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ABSTRACT

Recent work has shown that it is possible to train an unsupervised automatic
speech recognition (ASR) system using only unpaired audio and text. Existing
unsupervised ASR methods assume that no labeled data can be used for training.
We argue that even if one does not have any labeled audio for a given language,
there is always labeled data available for other languages. We show that it is
possible to use character-level acoustic models (AMs) from other languages to
bootstrap an unsupervised AM in a new language. Here, “unsupervised” means no
labeled audio is available for the target language. Our approach is based on two
key ingredients: (i) generating pseudo-labels (PLs) of the target language using
some other language AM and (ii) constraining these PLs with a target language
model. Our approach is effective on Common Voice: e.g. transfer of English AM
to Swahili achieves 18% WER. It also outperforms character-based wav2vec-U 2.0
by 15% absolute WER on LJSpeech with 800h of labeled German data instead of
60k hours of unlabeled English data.

Table 1: Key idea of the paper: starting from an acoustic model for some other source language (e.g.
Spanish, es →) and generating pseudo-labels using a language model for the desired target language
(e.g. English), we can train an unsupervised speech recognition system for the target language using
iterative pseudo-labeling. In the example below, we show the ground truth transcription for an English
audio and the evolution of its pseudo-labels for our method: by the end of training we are able to
reconstruct most of the words in the ground truth transcription.

iteration this requires more insulators and wire but doubles the power without doubling the poles
es → dister qiris more ance latters a mater ot tobus of pa o tou tholin na pos

0-4k destroy arise more ance later and water tables of pa to the line pos
4k-8k desert cars more in later a water toes apart doing pas
8k-12k this requires more in later and later to apart doing pas

12k-16k this requires more in later and later does the part doubling pos
16k-20k this requires more in later and water doubles the part doubling pos
20k-24k this requires more in later and water double the power with doubling pos
24k-28k this requires more insulator and water double the power with doubling past
28k-32k this requires more insulators and water double the power with doubling past

1 INTRODUCTION

How many hours of labeled audio do we need to train a good automatic speech recognition (ASR)
system? Over the past several years the answer has been steadily decreasing, and might even be
“zero”. Recent research has shown that large unlabeled audio datasets can be harnessed to train
state-of-the-art acoustic models (AMs).

The two dominant methods for leveraging unlabeled audio are unsupervised pre-training via self-
supervision (SSL) (Baevski et al., 2020; Hsu et al., 2021; Chung & et al., 2021; Baevski et al., 2022)
and semi-supervised self-training (Kahn et al., 2020; Xu et al., 2020; Likhomanenko et al., 2021;
Manohar & et al., 2021; Higuchi et al., 2021b; 2022), or pseudo-labeling (PL). In pre-training, a
model is trained to process the raw unlabeled data to extract features that solve some pretext task,
followed by supervised fine-tuning on some downstream ASR task. In pseudo-labeling, a model is
used to generate pseudo-labels (PLs) for the unlabeled data, and standard supervised training methods
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Source: English (EN)  
                          
Target: Swahili (SW)

SW ground truth:                 kamwe vilio havizuii jambo 

EN AM + EN LM:               come maybe little havizutamba 

EN AM:                              kam me vileo havizui jamba 

EN AM + SW LM:               kamwe vilio havijui jambo

Figure 1: Motivation: reasonable zero-shot ASR for Swahili is possible by decoding with an English
acoustic model (AM) constrained by a Swahili language model (LM), suggesting that training on the
resulting pseudo-labels could improve the acoustic model.

can then ingest this pseudo-labeled data, in lieu of regular labeled data. Pre-training and self-training
have been found to be complementary (Xu et al., 2021; Zhang & et al., 2022; Berrebbi et al., 2022b),
and the combination yields results competitive with purely supervised systems, using only a small
fraction of labeled data. Both pre-training and pseudo-labeling assume the existence of at least some
amount of labeled audio for training a supervised model. However, for most of the world’s roughly
7000 languages (Lewis et al., 2009), there is no labeled audio available.

In this work, we explore an unsupervised setting where only unpaired audio and text data is available
for some target language. We also assume the availability of labeled data for some source language.
Our motivation (see Figure 1) lies in the practical observation that a lot of paired data is already freely
available for some high resource languages, such as English (e.g. there are ∼3k hours of transcribed
English in Common Voice (Ardila et al., 2020)). We show that an acoustic model trained on the
source language can perform cross-lingual transfer to the target language, without any labeled audio
from the target language. Unlike much previous work, our method does not depend on adversarial
training or phonetic lexicon information, and instead uses simple end-to-end character-level acoustic
models and standard self-training recipes commonly used in ASR. Cross-lingual transfer is performed
via unsupervised cross-lingual PL. Assuming some target language audio is available, the core idea
of our approach is to generate PLs with the source language acoustic model fed by the target audio.
These PLs are further constrained by a language model (LM) on the target language. We show this
approach generates good enough PLs to bootstrap an unsupervised target language acoustic model,
assuming languages are from the same family group. In fact, even for languages from different
language family groups, we show unsupervised ASR via cross-lingual PL is promising: e.g. with
English as a source we achieve 23.7% (18%) word error rate on Swahili as target language, using
greedy (LM beam-search) decoding.

