
Novelty and Lifted Helpful Actions in Generalized Planning

Chao Lei, Nir Lipovetzky, Krista A. Ehinger
School of Computing and Information Systems, The University of Melbourne, Australia

clei1@student.unimelb.edu.au, {nir.lipovetzky, kris.ehinger}@unimelb.edu.au

Abstract

It has been shown recently that successful techniques in clas-
sical planning, such as goal-oriented heuristics and land-
marks, can improve the ability to compute planning programs
for generalized planning (GP) problems. In this work, we in-
troduce the notion of action novelty rank, which computes
novelty with respect to a planning program, and propose
novelty-based generalized planning solvers, which prune a
newly generated planning program if its most frequent ac-
tion repetition is greater than a given bound v, implemented
by novelty-based best-first search BFS(v) and its progressive
variant PGP(v). Besides, we introduce lifted helpful actions
in GP derived from action schemes, and propose new evalua-
tion functions and structural program restrictions to scale up
the search. Our experiments show that the new algorithms
BFS(v) and PGP(v) outperform the state-of-the-art in GP
over the standard generalized planning benchmarks. Practi-
cal findings on the above-mentioned methods in generalized
planning are briefly discussed.

Introduction
Generalized planning (GP) studies the representation and
generation of solutions that are valid for a set of planning
instances from a given domain (Srivastava, Immerman, and
Zilberstein 2008; Srivastava et al. 2011; Hu and De Giacomo
2011; Belle and Levesque 2016; Jiménez, Segovia-Aguas,
and Jonsson 2019). Recently, Segovia-Aguas, Jiménez, and
Jonsson (2019) proposed a PSPACE-complete formalism
for GP problems whose solutions are planning programs,
where a sequence of program instructions are nested with
goto instructions such that the program can execute loop-
ing and branching structures. Candidate instructions are
programmed in sequence, one line a time, while assess-
ing whether the planning instances are solvable given a
maximum number of program lines. The main algorithm
that follows the heuristic search paradigm to search in the
space of programs is known as Best-First Generalized Plan-
ning (BFGP) (Segovia-Aguas, Jiménez, and Jonsson 2021),
where variable pointers and higher level state features allow
programs to solve instances with different variables. Goal-
oriented heuristics to guide BFGP have given an impressive
performance to existing solvers. To further scale up search
efficiency, Segovia-Aguas et al. (2022) introduced a land-
mark counting heuristic computed from the fact landmarks

extracted from each instance (Porteous, Sebastia, and Hoff-
mann 2001; Hoffmann, Porteous, and Sebastia 2004) and en-
hanced with pointer landmarks. A progressive search was
introduced to avoid over-evaluating whether each subpro-
gram in the search is a solution for the entire set of instances.
This strategy evaluates instances incrementally, starting with
a single instance, and progressively increasing the number of
active planning instances. The combination of Progressive
heuristic search algorithm for Generalized Planning (PGP)
guided by the landmark heuristic, PGP(flm), is the current
state-of-the-art.

Besides fact landmarks, other ideas in classical planning
have not been introduced to generalized planning, such as
helpful actions (Hoffmann and Nebel 2001) and novelty-
based search (Lipovetzky and Geffner 2012). This paper
aims to define novelty and lifted helpful actions for general-
ized planning programs and to evaluate their performance
over the standard benchmark domains. For this, we in-
troduce novelty-based generalized planning algorithms and
propose new evaluation functions beneficial for generalized
planning as heuristic search. In addition, we experiment with
structural program restrictions in planning programs to im-
prove search efficiency.

