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Abstract

Unsigned distance fields (UDFs) are widely used in 3D deep learning due to their
ability to represent shapes with arbitrary topology. While prior work has largely fo-
cused on learning UDFs from point clouds or multi-view images, extracting meshes
from UDFs remains challenging, as the learned fields rarely attain exact zero dis-
tances. A common workaround is to reconstruct signed distance fields (SDFs)
locally from UDFs to enable surface extraction via Marching Cubes. However,
this often introduces topological artifacts such as holes or spurious components.
Moreover, local SDFs are inherently incapable of representing non-manifold ge-
ometry, leading to complete failure in such cases. To address this gap, we propose
MIND (Material Interface from Non-manifold Distance fields), a novel algorithm
for generating material interfaces directly from UDFs, enabling non-manifold mesh
extraction from a global perspective. The core of our method lies in deriving a
meaningful spatial partitioning from the UDF, where the target surface emerges
as the interface between distinct regions. We begin by computing a two-signed
local field to distinguish the two sides of manifold patches, and then extend this
to a multi-labeled global field capable of separating all sides of a non-manifold
structure. By combining this multi-labeled field with the input UDF, we construct
material interfaces that support non-manifold mesh extraction via a multi-labeled
Marching Cubes algorithm. Extensive experiments on UDFs generated from di-
verse data sources, including point cloud reconstruction, multi-view reconstruction,
and medial axis transforms, demonstrate that our approach robustly handles com-
plex non-manifold surfaces and significantly outperforms existing methods. The
source code is available at https://github.com/jjjkkyz/MIND.

1 Introduction

Signed Distance Fields (SDFs) are a widely adopted implicit representation for watertight surfaces
due to their simplicity and effectiveness. The sign in SDFs clearly distinguishes the inside and
outside of a surface, enabling straightforward surface extraction via well-established methods such as
Marching Cubes (MC) [1]. While recent adaptations of SDF [2–5] incorporate constraints to support
open surface reconstruction, they remain inadequate for capturing non-manifold structures.

Unsigned Distance Fields (UDFs), in contrast, eliminate the need for sign information and provide
a more flexible framework capable of representing a wide range of surface topologies, including

∗Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



open and closed surfaces, non-manifold geometries, and shapes with complex internal structures [6–
19]. However, this flexibility comes at a significant cost: the absence of sign information makes it
significantly harder to identify zero-level sets, especially in the presence of non-manifold structures.

Several methods have been proposed for surface extraction from UDFs. A common strategy in-
volves reconstructing local SDFs from UDFs using gradient-based estimation [6, 11, 20] or neural
prediction [21] to approximate sign information and identify zero-level set intersections. While
these methods benefit from the efficiency of Marching Cubes, they are highly sensitive to UDF
inaccuracies, often resulting in holes and redundant components. Other approaches [22, 23] gener-
alize dual contouring [24] to improve reconstruction quality, but they often introduce unintended
non-manifold artifacts due to inconsistent topological handling. Mesh deformation methods, such
as DCUDF [25, 26], improve robustness by iteratively shrinking an initial double-layered manifold
surface to fit the target geometry. However, since the initial surface is always manifold and the
deformation process preserves this structure, these methods are inherently incapable of capturing
non-manifold geometries. Mesh extraction algorithms based on Dual Contouring [24] have the ability
to extract non-manifold structures, but they also generate a large number of non-manifold faces in
manifold regions. To our knowledge, there is currently no method that can effectively extract the
correct non-manifold structures from UDFs.

(a)

(b)

(c) (d)

1

Figure 1: An open non-manifold surface (a) with 7 sides, including the top, bottom, left, right, front,
back, and inner regions. Given the input unsigned distance field (A cross section is illustrated in
(b)), we generate the corresponding material interface (c). For supporting open surfaces, we generate
an envelope Ω1 (the dashed lines in (c)) enclosing the surface. To generate MI partitions, it needs
to fill the gaps, e.g., the gap within the red box in (c), between Ω1 and the surface boundaries. We
extend the surface boundaries slightly to intersect with Ω1. The redundant faces are removed while
extracting the surface by M3C [27]. The reconstructed mesh in shown in four views (d) where each
side is highlighted in a different color for clarity.