2 BACKGROUND

Unsupervised ASR (Aldarmaki et al., 2022) attempts to train an acoustic model (AM) using only
unpaired audio and unpaired text. Substantial progress in unsupervised ASR was recently made
by wav2vec-U (Baevski et al., 2021; Liu et al., 2022), building on top of strong self-supervised
(SSL) representations from wav2vec (Baevski et al., 2020): these models apply adversarial learning
to automatically learn a mapping between audio representations and token units (either charac-
ters or phonemes). Reported experiments show a significant gap between phoneme-based (text is
phonemized) and character-based approaches, which led the authors to conclude that “end-to-end
unsupervised ASR could be possible but further research and development are necessary”. ASR2K (Li
et al., 2022) investigates an ASR system which does not require any acoustic data for the target
language. Instead, a multilingual phone-based supervised ASR model is trained on several source
languages, and combined with a G2P (grapheme-to-phoneme) model. Then, given a target language,
the corresponding acoustic model is inferred by matching the supervised acoustic model output
statistics to available n-gram statistics (computed on a target text-only corpus). For target languages
that the G2P model has not seen at training time, an ensemble is performed over G2P predictions
from nearest languages. More generally, previous works on multilingual ASR (not necessarily
unsupervised) showed that languages may share similar representations, and that data from another
language may thus improve overall performance on a target language (Ghoshal et al., 2013; Pratap
et al., 2020; Lugosch et al., 2022; Chen et al., 2022; Thomas et al., 2020). As for ASR2K, our
approach relies on labeled data from some source languages as initial audio representations. The
most closest work to ours (Klejch et al., 2022) exploits self-training idea though it requires a uni-
versal multilingual phonemizer: if you have a phoneme-based lexicon for the target language, the
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unsupervised ASR problem is virtually solved by using e.g. ASR2K. However, in contrast to both
ASR2K and wav2vec-U, we show that end-to-end (character-based) unsupervised ASR is viable,
as long as source and target languages share enough “similarities”. In that respect, in the hope to
shed some light on the importance of language similarities, most experiments of this paper consider
only pairs of (one source, one target) languages. Experiments in Section 5.5 show that a multilingual
source AM improves ASR on target languages. In Section 5.6, we further extend the approach to a
setting where the source and target languages have different alphabets. The following subsections
now formally introduce the way our acoustic models and language models are trained, as well as the
classical (monolingual) pseudo-labeling approach.

2.1 ACOUSTIC (AM) AND LANGUAGE (LM) MODELS

Let x denote the audio and y denote its transcript. End-to-end transformer-based AMs trained with
Connectionist Temporal Classification (CTC) (Graves et al., 2006) loss showed (Higuchi et al., 2021a;
Burchi & Vielzeuf, 2021; Kim et al., 2022) a good performance when decoded greedily by picking the
most probable token for each frame and removing repetitions and blanks. However, greedy decoding
does not always find the best y, as CTC marginalizes over alignments leading to the ground truth
transcription (and does not simply consider the best alignment). Finding the best y according to
CTC loss would require an intractable exhaustive search. Instead, approximation is performed with a
beam search procedure, which maintains and updates a limited number of hypotheses. During this
procedure, the search can be constrained to words from a lexicon. In addition, it is often beneficial
to involve an LM trained on the external text to out-weight more plausible transcript hypotheses.
Simple n-gram LMs can be integrated efficiently into beam-search decoding and show improved
results. Formally, an LM beam search aims at maximizing:

max
y

log pAM(y|x; θ) + α log pLM(y) + β|y|, (1)

where θ are the trainable parameters of the acoustic model. The hyper-parameters α, β ∈ R control
the reliance on the LM and the number of words |y| in y, respectively.

2.2 MONOLINGUAL PSEUDO-LABELING (PL)

Let DL denote a labeled set of audio-text pairs (x,y) and DU an unlabeled set of audio x only.
Supervised training minimizes the conditional negative log-likelihood min

θ
E

x,y∼DL

−log pAM(y|x; θ) ,
on the labeled data DL, while pseudo-labeling additionally minimizes its counterpart on the unlabeled
data DU , min

θ
E

x∼DU

− log pAM(ŷ|x; θ), where ŷ(x) = PL(x; θ′) denotes a pseudo-label (PL) tran-

scription generated by some method. Different ways of inferring pseudo-labels PL(x; θ′) have been
proposed (Kahn et al., 2020; Park et al., 2020; Xu et al., 2020; Likhomanenko et al., 2021; Manohar
& et al., 2021; Higuchi et al., 2022; Berrebbi et al., 2022a), including both greedy and beam-search
decoding, with or without an external LM, and with variants on the “teacher” AM model θ′. IPL (Xu
et al., 2020) and slimIPL (Likhomanenko et al., 2021) are continuous PL approaches, where a single
AM (with parameters θ) is continuously trained. At each iteration one uses either labeled data (to
ground the model), or unlabeled data with pseudo-labels PL(x; θ′) obtained via the maximization
shown in Equation (1), with an older version θ′ of the AM. Picking a previous version of the AM θ′

has been shown to help stabilize the procedure. IPL relies on LM beam-search decoding (α > 0)
for PLs, which gives stable training but can lead to over-fitting to the language model. Using greedy
decoding is more efficient (as it does not involve a beam-search), and has been shown to lead to better
word error rate performance, but can be subject to training instabilities. Derived from IPL, slimIPL is
an LM-free approach, which resolves training issues by constraining further the AM teacher model
θ′: either model averaging is performed, or PLs are obtained with different past versions of the AM.
In the latter case, a cache of PLs is maintained for efficiency, allowing the same PL to be reused
several times in the training.

