized Bilinear Transform (GBT) [24] given by Eq. 5 for its
superior numerical accuracy in first order SSMs.

c(t+∆t) = (I + δtαAt+δt)
−1 [(I − δt(1− α)At)c(t) + δtB(t)u(t)] (5)

Diagonalization of A: Each GBT step involves matrix inversion and multiplication. If A(t) has
time-independent eigenvectors (e.g., A(t) = g(t)A), it can be diagonalized as A(t) = V Λ(t)V −1,
allowing a change of variables c̃ = V −1c and B̃ = V −1B(t), yielding:

∂

∂t
c̃ = −Λ(t)c̃+ B̃u(t), (6)

This reduces each update to elementwise operations, significantly lowering computational cost.

2.1 Wavelet Frames

Wavelet frames offer a multiresolution analysis that captures both temporal and frequency character-
istics of signals, making them particularly effective for representing non-stationary or long-range
dependent data [25]. Initiated by [26] and formalized by [27], wavelet theory gained prominence with
Ingrid Daubechies’ seminal work [28], which introduced compactly supported orthogonal wavelets.
Since then, wavelets have played a central role in modern signal processing [29].

Wavelet analysis decomposes a signal f(t) into dilations and translations of a mother wavelet ψ(t),
enabling simultaneous localization in time and frequency. The discrete wavelet transform is

W (j, k) =

∫ ∞

−∞
f(t)ψ∗

j,k(t) dt, ψj,k(t) =
1√
2−j

ψ

(
t− k

2−j

)
.

Unlike global bases such as Fourier or polynomials, which struggle with localized discontinuities,
wavelets provide sparse representations of signals with singularities, such as jumps or spikes [18, 30].
Their local support yields small coefficients in smooth regions and large coefficients near singularities,
enabling efficient compression and accurate reconstruction. These properties make wavelet frames a
natural and powerful choice for time-frequency analysis in a wide range of practical applications.
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Figure 2: A diagram of the relationships between HiPPO, SaFARi, WaLRUS (this work), and SSM-
based models such as S4 and Mamba. The focus of this work is on the development of a wavelet-based
SSM in a function approximation task, which could later be used as a drop-in replacement for the
SSM layer in a learned model.
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Figure 3: Left: Elements of a Daubechies-22 wavelet frame, with father wavelet ϕ, mother wavelet ψ,
and two scales. Right: The scaled and translated A matrices for WaLRUS with N = 21.

3 WaLRUS: Wavelet-based SSMs

Daubechies wavelets [18, 28] provide a particularly useful implementation of a SaFARi SSM. While
there are different types of commonly used wavelets, Daubechies wavelets are of particular interest in
signal representation due to their maximal vanishing moments over compact support.

To construct the frame, we use the usual dyadic scaling for multiresolution analysis; that is, scaling
the mother wavelets by a factor of two at each level. For each scale, different shifts along the
x-axis are introduced. Compressive wavelet frames are truncated versions of wavelet frames that
contain only a few of the coarser scales, and introduce overlapping shifts to keep the expressivity
and satisfy the frame condition (See Mallat, [29]). The interplay between the retained scales and
the minimum required overlap to maintain the expressivity is extensively studied in the wavelet
literature [18, 28, 29]. If there is excess overlap in shifts, the wavelet frame becomes redundant, and
redundancy has advantages in expressivity and robustness to noise.

Figure 3, left, gives a visual representation of how we construct such a frame. The frame consists
of shifted copies of the father wavelet ϕ at one scale, and shifted copies of a mother wavelet ψ at
different scales, with overlaps that introduce redundancy. Figure. 3, right, shows the resulting A
matrices for the scaled and translated WaLRUS.1

Some recent works [31, 32] has conceptually connected the use of wavelets and SSM-based models
(namely Mamba). These efforts are fundamentally distinct from ours in that they perform a multi-
resolution analysis on the input to the model only. No change is made to the standard Mamba SSM
layer.

This work, on the other hand, is the first to challenge the ubiquity of the Legendre-based SSM, and
present alternative wavelet-based machinery for the core of powerful models like Mamba. WaLRUS
could be used as a drop-in replacement for any existing SSM-based framework. However, before
simply substituting a part in a larger system, we must first justify how and why a different SSM can
improve performance. This paper presents a tool that stands alone as an online function approximator,
and also provides a foundational building block for future integration in SSM-based models.

1Code to generate the matrices is available at the following repository: https://github.com/echbaba/
walrus.
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3.1 Redundancy of the wavelet frame and size of the SSM

In contrast to orthonormal bases, redundant frames allow more than one way to represent the same
signal. This redundancy arises from the non-trivial null space of the associated frame operator,
meaning that multiple coefficient vectors can yield the same reconstructed function. Although the
representation is not unique, it is still perfectly valid, and this flexibility offers several key advantages
in signal processing. In particular, redundancy can improve robustness to noise, enable better sparsity
for certain signal classes, and enhance numerical stability in inverse problems [33–35].