On the other hand, non-manifold structures are ubiquitous in many applications, such as anatomical
modeling [28, 29], composite materials [30, 31], multi-phase fluids [32–35], and bubble simula-
tions [36, 37]. These structures are characterized by complex topologies and often arise as interfaces
between multiple materials, commonly referred to as material interfaces (MIs) [38]. An MI defines a
partitioning of the spatial domain into multiple labeled regions {F1, ..., Fn} as shown in Figure 1(c).

Traditional MI representations are limited to closed surfaces, i.e., surfaces without boundaries. As
illustrated in Figure 1, we define an enclosing envelope Ω1 around the surface. The surface boundaries
are extended slightly to intersect with Ω1 to form MI partitions inside Ω1. The outside of Ω1 is treated
as background and assigned the label F0. This generalization allows us to deal with not only closed
but also certain open non-manifold surfaces and to apply multi-label Marching Cubes methods, such
as M3C [27], to reconstruct non-manifold meshes from such labeled partitions. Redundant surfaces,
such as faces adjacent to the background, are removed.

However, MI is not a universal representation, as it requires predefined partition domain information.
In practical applications, MIs are typically defined by known functions (e.g., from fluid simulations) or
derived based on numerical priors (e.g., from CT images). In contrast, UDFs serve as a more universal
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representation and have been widely adopted in many classic 3D reconstruction tasks, such as point
cloud reconstruction [6–12], multi-view image reconstruction[13–16] and 3D generation [17–19].

To address these limitations, we introduce a novel algorithm to generate MIs from the input UDFs
without requiring predefined partition domain information, which enables accuracy non-manifold
surface extraction from MIs.

Our method consists of three key steps. First, we generate a two-labeled field to distinguish between
the two sides of a local surface patch using positive and negative signs. Second, we extend the
local two-signed field into a global multi-labeled field, assigning unique labels to each side of a
non-manifold surface. The multi-labeled field is then combined with the input UDF to generate
the target MI. Third, we refine the extracted mesh from the MI to ensure both visual accuracy and
topological coherence. We evaluate our method on a variety of datasets and UDF learning methods.
Experimental results demonstrate that our approach generates clean meshes that accurately capture
non-manifold structures, where existing methods often fail.

The main contributions of the paper are as follows:

1. We develop an algorithm for generating MIs from learned UDFs, enabling robust non-
manifold surface reconstruction without requiring prior knowledge of MIs. By extending the
definition of the MI, Our approach effectively handles both closed models and open models.

2. We introduce a novel algorithm that extends the local two-sided field—capable of distin-
guishing the two sides of local manifold patches—into a global multi-labeled field, enabling
the differentiation of multiple sides of non-manifold surfaces.

3. We conduct extensive evaluations across diverse datasets and UDF learning methods. Exper-
imental results demonstrate the capability of our method in extracting clean and accurate
manifold and non-manifold meshes, outperforming existing techniques.

2 Related Works

2.1 Manifold Reconstruction

Recently, deep learning approaches have gained traction in surface reconstruction. These methods
learn SDFs [39–49] or occupancy fields [50, 51] using neural networks directly from point clouds
or multi-view images. These methods typically extract surfaces from signed distance fields [1, 52],
which inherently guarantee watertight manifold models. Extensions of SDFs to support open surfaces
typically involve introducing additional constraints or masks [2–5]. While these methods offer greater
adaptability and flexibility in modeling, they remain fundamentally restricted to manifold surfaces.

2.2 Non-manifold Reconstructions

Unsigned distance fields have emerged as a promising alternative for representing surfaces with
diverse topologies, including open surfaces, non-manifold geometries, and shapes with complex
internal structures [6–11, 13–19, 53]. By discarding the sign term of SDFs, UDFs offer greater
flexibility, enabling the representation of complex models, including non-manifold surfaces. However,
most UDF-based methods primarily focus on open manifold surfaces, with limited exploration of
non-manifold surface reconstruction. The primary obstacle lies in the lack of a robust mesh extraction
algorithm tailored for non-manifold structures from UDFs.

Recent advancements have focused on extracting the zero-level sets from UDFs using modified
Marching Cubes. Some methods [6, 11, 20, 21] reconstruct local sign information to determine edge
intersections. DCUDF [25] refines the mesh of non-zero level sets to approximate the zero-level
set through shrinking, producing double-layered results. However, these methods fail to effectively
handle non-manifold geometries.