3 CROSS-LINGUAL PSEUDO-LABELING

In this work, we consider a different setting than classical PL approaches (see Figure 2), where the
target language has only unlabeled audio data Dtgt

U available. To circumvent the lack of labeled data,
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AM | LM PLsLabeled

Target AM | Target LM

English

Swahili

Monolingual iterative pseudo-labeling

Unsupervised ASR via cross-lingual pseudo-labeling

Unlabeled

PLsSource AM | Target LM PLs

Figure 2: Comparison of standard monolingual pseudo-labeling and unsupervised ASR via cross-
lingual pseudo-labeling, where labeled data are available for a source language and no labeled audio
is available for the target language.

we show that it is enough to assign target acoustic data with PLs from a different source language.
The source language AM is assumed to be trained with audio labeled data Dsrc

L . As motivated in
Figure 1, even though the source language AM has never seen target audio at training, we show that
constraining PL generation with a beam-search decoding (with an LM trained on a target text corpus
T tgt) is enough to bootstrap a target AM.

More formally, we train a source language AM on Dsrc
L and a target language LM. We then perform

what we call “Cross-Lingual Pseudo-Labeling”1, to train a target language AM on unlabeled audio
Dtgt

U . It is composed of two phases, the second one being optional:

Phase 1 A target AM is bootstrapped via cross-lingual IPL, as shown in Figure 2:

• The target AM is initialized with the source AM.
• We perform IPL, with PLs generated via beam-search decoding constrained with the

target LM.

Phase 2 A resulting target AM is further trained via slimIPL:

• The target AM is reinitialized with the source AM. It is then fine-tuned with PLs
obtained from Phase 1 with a larger beam.

• A regular continuous slimIPL procedure (LM-free) is performed over the target AM.

Phase 1 is essential to bootstrap the target AM, as Cross-Lingual Pseudo-Labeling would fail (as
suggested by decoding results shown in Table 1), if no target LM was there to constrain PL generation.
While most of the paper results are obtained with Phase 1 only, we show in Section 5.3 that Phase 2
can provide a boost in WER performance. This corroborates findings from the original slimIPL
algorithm (Likhomanenko et al., 2021), in monolingual settings.

4 EXPERIMENTAL SETUP

We perform a number of experiments using different pairs of languages. Also several language groups
are considered, as shown in Table 2. We use the multilingual Common Voice (Ardila et al., 2020)
dataset (version v12.0). For source languages, we picked available paired audio and text, while for
target languages only audio data was considered. To train target LMs, we picked text data available
in Common Crawl data2 (Wenzek et al., 2020; Conneau et al., 2020). We performed experiments with
English, German, Spanish, and French as both source and target languages. For African languages,
we use Kinyarwanda only as a source language (as text data are not available in the Common Crawl
dataset), and Swahili and Hausa only as target languages (as they are low resource). Finally, to
compare with wav2vec-U 2.0 (Baevski et al., 2021) we use LJSpeech audio (Ito & Johnson, 2017) as
Dtgt

U and LibriSpeech (Panayotov et al., 2015) LM corpus data as T tgt.

1“Cross-Lingual Pseudo-Labeling” should not be confused with “cross-lingual self-training” from (Zhang
et al., 2021), which relates to multilingual representation learning.

2https://data.statmt.org/cc-100.
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Table 2: Characteristics of the languages (from Common Voice v12.0) referred in our empirical study.

Language Notation Language Group Alphabet

English en Indo-European, West Germanic Latin
German de Indo-European, West Germanic4 {Latin, öäüß}
Spanish es Indo-European, Romance {Latin, áéı́óúñüý}
French fr Indo-European, Romance {Latin, àâæçéèêëı̂ı̈ôœùûüÿ}

Kinyarwanda rw Niger-Congo Latin
Swahili sw Niger-Congo Latin
Hausa ha Afro-Asiatic {Latin,  ¡¨¯ }

4.1 TRAINING DETAILS

Token Set & Text Normalization The token set used in all our experiments is composed of the
union of all characters available in all source languages (en, de, es, fr, rw) alphabets (see Table 2),
augmented with a word boundary token, apostrophe and hyphen, resulting in a total of 54 characters.
Common Voice transcriptions and Common Crawl text data were normalized by (i) lower casing; (ii)
removing punctuation; (iii) converting characters into the Latin token set via unidecode3 package;
characters failing the conversion were discarded from the text.

Acoustic Model (AM) We use a 36-blocks Transformer model prefixed with a single convolutional
layer (kernel 7, stride 3), as in (Likhomanenko et al., 2021). Inputs are 80-dimensional log Mel
filterbanks extracted with 25ms window and 10ms stride. Positions are encoded with an absolute
sinusoidal positional embedding (Vaswani et al., 2017) as Common Voice audio durations are short
(in average 5s). Dropout is set to 0.1 (0.3 for Swahili). The resulting model has 255M trainable
parameters.