Background
The STRIPS fragment of the Planning Domain Definition
Language (PDDL) (Haslum et al. 2019) describes a plan-
ning problem P as P = ⟨D, I⟩ where D is the domain and
I is an instance. The domain D = ⟨F ,O⟩ is made up of
a set of predicates F , and action schemes O, each with a
triple ⟨par, pre, eff ⟩ where par indicates parameters (argu-
ments), and pre and eff denote preconditions and effects that
are sets of predicates containing terms in par. The instance
I = ⟨∆, I, G⟩ consists of objects ∆, initial state I , and goal
conditions G, specifying the set of goal states SG. F and
O parameters can be instantiated with ∆ resulting in a set
of ground atoms F and actions O. The classical model for
planning SP = ⟨S, s0, SG, A, f, c⟩ consists of a set of states
S = 2F , the initial state s0 = I , the set of goal states SG ⊆
S, the subset of actions A(s) = {a | pre(a) ⊆ s, a ∈ O}
applicable in s, a transition function f : S×A(s) → S, and
the cost function c. A solution is a sequence of actions map-
ping the initial state s0 into one of the goal states s ∈ SG.
We also consider other planning languages in numerical do-

mains where states are valuations over a set of numeric vari-
ables instead of predicates.

Generalized Planning
A GP problem is commonly defined as a finite set of clas-
sical planning problems P = {P1, . . . , PT }, where Pt =
⟨D, It⟩, 1 ≤ t ≤ T , which belong to the same domain D.
Each instance It may differ in I , G, and ∆, resulting in dif-
ferent O and F . A GP solution is a program that produces a
classical plan for every problem Pt ∈ P .

Planning Programs with Pointers Planning programs
with pointers Z, where each pointer z ∈ Z indexes a
variable/object in P , compactly describe a scalable solu-
tion space for GP (Segovia-Aguas et al. 2022). A plan-
ning program Π, with a given maximum number of pro-
gram lines n, is a sequence of instructions, i.e. Π =
⟨w0, . . . , wn−1⟩, and wn−1 is always a termination instruc-
tion, i.e. wn−1 = end. An instruction wi, where i is the
location of the program line, 0 ≤ i < n − 1, is ei-
ther: a ground planning action az ∈ AZ instantiated from
O over Z, a RAM action ar ∈ AR for pointer manip-
ulation, a goto instruction for non-sequential execution
over lines, or an end instruction. RAM actions AR include
{inc(z1),dec(z1),set(z1, z2),clear(z1) |z1, z2 ∈ Z}
for increasing or decreasing the value of z1 by one when
z1 < |∆|− 1 or z1 > 0 respectively, and setting the value of
z2 to z1 or setting the value of z1 to zero. Figure 1 illustrates
the relation between ground actions O and ground planning
action AZ , by instantiating O over objects ∆ and pointers Z.
The mapping between AZ and O allows one az to represent
a set of ground actions O.

Besides AR, testp(
−→z) RAM actions, where p ∈ F , are

included over STRIPS problems to return the current pro-
gram state interpretation of instantiated predicates F over
objects pointed by indices −→z . Additionally, RAM actions
cmp(z1, z2) and cmpx(

−→z1 ,−→z2) are included in numerical
domains to compare the values of two pointers z1 − z2
and the values of variables x referenced by indices −→z1 and−→z2 respectively. A goto instruction is a tuple go(i′, Y),
where i′ is the destination line, and FLAGS Y = {yz, yc} are
propositions representing the zero and carry FLAGS regis-
ter (Dandamudi 2005). The values of FLAGS are updated
by the results of RAM actions, defined as res, with rules
yz := (res == 0) and yc := (res > 0) to express relations,
e.g. =, ̸=, <,>,≤,≥. In STRIPS domains, Y is set to {yz}
alone since only Boolean logic interpretations are needed.

When Π begins to execute on an instance It, a program
state pair (s, i) is initialized to (It, 0), where It is the ini-
tial state of instance It. Meanwhile, pointers are equal to
zero, and FLAGS are set to False. An instruction wi ∈ Π
updates (s, i) to (s′, i + 1) when wi = az or wi = ar,
where s′ = f(s, wi) if wi is applicable, or, s′ = s oth-
erwise. An instruction relocates the program state to (s, i′)
when wi = go(i′, Y) if Y holds in s, or to the next line
otherwise (s, i + 1). Π is a solution for It if Π terminates
in (s, i) and meets the goal condition, i.e. wi = end and
G ⊆ s. Π is a solution for the GP problem P , iff Π is a so-
lution for every instance It ∈ P . Figure 2 shows a fragment

of planning program Π that can flatten a block tower with
different height.

