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Abstract

In this paper we address the task of summariz-001
ing television shows, which touches key areas002
in AI research: complex reasoning, multiple003
modalities, and long narratives. We present a004
modular approach where separate components005
perform specialized sub-tasks which we argue006
affords greater flexibility compared to end-to-007
end methods. Our modules involve detecting008
scene boundaries, reordering scenes so as to009
minimize the number of cuts between different010
events, converting visual information to text,011
summarizing the dialogue in each scene, and012
fusing the scene summaries into a final sum-013
mary for the entire episode. We also present014
a new metric, PREFS (Precision and Recall015
Evaluation of Summary Facts), to measure016
both precision and recall of generated sum-017
maries, which we decompose into atomic facts.018
Tested on the recently released SummScreen3D019
dataset (Papalampidi and Lapata, 2023), our020
method produces higher quality summaries021
than comparison models, as measured with022
ROUGE and our new fact-based metric.023

1 Introduction024

In this paper, we address the challenging task of025

summarizing television shows which has practical026

utility in allowing viewers to quickly recall plot027

points, characters, and events without the need to028

re-watch entire episodes or seasons. From a compu-029

tational standpoint, the task serves as a testbed for030

complex reasoning over long narratives, involving031

multiple modalities, non-trivial temporal depen-032

dencies, inferences over events, and multi-party033

dialogue with different styles. An added difficulty034

concerns assessing the quality of generated sum-035

maries for long narratives, whether evaluations are036

conducted by humans or via automatic metrics.037

Most prior work on creative summarization does038

not consider the above challenges all at once, fo-039

cusing either on the text modality and full-length040

narratives with complex semantics (Gorinski and041

Lapata, 2015; Chen et al., 2022; Agarwal et al., 042

2022) or on short video clips which last only a 043

couple of minutes (Tapaswi et al., 2016; Lei et al., 044

2018; Liu et al., 2020). A notable exception is 045

Papalampidi and Lapata (2023), who incorporate 046

multimodal information into a pre-trained textual 047

summarizer by adding (and tuning) adapter lay- 048

ers (Rebuffi et al., 2017; Houlsby et al., 2019). On 049

the evaluation front, there is no single agreed-upon 050

metric for measuring summary quality automat- 051

ically, although there is mounting evidence that 052

ROUGE (Lin, 2004) does not discriminate between 053

different types of errors, in particular those relating 054

to factuality (Min et al., 2023; Clark et al., 2023). 055

While end-to-end models are a popular choice 056

for summarization tasks (Chen et al., 2022; Zhang 057

et al., 2020), more modular approaches have been 058

gaining ground recently (Guan and Padmakumar, 059

2023; Gupta and Kembhavi, 2022; Sun et al., 2023) 060

for several reasons. Modules can be developed 061

independently, and exchanged for better versions 062

if available, new modules can be added to create 063

new solutions or repurposed for different tasks, 064

and dependencies between modules can be rear- 065

ranged. Aside from greater controllability, modular 066

approaches are by design more interpretable, since 067

errors can be inspected and attributed to specific 068

components. In this paper we delegate the end-to- 069

end task of summarizing from multiple modalities 070

(i.e., TV show video and its transcript) to more 071

specialized modules, each responsible for handling 072

different subtasks and their interactions. Our ap- 073

proach is depicted graphically in Figure 1. 074

As scene breaks are not always given explicitly, 075

we devise an algorithm to identify them from the 076

order of the speaker names (row 1, Figure 1). Ad- 077

ditionally, we select the optimal order in which to 078

re-arrange scenes (row 2, Figure 1), as these often 079

appear in non-linear order (e.g., there can be sev- 080

eral subplots or flashbacks). Next, we produce sum- 081

maries in a two-layer process. A vision-processing 082
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Emily is accused of hurting Rosanna, and she doesn't pass the lie detector test at 
the police station. At the hospital, Ben says he saw Aaron the night of the accident 

and Bob speaks to Dr. Ramirez about it.

Emily is 
upset she 

hurt 
Rosanna. 

She's afraid 
of being 
arrested.

Emily and 
Hal talk 

at a 
police 

station.

Emily failed 
a lie detector 
test. Margo 
is angry with 

her. She 
wants to go 

home.

Hal 
watches 

Emily 
push a 
woman.

Ben says he 
saw Aaron 
last night 

and is 
concerned 
about his 
recovery.

A doctor 
shows a 

man 
something.

Bob says he 
will speak to 
Dr. Ramirez 

about it.

Two men 
talk in a 
hospital.

1 Scene 
Detection 
(split input into 
scenes)

2 Scene 
Reordering

3 Visual 
Processing

4 Dialogue 
Summarization

5 High-level 
Summarization

Figure 1: Graphical depiction of our approach for long-form multimodal summarization where different subtasks
are performed by five, specialized modules (shown in different colors). We use simplified summaries for display
and show only four scenes. This full episode (As the World Turns aired 01-06-05, contains 29 scenes.

module (Lei et al., 2020; Lin et al., 2022) converts083

the video to text using visual captioning (row 3,084

Figure 1), which leverages the strong specialized085

ability of vision-to-text models and allows us to086

treat the problem as one of text-to-text summariza-087

tion. We also summarize each scene independently088

with a module specialized for dialogue summariza-089

tion (row 4, Figure 1). Finally, we use a high-level090

summarization module specialized for narrative091

summarization to fuse the sequence of scene sum-092

maries into a final summary (row 5, Figure 1).093

We also propose a new metric for assessing094

the factuality of generated summaries by adapting095

FActScore (Min et al., 2023), a recently introduced096

metric for detecting hallucination in text generation.097

We break the generated summary into atomic facts,098

and check what fraction of them are supported by099

the reference. This we term fact-precision. We also100

do the same in reverse, breaking the reference into101

facts and measuring what fraction are supported102

by the generated summary, which we term fact-103

recall. Our metric, PREFS (Precision and Recall104

Evaluation of Summary Facts), is the harmonic105

average of these two scores. Our contributions are:106

• We present a novel modular approach to mul-107

timodal summarization, where separate sub-108

tasks are performed by separate modules;109

• Our modules involve detecting scene breaks,110

reordering each scene, summarizing the dia- 111

logue therein, converting the visual informa- 112

tion to text, and fusing the scene-summaries 113

into a final summary (see Figure 1); 114

• We present two novel algorithms, for deter- 115

mining the optimal order in which to place 116

each scene, and for identifying where the 117

scene breaks are located in the transcript; 118

• We devise a new metric for summarization, 119

based on splitting text into atomic facts, which 120

captures both precision and recall and corre- 121

lates significantly with human judgments. 122

2 Related Work 123

In the area of long-form summarization, various 124

methods have been proposed to deal with inputs 125

that exceed the context size of a large language 126

model (LLM). Memwalker (Chen et al., 2023) 127

forms a tree of hierarchical summary nodes and tra- 128

verses it during inference to find the most relevant 129

parts of the input text. Pang et al. (2023) propose 130

a two-layer method where the top layer captures 131

coarse long-range information and produces top- 132

down corrections to a local attention mechanism in 133

the lower layer. Chang et al. (2023) describe two 134

settings for long-form summarization with LLMs: 135

hierarchical merging summarizes chunks of the 136

input sequentially, whereas iterative updating con- 137
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tinually updates a single summary for each of the138