AM Training All acoustic models are trained with the CTC loss, and the Adagrad optimizer.
After a warmup period of 64k iterations, training is performed with a learning rate of 0.03 for up
to 300k iterations, on 8 GPUs (A100 40GB), and batch sizes of ∼ 290s of audio per GPU. As
for data augmentation, we use SpecAugment (Park et al., 2019), following the parameters chosen
in (Likhomanenko et al., 2021): 2 frequency masks with 30 mask size, 10 time masks with 50 mask
size, and probability 0.1. The best models are selected according to the word error rate (WER)
performance on validation sets, and final performance is reported on test sets. For all experiments we
report both word (WER) and character (CER) error rates.

4.2 SUPERVISED MONOLINGUAL ACOUSTIC MODELS BASELINES

We consider English, German, Spanish, French, and Kinyarwanda as source languages. Only
Common Voice data was used to train AMs. Performance of all used further monolingual source
AMs is given in Table 3. In our work, Hausa and Swahili were used only as target languages. We
were not able to successfully train a transformer AM on Hausa (2.3h of training data).

4.3 MONOLINGUAL LANGUAGE MODELS

We trained 4-gram LMs using the KenLM toolkit (Heafield, 2011), on Common Crawl data (Wenzek
et al., 2020; Conneau et al., 2020), limiting the vocabulary to the most common 100k/200k words.
For English, tri-grams and higher order grams occurring less than 3 times were pruned. Training data
size (uncompressed), vocabulary size, LM vocabulary coverage of Dtgt

U words, and LM perplexities
are reported in Appendix, Table 8.

LM Beam-Search Decoding In all our experimental results, we report WER and CER, both
with greedy and LM-beam search decoding. We rely on the lexicon-based beam-search de-
coder (with a word-based LM) from the flashlight framework (Kahn et al., 2022), ported
in torchaudio (Yang et al., 2021). The same beam-search decoder is used to generate PLs in
cross-lingual PL5.

3https://pypi.org/project/Unidecode.
5We did not observe any significant impact of the unknown word score (set by default to −∞) for PLs

generation.
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Table 3: Supervised monolingual acoustic models, for every language of interest, trained on Common
Voice v12.0 data with a Transformer architecture (255M parameters). We report both character error
(CER) and word error (WER) rates on validation (“Dev”) and test (“Test”) sets with greedy decoding
(“greedy”) and language model beam-search decoding (“w/ LM”). Beam size was set to 1k, and α, β
hyper-parameters were tuned via random search.

Lang. # hours greedy w/ LM

Dev CER Test CER Dev WER Test WER Dev CER Test CER Dev WER Test WER

en 1552.8 4.9 6.9 14.6 17.8 4.7 6.2 11.0 13.0
de 801.2 1.6 2.2 6.8 7.9 2.1 2.5 9.2 9.7
es 395.6 1.8 2.1 6.7 7.4 1.9 2.1 5.8 6.2
fr 714.6 3.1 4.0 11.7 13.5 3.6 4.4 11.0 12.3
rw 1410.2 4.6 6.2 17.6 21.4 - - - -
sw 48.6 4.3 5.9 15.1 18.9 4.1 5.6 11.6 14.9

5 RESULTS

5.1 ZERO-SHOT EVALUATION

In Figure 3, we report source language AMs performance (in WER/CER) on a target language in
a zero-shot setting. While WER of zero-shot greedy decoding is around 90-100% (40-50% CER),
WER of zero-shot beam-search decoding with a target language LM drops to 70-80% (30-40% CER)
for some pairs of languages. English transfers the best to Spanish, German and Swahili, while every
language transfers well to Spanish. Every source language performs poorly on French as a target
language. Examples of transcriptions obtained from greedy and beam-search with an LM decoding
of every source language AM applied to a target language are given in Appendix, Tables 9 and 10.

5.2 CROSS-LINGUAL PSEUDO-LABELING

Target AMs are initialized with source language AMs, before performing cross-lingual PL. PLs are
generated with a beam-search decoding constrained with a target language LM: beam size is 100,
α = 1, β = 0 (with no hyper-parameters tuning). Target languages rw, ha, de, fr are decoded with
200k vocabulary size, while others with 100k. We perform IPL continuous AM training (as described
in Section 3, Phase 1), updating the teacher which re-generates PLs after every 4k iterations: during
first 4k iterations the source language AM acts as a teacher to bootstrap the model. From there, the
teacher is updated with a new model’s snapshot every 4k iterations. SpecAugment is activated after 1k
iterations. The rest of the hyper-parameters are the same as discussed in Section 4.1 for monolingual
baselines, except for the number of training iterations which is fixed to 50k iterations here. In Figure 3,
we report WER and CER for final models with both greedy and LM beam-search decoding. The
latter is tuned with a random search over α ∈ [0.3, 5], β ∈ [−10, 10], with the beam size set to 1000.
As shown in Table 1 and in Appendix, Table 11, the cross-lingual PL constrained with a target LM
does an impressive job at fixing PLs during the course of the target AM training.