We distinguish between the total number of frame elements Nfull and the effective dimensionality
Neff of the subspace where the meaningful representations reside. In other words, while the frame
may consist of Nfull vectors, the actual information content lies in a lower-dimensional subspace of
size Neff . This effective dimensionality can be quantified by analyzing the singular-value spectrum
of the frame operator [29, 33].

For the WaLRUS SSMs described in this work, we first derive ANfull
using all elements of the

redundant frame. We then diagonalize A and reduce it to a size of Neff . This ensures that different
frame choices, whether orthonormal or redundant, can be fairly and meaningfully compared in terms
of computational cost, memory usage, and approximation accuracy. The exact relationship between
the wavelet frame and the resulting Neff of the A matrix depends not only on the overlap of the shifts
in the frame, but also on the type (and order) of chosen wavelet, and number of scales. Determining
the “optimal” overlap or Neff is application-specific and an area for future research.

3.2 Computational complexity of WaLRUS

For a sequence of length L, scaled-SaFARi hasO(N3L) complexity due to solving anN -dimensional
linear system at each step, while translated-SaFARi can reuse matrix inverses, and thus has O(N2L)
complexity, assuming no diagonalization [17]. When the state matrix A is diagonalizable, the
complexity reduces to O(NL) and can further accelerate to O(L) with parallel processing on
independent scalar SSMs.

We observe that each of the scaled and translated WaLRUS SSMs we implemented, regardless of
dimension, were stably diagonalizable. Further research is required to determine whether Daubechies
wavelets will always yield diagonalizable SSMs. Legendre-based SSMs, on the other hand, are not
stably diagonalizable [9]. Although [9] proposed a fast sequential HiPPO-LegS update to achieve
O(NL) complexity, [17] showed that it cannot be parallelized to O(L). Moreover, no efficient
sequential update exists for HiPPO-LegT, leaving Legendre-based SSMs at a disadvantage during
inference when sequential updates are needed.

As sequence length increases, step-wise updates become a bottleneck, especially during training
when the entire sequence is available upfront. This can be mitigated by using convolution kernels
instead of sequential updates. Precomputing the convolution kernel and applying it via convolution
accelerates computation, leveraging GPU-based parallelism to achieve O(logL) run-time complex-
ity for diagonalizable SSMs. This optimization is feasible for both WaLRUS and Fourier-based
SSMs. Although Legendre-based SSMs can attain similar asymptotic complexity through structured
algorithms [10, 12], their nondiagonal nature prevents decoupling into N independent SSMs.

3.3 Representation errors in the translated WaLRUS

Truncated representations in SSMs inevitably introduce errors, as discarding higher-order compo-
nents limits reconstruction fidelity [17]. SaFARi only investigated these errors for scaled SSMs,
leaving their approximation accuracy unquantified. Visualizing the convolution kernels generated by
different SSMs offers some insight into the varying performance of different SSMs on the function
approximation task. An “ideal” kernel would include a faithful representation for each element of
the basis or frame from T = 0 to T =W , where W is the window width, and it would contain no
non-zero elements between W and L. However, certain bases generate kernels with warping issues,
as illustrated in Fig. 4.

The HiPPO-LegT kernel loses coefficients due to warping within the desired translating window (see
areas B and C of Fig. 4). For higher degrees of Legendre polynomials, the kernel exhibits an all-zero
region at the beginning and end of the sliding window. This implies that high-frequency information
in the input is not captured at the start or end of the sliding window, and the extent of this dead zone
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Figure 4: The kernel generated by HiPPO-LegT with window size W = 2000 and representation
size N = 500. Three key non-ideal aspects of the kernel are noticeable. A) poor localization due to
substantial non-zero values outside W , B) coefficient loss from at bottom left of the kernel, and C)
coefficient loss at the bottom right of the kernel for t ∈ (1500, 2000).
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Figure 5: Left: The ideal kernels, which yield zero representation error, are shown for Translated-
WaLRUS (using the D22 wavelet), HiPPO-LegT, and HiPPO-FouT. Right: The corresponding kernels
generated by the translated models are presented for comparison. WaveT has superior localization
within the window of interest compared to HiPPO-LegT and HiPPO-FouT.

increases with higher frequencies. The translated Fourier kernel primarily suffers from the opposite
problem: substantial nonzero elements outside the kernel window indicate that LegT struggles to
effectively “forget” historical input values. Thus contributions from input signals outside the sliding
window appear as representation errors. LegT also has this problem, to a lesser extent–see area A of
Fig. 4 for a closer view of the kernel.

A visual inspection of Fig. 5 reveals that the translated-WaLRUS kernel closely matches the idealized
version, whereas both FouT and LegT exhibit significant errors in their computed kernels. We
emphasize that the issues observed with LegT and FouT arise from inherent limitations of the
underlying SSMs themselves and are not due to the choice of input signal classes.