For non-manifold structures, sampling point clouds from UDFs and applying non-manifold-specific
methods [54] have been explored but suffer from low accuracy and robustness. Dual Contouring-
based methods, such as NDC [22] and DMUDF [23], have the potential to generate non-manifold
geometries but either lack generalizability or introduce unintended non-manifold artifacts. Manifold
DC [55] avoids such artifacts but cannot model non-manifold structures.
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Existing non-manifold mesh extraction algorithms are predominantly applied in the context of material
interfaces (MIs). MI represents a collection of regions where the target surface corresponds to the
intersection of different regions. MI is widely utilized in partitioned domains, such as anatomical
structures [28, 29], composite materials [30, 31], bubbles [36, 37], and multi-phase fluids [32–35],
where space is naturally segmented into distinct regions.Using the MI as input, multi-label algorithms,
such as M3C [27], handle non-manifold surfaces by leveraging explicit material interface definitions.
While effective, they require predefined region labels or arrangements, limiting their applicability.

In this paper, we aim to address the limitations of these approaches by introducing a novel method for
generating MIs directly from UDFs. Unlike previous methods, our approach does not require prior
knowledge of material interfaces or region labels, enabling the robust extraction of non-manifold
surfaces directly from UDFs.

Input UDF

Local two-signed field Global multi-labeled field Non-manifold result

(a) (b) (c)
Figure 2: Pipeline: Starting with a learned UDF, we first sample a point cloud to compute a local
two-signed field to differentiate the two sides of local manifold patches (a). We do not calculate
regions far from the target face and label them as background (the green region in (a)). This is
followed by generating a global multi-labeled field based on the two-signed field, which distinguishes
all sides of the non-manifold surface (b). Finally, the non-manifold surface is extracted from the
multi-labeled distance field using a multi-label MC algorithm (c).

3 Method

In this work, we generate MIs from input UDFs to enable the extraction of non-manifold meshes
from UDFs. As illustrated in Figure 2, our method consists of three key steps: In Section 3.1, we
construct a local two-signed field to distinguish the two sides of manifold patches within the input
UDF. In Section 3.2, the local two-signed field is extended to a global multi-labeled field to capture
the sides of non-manifold surfaces, forming the target MI. Finally, in Section 3.3, we describe how to
extract non-manifold surface meshes from the MI.

3.1 Local Two-Signed Fields

To generate the MI of the input UDF, we need to segment the 3D space into different partitions. As
shown in Figure 2, our first step is to generate a two-signed local side field that distinguishes the two
sides of local manifold patches. Similar to the generalized winding number [56, 57], on a surface
S, given consistently oriented normals nx of points x ∈ S, we introduce the following indicator
function wl

S(q) to compute a side field for a query point q:

wl
S(q) =

∫
x∈NS(q)

(x− q) · nx

∥x− q∥3 + ϵ
dx, (1)

where ϵ is a small positive to avoid division by zero. Different from the generalized winding number,
the region of integration is modified from the entire surface S to a local neighborhood NS(q) on
S around the point q. This adjustment allows wl

S to distinguish between the two sides of a local
manifold using positive and negative signs.

Implementation Details We extract a point cloud from the given UDF. Points are sampled randomly
in space Ω1 where the UDF values are equal to a threshold r1 and these points are projected toward
local minima, similar to the approach in [10]. The point cloud is then down sampled using a uniform
grid voxels to obtain a uniform initial point cloud P . Next, we apply [58] to compute oriented
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normals for the points. Although [58] may result in flipped normals, the orientations are piecewise
consistent, ensuring that most are oriented consistently. The discrete form of wl

S(q) is,

wl
S(q) =

∑
xi∈NP(q)

(xi − q) · ni

∥xi − q∥3 + ϵ
. (2)

We discretize the space into voxels and compute the side field only for the voxels oi inside Ω1, as
points far from the surface are not of interest. Any voxel outside Ω1 is considered background and
assigned the label F0. wl

S(q) is locally defined and is able to distinguish the two sides where the
normals are properly defined. In particular, in regions near non-manifold edges or regions with
flipped normals, wl

S are not well-defined. These issues will be refined in the following Section 3.2.