unstack (?b1 - block ?b2 - block)

unstack(,)

instantiation (,) instantiation

unstack (block1, block1)

unstack (block3, block3)

block1 block1=0 =0

block3 block3=2 =2

Figure 1: Example relation between action shcema unstack
(?b1 − block ?b2 − block) ∈ O, ground actions O =
{unstack(block1, block2), . . . , unstack(block3, block3)}
over ∆ = {block1, block2, block3}, and ground planning
action az = unstack(z1, z2) ∈ AZ over Z. By changing
the values of z1 and z2, unstack(z1, z2) can remove a z1
indexed block from the top of z2 indexed block recursively
in the Ontable domain.

Generalized Planning Heuristics Segovia-Aguas,
Jiménez, and Jonsson (2021) introduced six different
evaluation and heuristic functions for GP. We will employ
two of them in our work. f1(Π) counts the number of goto
instructions in Π, and h5(Π,P) sums the Euclidean distance
between the values of variables in the last reached program
state and in the goals G of It ∈ P . Segovia-Aguas et al.
(2022) defined a landmark counting heuristic for GP over
STRIPS domains extending fact landmarks with pointer
landmarks. A landmark graph was built using the same
extraction process used in LAMA (Richter and Westphal
2010), and then enriched with pointer landmarks indicating
that each object in a fact landmark needs to be pointed
with a pointer z before the fact landmark is satisfied.
Landmark counting heuristic, flm(Π,P), guides the search
by evaluating how many landmarks have to be achieved to
reach the goals G of It ∈ P from the last reached program
state.

Generalized Planning Search Algorithms Progressive
GP (PGP) starts a Best First Search (BFS) with an empty
program Π of at most n program lines, and the first instance
as the only active instance (Segovia-Aguas et al. 2022).
Search nodes are generated by programming up to n instruc-
tions while pruning nodes recognized as dead-ends. The un-
derlying BFS expands the best Π in the open list according
to its evaluation functions. PGP returns Π as a verified solu-
tion if Π solves all active instances and has been validated as
a solution in the remaining non-active instances. If the val-
idation fails, one of the non-active instances is added to the
active instances, and the open list is reevaluated. A GP prob-
lem is unsolvable if active instances include all instances but
no solution is found. PGP can trivially adapt the landmark
graph by replacing P with active instances, and the resulting
algorithm PGP(flm) represents the state-of-the-art in GP. If
all instances are active when the search starts, then PGP is
equivalent to BFS.

0. unstack(,)
1. put-down()
2. inc()
3. goto(0, !)

10. end

Block1

Block2 Block2Block1

Block2

Block4 Block2Block1

Block3

Block1

Block3 Block4

Figure 2: A fragment of planning program Π, initialized
with z1 = 0, z2 = 0, yz = False, flattens a block tower.
Pointers z1 and z2 index object blocks where blocks =
{block1, block2, block3, block4}. The inner loop, line 0 to 3,
tries to place the block indexed by z1 on the table by increas-
ing the value of pointer z2 with the action inc(z2). The re-
sult of inc(z2) is res = 1 if applicable, otherwise res = 0
when z2 = 3 resulting in yz = True. The outer loop, line 4
to 10, repeatedly calls the inner loop to place top blocks on
the table by iterating all block combinations, and terminates
the Π with the instruction end.

Action Novelty in Planning Programs
The notion of novelty was first introduced by Lipovetzky and
Geffner (2012) in classical planning to assess how novel a
state s is with respect to a given context C, defined as the
states already visited by the search strategy. In classical plan-
ning, novelty is defined in terms of the predicates of a state,
while, in GP, each search state is defined by the actions as-
signed to each line in a planning program. As a result, we
define the novelty rank of an action a∗ where a∗ ∈ O ∪AR,
with respect to the context C = Π of a planning program.
Definition 1. The action novelty rank r(a∗,Π) = 1 +∑n−1

i=0 [wi = a∗] is the count of the number of appearances
of action a∗ in program Π. If action a∗ ̸∈ Π, then its rank
is 1, whereas if action a∗ appears in every line of Π, then its
rank is n+ 1, where n is the number of lines in Π.