chunks. We also adopt a two-layer approach but139

differ in that we divide the input into semantically140

meaningful chunks, i.e., scenes, rather than uni-141

form chunks, and we summarize each indepen-142

dently before fusing them together.143

The problem of generating descriptions for144

videos has also received much attention, largely145

independently from long-document summarization.146

It is common practice (Zhang et al., 2021; Pan et al.,147

2020; Ye et al., 2022) to extract features from each148

frame individually, then fuse them into a single149

feature vector and decode with a language model.150

Swinbert (Lin et al., 2022) instead uses an end-to-151

end video network, dispensing with image-based152

encoders, and samples frames densely. Lei et al.153

(2020) generate descriptions for short videos with154

a memory-augmented vision transformer. Popular155

video captioning datasets (Chen and Dolan, 2011;156

Xu et al., 2016) are only ∼10s in length. YouCook157

(Zhou et al., 2018) is a recent dataset with longer158

videos (5min on average), but still far shorter than159

the TV shows we focus on here.160

Multimodal summarization is an extension of161

video captioning in which the input contains text as162

well as video. Pan et al. (2023) tackle the analogous163

problem for still-images with a single model whose164

architecture allows image and text input and can165

produce a text description as output. Bhattacharyya166

et al. (2023) convert the video to text and feed it167

to a visual storytelling model. Tsimpoukelli et al.168

(2021) train a vision encoder to produce a sequence169

of vectors which, when fed to an LLM, produce170

a textual description of the image contents. Pa-171

palampidi and Lapata (2023) apply a similar idea172

to multimodal summarization, extracting a feature173

vector from the visual input which is fed, along174

with the token embeddings from the transcript, to175

a summarization network. Our method does not176

try to extract a visual feature vector that functions177

like a token embedding, but rather extracts actual178

tokens, i.e., a textual description, from the video.179

3 Decomposition of Multimodal180

Summarization into Modules181

Our decomposition of the summarization task into182

modules is motivated by three assumptions spe-183

cific to TV shows: (1) each scene is somewhat184

self-contained and, on a coarse level, the events it185

depicts can be understood independently of other186

scenes (2) the order in which scenes appear is not187

necessarily the optimal order to facilitate under- 188

standing, often shows cut back and forth between 189

different plotlines, and sometimes they are pre- 190

sented non-linearly (3) an effective way to capture 191

visual information in a multimodal text summary 192

is to translate it into natural language. These as- 193

sumptions motivate our modular approach, which 194

is depicted graphically in Figure 1. Five separate 195

subtasks are performed by separate components: 196

scene-break detection (top row), scene reordering 197

(second row), converting visual information to text 198

(third row), dialogue summarization (fourth row), 199

and high-level summarization (fifth row). 200

Assumption (1) motivates our choice to detect 201

scene breaks and summarize each independently 202

with a module specialized for dialogue summa- 203

rization and then later fuse these with a high-level 204

summarization module to produce a final output 205

summary. Assumption (2) motivates our scene- 206

reordering algorithm: we do not simply concate- 207

nate scene-level summaries in the order in which 208

they appear, but rather we compute an optimal or- 209

der designed to minimize the number of transitions 210

between different plotlines. Assumption (3) mo- 211

tivates our choice of how to capture the visual in- 212

formation in our summaries. A visual processing 213

module produces a textual description of the video 214

for each scene, which is fed, alongside the dia- 215

logue summaries to the high-level summarization 216

module. As a result, the high-level and dialogue 217

summarization modules only need to focus on the 218

single modality of text. 219

3.1 The Multimodal Summarization Task 220

Before discussing the details of the various mod- 221

ules, we provide information on our specific task 222

and the dataset we are working with. We develop 223

and evaluate our approach on SummScreen3D (Pa- 224

palampidi and Lapata, 2023)1, which to our knowl- 225

edge is the only existing dataset for long-form 226

video summarization. It consists of 5,421 videos 227

of TV episodes (mostly soap operas) varying in 228

length from 30–60min, with accompanying tran- 229

scripts (on average 6K tokens long) and summaries 230

that were written by fans and scraped from public 231

websites (average length is 200 tokens). These are 232

partitioned into 296 each for validation and test- 233

ing, and the remaining 4,829 for training. Videos 234

can have multiple summaries from different fan- 235

1https://github.com/ppapalampidi/video_
abstractive_summarization
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sites (the average number of summaries per episode236

is 1.53), giving a total of 8,880 training pairs.237

In SummScreen3D, each data point contains a238

video, a transcript that includes character names239

and, sometimes, marked scene breaks, and a closed240

captions file, which is used to display subtitles241

and has timestamps but not speaker names. We242

align the lines in the transcript with those from243

the closed captions. These do not match perfectly,244

because of slight errors in the automatic transcrip-245

tion. For each line t in the transcript and utter-246

ance c in the caption, we estimate a similarity score247

as |f(t,c)|
min (|t|,|c|) , where f computes longest common248

subsequence. Then we use dynamic time warp-249

ing to align both sequences (Myers and Rabiner,250

1981; Papalampidi et al., 2021). As a result, we251

obtain alignments of transcript utterances to video252

segments, which allows us to use the scene-breaks253

from the former to segment the latter.254

3.2 Scene Detection255

This module (Figure 1, row 1) partitions the tran-256

script into contiguous chunks. Each line in a tran-257

script begins with the name of the character speak-258

ing, and our algorithm seeks a partition where each259

chunk contains only a small number of characters.260

We define a cost for a given partition, by invok-261

ing the minimum description length (MDL) princi-262

ple (Grünwald, 2007), in which the optimal repre-263

sentation of a piece of data is that which contains264

the fewest of bits. Thus, the cost of a partition is265

the number of bits needed to specify it. We as-266

sume the total set of N character names for the267

entire transcript is given. Then, for each scene, we268

make a scene-specific codebook for the n charac-269

ters that appear there, which assigns each character270

a code as an index from 0, . . . , n−1, which all have271

length ≤ ⌈log n⌉Using exactly ⌈log n⌉ guarantees272

a prefix-free code (Grunwald, 1998)2. The number273

of possible codebooks with n out of N characters is274 (
N
n

)
. Imposing e.g., lexicographic order, on these,275

the number of bits to specify one is276

C(N,n) := log

(
N

n

)
= log

N !

n!(N − n)!
277

and the total cost of a given scene is then278

C(N,n) + l log n , (1)279

where N is the total number of speakers as before,280

and n and l are, respectively, the number of distinct281

2Because we do not need to convert to concrete codes, we
omit the ceiling operator in our optimization objective.

Algorithm 1 Compute the optimal partition of tran-
script lines into scenes.

m← # lines in the transcript
P ← an m×m matrix, to store the cost of spans
Q ← an m ×m matrix, to store the optimal partition of
spans
for i = 2, . . . ,m do

for j = 1, . . . ,m− 1 do
n← # of unique characters in lines j, . . . , j + i
P [j, j + i]← C(N,n) + i logn
Q[j, j + i]← ∅
for k = j, . . . , j + i do

if P [j, k] + P [k, j + i] < P [j, j + i] then
P [j, j + i]← P [j, k] + P [k, j + i]
Q[j, j + i]← Q[j, k] ∪ {k} ∪Q[k, j + i]