4 Experiments
The following section deploys the WaLRUS SSM on synthetic and real signals for the task of function
approximation, comparing its performance with extant models in the literature. We will evaluate
performance in MSE as well as their ability to track important signal features like singularities, and
show that using WaLRUS can have an edge over the state-of-the-art polynomial-based SSMs.

To benchmark WaLRUS against state-of-the-art SSMs, we implement two variants: Scaled-WaLRUS
and Translated-WaLRUS, which we will call WaveS and WaveT respectively, following HiPPO’s
convention. These models are compared against the top-performing HiPPO-based SSMs. Further
details on the wavelet frames used in each experiment are provided in Appendix A.2.4, and code can
be found at https://github.com/echbaba/walrus.

We conduct experiments on the following datasets:
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Figure 6: Comparing reconstruction MSE be-
tween WaveS, LegS, and FouS. Error bars repre-
sent the first and third quantile of MSE. WaveS
produces the lowest MSE in each dataset.

Dataset LegS FouS WaveS

M4 0% 0.47% 99.53%
Speech 4.25% 0% 95.75%
Blocks 0% 0% 100%
Spikes 0% 0% 100%
Bumps 0% 0% 100%

Piecepoly 1.00% 0% 99.00%

Table 1: Percent of tests where each basis
had the lowest overall MSE.

M4 Forecasting Competition [36]: A diverse collection of univariate time series with varying
sampling frequencies taken from domains such as demographic, finance, industry, macro, micro, etc.

Speech Commands [37]: A dataset of one-second audio clips featuring spoken English words from
a small vocabulary, designed for benchmarking lightweight audio recognition models.

Wavelet Benchmark Collection [38]: A synthetic benchmark featuring signals with distinct singular-
ity structures, such as Bumps, Blocks, Spikes, and Piecewise Polynomials. We generate randomized
examples from each class, with further details and visualizations provided in Appendix A.2.2.

4.1 Comparisons among frames

We note that no frame is universally optimal for all input classes, as different classes of input signals
exhibit varying decay rates in representation error. However, due to the superior localization and
near-optimal error decay rate of wavelet frames, wavelet-based SSMs consistently show an advantage
over Legendre and Fourier-based SSMs across a range of real-world and synthetic signals. These
experiments position WaLRUS as a powerful and adaptable approach for scalable, high-fidelity signal
representation.

4.1.1 Experimental setup

The performance of SSMs in online function approximation can be evaluated several ways. One
metric is the mean squared error (MSE) of the reconstructed signal compared to the original. In the
following sections, we compare the overall MSE for SSMs with a scaled measure, and the running
MSE for SSMs with a translated measure.

Additionally, in some applications, the ability to capture specific features of a signal may be of greater
interest than the overall MSE. As an extreme case, consider a signal that is nearly always zero, but
contains a few isolated spikes. If our estimated signal is all zero, then the MSE will be small, but all
of the information of interest has been lost.

In all the experiments, we use equal SSM sizes Neff , as described in Sec. 3.1.

4.1.2 Function approximation with the scaled measure

In this experiment, we construct Scaled-WaLRUS, HiPPO-LegS, and HiPPO-FouS with equal
effective sizes (see Appendix A.2.4). Frame sizes are empirically selected to balance computational
cost and approximation error across datasets.

Fig. 6 shows the average MSE across random instances of multiple datasets. Not only is the average
MSE lowest for WaLRUS for all datasets, but even where there is high variance in the MSE, all
methods tend to keep the same relative performance. That is, the overlap in the error bars in Fig. 6
does not imply that the methods are indistinguishable; rather, for a given instance of a dataset, the
MSE across all three SSM types tends to shift together, maintaining the MSE ordering WaveS <
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Dataset: Spikes Bumps

Basis/Frame: Legendre Fourier Wavelets Legendre Fourier Wavelets

Scaled

Peaks missed 2.5% 0.62% 0% 0.29% 0.30% 0%
False peaks 1.6% 1.6% 0.01% 0.3% 1.9% 0%

Instance-wise wins 76% 92.9% 100% 97.1% 96.9% 100%
Relative amplitude error 16.2% 11.8% 5.5% 12.4% 16.2% 6.5%
Average displacement 18.8 32.0 10.0 12.7 33.7 7.1

Translated

Peaks missed 6.4% 13.0% 0.27% 1.12% 29.76% 0.08%
False peaks 1.1% 0.05% 0.22% 0.43% 0.28% 0.20%

Instance-wise wins 36.9% 13.65% 99.95% 85.1% 0.2% 100%
Relative amplitude error 19.6% 28.4% 3.5% 6.9% 28.4% 2.5%
Average displacement 6.0 5.4 4.3 5.5 5.8 4.8

Table 2: Performance comparison of WaLRUS-Wavelets, HiPPO-Legendre, and HiPPO-Fourier for
peak detection with the translated measure. WaLRUS shows a significant advantage in successfully
remembering singularities over HiPPO SSMs.

LegS < FouS. To highlight this result, the percentage of instances where each SSM had the best
performance is also provided in Table 1.