E.g. the action novelty rank of the action schema visit
given Π = ⟨inc(z1), inc(z2), visit(z2, z1), visit(z1, z2)⟩ is
three, as visit, appears twice in the program. For RAM ac-
tions inc(z1) and inc(z2), the action novelty rank is two as
both appear once in the program.

Generalized Planning Novelty-based Search
In this section, we describe how to use r(a∗,Π) in general-
ized planning with off-the-shelf program-based planners.
Definition 2. Given a search state containing a planning
program Π, let Πwi=a∗ be the planning program resulting
from assigning action a∗ to the current programmable line i
in Π. Novelty-Based BFS, BFS(v), and Novelty-Based PGP,
PGP(v), use the action novelty rank and a bound v to prune
a newly generated program Πwi=a∗ when r(a∗,Π) > v.

Def. 2 considers only planning action schemas and RAM
actions, e.g. goto instruction is not a RAM action, and

hence, including goto more than v times would not lead
to a pruned state. This results in algorithms that encourage
branching and looping in planning programs.

Action novelty rank pruning speeds up the resulting
search algorithms by reducing the search space of planning
programs. If v equals the maximum program lines, BFS(v)
and PGP(v) degrade to BFS and PGP. The crucial question
is whether the resulting generalized planners can find a solu-
tion for P with low v bounds. The answer is yes. In practice,
ten out of fourteen domains can be solved with v = 1. The
other four require v = 2, as in Corridor, Gripper, and Lock
domains, the planning action move or RAM action inc(z1)
is required twice in Π to move in two directions, and in the
Fibonacci (Fibo) domain, Π needs two add planning actions
to sum the values of currently pointed variables with their
previous values. The low v bounds are a result of the special
structure of planning programs with pointers, where a single
action schema can represent multiple ground actions through
instantiations over the pointers Z. Branching and looping al-
low Π to change Z to different values with the least possible
number of RAM actions. Restricting the search of programs
to highly ranked novel actions ensures that the resulting Π
reuses planning and RAM actions to generate different ac-
tion effects to solve all the planning instances.

Lifted Helpful Actions
Helpful actions (HA) were first introduced in the context of
classical planning and played a key role in several state-of-
the-art planners (Hoffmann and Nebel 2001; Helmert 2006;
Richter and Westphal 2010; Lipovetzky and Geffner 2017).
HA are the subset of applicable actions that appear in a
delete-relaxed plan, computed for every expanded state in
order to reduce the branching factor. Instead, we compute
once all the lifted helpful actions in an instance It ∈ P of
a GP problem. Let L(C) = {l | l(par) ∈ C ⊆ F} be
the function that lifts the representation of a collection C
by removing arguments of its predicates. We define U0 =
L(G \ I) as the first lifted unachieved layer of ground pred-
icates. The lifted HA are then defined as the action schemas
Si = {a | L(eff (a)) ∩ Ui ̸= ∅, L(eff (a)) ∩ Uj = ∅, 0 ≤
j < i, a ∈ O} that support the lifted unachieved predicates
unsupported in previous layers. We then update the lifted
unachieved predicates Ui+1 = {Ui ∪ (L(pre(a)) \ L(I)) \
L(eff (a)) | a ∈ Si}, for i ≥ 0, computing the regression
over the lifted HA. Once two consecutive layers of lifted un-
achieved predicates are the same, i.e. cannot be updated fur-
ther, then the computation terminates. The set of lifted HA
is H =

⋃n
i Si, where n is the final layer where the compu-

tation converged. This computation is similar to backward
reachability over the lifted representation. The lifted HA for
P are set to be the union over H for each instance in P .
Intuitively, the reachable lifted actions that support the un-
achieved goals of an instance are deemed as helpful. We will
refer to lifted helpful actions as helpful actions.