speakers and the number of transcript lines in the 282

scene. See Appendix D for details and examples. 283

Let m be the number of lines in the transcript. 284

Then, for any 1 ≤ i < j ≤ m, the cost of all scenes 285

from line i to line j under the optimal partition, 286

written as S(i, j), can be expressed recursively as 287

S(i, j) = min
2≤k≤i

S(i, k) + S(k, j) , 288

where S(i, j) is defined as zero when i = j. This 289

motivates a dynamic programming solution, simi- 290

lar to the CYK algorithm for context-free parsing 291

(Kasami, 1966), in which we compute, in order, 292

the optimal solution of spans of lengths 2, . . .m, 293

and reuse solutions of smaller spans when com- 294

puting those of larger spans. Our algorithm runs 295

in O(N3), with only O(N2) calls to compute the 296

scene cost as per Equation (1). The scene breaks 297

can be transferred to the video because of the dy- 298

namic time-warping alignment between the tran- 299

script and the timestamps in the closed captions, as 300

described in Section 3.1. Note, we do not have to 301

specify the number of scenes, that is determined 302

automatically by our algorithm. 303

3.3 Scene Reordering 304

We now discuss how we compute the optimal order 305

of scenes (Figure 1, row 2), prior to summarization. 306

We first define a cost for a given order as 307

C(s1, . . . , sn) =
n−1∑
i=1

1− IOU(si, si+1) , (2) 308

where IOU is the intersection over union of char- 309

acter names. For example, if the characters 310

in scene s1 are Alice and Bob, and the char- 311

acters in scene s2 are Bob and Charlie, then 312

IOU(s1, s2) =
1
3 . Additionally, we introduce a 313
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Algorithm 2 Minimize the number of transitions
between scenes with different speakers.

function IOU(x,y)
return #characters in both x and y

#characters in x+#characters in y

function COMPUTE OPTIMAL ORDER(S)
s1, . . . , sn ← scenes in order of appearance in S;
C ← n× n matrix; ▷ cache for IOUs
for i = 1, . . . , n do

for j=i,. . . ,n do
C[i, j]← 1− IOU(si, sj);
if (si, sj) == 0 then

C[j, i] = 1
else

C[j, i] =∞
changed← True;
while changed do

for i = 2, . . . , 2 do
n = min{j|C[j, i] < 1}+ 1 ▷ new idx for i
cost1← C[i−1, i+1]−C[i−1, i]−C[i, i+1];
cost2← C[n− 1, i] + C[i, n]− C[n− 1, n];
if cost1 + cost2 < 0 then

move si to position new in S;
changed← True
break

constraint that if the same character appears in two314

different scenes, si and sj , then we should never315

swap the order of si and sj , as that may violate316

causality between the two scenes.317

We approximately solve this optimization prob-318

lem by passing from s2 to sn and moving each319

scene as far to the front as possible without vio-320

lating the causality constraint, if this leads to an321

improved total order cost. We continue passing322

from s2 to sn until no changes are made. Our al-323

gorithm runs in O(N2), where N is the number of324

scenes, typically 30. The change in cost when mov-325

ing a scene depends only on the IOU cost of that326

scene and its current and future neighbours, and327

the IOU cost of all pairs of scenes can be cached.328

3.4 Vision Processing329

We explore two methods for the vision-processing330

module which differ in architecture and scope (Fig-331

ure 1, row 3). SwinBERT (Lin et al., 2022) is a332

dedicated video captioning model; it operates di-333

rectly on a sequence of video frames for which it334

generates a description. SwinBERT is end-to-end335

trained with a masked language modeling objective,336

and a sparse attention mask regularizer for improv-337

ing long-range video sequence modeling. We apply338

SwinBERT to the video for each scene, sampled339

at 3 frames-per-second, to obtain a video caption,340

which we use as a description of video contents.341

Kosmos-2 (Peng et al., 2023) is pretrained on342

several multimodal corpora as well as grounded343

image-text pairs (spans from the text are associated 344

with image regions) and instruction-tuned on var- 345

ious vision-language instruction datasets. Unlike 346

SwinBERT, it operates on individual images, so we 347

first extract three equally spaced I-frames from the 348

h264 video encoding (Wiegand et al., 2003), and 349

take the captions from each. We prompt Kosmos-2 350

with “A scene from a TV show in which”. 351

Both SwinBERT and Kosmos-2 can generate 352

uninformative textual descriptions, e.g., “a man is 353

talking to another man” which we discard. We also 354

modify them to replace unnamed entities such as 355

‘the man’ with character names where these can be 356

easily inferred. See Appendix B for details of our 357

filtering and renaming procedures. 358

3.5 Summary Generation 359

Because of our two-layer summarization approach, 360

we can use a relatively small backbone model, and 361

are still able to encode very long input. In our exper- 362

iments, we use variants of BART-large (Lewis et al., 363

2020) for both the dialogue summarization and 364

high-level summarization modules, but any other 365

similar model could be used instead. For the dia- 366

logue summarization module (Figure 1, row 4), we 367

use the public Huggingface checkpoint for BART 368

which has been fine-tuned on the SamSum dataset 369

(Gliwa et al., 2019), to output multi-sentence sum- 370

maries of dialogue. For the high-level summa- 371

rization module (Figure 1, row 5), we use BART, 372

fine-tuned first for document summarization on the 373

CNN/Daily Mail dataset (Hermann et al., 2015), 374

and then on SummScreen3D. The input for the lat- 375

ter fine-tuning is our re-ordered scene summaries 376

and visual text descriptions, i.e., the output of the 377

dialogue summarization, vision-processing and re- 378

ordering modules. The output is the gold sum- 379

maries from the SummScreen3D (Papalampidi and 380

Lapata, 2023) training set. Training and inference 381

took place on a single NVIDIA A100-SXM-80GB 382

GPU, taking seven and one hour(s), respectively. 383

4 Fact-Precision, Fact-Recall and PREFS 384

Hallucinations are a widely known issue with ab- 385

stractive summarization (Song et al., 2018; Maynez 386

et al., 2020; Kryscinski et al., 2020; Gabriel et al., 387

2021), especially when the output is long (Min 388

et al., 2023) and information is being consolidated 389

from multiple sources (Lebanoff et al., 2019). Au- 390

tomated metrics are crucial for our task and related 391

creative summarization applications where human 392
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evaluation is extremely labor-intensive (e.g., watch-393