The representative power of WaLRUS is attributed to its ability to minimize truncation and mixing
errors by selecting frames that capture signal characteristics with higher fidelity. See [17] for further
details.

4.1.3 Peak detection with the scaled measure

In this experiment, we aim to detect the locations of random spikes in input sequences using Scaled-
WaLRUS, FouS, and LegS, all constructed with an equal sizes. We generate random spike sequences,
add Gaussian noise (SNR = 0.001), and compute their representations with Daubechies wavelets,
Legendre polynomials, and Fourier series. The reconstructed signals are transformed into wavelet
coefficients, and spike locations are identified following the method in [30].

To evaluate performance, we compare the relative amplitude and displacement of detected spikes with
their ground truth (see Fig.7). This process is repeated for 1000 random sequences, each containing
10 spikes. Table 2 summarizes the average number of undetected spikes for each SSM and the
instance-wise win percentage, representing the number of instances where each SSM had fewer or
equal misses peaks than the other SSMs. Note that these percentages do not sum to 100, as some
instances result in identical spike detection across all models.

As shown in Table 2, WaveS misses significantly fewer spikes than FouS and LegS, with lower
displacement errors and reduced amplitude loss. Figure 1 illustrates an example where WaLRUS
successfully captures closely spaced spikes that are missed by LegS and FouS, demonstrating its
superior time resolution.

Th

False
Peak

Missed
Peak

Not
Counted

amp.
err.

amp.
err.

displacement

True
Est.

Figure 7: Illustration of the metrics to evaluate performance of SSMs on different datasets in Table 2.
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Figure 8: For each dataset, the median and (0.4, 0.6) quantile of running reconstruction MSE across
different instances is demonstrated in different colors for WaveT, LegT, and FouT. WaveT captures
information in the input signals with a higher fidelity than LegT and FouT.

4.1.4 Function approximation with the translated measure

In this experiment, we construct WaveT, LegT, and FouT SSMs, all with equal effective sizes
(see Appendix A.2.4). The chosen effective sizes are smaller than those we used for the scaled
measure since the translated window contains lower frequency content within each window, making
it possible to reconstruct the signal with smaller frames. Then, for each instance of input signal, the
reconstruction MSE at each time step is calculated and plotted in Fig. 8.

For each input signal instance, we compute the running MSE at each time step, as shown in Fig. 8. This
plot represents how the MSE evolves over time across multiple instances, providing a comparison of
running MSEs for each SSM. The results demonstrate that Translated-WaLRUS consistently achieves
slightly better fidelity than LegT and significantly outperforms FouT across all datasets.

As discussed in Section 3.3, the reconstruction error stems from two main factors: (1) non-idealities
in the translated SSM kernel, affecting its ability to retain relevant information within the window
while effectively forgetting data outside it (see Fig. 4), and (2) the extent to which these fundamental
non-idealities are activated by the input signal. For example, signals with large regions of zero values
are less impacted by kernel inaccuracies, as the weights outside the kernel contribute minimally to
reconstruction.

WaveT achieves a modest, and in some cases negligible MSE improvement over LegT (e.g., M4
and Blocks). However, the kernel-based limitations highlighted in Section 3.3 may have a more
pronounced effect on longer sequences or different datasets.

4.1.5 Peak detection with the translated measure

In this experiment, we evaluate the ability of WaveT, FouT, and LegT to retain information about
singularities in signals, following the setup in Section 4.1.3, but with a translated SSM. We generate
2,000 random sequences, each containing 20 spikes. The average number of undetected spikes for
each SSM, along with instance-wise win percentages, is reported in Table 2. As in the scaled measure
experiment, the percentages do not sum to 100 due to ties across SSMs. Table 2 shows that WaveT
consistently outperforms FouT and LegT, with fewer missed peaks, reduced displacement, and less
amplitude loss.
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5 Limitations

In this work we have implemented only one type of wavelet (Daubechies-22), as our purpose is to
introduce practical and theoretical reasons to replace polynomial SSMs with wavelet SSMs. Other
wavelets (biorthogonal, coiflets, Morlets, etc.) could also be used, with some caveats. First, we require
a differentiable frame [17], so nondifferentiable wavelets like Haar wavelets or other lower-order
Daubechies and Coiflets cannot be used with this method. Second, the redundancy of the frame (and
the resulting Neff of the A matrix) depends on the shape of the wavelet’s function and the chosen
shifts and scales of this function. Other wavelet types, and other choices of shift and scale, may
exhibit better or worse performance and dimensionality reduction, and this is an important question
for future work.

Additionally, we emphasize that the choice of frame is application-dependent. If the signal is known
to be smooth and periodic, a wavelet-based SSM is not likely to outperform a Fourier-based SSM, for
example. The introduction of WaLRUS is not intended to be a one-size-fits-all model, but rather a
broadly-applicable tool that combines compressive online function-approximation SSMs with the
expressive power of wavelets.