Heuristics, Costs and Structural Restrictions
We introduce three new evaluation functions to exploit the
structure of planning programs: fha(Π,P) is the number

n/|Z| B5,1/(Improved) B5,1 P5,1/(Improved) P5,1

T Ex Ev T Ex Ev

Fibo 7/2 52/30 43K/30K 1M/0.7M 18/13 43K/30K 1M/0.7M

Find 6/3 21/8 53K/18K 0.8M/0.3M 17/7 55K/18K 0.8M/0.3M

Reverse 7/2 138/56 0.5M/0.2M 9M/3M 70/27 0.5M/0.2M 9M/3M

Sorting 8/2 2K/741 5M/2M 108M/40M 1K/441 5M/2M 107M/40M

Select 6/2 4/1 19K/5K 0.3M/76K 2/1 19K/5K 0.3M/76K

Table 1: Comparisons of improved BFS and PGP with their original
versions. B and P are acronyms of BFS and PGP respectively; n
stands for the number of program lines; |Z| stands for the number
of pointers; T is the total time in seconds; Ex is the number of
expanded nodes, and Ev is the number of evaluated nodes (K is
103 and M is 106). Best results are in bold.

of planning actions in Π that are not helpful actions for
P; fln(Π) is the number of instructions in Π except goto,
test, and cmp; fcn(Π,P) is the number of yet to be tested
ground atoms or compared ground atom pairs by the action
test or cmp respectively, calculated by executing Π on
each instance in P . All these functions are cost functions,
so smaller values are preferred.

fln(Π) is designed to allow as many branching and loop-
ing operations, not increasing the cost of Π when it contains
goto, test and cmp. A similar idea prioritizing programs
with the maximum number of loops has been explored by
Segovia-Aguas, E-Martı́n, and Jiménez (2022). fcn(Π,P)
encourages Π to explore new states during the search in or-
der to test or compare as many ground atoms or atom pairs
as possible. These three evaluation functions can be used to-
gether in BFS(v) and PGP(v), by replacing P with active
instances, since fha(Π,P) and fln(Π) can be computed in
linear time, and fcn(Π,P) is linear on the longest execution
of Π over P .

We adopt two structural restrictions over the space of pro-
grams to keep the search space tractable without sacrificing
completeness: 1) RAM actions clear, dec and set are
not allowed in the first line, as they induce an unnecessary
initial search plateau over the pointers, and 2) the destina-
tion line of a goto instruction is not allowed to be another
goto. One goto instruction can represent the same logic.

Evaluation
Segovia-Aguas, Jiménez, and Jonsson (2021) and Segovia-
Aguas et al. (2022) introduced eight STRIPS domains and
six numerical domains as generalized planning benchmarks.
We strictly followed their training and validation require-
ments in our experiments. The numerical domain Triangu-
lar Sum (T.Sum) includes a test action to express the goal
condition. The combination of (flm,f1), and (h5, f1) are
used in BFS and PGP to serve as baselines, where the search
is guided by the first term and breaks ties with the sec-
ond (Segovia-Aguas et al. 2022). For evaluation functions
with three heuristics, the evaluation function breaks ties lex-
icographically. Landmarks are only applied over STRIPS
domains since, except Fibo and T.Sum, actions in other nu-
merical domain benchmarks are precondition-free. All ex-
periments were conducted on a cloud computer with clock

speeds of 2.45 GHz EPYC processors and processes time or
memory out after 1 hour or 8 GB.

Synthesis of GP Solutions
Table 1 reports the performance of improved BFS and PGP
that apply the structural restrictions compared with their
original versions where h5 and f1 are represented by their
subscripts. We only illustrate domains with significant im-
provements. All omitted domains have an improvement of
1% to 15%. The domains in Table 1 benefit greatly from
structural program restrictions. Planning actions AZ pro-
grammed early in Π to achieve sub-goals improve h5 ability
to guide the search. As a result, we keep these restrictions in
the remaining experiments.