(a) (b) (c)

2

(d) (e)
Figure 3: Illustration of global multi-labeled field generation from the local two-signed field on a
T-shaped model. The close-up view of the cross-section on the non-manifold structure is provided.
The local two-signed field wl

S is first computed (a). Applying connected component labeling to the
local two-signed field introduces artifacts due to small “tubes” (b). Erosion effectively removes these
connected “tubes” (c). We solve the Equation 3 to fill the blank region (d). Comparing to dilate
operation, it produce a more consistent boundary to the origin labeling (dash line). But our current
result is over-segmented. We introduce an envelope Ω2 that is closer to the target surface than Ω1. As
shown in (e), the partition boundaries inside Ω2 is shown in green and outside in red. We merge two
regions whose most adjacent boundaries are in red to get the final labeling result (e).

3.2 Global Multi-Labeled Fields

In this section, we generate the global multi-labeled distance field, which is able to distinguish all
sides of a non-manifold surface, from the local two-signed side field. We cluster voxels based on
the two signs of wl

S by applying the 3D connected component labeling algorithm2. This algorithm
assigns a label Fi to each voxel that is connected and has the same sign (positive or negative). As a
result, voxels within Ω1 are split into a set of partitions {Rk}. However, non-manifold or normal
flipping regions, where there should be three or more partitions coincide, are scarcely possible to
be properly divided only by the two signs of wl

S . As shown in Figure 3, a partition may span across
non-manifold edges via a narrow “tube”. Since this tube is thin, a simple morphological erosion can
remove it, causing the remaining voxels of the partition to become disconnected.

We denote the eroded voxels by Re
k and the remaining voxels by Rr

k. For the voxels in all the
connected components of Rr

k, we assign different new labels Fk to different connected components
of Rr

k. Each voxel in Re
k should be labeled by one of the labels of Fk. The goal is to minimize

variations in neighboring labels of Re
k. Therefore, we minimize the following energy for labeling:

min
f

∑
oi∈∪kRe

k

D (f(oi)) +
∑

(oi,oj)∈N

V (f(oi), f(oj)) ,

s.t. f(oi) = fs(oi), oi ∈ ∪kR
r
k

D (f(oi)) =

{
0, if f(oi) ∈ Fk or Fk = Φ

1, otherwise
, (oi ∈ Re

k)

V (f(oi), f(oj)) =

{
0, if f(oi) = f(oj)

1, otherwise

(3)

Here, f(oi) represents the to be solved label assigned to voxel oi, fs(oi) denotes the label assigned
to voxels in Rr

k, which are fixed, and N refers to the set of neighboring voxels. The function V (·)
minimizes label changes, while D(·) ensures that most of the interfaces between partitions remain

2https://github.com/seung-lab/connected-components-3d
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invariant. Occasionally, Rk may be so small that Rr
k and Fk are empty sets. In such cases, we omit

the constraint. Equation (3) can be solved using α-expansion [59].

After refinement, the partitions ensure that the two sides of a non-manifold belong to different
partitions. However, over-segmented partitions may exist, as shown in Figure 3, which are unavoidable
in the two-signed field near non-manifold edges. These over-partitions should be merged. Otherwise
they would lead to redundant surfaces in the reconstructed mesh. Two partitions that are not separated
by the surface S should be merged. Directly assessing this condition can be tricky, so instead, we
construct another envelope, Ω2, by extracting an iso-surface at value r2 (r2 < r1) from the UDF.
This gives us the relation S ⊂ Ω2 ⊂ Ω1. If two partitions are separated by S, their boundary voxels
should lie within Ω2. Conversely, if two partitions are not separated by S, most of their boundary
voxels should be outside Ω2, but still within Ω1 −Ω2. As illustrated in Figure 3, through these simple
tests, we can effectively merge redundant partitions, ensuring that different sides of a non-manifold
surface belong to different partitions, and no further merging of partitions is needed. These partition
labels along with the input UDF constitute the target MI.

3.3 Non-Manifold Surface Extraction

With the target MI, we can extract the non-manifold mesh M using a multi-label Marching Cubes
algorithm. Specifically, we adopt the M3C method [27] with minor modifications. Instead of
interpolating at the midpoint of each cube edge, we use the value of wl

S to determine the intersection
points, enhancing accuracy. We do not generate the face associated with the background label F0

because there is no target surface at the interface between the background and other regions, which
also enables open model reconstruction. To further refine the mesh, redundant triangular faces
extending from surface boundaries outside Ω2 are removed.