6 Conclusions

We have demonstrated in this paper how function approximation with SSMs, initially proposed
by [9] and subsequently extended to general frames, can be improved using wavelet-based SSMs.
SSMs constructed with wavelet frames can provide higher fidelity in signal reconstruction than the
state-of-the-art Legendre and Fourier-based SSMs over both scaled and translated measures. Future
work will explore alternate wavelet families, and the trade-offs in effective size, frequency space
coverage, and representation capabilities of different frames.

Moreover, since the Legendre-based HiPPO SSM forms the core of S4 and Mamba, and WaLRUS
provides a drop-in replacement for HiPPO, WaLRUS could be used to initialize SSM-based machine
learning models–potentially providing more efficient training. As AI becomes ubiquitous, and the
demand for computation explodes, smarter and more task-tailored ML architectures can help mitigate
the strain on energy and environmental resources.
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A Appendix

A.1 SaFARi derivation for arbitrary frame

Where HiPPO [9] provided closed-form solutions to construct A and B for a few polynomial bases,
SaFARi [17] introduced a method to build A and B from any arbitrary frame. The derivations
provided below follow [17], and are given here as convenient reference for the reader.

Take a signal f and frame ψ. To get a vector of weights representing a signal on a basis, we use the
inner product:

cn =

∫
f(t)ϕ(t)dt (A.1)

So at some time T , we scale the magnitude of f(t) and stretch the basis to match the length of f :

cn(T ) =

∫ T

t0

f(t)

(
1

T − t0

)
ϕ

(
t− t0
T − t0

)
dt (A.2)

We are actually interested in the change in c. We will take the partial derivative with respect to T ,
since the coefficients update at each new time T . Call the start time t0: this is 0 for the scaling case,
and t0 varies with the windowed case. If we call the size of the window θ, then t0 = T − θ. The
derivation below will be a generic version, then we will separate the two cases.

d

dT
cn(T ) =

d

dT

∫ T

t0

f(t)

(
1

T − t0

)
ϕ

(
t− t0
T − t0

)
dt (A.3)

We note that this is the partial derivative of an integral bounded by two variables. Thus we call on
Leibniz’ integration rule and find:

d

dT
cn(T ) = f(T )

(
1

T − t0

)
ϕ(1)

δ

δT
(T )− f(t0)

(
1

T − t0

)
ϕ(0)

δ

δT
(t0)

+

∫ T

t0

f(t)
δ

δT

[(
1

T − t0

)
ϕ

(
t− t0
T − t0

)]
︸ ︷︷ ︸

h(t)

dt (A.4)

Some manipulation of the h(t) term yields:

h(t) =

(
1

T − t0

)[
−δ(t0)

δT

(
1

T − t0

)
ϕ′
(
t− t0
T − t0

)
−
(
1− δ(t0)

δT

)(
t− t0
T − t0

)
ϕ′
(
t− t0
T − t0

)]
−
(

1

T − t0

)[(
1− δ(t0)

δT

T − t0

)
ϕ

(
t− t0
T − t0

)]
(A.5)

Our h(t) term now has the derivative of our basis (ϕ′) in it, but we’d like to be able to combine
combine terms with ϕ. Therefore we can make a mapping from ϕ′ → ϕ using the dual, ϕ̃:

ϕ′
(
t− t0
T − t0

)
=

〈
ϕ′
(
t− t0
T − t0

)
, ϕ̃

(
t− t0
T − t0

)〉
︸ ︷︷ ︸

P

ϕ

(
t− t0
T − t0

)
(A.6)

Likewise:

(t− t0)ϕ
′
(
t− t0
T − t0

)
=

〈
(t− t0)ϕ

′
(
t− t0
T − t0

)
, ϕ̃

(
t− t0
T − t0

)〉
︸ ︷︷ ︸

Pt

ϕ

(
t− t0
T − t0

)
(A.7)
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This lets us do another simplification of h(t), and group all the functions of ϕ. Let’s also call
T − t0 = θ to save some space.

h(t) =
1

θ
ϕ

(
t− t0
T − t0

)[
−δ(t0)

δT

1

θ
P −

(
1− δ(t0)

δT

)
1

θ
Pt −

1

θ

(
1− δ(t0)

δT

)]
(A.8)

Now we can return to Eq. A.4. P is not a function of t, so it can be moved outside the integral. For
the measures we are looking at, d

dT is always constant with respect to t – it is either 0 or 1. We can
substitute then group as follows:

d

dT
cn(T ) =

(
1

T − t0

)[
f(T )ϕ(1)− f(t0)ϕ(0)

δ

δT
(t0)

]
+(

1

T − t0

)[
−δ(t0)

δT
P −

(
1− δ(t0)

δT

)
Pt −

(
1− δ(t0)

δT

)]∫ T

t0

f(t)

(
1

T − t0

)
ϕ

(
t− t0
T − t0

)
dt︸ ︷︷ ︸

c(T )

(A.9)