Table 2 summarizes the performance of BFS(v) and
PGP(v) in STRIPS domains, the upper part of the table, and
numerical domains, the lower part of the table, over six eval-
uation and heuristic function combinations represented by
their subscripts. We only use fha in STRIPS domains, same
as for flm, as numeric domains are precondition free, while
fcn and fln are used in numerical domains, where cmp
and goto are essential to express condition check, looping
and branching. To save space, we only display the combi-
nations that give the best performance. In Table 2, BFS(v)
and PGP(v) match or outperform BFS and PGP in terms of
search time expanded, and evaluated nodes in every domain,
showing the effectiveness of novelty rank pruning. The new
evaluation functions show strong efficiency in some domains
when integrated with previous functions f1, flm, and h5.

BFS(v)5,1 outperforms BFS5,1 in all domains. When flm
and f1 are used, this advantage remains except in the Intru-
sion domain where BFS(v) and BFS have the same perfor-
mance. BFS(v)lm,1,ha is slightly time inefficient compared
with BFS(v)lm,1 in the Gripper domain but still better than
the baseline BFSlm,1. BFS(v)5,ln displays a considerable
jump of performance in the Sorting domain, while it is defi-
cient in the Fibo domain. BFS(v)5,1,cn is less efficient in the
domain Sorting compared with BFS(v)5,ln, while it main-
tains efficiency gains in all numerical domains compared
with the baseline BFS5,1. BFS(v)5,cn,1 dominates in Select
and Sorting domains, reducing the search time from 741s to
1s, as fcn is encouraging cmp to be programmed at the first
line of Π, which reduces the search space significantly. At
the same time, it is slightly inefficient in the Fibo domain.

PGP(v)5,1 solves one more domain, Spanner, than the
baseline and performs better among all solved domains com-
pared with PGP5,1. It reveals the best result in Corridor,
Gripper, Fibo, Reverse and T.Sum domains. PGP(v)lm,1

dominates in the domain Lock and displays a significant
improvement in Baking, Ontable, and Spanner compared
with PGPlm,1. PGP(v)lm,1,ha improves the results further
and dominates all other methods in Baking and Span-
ner; besides, it expands and evaluates the least number of
nodes in the Ontable domain. PGP(v)5,ln, PGP(v)5,1,cn and
PGP(v)5,cn,1 reveal the same strengths and weaknesses as
their BFS(v) versions in numerical domains. The relation
between BFS and PGP and between landmarks and h5 in
STRIPS domains have been discussed by Segovia-Aguas
et al. (2022).

n/|Z|/v B5,1 B(v)5,1 Blm,1 B(v)lm,1 B(v)lm,1,ha P5,1 P(v)5,1 Plm,1 P(v)lm,1 P(v)lm,1,ha

T Ex/Ev T Ex/Ev T Ex/Ev T Ex/Ev T Ex/Ev T Ex/Ev T Ex/Ev T Ex/Ev T Ex/Ev T Ex/Ev

Baking 13/6/1 - - ◦ ◦ - - - - - - ◦ ◦ ◦ ◦ 72 30K/0.9M 3 501/20K 2 500/20K

Corridor 10/2/2 41 3K/60K 19 2K/45K 108 22K/0.4M 60 17K/0.3M 59 17K/0.3M 5 3K/59K 4 2K/45K 37 19K/0.3M 25 14K/0.2M 25 14K/0.2M

Gripper 8/4/2 5 2K/53K 4 2K/52K 48 19K/0.3M 28 18K/0.3M 34 20K/0.4M 1 2K/53K 1 2K/52K 10 19K/0.3M 10 18K/0.3M 11 20K/0.4M

Intrusion 9/1/1 54 44K/0.8M 22 27K/0.4M 0 8/188 0 8/188 0 8/188 14 44K/0.8M 8 27K/0.4M 0 8/188 0 8/188 0 8/188