(a) (b)

Figure 4: The Multi-Labeled Field computed from the point cloud, while having the correct topology,
generates a noisy mesh because its zero level set is misaligned with the target surface (a). We use the
input UDF to refine the result (b).

However, the accuracy of wl
S remains limited by discretization. To address this limitation, we

fine the extracted mesh M by optimizing its alignment with the input UDF as shown in Figure 4.
Inspired by DCUDF [25], we fine-tune M by minimizing its UDF values for improved accuracy
while incorporating a Laplacian regularization term to maintain the mesh’s shape and prevent face
folding. Unlike DCUDF, our mesh M contains non-manifold edges, where traditional Laplacian
computation is not well-defined. For a point pm on a non-manifold edge, using all adjacent points
to compute the Laplacian fails to prevent face folding, as illustrated in Figure 5. To overcome this,
we group adjacent triangular faces based on the labels they border. Every triangular face belongs
to two groups. Each group of triangular faces forms a manifold mesh. For a point pi ∈ M, the
Laplacians are computed separately in each group of adjacent faces. For example, for a point on
the non-manifold edge of a T-shape, there are 3 groups of adjacent faces and 3 Laplacian terms. We
optimize the following loss function to refine the mesh,

min
π

∑
s∈S

( ∑
pi∈Ms

f
(
π(pi)

)
+ λ1

∑
pi∈Ms

∥∥∥π(pi)−
1

|N s(pi)|
∑

pj∈Ns(pi)

π(pj)
∥∥∥2)

, (4)

where f(·) denotes the UDF values and π(pi) is the new location of point pi after optimization. S
denotes the set of signs and Ms is the sub-mesh whose faces border on the sign s. N s(pi) denotes
the 1-ring neighboring points of pi in Ms. The first term, f(π1(pi)), drives the points pi toward the
local minima of the UDF. The second Laplacian term prevents the triangular face from folding.

6



(a) (b) (c) (d)

Figure 5: Laplacian constraint of non-manifold edges. For a point (orange) on a non-manifold
edge, traditional Laplacian constraint fails to prevent adjacent faces from folding. By computing the
Laplacian loss within each labeled region separately, our method effectively avoids self-intersections
of the surface.

4 Experimental Results

4.1 Experimental Setup and Hyperparameters

We normalize 3D models to fit within [−0.5, 0.5]3 and use a bounding box of [−0.6, 0.6]3 to contain
the UDFs. For calculating the local two-signed field, we sample 1 million points on the r1 level set
and optimize their positions to align with the local minima of the UDF. The resolution is set to 2563,
resulting int a voxel size of 0.0046. The voxel size for point cloud downsampling3 is set to 0.005,
which is slightly higher than 0.0046. While the downsampled point cloud has a density of 0.005, we
set r2 = 0.01 to generate a continuous Ω2. To ensure Ω1 is larger than Ω2, r1 is set to 0.05. We erode
the local two-signed field 2 times before generating the global multi-labeled field. Two partitions in
the global multi-labeled field are merged if the number of boundary voxels within Ω1 − Ω2 is three
times greater than the number of voxels within Ω2. A more detailed experiment of hyperparameters
can be found in Section A of appendix.

We use M3C [27] to extract meshes, implemented in Dream3D4. We then optimize the output of
M3C with Equation 4 for 200 iterations, using a Laplacian weight of 1000, to generate the final
result. Although several hyperparameters are introduced in our paper, most of them correspond to the
resolution and exhibit generalizability across different types of learned distance fields. All results are
tested on a single NVIDIA V100 GPU.

4.2 Comparisons

Baselines To the best of our knowledge, no prior work investigates generating MIs from UDFs.
Since the extracted meshes depend on MI qualities, we compare our method against two unsupervised
UDFs mesh extraction algorithms, including DCUDF [25], and DMUDF [23]. While DCUDF uses
double-layered manifold meshes to approximate non-manifold structures, DMUDF is capable of
generating non-manifold edges. To assess the topological correctness of the extracted meshes, we
compute geodesic distances, which are highly sensitive to topological features. Specifically, we
use the heat method [60] with a non-manifold Laplacian [61] applied to the extracted meshes. For
comparison, geodesic distances are also computed on dense points, serving as a reference.