Noting that the final term in this equation contains Eq. A.2, we can simplify further:

d

dT
cn(T ) =

(
1

T − t0

)[
f(T )ϕ(1)− f(t0)ϕ(0)

δ(t0)

δT

]
+(

1

T − t0

)
c(T )

[
−δ(t0)
δT

P −
(
1− δ(t0)

δT

)
Pt −

(
1− δ(t0)

δT

)] (A.10)

Unfortunately, we still have a term f(t0) that we don’t have access to; this is the value of the function
at the start of our window. But we have not stored this value; that would defeat the point of an online
update in the first place. Instead, we will approximate it based on our current coefficient vector and
our known basis.

c = ⟨ϕ, f⟩

f = ⟨ϕ̃, c⟩

f(t0) = ⟨ϕ̃(0), c(T )⟩
We now have an update rule for c that depends only on the frame ϕ, the current value of c(T ), and
the new information from the signal, f(T ):

d

dT
c(T ) =

(
1

T − t0

)[
f(T )ϕ(1)− ϕ̃(0)c(T )ϕ(0)

δ(t0)

δT

]
−
(

1

T − t0

)[
c(T )

[
δ(t0)

δT
P +

(
1− δ(t0)

δT

)
Pt +

(
1− δ(t0)

δT

)]] (A.11)

A.1.1 The scaled case

In the case of scaling, t0 = 0 and δ
δT (t0) = 0.

d

dT
cn(T ) =

(
1

T

)f(T )ϕ(1)− ϕ̃(0)c(T )ϕ(0)
�

�
��

0
δ(t0)

δT

 (A.12)

−
(
1

T

)
c(T )


�

�
��

0
δ(t0)

δT
P +

1−
�
�
��

0
δ(t0)

δT

Pt +

1−
�

�
��

0
δ(t0)

δT


 (A.13)

d

dT
cn(T ) =

(
1

T

)
f(T )ϕ(1)−

(
1

T

)
c(T )(Pt + 1) (A.14)
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The A matrix acts on the coefficient vector c, and B acts on the current input, f(T). Expressed in
matrix notation:

d

dT
cn(T ) = − 1

T
(Pt + I)︸ ︷︷ ︸

A

c(T ) +
1

T
ϕ(1)︸︷︷︸
B

f(T ) (A.15)

Equivalently,

d

dT
cn(T ) = − 1

T

(〈
ϕ̃

(
t

T

)
, tϕ

(
t

T

)′
〉

+ I

)
︸ ︷︷ ︸

A

c(T ) +
1

T
ϕ(1)︸︷︷︸
B

f(T ) (A.16)

A.1.2 The translated case

Now T − t0 = θ where θ is the window size, and δ
δT (t0) = 1. Following the same procedure as the

previous section:

d

dT
cn(T ) =

(
1

θ

)
f(T )ϕ(1)−

(
1

θ

)
c(T )

[
ϕ̃(0)ϕ(0) + P

]
(A.17)

d

dT
cn(T ) = −1

θ
(P + ϕ̃(0)ϕ(0))︸ ︷︷ ︸

A

c(T ) +
1

θ
ϕ(1)︸︷︷︸
B

f(T ) (A.18)

d

dT
cn(T ) = −1

θ

(〈
ϕ̃

(
t

θ

)
, ϕ′
(
t

θ

)〉
+ ϕ̃(0)ϕ(0)

)
︸ ︷︷ ︸

A

c(T ) +
1

θ
ϕ(1)︸︷︷︸
B

f(T ) (A.19)

A.2 Experiments

A.2.1 Datasets

In this paper, we conducted our experiments on these datasets:

M4 forecasting competition: The M4 forecasting competition dataset [36] consists of 100,000
univariate time series from six domains: demographic, finance, industry, macro, micro, and other.
The data covers various frequencies (hourly, daily, weekly, monthly, quarterly, yearly) and originates
from sources like censuses, financial markets, industrial reports, and economic surveys. It is designed
to benchmark forecasting models across diverse real-world applications, accommodating different
horizons and data lengths. We test on 3,000 random instances.

Speech commands: The speech commands dataset [37] is a set of 400 audio files, each containing a
single spoken English word or background noise with about one second duration. These words are
from a small set of commands, and are spoken by a variety of different speakers. This data set is
designed to help train simple machine learning models.

Wavelet benchmark collection: Donoho [38] introduced a collection of popular wavelet benchmark
signals, each designed to capture different types of singularities. This benchmark includes well-
known signals such as Bumps, Blocks, Spikes, and Piecewise Polynomial. Following this model,
we synthesize random signals belonging to the classes of bumps, blocks, spikes, and piecewise
polynomials. Details and examples of these signals can be found in Appendix A.2.2.

A.2.2 Wavelet Benchmark Collection

Donoho [38] introduced a collection of popular wavelet benchmark signals, each designed to capture
different types of singularities. This benchmark includes well-known signals such as Bumps, Blocks,
Spikes, and Piecewise Polynomial.