Indo-European Family German and English are West Germanic languages with similar vocabular-
ies, though their orthographies and phonetic inventories are very different (Wiese, 2000). French and
Spanish are Romance languages, not Germanic, but like Germanic ones are in the Indo-European
language family. In Figure 3, we observe that in general cross-lingual PL works great across Indo-
European languages. Notably, any considered Indo-European language transfers well to Spanish
(French to Spanish works best). With French as target language, cross-lingual PL performs poorly
with any source language we tried6.

Niger-Congo Family Kinyarwanda and Swahili are in the Niger-Congo language family, unrelated
to the Indo-European ones, and written in the Latin alphabet, while Hausa is also an African language

6We explored variants, including (i) removing French accents by normalizing text to English tokens; (ii)
increasing LM vocabulary to increase word coverage; (iii) character-based LM, as well as lexicon-free beam-
search decoding for PL generation. None of these were able to improve results on French as a target language.
We hypothesize that the main issue is related to the highly irregular orthography of French (Adda-Decker et al.,
2005), which is too different from the other considered languages.
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Figure 3: Zero-shot evaluation and cross-lingual pseudo-labeling word error (WER, top) and character
error rates (CER, bottom) on Common Voice v12.0 for different source languages (X →) with labeled
data and target languages (→ X) with unpaired audio and text data: (i) zero-shot evaluation with a
source acoustic model (“Source AM”) on a target language; (ii) zero-shot evaluation of source AM
coupled with a target language model (“Source AM | Target LM”) via LM beam-search decoding
(beam size is 100, α = 1, β = 0, unknown words are not accepted); (iii) cross-lingual pseudo-labeling
with greedy decoding (“Cross-Lingual PL”) and LM beam-search decoding (“Cross-Lingual PL |
Target LM”). Beam size is set to 1k and α, β are tuned via random search. Supervised models trained
on the same target data, and decoded with LM beam-search are given as reference baselines.

Table 4: Impact of the Phase 2 with slimIPL on the final performance of cross-lingual pseudo-labeling.

Language Pair Greedy w/ LM

Dev CER Test CER Dev WER Test WER Dev CER Test CER Dev WER Test WER

en → es (Phase 1) 11.9 12.1 26.3 26.5 11.6 11.8 21.5 21.7
en → es (Phase 2) 9.9 10.0 23.2 23.5 10.0 10.1 19.1 19.3

en → sw (Phase 1) 7.3 8.4 24.5 27.1 6.6 8.0 17.8 20.0
en → sw (Phase 2) 6.1 7.4 20.9 23.7 5.6 6.8 15.7 18.0

but from the Afro-Asiatic family. Kinyarwanda transfers well to Swahili and poorly to Hausa. The
latter is due to limited training hours (2.3h) in Hausa (see Section 5.4).

Cross Family While Kinyarwanda transfers poorly to any Indo-European language, any Indo-
European language, surprisingly, transfers well to Swahili and somewhat well to Hausa (with the
2.3h training limitation for Hausa). In Appendix, Figure 9 we show that the quality of PLs improves
as training goes, for Swahili as a target language. PL quality correlates with the AM WER (left). The
LM has a critical impact on PL quality in the early stages of the training (right). An example of how
PL transcriptions are evolving with training iterations is given in Appendix, Table 11.

5.3 BOOSTING WER PERFORMANCE WITH SLIMIPL

After Phase 1 (training with batch pseudo-labeling, e.g. IPL), we can improve performance in Phase
2 (online pseudo-labeling, using e.g. slimIPL), as described in Section 3. Table 5 shows the impact
of Phase 2 using slimIPL on the en → es and en → sw language pairs. Consistent 1-4% absolute
WER decreases are observed across greedy decoding and LM decoding for both pairs.

5.4 DATASET SIZE MATTERS

Perhaps unsurprisingly, WER performance of the target AM is correlated with the size of both the
labeled audio dataset (for the source language), and the unlabeled audio dataset.

Source Language: Labeled Audio In Figure 4 (left), we show the importance of the amount of
labeled audio available for the source language, for the en → sw pair (all available Swahili unlabeled
data, 48.6h, is used). Subsets of different sizes were obtained by randomly sampling original training
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Figure 4: Cross-lingual PL dependence on the number of labeled data in the source language (left)
and unlabeled audio in the target language (right) for en → sw: for left we use all target language
hours (50h) while for right we use all source language hours (1550h).

Table 5: Impact of the multilingual source AM on the final performance of cross-lingual PL.