UDFs Learned from Point Clouds We learn UDFs from unoriented point clouds using CA-
PUDF [6], LevelSetUDF [7], and DEUDF [8], respectively. The results are shown in Figure 6, with
non-manifold edges highlighted in red. We compare our method with DMUDF and DCUDF.

DMUDF [23], a Dual Contouring variant, is capable of generating non-manifold edges. However, the
process of generating non-manifolds in DC is often uncontrolled, resulting in a significant number of
non-manifold edges appearing in regions that should remain manifold. Furthermore, DMUDF utilizes
an octree structure to accelerate the algorithm. To determine whether the target surface exists within
a specific leaf node, DMUDF relies on a key criterion based on the UDF value at the node’s center
point. This approach is highly sensitive to UDF accuracy, making it prone to failure in the presence
of noise or inaccuracies in the UDF. Such issues can cause the octree subdivision process to terminate
prematurely. As highlighted in DUDF [9], most UDF learning methods prioritize accurate distance
predictions near the target surface but neglect accuracy in regions farther away. This limitation can

3https://www.open3d.org
4https://github.com/BlueQuartzSoftware/DREAM3D
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CAPUDF LevelsetUDF
Sample point cloud DMUDF DCUDF Ours Sample point cloud DMUDF DCUDF Ours

DEUDF LevelsetUDF
Sample point cloud DMUDF DCUDF Ours Sample point cloud DMUDF DCUDF Ours

Figure 6: Non-manifold surface extraction from UDFs learned by CAPUDF [6], LevelSetUDF [7],
and DEUDF [8]. We present the sampled point cloud on the UDFs as the GT (Ground Truth). We
compare our surface extraction method with DCUDF and DMUDF, highlighting non-manifold edges
in red in the results. While DMUDF frequently produces non-manifold edges in regions that should
be manifold, DCUDF consistently generates double-layered manifold meshes, leading to a failure in
preserving the correct topology of the target surfaces.

GT DMUDF DCUDF Ours

Figure 7: Surface extraction from UDFs learned by CAPUDF [6] on the ShapeNet-Car dataset [62].

result in significant missing regions in DMUDF’s output when a node’s center point is far from the
vicinity of the target surface. DCUDF [25] approximates the target non-manifold surfaces using
a double-layer mesh. Although the results visually align with the target surface, the lack of exact
coincidence between the two layers often introduces undesired artifacts, such as redundant shadows,
during rendering.

To assess the quality of the extracted meshes, we sample 100K points on the mesh and employ the
Chamfer distance L2 as a geometrical metric. Table 1 presents the results on the ShapeNet-Car [62]
dataset and DeepFashion3D [63] dataset. The visualization results of ShapeNet-Car dataset are shown
in Figure 7, where our visual results are the best.

Table 1: Evaluation on the ShapeNet-Car [62] dataset learned from CAP-UDF[6] and DeepFashion3D
dataset [63] learned from DCUDF[25].

Dataset DMUDF DCUDF Ours
Mean Median Std Mean Median Std Mean Median Std

ShapeNet-Car 3.086 2.564 2.112 3.290 2.770 2.252 2.917 2.447 2.107
DeepFashion3D 1.792 1.383 0.512 1.825 1.495 0.535 1.770 1.339 0.507
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UDFs Learned from Multi-view Images Extracting surfaces from UDFs learned via multi-view
images presents significant challenges, especially in scenes involving transparent objects or thin
structures, where non-manifold surfaces are prevalent.

We evaluate our method and compare it with baselines on UDFs generated by NU-NeRF [43] on
multi-view images of transparent objects. NU-NeRF learns two separate SDFs, corresponding to
the outer and inner objects, and extracts their respective meshes using Marching Cubes. To prevent
the inner SDF from producing meshes in the outer region, NU-NeRF uses the outer SDF as a mask
during extraction. However, this masking approach often leads to redundant components forming
along the mask boundaries. Although NU-NeRF employs a post-processing step to remove these
redundant components, it creates discontinuities between the inner and outer meshes.