ing long videos or reading book-length transcripts),394

costly, and difficult to design (Krishna et al., 2023).395

Our proposal is based on a recent metric,396

FActScore (Min et al., 2023), which aims to de-397

tect hallucination in text generation. FActScore398

first parses the generated text into atomic facts399

(i.e., short sentences conveying one piece of in-400

formation), and then determines whether these are401

supported by an external knowledge source, such402

as Wikipedia. The FActScore for some model out-403

put is the fraction of the extracted facts that are404

judged to be supported. Min et al. (2023) recom-405

mend using InstructGPT for the first stage of con-406

verting the text into facts, and Llama-7B (Touvron407

et al., 2023) for checking whether these facts are408

supported (i.e., by zero-shot prompting Llama to es-409

timate whether a generated fact is True or False).3410

We adapt this for summary evaluation by replac-411

ing the external knowledge source with the gold412

summaries. Note that this incorporates relevance as413

well as accuracy. There are many true facts about414

the TV show being summarized, and only some of415

them appear in the gold summaries. We assume416

that facts that do not appear in the gold summary417

are irrelevant and so should not be marked as cor-418

rect if they appear in our model summaries. This is419

our fact-precision metric. For fact-recall, we do the420

same in reverse: we convert the gold summary into421

atomic facts, and then check whether each of these422

is supported by the generated summary. Again, the423

score is the fraction of such facts that are supported.424

A summary will get a high fact-precision score if425

every atomic piece of information is both true and426

relevant enough to appear in the gold summary. It427

will get a high fact-recall score if it contains every428

atomic piece of information that was contained in429

the gold summary. The final score for our met-430

ric, which we term PREFS (Precision and Recall431

Evaluation of Summary Facts), is the harmonic432

mean of fact-precision FP and fact-recall FR:433

PREFS =
2

1
FP + 1

FR

.434

In our implementation, we used GPT4-Turbo for435

the extraction of atomic facts and the estimation436

of whether they are supported, as we found that437

Llama-7B overestimates the number of supported438

facts. We use the same prompts as Min et al. (2023)439

and make a separate query, with in-context learn-440

3https://github.com/shmsw25/FActScore

ing examples, for each fact. In order to penalize 441

repetitive/redundant information, repeated facts are 442

regarded as unsupported. In the case that GPT in- 443

dicates that the sentence is not properly formed, 444

we convert it to a single fact which is scored as 445

unsupported (see Appendix C for an example). 446

We examined whether PREFS correlates with 447

human judgments of factuality. Two annotators, 448

both English native speakers, were asked to watch 449

four randomly selected shows from the Summ- 450

Screen3D development set. They were then shown 451

facts generated by GPT4 corresponding to sum- 452

maries produced by several automatic systems 453

(those described in Section 5.1). For each fact 454

they were asked to decide whether it was supported 455

by the episode (1/True or 0/False). Human rat- 456

ings significantly correlate with GPT4’s estimate 457

on whether a fact is supported (Pearson’s r = 0.5, 458

N = 520, p < 0.01), with an inter-annotator agree- 459

ment of r = 0.57 (p < 0.01) as upper bound. 460

5 Experimental Evaluation 461

5.1 Comparison Models 462

Our full model was composed of the modules de- 463

scribed in Section 3. The scene detection module 464

was employed on SummScreen3D transcripts with- 465

out explicitly marked breaks (approximately 20% 466

of the time). The high-level summarization mod- 467

ule was trained for a max of 10 epochs, with early 468

stopping using ROUGE on the validation set, with 469

a patience of 2. The optimizer was AdamW with 470

learning rate 1e-6, and a linear scheduler with 0 471

warmup steps. The other models in our framework 472

are not fine-tuned. 473

We compare our approach to the end-to-end 474

model of Papalampidi and Lapata (2023), which, 475

to our knowledge, represents the state of the art 476

on our task, and various text-only models which 477

operate on the transcript: 478

Unilimiformer (Bertsch et al., 2023) is a 479

retrieval-based method that is particularly suited to 480

processing long inputs. It wraps around any trans- 481

former, with context size k, and can extend this size 482

arbitrarily by storing an index of all input tokens 483

and replacing the transformer query mechanism 484

with the k-nearest neighbours from this index. 485

LLama-7B, Mistral-7B As our backbone BART 486

models are relatively small, ∼400M parameters, 487

we may be able to obtain better summaries, sim- 488

ply using a larger model; we test this hypothesis 489
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r1 r2 rlsum fact-prec fact-rec PREFS

mistral-7b 28.38 (0.16) 4.82 (0.06) 26.14 (0.17) 31.75 38.00 34.59
llama-7b 16.31 (3.31) 1.99 (0.75) 14.40 (2.96) 16.10 26.60 18.84
central 40.42 (0.27) 9.04 (0.29) 38.13 (0.27) 34.57 31.41 32.91
startend 32.53 (0.38) 6.37 (0.20) 31.80 (0.35) 34.78 33.62 34.19
unlimiformer 42.24 (0.42) 10.32 (0.34) 40.40 (0.42) 37.31 47.69 41.87

adapter-e2e 34.13 (0.07) 4.28 (0.08) 31.81 (0.07) 31.15 39.72 34.93
modular-swinbert 44.89 (0.64) 11.39 (0.22) 42.92 (0.59) 42.71 46.47 44.51
modular-kosmos 44.86 (0.60) 11.83 (0.15) 42.97 (0.56) 42.29 48.54 45.20

upper-bound 42.62 9.87 40.03 71.07 91.25 79.91

Table 1: Automatic evaluation results on SummScreen3D. The first block presents text-only models and the second
one multimodal ones. Best results are in bold, second-best in italics. For ROUGE, we report the mean of five
independent random seeds, with standard deviation in parentheses.

with LLama-7B and Mistral-7B, both fine-tuned490

for three epochs on our training set.491

startend We implemented a simple baseline492

which uses BART fine-tuned for dialogue summa-493

rization and takes scenes from the start and end494

of the transcript up to the maximum that can fit in495

the context size (1,024). This is inspired by recent496

work showing that even long-context transformers497

take information mostly from the beginning and498

end of the input (Liu et al., 2023).499

central is inspired by the method of Papalampidi500

et al. (2021). Again it uses BART and selects a501

subset of the input to fit in the context size. It502

computes a weighted graph whose nodes are scenes503

and edge-weights are tf-idf similarity scores, then504

uses the page rank algorithm to rank scenes in order505

of importance, and selects the topmost important506

scenes that can fit in the context window.507

We also compare to an upper-bound which tests508

the gold summaries against each other. Recall that509

SummScreen3D often contains multiple summaries510

for each episode. We select one from the three511

websites with the most uniformly-sized summaries512

and treat it as if it was the predicted summary, then513

test it against the remaining summaries.514

5.2 Results515

Table 1 summarizes our results, as measured by516

ROUGE-1 (r1), ROUGE-2 (r2), ROUGE-Lsum (rl-517

sum) (computed using the python-rouge package)518

and our new PREFS metric. We present results with519

BERTScore (Zhang et al., 2019) in Appendix E,520

for the sake of brevity. Results for Papalampidi and521

Lapata (2023), which we denote as ‘adapter-e2e’,522

were reproduced with their code.4 For PREFS, as 523

described in Section 4, we use a separate query 524

to GPT for each fact to check whether it is sup- 525

ported. There are roughly 70 facts per generated 526

summary, which can lead to significant financial 527

cost if used excessively. Therefore, while we report 528

five random seeds for ROUGE, we select a single 529

seed (randomly) for fact-precision and fact-recall. 530

Example output is shown in Appendix A. 531

Our modular approach outperforms compar- 532

ison models across all metrics. As shown in 533

Table 1, our method, which we denote as ‘modu- 534

lar’ significantly outperforms the previous end-to- 535

end multimodal system of Papalampidi and Lap- 536

ata (2023), and all comparison text-only models 537

(upper block). A two-sampled t-test shows that 538

improvement over the comparison models is sig- 539

nificant at α = 0.01 (calculation in Appendix F). 540

We observe that billion-parameter models like Mis- 541

tral and Llama struggle with this task (although 542

Mistral is superior), despite being fined-tuned on 543

SummScreen3D. Amongst text-only models, Un- 544

limiformer performs best which suggests that the 545

ability to selectively process long context has a 546

greater impact on the summarization task. As far 547

as our model is concerned, we find that the type 548

of visual processing module has an effect, allbeit 549

small, on the quality of the output sumaries. Over- 550

all, Kosmos-2 (Peng et al., 2023) has a slight ad- 551

vantage over SwinBERT (Lin et al., 2022) which 552

we attribute to it having been trained on various 553

image understanding tasks, besides captioning. 554

4https://github.com/ppapalampidi/video_
abstractive_summarization
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r1 r2 rlsum fact-prec fact-rec PREFS

w/o transcript 30.71 (0.38) 5.48 (0.15) 28.64 (0.25) 16.53 21.91 18.84
w/o video 43.80 (0.76) 10.91 (0.15) 41.67 (0.72) 40.45 41.47 40.95
w/o reordering 44.98 (0.52) 11.61 (0.13) 42.97 (0.50) 39.82 45.17 42.33
w/o scene-detection 44.57 (0.82) 11.22 (0.34) 42.56 (0.83) 37.91 39.52 36.70
full 44.86 (0.60) 11.83 (0.15) 42.97 (0.56) 42.29 48.54 45.20

Table 2: Effect of removing various modules from our method.