Following this model, we synthesize random signals belonging to the classes of bumps, blocks, spikes,
and piecewise polynomials in our experiments to compare the fidelity of DaubS to legS and fouS,
and also to compare the fidelity of DaubT to LegT and FouT.

Figure 9 demonstrates a random instance from each of of the classes of the signals that we have in
our wavelet benchmark collection.
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Figure 9: Instances of different signal types in the wavelet benchmark collection. Top Left: Blocks is
a piecewise constant signal with random-hight sharp jumps placed randomly. Top Right: Bumps is a
collection of random pulses where each pulse contains a cusp. Bottom Left: Piecepoly is a piecewise
polynomial signal with discontinuity in the transition between different polynomial parts. Bottom
Right: Spikes is a collection of rectangular pulses placed randomly with random positive hieght.

A.2.3 Description of metrics for ‘Spikes’ and ‘Bumps’ experiments

• Peaks Missed The number of true peaks in the signal is Ntp, and the number of detected
peaks (that is, where the estimated signal surpasses an amplitude threshold Thamp), is Ndp.
Ndp|tp is the number of detected peaks where a true peak is also within a displacement
threshold (Thdis) of the detected peak.

Peaks Missed =

(
1−

Ndp|tp

Ntp

)
× 100%

• False Peaks The metric False Peaks is calculated as the percentage of detected peaks that
occurred when there was not a true peak within the displacement threshold. The number of
detected peaks when there was no true peak is represented by Ndp|tp.

False Peaks =
Ndp|tp

Ndp
× 100%

• Instance-wise Wins In each of K time-series instances S, Each SSM m gets the instance
win over other SSM models if it captures more true peaks than the other models.

Instance-wise Wins =
1

K

K∑
k=1

wk × 100%

wk =

{
1, if Peaks Missedm ≤ Peaks Missedothers,

0, Ow .

In cases where multiple models achieve the same maximum, each tied model receives the
credit for that time series instance. As a result, the sum of instance-wise wins for different
SSMs may exceed 1.00.

• Relative Amplitude Error The relative amplitude error is calculated as the average percent
error in the estimated amplitude of detected peaks, including false peaks.
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Relative Amplitude Error =
1

Ndp

Ndp|tp∑
n=1

|Atp,n −Adp|tp,n|
Atp,n

× 100%

• Average Displacement The location of a detected peak where a true peak was within a
displacement threshold is given by Xdp|tp. The location of the true peak is denoted as Xtp.

Average Displacement =
1

Ndp

Ndp∑
n=1

|Xtp,n −Xdp|tp,n|

A.2.4 Wavelet frames used for each experiment

Unlike HiPPO-based SSMs, which are fully characterized by their state size N , WaLRUS employs
redundant wavelet frames that require additional parameters for identification. Once the wavelet
frame is defined, the SaFARi framework constructs the unique A,B matrices corresponding to that
frame. The key parameters for specifying a redundant wavelet frame in WaLRUS are as follows:

• Wavelet Function: Wavelet frames are built from a mother wavelet and a father wavelet,
which capture high-frequency details and low-frequency approximations, respectively. Dif-
ferent families such as Daubechies, Morlet, Symlet, and Coifflet provide varied wavelet
functions. For this work, we use the D22 wavelet from the Daubechies family.

• L (Frame Length): This represents the length of the wavelet frame. Increasing L increases
numerical accuracy in the calculation of the A and B matrices at the cost of additional
computation time. However, this initial computation need only be performed once, so it is
best to choose a large L. For the experiments in this work, we set L = 219.

• Scale min and Neff: The minimum scale sets the smallest feature of the signal that can be
represented by the frame. This parameter should be chosen based on knowledge about the
signal of interest and its component frequencies. Note that the size of the smallest feature is
relative to the length of the signal under consideration, so this value may differ under scaling
and translating measures.
For wavelets, scale min also controls the effective rank, Neff. Each new lower scale intro-
duces a factor of two in the effective rank of the frame, owing to the additional shifted
elements in each scale. Fig. 3 shows two scales, where there are 3 father wavelets (ϕ0) and
3 coarse-scale mother wavelets (ψ1). The next scale introduces 6 scaled and shifted mother
wavelets (ψ2), the next would include 12, and so on. Table 3 also illustrates this pattern,
with scale min of 0 corresponding to Neff of 26, scale min of −1 corresponding to Neff of
27, and so on, with some margin of error for numerical accuracy and truncation.
Our code includes another variable, scale max. Since smaller scales can also combine
to represent larger scales, scale max in fact has no impact on Neff (see [29] for further
information). Fig. 10 demonstrates on an example implementation that varying scale max
does not impact the size of Neff. It is also easily shown that varying scale max results in the
same diagonalized A; see our code supplement. Adding coarser scales can help improve
numerical accuracy in the calculation of A, however. We do not include scale max in Table
3, but we do provide it in our code with each experiment for reproducibility.