Language Pair Greedy w/ LM

Dev CER Test CER Dev WER Test WER Dev CER Test CER Dev WER Test WER

en → sw (zero-shot) 37.7 39.3 98.6 99.4 29.6 31.8 70.2 72.9
(en, es, fr) → sw (zero-shot) 36.5 37.8 99.1 99.9 27.1 29.0 66.0 68.2

en → sw (Phase 1) 7.3 8.4 24.5 27.1 6.6 8.0 17.8 20.0
(en, es, fr) → sw (Phase 1) 6.6 7.9 20.4 23.2 6.7 8.1 16.9 19.5

+ 10x beam for PLs 6.1 7.4 20.7 23.4 6.3 7.7 16.2 18.6

en → sw (Phase 2) 6.1 7.4 20.9 23.7 5.6 6.8 15.7 18.0
(en, es, fr) → sw (Phase 2) 6.0 7.2 19.9 22.6 5.7 6.9 15.5 17.6

en → ha (zero-shot) 34.0 47.3 95.1 100.0 31.0 39.6 88.8 84.4
(en, es, fr) → ha (zero-shot) 33.7 46.2 94.8 99.2 22.6 37.1 64.0 82.3

en → ha (Phase 1) 21.9 25.4 64.5 70.9 20.7 25.4 50.4 57.9
(en, es, fr) → ha (Phase 1) 19.4 23.5 62.1 67.8 19.0 23.2 46.2 54.4

(en, es, fr) → ha (Phase 2) 18.7 23.5 63.6 71.6 16.5 22.4 43.4 53.2

data, preserving the number of speakers, and proportion of hours per speaker. Any given set includes
smaller ones. There is clear dependence on the performance of the source acoustic model: more
labeled data available and better a source acoustic model the better cross-lingual transfer is performed.

Target Language: Unlabeled Audio In Figure 4 (right), we show the importance of the amount of
unlabeled audio available for the target language, for the en → sw pair (all available English labeled
data, 1552.8h, is used). Subsets of different sizes were obtained by randomly sampling original
training data, preserving the number of speakers, and proportion of hours per speaker. Any given
set includes smaller ones. While 1-2h is enough to significantly improve CER via cross-lingual PL,
increasing unlabeled data size to 50h steadily improves model CER and WER performance.

5.5 MULTILINGUAL SOURCE AM

We ran a simple experiment using a single multilingual source AM to see if this would yield im-
provements for cross-lingual pseudo-labeling. We trained exactly the same model as all monolingual
models (except we set dropout to a lower value of 0.05 to increase model capacity while all other
hyper-parameters are exactly the same) on 3 languages combined together: English, Spanish and
French (no balancing is done). The final performance (greedy decoding) of this multilingual model on
validation sets is WER % [TER %)]: on English 16.6 [5.4] (monolingual had 14.6 [4.9]); on Spanish
9.6 [2.3] (monolingual had 6.7 [1.8]); on French 13.8 [3.6] (monolingual had 11.7 [3.1]). Then we
transfer it to Swahili and Hausa using exactly the same hyper-parameters as in the experiments when
English monolingual model is transferred to them. The results below show that the multilingual AM
consistently improves all results out of the box, even for Hausa with 2.3h only of training audio.

5.6 CROSS-LINGUAL PSEUDO-LABELING ACROSS ALPHABETS

The core of this paper reports results with languages from the same alphabet (Latin). We show
here that unsupervised cross-lingual PL can be easily extended to the case where source and target

8
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Table 6: Supervised baselines and unsupervised ASR via cross-lingual pseudo-labeling from Belaru-
sian (be, Cyrillic alphabet, 470h) to Czech (cs, Latin alphabet, 25h).

Language Greedy w/ LM

Dev CER Test CER Dev WER Test WER Dev CER Test CER Dev WER Test WER

be (470h) (original token set) 0.8 0.8 4.1 4.3 1.4 1.5 6.4 6.6
be (470h) (modified token set) 0.9 0.9 4.4 4.5 1.4 1.4 6.4 6.4
cs (25h) 7.9 8.7 30.6 32.5 6.8 7.5 19.9 21.0

be → cs (zero-shot) 45.9 45.7 100.8 101.1 41.3 40.8 80.7 79.6
be → cs (Phase 1) 26.3 26.6 61.9 62.6 26.8 27.0 57.9 58.3

Table 7: Zero-shot (“zero”) and cross-lingual pseudo-labeling (“pl”) on LJSpeech test set, with
Common Voice source AMs: CER (left) and WER (right) with greedy (“greedy”) and an LM beam-
search (“beam”) decoding. We compare with character-based wav2vec-U 2.0 Liu et al. (2022).

Source CER WER

zero-greedy zero-beam pl-greedy pl-beam zero-greedy zero-beam pl-greedy pl-beam

fr → 48.8 48.6 44.9 47.5 96.8 87.2 81.9 76.4
es → 47.6 48.3 41.7 42.1 96.1 85.7 78.0 75.1
de → 35.8 32.6 25.8 27.3 85.5 66.2 55.6 48.3

wav2vec-U 2.0 - - - 34.6 - - - 64.0

languages have different alphabets. We have shown in Section 5.4 (Figure 4) that the size of source
language labeled data is critical for the cross-lingual PL approach to work. In Figure 3, we also
showed that language proximity matters. As Common Voice v12.0 is rather biased towards Latin
languages (in terms of available data), we ended-up picking Belarusian (be), a Cyrillic-based language,
as source (with 470h of labeled audio), and chose Czech (cs) target language (rather low resource
in this dataset, with only 25h hours of data). Belarusian and Czech languages share pronunciation
similarities and similar sounds like ’ч’ and ’č’.