PREFS better reflects summary quality than555

ROUGE. Interestingly, upper-bound ROUGE556

scores are lower than those for several models. We557

regard this as a shortcoming of ROUGE as a metric.558

Qualitatively, reading the different gold summaries559

shows that they are more similar to and accurate560

with respect to each other than any of the predicted561

summaries, including ours. Although they differ562

in phrasing and length, they all describe the same563

key events. Our proposed metric, PREFS, better re-564

flects this similarity and gives a much higher score565

to ‘upper-bound’ than to any of the models. The566

large gap to get to the level of ‘gold upper-bound’567

reflects the difficulty of the task. The comparison568

between ROUGE and PREFS suggests that the for-569

mer is useful for detecting which summaries are of570

very low quality, e.g., if ROUGE-2 is < 5, the sum-571

mary can confidently be regarded as poor. How-572

ever, for distinguishing between multiple relatively573

decent summaries, PREFS is more useful.574

Ablations show all modules are important, but575

the transcript is the most important of all. Ta-576

ble 2 shows the effect of removing four of the five577

modules. In ‘w/o scene-detection’, we remove578

the scene-detection module and just split the in-579

put into equally-sized chunks equal to the context580

size (1,024). In ‘w/o transcript’ we do not include581

summaries of the dialogue from the transcript, and582

the only input to the high-level summarization mod-583

ule is the output of the visual processing module.584

In ‘w/o video’ we do the reverse: use only the dia-585

logue summaries without the output of the vision-586

processing module. In ‘w/o reordering’, we remove587

the scene-reordering module and present the scene588

summaries to the high-level summarization module589

in the order in which they appear. All these experi-590

ments are performed using the Kosmos-2 captions591

(except ‘w/o video’ which has no captions). As in592

Table 1, ROUGE is scored over five random seeds,593

PREFS for a single randomly selected seed.594

Aside from ROUGE-1 and ROUGE-Lsum,595

which are roughly the same for ‘w/o reordering’ 596

and ‘w/o scene-detection’, all ablation settings lead 597

to a drop in all metrics. We provide detailed analy- 598

sis of the accuracy of the scene detection module 599

in Appendix E.1. Unsurprisingly, the largest drop 600

is in ‘w/o transcript’ as most information is in the 601

dialogue — a TV show without sound or subtitles 602

is difficult to follow. Interestingly, however, this 603

setting still gets some n-grams (ROUGE) and facts 604

(PREFS) correct, showing that our model is extract- 605

ing useful information from the video. This is also 606

clear from the ‘w/o video’ setting, which shows a 607

drop in all metrics. Qualitatively, we observe that 608

the vision-processing module is most useful for 609

identifying locations, e.g., ‘at the hospital’ which 610

is generally not mentioned in the dialogue. For 611

‘w/o scene-detection’ and ‘w/o reordering’, the dif- 612

ference is moderate for ROUGE. For PREFS, it is 613

more substantial and highly significant when taken 614

over all facts in the dataset. 615

6 Conclusion 616

We addressed the task of summarizing TV shows 617

from videos and dialogue transcripts. We proposed 618

a modular approach where different specialized 619

components perform separate sub-tasks. A scene- 620

detection module splits the TV show into scenes, 621

and a scene-reordering module places these scenes 622

in an optimal order for summarization. A dialogue 623

summarization module condenses the dialogue for 624

each scene and a visual processing module pro- 625

duces a textual description of the video contents. 626

Finally, a high-level summarization module fuses 627

these into an output summary for the entire episode. 628

We also introduced PREFS, a new metric for long- 629

form summarization, based on splitting predicted 630

and reference summaries into atomic facts. It cap- 631

tures both precision and recall, and correlates sig- 632

nificantly with human judgments. In the future, we 633

plan to test our method on even longer inputs, and 634

explore settings where transcripts are not available. 635
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Limitations636

While the modular approach we propose has advan-637

tages, such as allowing specialization of individual638

modules, and the ability to replace one module639

without affecting the others, it also has the dis-640

advantage that it is difficult to fine-tune all mod-641

ules. We fine-tune only the high-level summariza-642

tion module, whereas for a monolithic end-to-end643

model, all parameters can be trained.644

Our proposed PREFS metric requires multiple645

calls to GPT which incurs a financial cost. We646

estimate that all the results presented in this paper647

cost about $1300. This is still many times cheaper648

than hiring human evaluators to extract and score649

facts manually, which we estimate would take 400650

person-hours and cost about $15,000.651

There is still a significant gap, in terms of652

PREFS, between our summaries and the upper653

bound of comparing the gold summaries to each654

other. This shows that the task is challenging and655

requires further advances to reach human-level.656
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A Example Summaries938

Table 3 shows the gold summary for an episode from the SummScreen3D testset. Tables 4 and 5–7 show939

the summary of our model, and those of comparison models, respectively, for the same episode.940

The gold Summary of The Bold and the Beautiful episode (aired 05-05-06)
Ridge continues to beg Brooke to reconsider her decision to leave Forrester as Stephanie continues
to voice her opinion. At Marone, Taylor pays Nick a visit. Nick is still angry about what Taylor
implied when she disclosed that Brooke and Ridge slept together. Taylor tries to apologize and
asks if things are all right between Nick and Brooke. Nick tells her that everything is fine
and Brooke is quitting her job at Forrester. Taylor is unconvinced that Brooke will be able to
let go of either Forrester or Ridge ! Brooke tells Ridge that she cannot fight with Stephanie
any longer and that her future is with Nick. After kissing Ridge and saying that a part of her
will always love him, she takes her things and leaves. Bridget and Dante are at home discussing
Stephanie’s interference in the custody of Dino. Bridget suggests that perhaps Eric can help
them. Dante worries about what losing his job would do to his work visa. Bridget convinces him
that because they all love Dino, they should be able to work something out. After some wine,
Bridget reveals that she is ready to make love with Dante. As the two were in bed, Dante stops
and reaches in the bedside drawer and presents Bridget with an engagement ring and pops the
question. Brooke goes to see Nick at his office and tells him that she has left Forrester. Nick
is pleased, although Brooke confesses that she hurt Ridge badly by walking out. Nick whisks her
off to the Marone jet for a surprise getaway! At Forrester, Ridge angrily accuses Stephanie of
causing all his problems with Brooke. Stephanie is stunned as Ridge bashes her with a vengeance
and then clutching his chest, collapses to the floor!

Table 3: Gold summary from the SummScreen3D dataset for The Bold and the Beautiful episode (aired 05-05-06).
Several summaries exist for this episode from different fansites. This summary is from TVMegaSite.

Modular-Kosmos Summary (ours) of The Bold and the Beautiful episode (aired 05-05-06)
Bridget and Dante plan to get married in Italy, but Bridget wants to spend more time with Dante.
Stephanie tells Bridget that she wants to fire Dante and send him to Italy. Ridge tells Stephanie
that he wants Brooke out of Forrester Creations. Brooke tells Nick that she is through fighting,
she is moving to Paris. Nick tells her that she has to move out of the office. Nick says that he
will not force her to work in Paris, but she says that she needs to move in. Ridge says that Nick
is her future, and she has no choice but to leave. Stephanie says that Ridge needs her, but he
does not want to accept her. He says that they are better off without her. She says that is not
what she wants. She tells him that she does not know how he feels. She does not understand how
he could do this to Brooke. He tells her to move on with her life. Taylor apologizes to Nick for
suggesting that Ridge and Brooke slept together. Nick tells Taylor that he doesn’t let it affect
his relationship with Brooke. Brooke tells Nick that she needs something to cheer her up, and
Nick tells her that they are on their way to a tropical island. Ridge tries to convince Brooke
to stay at Forrester Creations, but she tells him that she is leaving anyway. Taylor tells Ridge
that she does not want to believe that he and Brooke have feelings for each other, but Ridge
tells Taylor not to give up on her dreams. Nick and Brooke plan to take off on their trip, but
Nick tells Brooke that he has a surprise for her, and that they will be going to a beautiful
beach and a fruity drink. Brooke is very happy about Nick’s trip plans, but when she asks where
they are going, Nick reveals that he wants to take her to a romantic beach.