Reference image Sample point cloud NU-NeRF DCUDF Ours Non-manifold edges

Reference image Sample point cloud NeUDF DCUDF Ours Non-manifold edges

Figure 8: Non-manifold surface extraction from UDFs learned by NU-NeRF [43] (top) and
NeUDF [15] (bottom). Geodesic distances computed on the extracted meshes are visualized to
validate their non-manifold topology. The geodesic distances computed on sampled point clouds are
used as reference for comparison. All baseline methods fail to accurately preserve the non-manifold
structures in the extracted meshes.

To address this, we combine the two SDFs5 to a single UDF for mesh extraction. The outer SDF
value is directly applied in the outer region, while for the inner region, we use the minimum absolute
value of the two SDFs. As shown in Figure 8, adopting the geodesic distance measure, we confirm
that our results preserve the correct topology. For comparison, we also use DCUDF to extract the
target surface. While DCUDF produces visually pleasing results, its double-layered structure prevents
geodesic distances from diffusing between layers, highlighting its limitation in preserving topological
consistency.

We also adopt NeUDF [15] for learning UDFs from multi-view images of transparent objects. The
results are presented in Figure 8. NeUDF employs MeshUDF [20], a gradient-based Marching Cubes,
for mesh extraction from learned UDFs. However, this approach fails in non-manifold regions due
to the lack of a suitable lookup table for non-manifolds in standard Marching Cubes. Furthermore,
unlike opaque objects whose boundary surfaces align with zero-level sets, transparent objects typically
exhibit iso-values that are not close to zero, leading to complete reconstruction failure for transparent
objects. DCUDF addresses this limitation by extracting non-zero level sets, allowing it to capture
transparent objects. However, its double-layered mesh structure significantly compromise topological
accuracy. In contrast, our method successfully reconstructs transparent objects and accurately models
their non-manifold surfaces. This highlights the robustness and versatility of our approach compared
to existing methods.

UDFs Induced from Q-MDF [64] Non-manifold structures frequently appear in medial axes. Q-
MDF [64] computes medial axes for watertight models through the joint learning of signed distance
fields and medial fields (MF) [65]. It has been shown that the difference between the SDF and MF
yields an unsigned distance field [64]. In the original Q-MDF pipeline, medial axes are extracted using
DCUDF [25], which, as mentioned above, generates a double-layered manifold mesh. Consequently,

5We use the SDFs provided directly by the NU-NeRF authors.
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Sample point cloud Ours Ours Sample point cloud Ours Ours
Geodesic distance Non-manifold edge Geodesic distance Non-manifold edge

Figure 9: Non-manifold surface extraction from UDFs learned by Q-MDF [64]. The target surfaces
are medial axes, characterized by numerous non-manifold structures. For clarity, we render both
the watertight surfaces and their corresponding medial axes. Geodesic distances are computed on
the extracted non-manifold medial axes and compared with those on the sampled point clouds for
validation.

this approach fails to preserve the non-manifold characteristics of medial axes. By utilizing MIND,
we extract high-quality, single-layered non-manifold medial axes, as demonstrated in Figure 9.

Limitations We use α-expansion [59] to label voxel grids, which is time-consuming. The primary
bottleneck arises from evaluating all potential label distributions across the entire voxel grid for each
candidate label. A feasible acceleration strategy involves partitioning the voxel grid into blocks,
where block-wise α-expansion computation effectively reduces costs. Another alternative is to use
dilation instead of alpha expansion, which has a time cost independent of the number of labels but
yields an approximate solution. On the other hand, our approach requires an erosion operation, which
may inadvertently remove small or thin MI regions and lead to missing facets, as shown in Figure 10.

(a) (b) (c) (d) GT Ours

Figure 10: For a small MI region (upper part) (a), the inner voxels of its local two-signed field (b)
will be removed during the erosion process, resulting in no seed region in the entire internal space (c).
Consequently, the structure cannot be recovered after α-expansion (d).