Lock 12/2/2 - - ◦ ◦ - - - - - - ◦ ◦ ◦ ◦ 3 1K/26K 3 1K/25K ◦ ◦

Ontable 11/3/1 - - - - - - - - - - 24 9K/0.3M 9 6K/0.2M 308 3K/0.1M 87 1K/52K 42 685/24K

Spanner 12/5/1 - - - - - - - - - - - - 824 0.3M/8M 178 23K/0.6M 77 7K/0.2M 76 7K/0.2M

Visitall 7/2/1 0 44/489 0 18/211 8 25/239 2 18/158 2 18/158 0 81/1K 0 18/211 0 51/448 0 18/158 0 18/158

B(v)5,ln B(v)5,1,cn B(v)5,cn,1 P(v)5,ln P(v)5,1,cn P(v)5,cn,1

Fibo 7/2/2 30 30K/0.7M 28 26K/0.6M 96 0.3M/5M 27 33K/0.8M 37 69K/1M 13 30K/0.7M 11 26K/0.6M 65 0.3M/5M 13 33K/0.8M 19 69K/1M

Find 6/3/1 8 18K/0.3M 6 13K/0.2M 3 3K/54K 6 12K/0.2M 3 2K/38K 7 18K/0.3M 5 13K/0.2M 3 4K/55K 5 12K/0.2M 2 2K/39K

Reverse 7/2/1 56 0.2M/3M 22 0.1M/2M 22 0.1M/2M 21 0.1M/2M 21 0.1M/2M 27 0.2M/3M 11 93K/2M 11 94K/2M 11 93K/2M 11 93K/2M

Sorting 8/2/1 741 2M/40M 222 0.6M/13M 46 74K/2M 185 0.5M/12M 1 2K/52K 411 2M/40M 140 0.6M/13M 25 74K/2M 118 0.5M/12M 1 2K/55K

Select 6/2/1 1 5K/76K 0 4K/52K 0 1K/18K 0 3K/49K 0 683/1K 1 5K/76K 0 4K/53K 0 2K/20K 0 3K/50K 0 746/10K

T.Sum 6/2/1 9 11K/0.2M 5 7K/0.1M 5 7K/0.1M 4 7K/0.1M 6 10K/0.2M 8 11K/0.2M 4 7K/0.1M 5 7K/0.1M 4 7K/0.1M 5 10K/0.2M

Table 2: Results over BFS(v) and PGP(v) with different evaluation and heuristic function combinations. v is the bound of the action novelty
rank; symbols - and ◦ denote time and memory exceeded. Other metrics are the same in Table 1. Best results are in bold.

Discussion
The action novelty rank r(a∗,Π) improves BFS and PGP
by adding a restriction on action occurrences in Π. Help-
ful actions guide the search with fha to avoid considering
programs in the search with irrelevant actions. For example,
in the Ontable domain, the action stack is irrelevant since
it is not a helpful action, only putdown is part of a valid
planning program. On the other hand, helpful actions may
misguide the search when necessary actions are absent due
to the open-world assumption over G. For example, in the
Lock domain, the action move is ignored in helpful actions
since the goal state only contains the unachieved predicate
unlock, and the only helpful action is open. We experimented
with the restriction that planning actions can be programmed
only when applicable. In Corridor, Ontable, and Spanner,
solutions cannot be found as extra lines are required to up-
date the object pointers until test actions return true for all
ground atoms in the precondition of planning actions. Eval-
uation functions fln and fcn encourage Π to build a complex
program logic by including instructions goto and cmp that
are in line with generalized planning usage scenarios. They
are influential in numerical domains Find, Sorting, and Se-
lect.

Conclusion
We showed that structural program restrictions improve the
performance of GP, and action novelty rank scales up GP al-
gorithms significantly over all the domains with a bound of
v = 1 or v = 2. We proposed a characterization of lifted
helpful actions in GP and experimented with different eval-
uation function combinations using new functions fha, fln,
and fcn. Other lifted HA extraction methods (Corrêa et al.
2021; Wichlacz, Höller, and Hoffmann 2022) and novelty-
based search strategies (Lei and Lipovetzky 2021; Singh
et al. 2021; Corrêa and Seipp 2022) proposed for classical

planning could be adopted by research on GP as heuristic
search.