Table 4: The summary generated by our model for The Bold and the Beautiful episode (aired 05-05-06).
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Unlimiformer Summary of The Bold and the Beautiful episode (aired 05-05-06)
Brooke tells Ridge that Stephanie will never let her and Nick run Forrester Creations. She
tells him that she is sick of her mother’s obsession with getting rid of her and she has
had enough. Ridge tells his mother that she has been trying to get rid of Brooke for so
long that it has become a compulsion for her. Bridget tells Dante that Stephanie cannot get
away with this. She will call her dad and see what he will do. Dante tells Bridget that
all she has to do is fire him and he will lose his work visa and go back to Italy. He
needs a lawyer and Bridget says she will make sure he gets the best one. Dante thanks her
for her support. She says he has no idea how much her support means to him.. Later, Dante
opens a red velvet’.. Dante proposes to Bridget.. Source: tv.com tv.co.uk/soulmatestories:
http://www.starz.com/dailymail.co/news/features/2013/01/25/24/ro-lorry-logan-says-that-if-he-
walks-out-of-this-company-now they-may-never-get-back-what-they-had.html#storylinkc̄py. Brooke
tells him she still cares about him. He says he doesn’t care what his mother. ..Source: TV.co
Back to Mail Online. Back to the page you came from: http: www. tv.cnn.com.com/. Back to the
episode airs at 8 p.m. ET on Thursday, September 14, 2013. The episode airs on ABC. Click here
to watch the full episode of The Young and the Restless.

Table 5: The summary generated by Unlimiformer (Bertsch et al., 2023) for The Bold and the Beautiful episode
(aired 05-05-06).

Mistral-7B Summary of The Bold and the Beautiful episode (aired 05-05-06)
Ridge and Brooke are having a conversation about their relationship. Ridge tells Brooke that
he doesn’t care what his mother thinks or wants anymore. He only cares about her. Brooke tells
Ridge that Nick doesn’t want her working at Forrester Creations. Ridge tells Brooke that Nick is
telling her what to do now. Brooke tells Ridge that she is through fighting and that Stephanie
has won. Dante and Bridget are having a conversation about Dante’s work visa. Dante tells Bridget
that he needs a lawyer. Bridget tells Dante that she will make sure he gets the best possible
one. Dante tells Bridget that he wants to thank her for her support. Bridget tells Dante that he
deserves to play a huge part in Dino’s life. Bridget tells Dante that she will do whatever she
can to make sure that happens. Nick and Taylor are having a conversation about Ridge and Brooke.
Nick tells Taylor that he wants the containers off the ship. Nick tells Taylor that his people
have schedules to keep. Nick tells Taylor that time and money are important. Taylor tells Nick
that she wants to apologize. Taylor tells Nick that she still thinks she did the right thing
telling him that Ridge and Brooke slept together. Taylor tells Nick that she never should have
implied that Brooke wasn’t being completely honest. Nick tells Taylor that he never believed her
anyway.

Table 6: The summary generated by Mistral-7B for The Bold and the Beautiful episode (aired 05-05-06).

Adapter e2e Summary of The Bold and the Beautiful episode (aired 05-05-06)
Ridge: "You deserve to play a huge part in his life. And I’m going to do whatever I can to make
sure that happens" "This is where we began. This is where our love affair began, Ridge. And it
only seems fitting that this is where it should end" "I will never forget our accomplishments
here. And part of me will always wonder what more we could have done together" "We’ll leave L.A.
and move to Paris. We’ll work out of the office there – the international office" "You wouldn’t
even be with him if my mother hadn’t broken us up. Maybe we would still be married. We’d be
raising our children." "I’m sorry, I know that you want me to be relieved. But on the other, I
just don’t think that – I want you to be happy I’ve got a surprise for you" "It’s really healed
me, I guess. Because I wasn’t ready to be with you." "You’re the only one that’s heartbroken if
you got deported. After all, Dino wouldn’t be the onlyOne that’s Heartbroken if you got deported"
"There’s nothing anyone can say or do to change that now. You understand me? Good, I was hoping
you’d say that. I never believed you anyway" "What do you want from me?" "I don’t know what to
say. I just want to be friends with you. I want to talk to you about everything." "What’s your
plan?" "We’re going to Paris."

Table 7: The summary generated by the method of (Papalampidi and Lapata, 2023) for The Bold and the Beautiful
episode (aired 05-05-06).
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B Caption Filtering and Inference of941

Names942

The output from the visual processing module for943

a given scene is a textual description of the visual944

information for that scene. Sometimes, this de-945

scription is vague and merely adds noise to the946

high-level summarization module input. This is947

also clear from manually viewing the TV show948

episodes: many scenes are just headshots of char-949

acters talking, and do not convey plot information.950

For both SwinBERT and Kosmos-2, we filter out951

any captions that contain the following phrases952

’a commercial’, ‘talking’, ‘is shown’, ‘sitting on953

a chair’, ‘sitting on a couch’, ‘sitting in a chair’,954

‘walking around’. Addtionally, we replace occur-955

rences of the phrase “is/are seen” with “is/are”.956

This is because the captioning datasets these mod-957

els are trained on often use the phrase “is/are seen”,958

e.g., “a person is seen riding a bicycle” instead of959

“a person is riding a bicycle”, but we do not want960

such passive voice constructions in our summaries.961

The captions do not contain character names,962

as these names cannot be inferred from the video963

alone. Therefore, for each sentence in the output of964

the visual processing module, we employ the fol-965

lowing method to insert names, where they can be966

easily inferred. We categorize each name appear-967

ing in the transcript for the scene as male, female968

or neutral, using the vocabulary list for English969

names from Python’s NLTK. Similarly, we assume970

noun-phrases “he”, “a man”, or “a boy” are male971

and noun-phrases “she”, “a woman”, “a girl” are972

female. If there is only one male name, then we973

replace all male noun phrases with that name, sim-974

ilarly for female names. For example, from the975

caption for Scene 2 in One Life to Live, (aired 10-976

18-10), as shown in Figure 2, the output of the977

visual processing module contains the sentence “a978

man is kissing a woman”, and the only names in979

the transcript for that scene are “Brody”, which is980

listed as male, and “Jessica”, which is listed as fe-981

male. Our method to insert names then transforms982

this caption to “Brody is kissing Jessica”.983

C PREFS Metric984

Often, facts extracted by GPT4 are too vague and985

uninformative to be useful for assessing summary986

quality. Therefore, we perform a simple filtering987

to remove such facts. Specifically, we eliminate988

out any facts containing the following words for989

phrases: “someone”, “somebody”, “something”,990

Figure 2: A selected keyframe from Scene 2 in One
Life to Live, (aired 10-18-10), which Kosmos-2 captions
as “a man is kissing a woman”. Our post-processing
method to insert character names transforms this caption
to “Brody is kissing Jessica”.