5 Conclusions

In this paper, we introduce MIND, a novel algorithm to extract MIs from UDFs for non-manifold mesh
extraction. By combining the strengths of material interfaces and unsigned distance fields, MIND
supports non-manifold reconstruction from UDFs. MIND does not require pre-defined partition
information, making it suitable for a broader range of scenarios. Our experimental results across
various types of UDFs demonstrate the effectiveness of MIND in generating MIs for accurate non-
manifold mesh reconstruction. In its current form, our implementation generates MI from pre-learned
UDFs, making the presented method primarily a zero-level set extraction algorithm. It is highly
desired to develop techniques that learn an MI directly from raw input data, such as point clouds or
multi-view images. Such advancements could significantly broaden the range of applications for MI
and enhance its utility in tackling complex reconstruction tasks.
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A Hyper-parameter study

In our pipeline, we use a resolution-dependent voxel size to downsample the point cloud. As Figure 11
shows, a smaller voxel size does not affect the result but introduces a larger computational overhead.
Conversely, if the voxel size is set too large (e.g., 0.01), the point cloud becomes too sparse and holes
appear in the reconstructed model. Our r1 and r2 values are also set according to the resolution to
maintain them within proper ranges. As shown in Figure 12, moderate changes in these parameters
are acceptable, but excessive adjustments can cause problems. Though a large r1 does not introduce
issues beyond computational overhead, an overly small r1 (e.g., 0.03) could cause the erosion step
to delete all regions, leading to reconstruction failure. An excessively large r2 (e.g., 0.02) can lead
to insufficient region merging, whereas an overly small r2 (e.g., 0.0025) can result in unnecessary
merging.

0.002 0.005 0.0075 0.01

Figure 11: The reconstruction results with different downsampling voxel size.

r1 = 0.1 r1 = 0.075 r1 = 0.05 r1 = 0.04 r1 = 0.03

r2 = 0.02 r2 = 0.015 r2 = 0.01 r2 = 0.0075 r2 = 0.0025

Figure 12: Mesh reconstruction with different r1 and r2. N.A. means reconstruction failed.

B More Results

We present additional results in the appendix, including point cloud reconstruction, multi-view
reconstruction, and medial axis transforms. As illustrated in Figure. 13, our method can model
real-world non-manifold structures defined by multi-view images, such as intersections between
transparent objects and overlapping thin plate structures. These configurations represent challenging
cases for signed distance fields to represent in practical scenarios. For point cloud reconstruction and
medial axis transformations, we present additional results in Figure. 14 and Figure. 15, demonstrating
the versatility of our approach. We also collected some more complex data to further illustrate the
robustness of our method, as shown in Figure 16.

C Failed Case

As illustrated in Figure 17, the two sides of the non-orientable surface are indistinguishable, resulting
in the absence of a well-defined MI. Consequently, our method fails to generate MIs for the surface,
leading to artifacts in the extracted mesh.
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Reference image Sample point cloud NU-NeRF DCUDF Ours Non-manifold edges

Reference image Sample point cloud NeUDF DCUDF Ours

Figure 13: More results of Non-manifold surface extraction from SDFs/UDFs learned by NU-NeRF
(top) and NeUDF (bottom). We use the SDFs provided directly by the NU-NeRF authors and convert
them to UDFs.

CAPUDF DEUDF
Sample point cloud DMUDF DCUDF Ours Sample point cloud DMUDF DCUDF Ours

Figure 14: More results of non-manifold surface extraction from CAPUDF and DEUDF.
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Sample point cloud Ours Ours Sample point cloud Ours Ours
Geodesic distance Non-manifold edge Geodesic distance Non-manifold edge

Figure 15: More results of non-manifold surface extraction from UDFs learned by Q-MDF [64].

Figure 16: Results on more data, where the UDFs are learned by DEUDF [8]. We demonstrate the
reconstruction results of indoor data, medical images, objects, and high fidelity surface data, which
illustrates the applicability of our method.

(a) (b) (c) (d)

Figure 17: Non-orientable surfaces do not have proper MI definitions. (a) and (b) illustrate a non-
orientable non-manifold surface where a walker can traverse from one side of a point to the opposite
side without crossing a boundary. In such case, the multi-labeled field is undefined and thus fails to
generate (c), from which the non-manifold surfaces cannot be extracted properly (d).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction 1 accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a dedicated paragraph to discuss the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All of our experimental results 4 are reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[No]
Justification: We will open the source code and data after the acceptance of the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Implementation details are introduced in Section 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Like almost all methods, our input neural networks are randomly initialized.
Our method does not depend on any special random numbers. We believe the different test
cases in our experiments can explain the stability of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments Compute Resources are introduced in Section 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper fully conforms to the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: To the best of our imagination we cannot think of potential misuse of our
proposed approach that leaves a negative impact to the society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and the license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used solely for grammar correction and writing refinement.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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