−3 −2 −1 0 1 2

460

480

500

520

540

Scale Max

N
ef

f

Figure 10: Effective Rank of WaLRUS A matrix with Scale Min=-3, shift=0.01

• Shift: At scale i, 2−im overlapping shifts are applied to the wavelets, where 0 < m ≤ 1 is a
shift constant. Setting m = 1 corresponds to dyadic shifts. As our wavelet frames typically
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Experiment Basis/Measure scale min shift Neff

Scaled M4
WaveS -3 0.01 501
LegS - - 500
FouS - - 500

Scaled Speech
WaveS -5 0.01 1995
LegS - - 1995
FouS - - 1995

Scaled synthetic
WaveS -3 0.01 501
LegS - - 500
FouS - - 500

Scaled peak detection
WaveS 0 0.01 65
LegS - - 65
FouS - - 65

Translated M4
WaveT -1 0.01 128
LegT - - 128
FouT - - 128

Translated Speech
WaveT -3 0.0025 500
LegT - - 500
FouT - - 500

Translated synthetic
WaveT -1 0.01 128
LegT - - 128
FouT - - 128

Translated peak detection
WaveT 0 0.01 65
LegT - - 65
FouT - - 65

Table 3: Parameters for the redundant wavelet frame used by WaLRUS in different experiments. All
of the above experiment share the parameters L = 219, and rcond = 0.01.

only contain a few dilation levels, using m = 1 can mean that the constructed set of vectors
no longer satisfies the frame condition, and is lossy. We choose a small value (0.01 for most
experiments), and tune this as needed.

• rcond: This parameter controls the numerical stability of the pseudo-inverse calculation
for the dual frame. Singular values smaller than rcond × σmax are discarded during the
inversion process to maintain numerical stability.

Note that all the above parameters are solely to identify the redundant wavelet frame, and that
WaLRUS does not introduce any new parameters. Table 3 summarizes the settings for all experiments,
alongside the SSM sizes for HiPPO-Legendre and HiPPO-Fourier.

A.2.5 Computational resources

Within the scope of this paper, no networks were trained and no parameters were learned. Only
CPU resources were utilized, but speed could be improved with parallel resources on a GPU. Using
WaLRUS to find representation has two different stages:

• Pre-computing: Computing SSM A matrices and diagonalizing them. This step can be
computationally intensive, but need only be calculated once.

• Computation: Using SSM A matrices to find representations of signals.

For all our experiments except Scaled-Speech, the pre-computing stage takes less than 10 minutes.
For scaled-speech, the pre-compute time is on the order of hours. Once the A matrices are computed
and stored, run time is the same for all experiments.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction states that we introduce the use of wavelets
in state-space models for online function representation, and show how these can outper-
form state-of-the-art polynomial models for certain data types. Section 3 describes the
construction of wavelet-based SSMs, and section 4 experimentally supports our performance
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 describes limitations, both in terms of what we have implemented in
this work, as well as limitations in the use of our method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All necessary theoretical background is given in Sec. 2 and full support for
our results are in sections 3-4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The Experiments section thoroughly describes what metrics were tested and
how they were evaluated, as well as the publicly available datasets used. Scripts to replicate
the experimental results are available at https://github.com/echbaba/walrus
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and data are available at https://osf.io/7kjcx/?view_only=
5dc38b9776624deb9d1c0d8f88108658
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the required information on both the datasets, and the exact experimen-
tal setting required to recreate the wavelet frame, are provided in the Appendix. This
information can also be found in our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars and quantiles are provided in figures 5 and 7, and explanations of
their source are in the text and captions of the figures. Since MSE is not normally distributed,
we chose to use quantiles and percentiles to reflect the distribution more accurately. We also
provide tables 1 and 2 to describe additional nuances of the comparison data.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Since our work did not involve any training, no GPU computation was
necessary. More discussion is available in the Appendix (Sec. A.2.5).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have conducted this research with integrity and reported our findings
with honesty. The link to the Code of Ethics provided is broken, and so we have instead
consulted this provisional copy of the document: https://openreview.net/forum?id=
zVoy8kAFKPr.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This work is a basic mathematical result that does not have a targeted end use.
We do note in our conclusion that improved function approximators, like the one we present
here, can reduce the computational resources required for training certain types of neural
networks – resources that have recently become a major environmental concern.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a foundational and theoretical work that is primarily mathematical in
nature: a compressive online approximation of time-series signals over a wavelet frame.
The potential use cases for such a tool are similar in scope to that of a Fourier Transform;
that is, it is too broad to responsibly hypothesize specific use cases or create guidelines.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: the M4 dataset does not have a required license: https://paperswithcode.
com/dataset/m4. The SpeechCommands dataset has a CC BY license, allowing for
unrestricted use, with attribution to the author: https://huggingface.co/datasets/
google/speech_commands. The four other data types we test on are generated by code
that is made available with this paper, and based on [38].

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: An implementation of WaLRUS is provided with the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There were no human subjects in this theoretical work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There were no study participants in this theoretical work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We have used LLMs only to assist in writing and polishing the grammar.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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