“is a person”, “are people”, “is a character”, “are 991

characters”. Additionally, we eliminate all facts 992

containing only two words, as we observe they 993

are almost always uninformative and often are an 994

ungrammatical use of a transitive verb in an in- 995

transitive context. Table 8 shows the full list of 996

facts extracted from our summary for The Bold and 997

the Beautiful, (aired 05-05-06), showing which are 998

eliminated, which are judged supported and which 999

are judged unsupported. 1000

D Scene Detection Details and Examples 1001

Here, we provide further details on the scene de- 1002

tection algorithm from Section 3.2 and report a 1003

measure of its accuracy. 1004

We calculate the cost for a given partition by 1005

assuming that the scene breaks under this partition 1006

and the placeholders where the speakers would 1007

go are given, and then asking how many bits are 1008

needed to fill in the speaker names. Then the re- 1009

ceiver can infer the length of the scene-specific 1010

codebook as 2m, where m is the length of each 1011

code in the scene. Note, we still need prefix- 1012

freeness, as just knowing the number of speaker 1013

lines in a scene doesn’t allow us to distinguish be- 1014

tween 10 followed by 11 and 101 followed by 1. 1015

For example, consider the following sequence 1016

of character names from As the World Turns (aired 1017

01-09-07): ’Elwood’, ‘Casey’, ‘Elwood’, ‘Casey’, 1018

‘Elwood’, ‘Casey’, ‘Elwood’, ‘Casey’, ‘Elwood’, 1019

‘Meg’, ‘Paul’, ‘Meg’, ‘Paul’, ‘Meg’, ‘Paul’, ‘Luke’, 1020

‘Meg’, ‘Paul’, ‘Luke’, ‘Meg’, ‘Luke’, ‘Meg’, 1021

‘Luke’, ‘Meg’, ‘Luke’, ‘Meg’, ‘Paul’, ‘Meg’, 1022
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Bridget and Dante are planning to get married. Bridget wants to spend more time with Dante. They
plan to get married in Italy. Stephanie wants to fire Dante. Stephanie wants to send Dante to
Italy. Stephanie tells Bridget. Bridget receives the information from Stephanie. Ridge wants
Brooke out of Forrester Creations. Ridge told Stephanie this. Brooke tells Nick something. Brooke
tells Nick that she is through fighting. Brooke tells Nick that she is moving to Paris. Nick
told her something. Nick told her she has to move. She has to move. She has to move out of the
office. Nick told her she has to move out of the office. Nick will not force her. She will
not work in Paris. She needs to move in. She needs to move to Paris. She will not work in
Paris but she needs to move in. Ridge believes that Nick is her future. Ridge has no choice.
Ridge must leave. Stephanie believes Ridge needs her. Ridge does not want to accept Stephanie.
Stephanie and Ridge have a relationship. Stephanie and Ridge have a troubled relationship. He
says something. He says that. He says that they are better off without her. She says. That is
not what she wants. She tells him something. She tells him that she does not know. She tells him
that she does not know how he feels. She does not know how he feels. She does not understand.
He could do this to Brooke. He tells her something. He tells her to move on. He tells her to
move on with her life. He does not have children. He is a proud uncle. He has four nieces and
nephews. Taylor apologized. Taylor apologized to Nick. Taylor suggested that Ridge and Brooke
slept together. Ridge and Brooke are two people. Ridge and Brooke slept together. Nick tells
Taylor something. Nick tells Taylor he doesn’t let something affect his relationship with Brooke.
Nick has a relationship with Brooke. Nick’s relationship with Brooke is affected by something.
Nick doesn’t let something affect his relationship with Brooke. Brooke tells Nick that she needs
something to cheer her up. Nick tells her something. Nick tells her they are on their way. They
are on their way to a tropical island. Ridge tries to convince Brooke. Brooke is leaving. Brooke
is leaving Forrester Creations. Brooke is leaving Forrester Creations anyway. Taylor tells Ridge
something. Taylor does not want to believe something. Ridge and Brooke have feelings for each
other. Ridge tells Taylor something. Taylor should not give up on her dreams. Nick and Brooke
plan to take off on a trip. Nick has a surprise for Brooke. They will be going to a beautiful
beach. They will be going to a beach. They will be going to a fruity drink. They will be going
to a beautiful beach and a fruity drink. Nick tells Brooke about the surprise. Nick tells Brooke
that they will be going to a beautiful beach. Nick tells Brooke that they will be going to a
fruity drink. Brooke is happy about Nick’s trip plans. Nick has trip plans. Nick wants to take
Brooke somewhere. Nick wants to take Brooke to a beach. The beach is romantic.

Table 8: Facts extracted with GPT4 from our summary of The Bold and the Beautiful, (aired 05-05-06), from
SummScreen3D. Facts that we filter out are written in black, those that are judged as supported by the gold summary
are in blue, while those unsupported are in red. After applying our filtering procedure, the number of facts reduces
from 83 to 67, of which 33 are judged supported and 34 unsupported, giving a factscore-precision of 49.25.