Acknowledgements
Chao Lei is supported by Melbourne Research Scholarship
established by The University of Melbourne.

This research was supported by use of The University of
Melbourne Research Cloud, a collaborative Australian re-
search platform supported by the National Collaborative Re-
search Infrastructure Strategy (NCRIS).

References
Belle, V.; and Levesque, H. 2016. Foundations for Gener-
alized Planning in Unbounded Stochastic Domains. In Pro-
ceedings of the 15th International Conference on Principles
of Knowledge Representation and Reasoning, KR, 380–389.
Corrêa, A. B.; Frances, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling, ICAPS, 94–
102.
Corrêa, A. B.; and Seipp, J. 2022. Best-First Width
Search for Lifted Classical Planning. In Proceedings of the
32nd International Conference on Automated Planning and
Scheduling, ICAPS, 11–15.
Dandamudi, S. P. 2005. Installing and Using NASM. Guide
to Assembly Language Programming in Linux, 153–166.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 13(2): 1–187.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research, 22: 215–278.

Hu, Y.; and De Giacomo, G. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, IJCAI, 918–923.

Jiménez, S.; Segovia-Aguas, J.; and Jonsson, A. 2019. A Re-
view of Generalized Planning. The Knowledge Engineering
Review, 34: e5.

Lei, C.; and Lipovetzky, N. 2021. Width-Based Backward
Search. In Proceedings of the 31st International Conference
on Automated Planning and Scheduling, ICAPS, 219–224.

Lipovetzky, N.; and Geffner, H. 2012. Width and Serializa-
tion of Classical Planning Problems. In Proceedings of the
20th European Conference on Artificial Intelligence, ECAI,
540–545.

Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In Proceedings of the 31st AAAI Conference on Artificial In-
telligence, AAAI, 3590–3596.

Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the Ex-
traction, Ordering, and Usage of Landmarks in Planning. In
Proceedings of the 6th European Conference on Planning,
ECP, 37–48.

Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.

Segovia-Aguas, J.; Celorrio, S. J.; Sebastiá, L.; and Jons-
son, A. 2022. Scaling-up Generalized Planning as Heuristic
Search with Landmarks. In Proceedings of the 15th Inter-
national Symposium on Combinatorial Search, SoCS, 171–
179.

Segovia-Aguas, J.; E-Martı́n, Y.; and Jiménez, S. 2022. Rep-
resentation and Synthesis of C++ Programs for Generalized
Planning. arXiv:2206.14480.

Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2019. Com-
puting Programs for Generalized Planning Using a Classical
Planner. Artificial Intelligence, 272: 52–85.

Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2021. Gen-
eralized Planning as Heuristic Search. In Proceedings of the
31st International Conference on Automated Planning and
Scheduling, ICAPS, 569–577.

Singh, A.; Lipovetzky, N.; Ramirez, M.; and Segovia-Aguas,
J. 2021. Approximate Novelty Search. In Proceedings of the
31st International Conference on Automated Planning and
Scheduling, ICAPS, 349–357.

Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning Generalized Plans Using Abstract Counting. In
Proceedings of the 23rd AAAI Conference on Artificial In-
telligence, AAAI, 991–997.

Srivastava, S.; Immerman, N.; Zilberstein, S.; and Zhang, T.
2011. Directed Search for Generalized Plans Using Classi-
cal Planners. In Proceedings of the 21st International Con-
ference on Automated Planning and Scheduling, ICAPS,
226–233.
Wichlacz, J.; Höller, D.; and Hoffmann, J. 2022. Landmark
Heuristics for Lifted Classical Planning. In Proceedings of
the 31st International Joint Conference on Artificial Intelli-
gence, IJCAI, 4665–4671.