To perform cross-alphabet transfer, we followed basic character-based transliteration rules from
Belarusian Cyrillic alphabet to Latin alphabet7. These rules cover some specific sound similarities
in both languages, e.g. ’ч’ and ’č’, ’ш’ and ’š’, see Appendix, Table 12. This allows us to train a
Belarusian source AM, with tokens (“modified token set“) matching Latin tokens. The cross-lingual
PL procedure can then be performed normally. We show WER performance in Table 6.

5.7 COMPARISON TO WAV2VEC-U 2.0 ON LJSPEECH

We report performance on the LJSpeech dataset in Table 7, following wav2vec-U 2.0 (Liu et al.,
2022) for the setup. Train/dev/test (22.8h/0.6h/0.6h) splits and transcription normalization (lower
casing and punctuation removal) are identical. For zero-shot evaluation on LJSpeech we use source
language AMs trained on Common Voice (Table 3), and a 4-gram LM trained on LibriSpeech LM
corpus with 200k vocabulary (perplexity of 148 on dev-clean and 137 on dev-other). Decoding
hyper-parameters were not tuned (beam size of 100 and α = 1, β = 0). Cross-lingual PL is done in
the same way as in Section 5.2. We outperform wav2vec-U 2.0 by 15% absolute WER, using 800h of
labeled German data only, instead of 60k hours of unlabeled English data.

6 CONCLUSIONS

We demonstrated in this work that unsupervised learning via cross-lingual pseudo-labeling can be very
effective. Our method is significantly simpler than existing unsupervised speech recognition methods,
relying only on standard semi-supervised learning recipes and dispensing with GANs, phoneme labels,
and random silence insertion. Reasonable acoustic models for several target languages were trained,
using no labeled audio data from these target languages. This opens new avenues to low-resource
languages, e.g. as we achieve word error rate of 23.7% (18%) with greedy (beam-search) decoding,
for cross-lingual pseudo-labeling from Indo-European English to Niger-Congo Swahili languages.
Future work will include more language pairs, and advance multilingual source acoustic models.

7https://en.wikipedia.org/wiki/Belarusian_Latin_alphabet
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ETHICS STATEMENT

In the paper, we aim at understanding connection between automatic speech recognition for different
languages and how to perform transfer from some source high resource languages to target low
resource languages without supervision on the target side. We hope this is a positive contribution
towards under-represented data sources for ASR. While one can imagine ASR being used for negative
purposes, it is our hope that the advantages generated by improving ASR for low-resource settings
outweigh its possible negative uses.

REPRODUCIBILITY STATEMENT

For all experiments we use publicly available datasets for research: LibriSpeech/LJSpeech (CC BY
4.0/Public Domain) and Common Voice v12.0 (CC BY-SA 3.0). Data processing is described in the
main body of the paper. We tried as much as possible to describe all results, configurations, training
details, and hyper-parameters throughout the paper and in Appendix.
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B DETAILED RESULTS ON COMMON VOICE V12.0
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Figure 5: Zero-shot CER (left) and WER (right) with greedy (top) and LM beam-search decoding
(bottom) on Common Voice validation sets, for models trained on a source language X → and
transferred to a target language → X . Beam size is set to 100 and α = 1, β = 0. We found that
German LM decoding is worse than greedy decoding because unknown words are not accepted in the
decoding process.
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Figure 6: Cross-lingual PL (from a source language X → to a target language → X) CER (left) and
WER (right) with greedy (top) and LM beam-search decoding (bottom) on Common Voice validation
sets. Beam size is set to 100 and α = 1, β = 0 during cross-lingual PL (top). Beam size is set to 1k
and α, β are tuned via random search for the LM beam-search decoding results (bottom).
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Figure 7: Zero-shot CER (left) and WER (right) with greedy (top) and LM beam-search decoding
(bottom) on Common Voice test sets for models trained on a source language X → and transferred to
a target language → X . Beam size is set to 100 and α = 1, β = 0. Unknown words are not accepted,
so German LM language decoding is worse than greedy one.
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Figure 8: Cross-lingual PL (from a source language X → to a target language → X) CER (left) and
WER (right) with greedy (top) and LM beam-search decoding (bottom) on Common Voice test sets.
Beam size is set to 100 and α = 1, β = 0 during cross-lingual PL (top). Beam size is set to 1k and
α, β are tuned via random search for the LM beam-search decoding results (bottom).
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Figure 9: PLs quality on Swahili as a target language, for different source languages. Solid lines are
actual PL WER, obtained via LM beam-search decoding. Impact on the dev set WER (dashed lines)
is shown on the left. Greedy (dotted-dashed) and LM-beam search decoding PLs are compared on
the right.
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Figure 10: PLs quality on Swahili as a target language, for different source languages. In Figure9 we
reported WER, here we report CER. Solid lines are PL CER, obtained via LM beam-search decoding.
Impact on the validation set CER (dashed lines) is shown on the left. Greedy (dotted-dashed) and
LM beam-search decoding PLs are compared on the right.

Table 8: Perplexity (PPL) of 4-gram LMs for the target languages trained on Common Crawl data
and evaluated on Common Voice dev and test sets. Perplexity is reported both with and without
out-of-vocabulary (OOV) words. Vocabulary sizes and LM vocabulary coverage of Dtgt

U words in
train data are also provided.