‘Luke’, ‘Meg’, ‘Luke’, ‘Meg’, ‘Luke’, ‘Meg’,1023

‘Luke’, ‘Meg’, ‘Luke’, ‘Adam’, ‘Gwen’, ‘Adam’,1024

‘Gwen’, ‘Adam’, ‘Gwen’, ‘Adam’, ‘Gwen’,1025

‘Adam’.1026

Abbreviating the character names as their first1027

letters, the correct partition is1028

1. ECECECECE,1029

2. MPMPMPLMPLMLMLMLMPMPMLM-1030

LMLML,1031

3. AGAGAGAGA1032

Now consider the cost, as defined in Section 3.21033

of this partition. The total vocabulary size is1034

N = |{E,C,M,P, L,A,G}| = 7 .1035

For the first scene, n1 = 2, n2 = 3, n3 = 2, l1 = 9,1036

l2 = 28, l3 = 7. Letting ci denote the cost for the1037

ith scene, we then have similarly, 1038

c1 = log

(
7

2

)
+ 9 log 2 ≈ 13.392 1039

c2 = log

(
7

3

)
+ 28 log 3 ≈ 49.508 1040

c3 = log

(
7

2

)
+ 9 log 2 ≈ 13.392 , 1041

giving a total cost of approximately 13.392 + 1042

49.508 + 13.392 = 76.292. 1043

Now compare this to the cost of a different par- 1044

tition of this sequence, say into scenes of uniform 1045

length: 1046

1. ECECECECEMPMPMP, 1047

2. LMPLMLMLMLMPMPM, 1048

3. LMLMLMLAGAGAGAGA 1049
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In that case1050

c1 = log

(
7

4

)
+ 15 log 4 ≈ 34.3921051

c2 = log

(
7

3

)
+ 15 log 3 ≈ 28.1671052

c3 = log

(
7

4

)
+ 16 log 4 ≈ 36.392 ,1053

giving a total cost of approximately 34.392 +1054

28.167 + 36.392 = 98.951. Therefore, because1055

our algorithm computes the global minimum to1056

this cost function, it is guaranteed to choose the1057

correct partition over this uniform one. In fact, it1058

selects the correct partition.1059

E Additional Results1060

E.1 Accuracy of Scene-detection Algorithm1061

Here, in Table 9, we report an empirical test of the1062

accuracy of our scene-detection algorithm. These1063

figures are produced using an episode which has1064

explicitly marked scene breaks. We assign each1065

transcript line a label based on the scene it is in1066

with respect to these explicit scene breaks, e.g., all1067

lines in the first scene get the label ‘0’. Then we do1068

the same for the scene breaks produced by our algo-1069

rithm, and compare the two sets of labels using un-1070

supervised label comparison metrics, as commonly1071

used in clustering problems: accuracy (ACC), nor-1072

malized mutual information (NMI), and adjusted1073

Rand index (ARI), defined as, e.g., in Sheng and1074

Huber (2020). We compare to two baselines. The1075

first, denoted ‘uniform’, divides each episode into1076

n equally-sized scenes, where n is the average num-1077

ber of scenes per episode in the dataset. The second,1078

denoted ‘uniform oracle’, does the same except sets1079

n to the true number of scenes in that episode.1080

Our method produces more accurate scene splits1081

than both baselines, despite taking no information1082

from the ground-truth labels. Moreover, many of1083

the occasions on which it differs from the ground-1084

truth scene splits appear at least as reasonable as1085

the ground-truth splits when we observe only the1086

character names in the transcript. This suggests1087

that errors in the predicted splits are due not to the1088

algorithm itself but to the fact that, at present, it1089

only uses character names and ignores the speech1090

itself. A future extension is to use named entities1091

or all nouns from the speech as well as character1092

names.1093

acc nmi ari

ours 0.890 0.881 0.766
uniform oracle 0.759 0.819 0.538
uniform 0.723 0.809 0.489

Table 9: The accuracy of the scene splits produced by
our method, benchmarked against two methods that split
the transcript uniformly: ‘uniform’ splits into the aver-
age number of scenes in the dataset; ‘uniform oracle’
into the ground-truth number of scenes for each episode.

E.2 BERTScore 1094

Tables 10 and 11 report results on summary qual- 1095

ity according to BERTScore (Zhang et al., 2019). 1096

Tables 10 shows BERTScore for our model and 1097

comparison models, the analogue of Table 1 in the 1098

main paper, and Table 11 shows BERTScore for 1099

the ablation settings, the analogue of Table 2 in the 1100

main paper. 1101

We find this metric does not distinguish well 1102

between the different settings, and scores all mod- 1103

els very similarly. Even the “w/o transcript” set- 1104

ting, which qualitatively misses most of the impor- 1105

tant information in the episode, and scores poorly 1106

on ROUGE and PREFS, gets a high BERTScore. 1107

Moreover, even within each setting, the scores are 1108

very similar across different episodes, again in con- 1109

trast to ROUGE, PREFS and qualitative evaluation 1110

(some episodes appear much easier to summarize 1111

than others). The average standard deviation across 1112

episodes, within each setting, is 2.2, 1.39, and 1113

1.41 for BERTScore-precision, BERTScore-recall 1114

and BERTScore-f1 respectively. In contrast, the 1115

same standard deviation for ROUGE-1, ROUGE- 1116

2, ROUGE-Lsum are 6.66, 3.32, 6.52, while for 1117

factscore-precision, factscore-recall and PREFS, 1118

they are 14.92, 15.14 14.94, respectively. 1119

This suggests that BERTScore always returns a 1120

similar score, regardless of the input. This inability 1121

of BERTScore to adequately distinguish different 1122

settings was also reported by Papalampidi and Lap- 1123

ata (2023). 1124

F Significance Calculations 1125

The improvements in our model over comparison 1126

models, as shown in Table 1 are statistically sig- 1127

nificant at α < 0.01. We now calculate an upper 1128

bound on all metrics to establish this, for an un- 1129

paired unequal variances T-test, i.e.. a Welch test. 1130

The t-value for such a test is calculated as 1131
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bs-precision bs-recall bs-f1

llama-7b 75.48 (1.22) 78.99 (0.21) 77.13 (0.74)
mistral-7b 79.85 (0.04) 81.15 (0.07) 80.47 (0.05)
central 79.33 (0.39) 82.46 (0.19) 80.82 (0.24)
startend 80.09 (0.98) 82.58 (0.30) 81.29 (0.54)
unlimiformer 82.69 (0.64) 83.27 (0.43) 82.96 (0.53)
adapter-e2e 78.54 (0.09) 81.39 (0.01) 79.91 (0.05)
modular-swinbert 83.29 (0.23) 83.58 (0.24) 83.42 (0.20)
modular-kosmos 82.46 (0.81) 83.54 (0.28) 82.98 (0.33)
upper-bound 83.40 (1.87) 84.45 (2.35) 83.91 (1.82)

Table 10: BERTScore for our model as well as all com-
parison models.

bs-precision bs-recall bs-f1

nocaptions 83.30 (0.20) 83.68 (0.22) 83.48 (0.10)
w/o video 83.62 (0.09) 83.55 (0.23) 83.57 (0.13)
w/o reorder 82.82 (0.18) 83.52 (0.06) 83.16 (0.10)
w/o transcript 83.10 (0.15) 81.45 (0.09) 82.25 (0.08)
modular-kosmos 82.46 (0.81) 83.54 (0.28) 82.98 (0.33)

Table 11: BERTScore for our our ablation settings.

tw =
µ1 − µ2√
σ2
1 + σ2

2

, (3)1132

where µi and σ2
i are the mean and variance, re-1133

spectively, for the ith sample. Let µ1, σ
2
1 denote the1134

mean and variance for our model, and µ2, σ
2
2 those1135

for some comparison model. Excluding Llama-1136

7B as a special case, which we consider below,1137

then, for ROUGE1, µ10.6, and σ2 ≤ 0.42. There-1138

fore, the denominator in (3) is ≤≈ 0.328. Also,1139

µ = 44.86 µ2 ≤ 42.24. Thus,1140

tw ≥ 44.86− 42.24√
0.62

5 + 0.422

5

≈ 4.47 .1141

Similarly, for ROUGE21142

tw ≥ 11.83− 10.32√
0.152

5 + 0.342

5

≈ 4.78 .1143

and for ROUGE-Lsum1144

tw ≥ 42.49− 40.40√
0.562

5 + 0.342

5

≈ 4.72 .1145

Using the Welch-Satterthwaite equation, the de-1146

grees of freedom ν can also be lower-bounded at1147

5, giving a critical value, for α = 0.1 of 3.37,1148

which is less than our t-value for each for ROUGE1,1149

ROUGE2 and ROUGE-Lsum.1150

For FActScore, we do not run multiple ran-1151

dom seeds because of the financial cost, but if1152

Figure 3: Correlation between all pairs of metrics that
we report in Section 5. All are weakly correlated, with
a stronger correlation between the different varieties of
ROUGE.

we compare distributions over individual facts, we 1153

see all comparisons are very highly significant. 1154

Each setting involves ∼ 15, 000 facts, with the 1155

‘no transcript” ablation having fewer, ∼ 4, 000. 1156

Expressing fact-precision and fact-recall as frac- 1157

tions rather than percentages, and recalling that 1158

Bernoulli distribution with mean p has variance 1159

p(1−p), we see that the denominator in (3) is upper- 1160

bounded by 2
4000 , so the t-value is lower-bounded 1161

by 2000(µ1 − µ2). This is in the hundreds for all 1162

µ1, µ2 from the factscore-precision and factscore- 1163

recall columns in Table 1, which is far above the 1164

critical value of 2.33. 1165

G Correlation Between Metrics 1166

Figure 3 shows the pairwise correlation (Pearson) 1167

between all metrics that we report in Section 5. 1168

This is taken across all data points in all settings. 1169

All metrics are at least weakly correlated with each 1170

other, with the strongest correlations between the 1171

different varieties of ROUGE. This suggests that 1172

our PREFS metric captures information outside of 1173

what is captured by ROUGE. 1174
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