Lang. Data Model Vocab. Vocab. Coverage w/o OOV PPL w/ OOV PPL

(GB) (GB) Dtgt
U (%) Dev Test Dev Test

en 288 28 100k 290k 96.5 171 150 230 190
de 64 49 200k 250k 95.6 228 228 350 345
es 52 32 100k 92k 97.7 141 140 180 177
fr 54 37 200k 240k 96.2 168 164 254 250
sw 1.6 1.5 200k 194k 97.4 175 194 235 270
ha 0.3 0.4 200k 16k 99.0 295 307 316 339

C TRAINING DETAILS ON PHASE 2 WITH SLIMIPL

Phase 1 training (see Section 3) bootstraps an AM with Iterative Pseudo-Labeling. We found we
can improve WER performance via a Phase 2, performing online pseudo-labeling with slimIPL. We
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Table 9: Example of pseudo-labels generated by source AMs on English, German and Spanish audios
with greedy (top) or beam-search (bottom) decoding on Common Voice.

AM English German Spanish
but what is the use of talking da schließen wir die werften al surcon la república del perú

en but what is thee use of talking dashlees in veerti we aften alsur conorapulita alpero
but what is the use of talking das les in vierte werften al sur con apulia albero

de der ort ist sie istaki da schließen wir die werften also colarebulidal bero
der ort ist sie stake da schließen wir die werften alto color pulida pero

es thaweseius tarke tashlis teuti deav al sur con la república del perú
the wastes take das listet das al sur con la república del perú

fr pourquoi si lise craque tashlisn vit à diveraf alsoud qon la lacoulit à e le pelo
pour quoi cilic croque das les via divers al sur con la la colita del pelo

rw aa isi yise trak yasheyizindi ya arire hafte azur conal repubulika ya eberu
isi is track das india arie hafte azur con republica peru

Table 10: Example of pseudo-labels generated by source AMs on French, and Swahili audios with
greedy (top) or beam-search (bottom) decoding on Common Voice.

AM French Swahili
cet écureuil volant est endémique d’indonésie kamwe vilio havizuii jambo kutokea kama limepangwa

en setekuri volom etonde mik dandonizi kam me vileo havizui jamba kutaker kamali mepanga
sete kiri volume onde mick dando kamwe vilio havijui jambo kutaka kama imepanga

de ceticurivola etandemique den donisi caumo vilio havisouidiambrotea kamer in ne bamburg
cette cure vola et an demie de denise kama vilio havizidi boti kama in bambo

es seteque hy vollow están de mik dando nesi camo y filio a bisui lamboco thaqueo camarmi fangua
sete que y vallon stan de mick danton si kama vilio visu jambo co cafe camara panga

fr cet écureuil volant est endémique d’indonésie camovili aura vésoui bien beaucoup de rir comme elle n’est pas loi
cet écureuil volant est endémique d’indonésie kama vile aura visu bien eacop dera come elle nest pas moi

rw setecuovi volom et ondemiqe dendonesi kanwa vilio habizuiriyambokotsako ya kamarine pangwa
cette cuve villon et de mike donde nes kama vilio habibu ambako taka ya kamari ni pangwa

Table 11: How PLs evolve with training iterations in cross-lingual pseudo-labeling, with en → sw:
(top) golden and (bottom) PLs.

iteration hapa ni mahali ambapo wazee wetu walipatumia kama darubini
0-4k hapani mali ambapo was a watu alipotumia kama darubini
4k-8k hapa ni mali ambapo was watu alipotumia kama darubini

8k-12k hapa ni mahali ambapo wa watu walipotumia kama darubini
12k-16k hapa ni mali ambapo wawatu walipotumia kama darubini
16k-20k hapa ni mahali ambapo wawatu walipotumia kama darubini

report here technical details to reproduce these experiments. First, we take a target AM obtained
by Phase 1, and generate PLs using a LM beam-search decoding process, with a beam size larger
than the one used in Phase 1 training (set to 1000). Decoding hyper-parameters α and β are tuned
on the validation set. PLs are then obtained for the whole train set of the target language. We then
train a new target AM, initializing it from the source AM, and fine-tuning it with the PLs obtained as
mentioned above. Fine-tuning is done with the same training configuration as listed in Section 4.1,
except for Swahili (where we fine-tune for 15k iterations) and Spanish (fine-tuned for 20k iterations)
as target languages. After this, we continue the training with slimIPL (Likhomanenko et al., 2021)
(the optimizer state was not reset). The slimIPL PLs cache size is set to 100, and cache probability is
0.1 up to additional 30k steps. Compared to published slimIPL settings, all data is here unlabeled, so
the proportion of labeled data is set to 0. We found that re-initializing the AM from the source AM in
the Phase 2 is important to further boost the WER performance.
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Table 12: Mapping between Belarusian Cyrillic alphabet and Czech Latin alphabet.

Belarusian Czech

а a
б b
в v
г h
ґ g
д d
дь ď
е e
ё ě
ж ž
з z
зь ź
i i
й j
к k
кв q
кс x
л l
м m
н n
нь ň
о o
п p
р r

рж ř
с s
сь ś
т t
ть ť
у u
ў ŭ
ф f
х ch
ць ć
ц c
ч č
ш š
ы y
э é
ю ju
я ja
ль ĺ
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