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Abstract

We can learn as much about language models001
from what they say as we learn from their per-002
formance on targeted benchmarks. Sampling003
is a promising bottom-up method for probing,004
but generating samples from successful mod-005
els like BERT remains challenging. Taking006
inspiration from theories of iterated learning007
in cognitive science, we explore the use of se-008
rial reproduction chains to probe BERT’s pri-009
ors. Although the masked language model-010
ing objective does not guarantee a consistent011
joint distribution, we observe that a unique012
and consistent estimator of the ground-truth013
joint distribution may be obtained by a GSN014
sampler, which randomly selects which word015
to mask and reconstruct on each step. We016
compare the lexical and syntactic statistics of017
sentences from the resulting prior distribution018
against those of the ground-truth corpus distri-019
bution and elicit a large empirical sample of020
naturalness judgments to investigate how, ex-021
actly, the model deviates from human speakers.022
Our findings suggest the need to move beyond023
top-down evaluation methods toward bottom-024
up probing to capture the full richness of what025
has been learned about language.026

1 Introduction027

Large neural language models have become the028

representational backbone of natural language pro-029

cessing. By learning to predict words from their030

context, these models have induced surprisingly031

human-like linguistic knowledge, from syntactic032

structure (Linzen and Baroni, 2021; Tenney et al.,033

2019; Warstadt et al., 2019) and subtle lexical pref-034

erences (Hawkins et al., 2020) to more insidious035

social biases and stereotypes (Caliskan et al., 2017;036

Garg et al., 2018). At the same time, efforts to037

probe these models have revealed significant de-038

viations from natural language (Braverman et al.,039

2020; Holtzman et al., 2019; Dasgupta et al., 2020).040

Observations of incoherent or “weird” behavior041

chain 2

chain 1

food was running short, and winters were colder.
time was running short, and winters were colder.
time was running out, and winters were colder.

Figure 1: We use a serial reproduction method to probe
BERT’s prior over possible sentences (visualization of
reproduction chains obtained by running t-sne on sen-
tence embeddings; chains are color-coded and fade to
black across their burn-in period).

may often be amusing, as when a generated recipe 042

begins with “1/4 pounds of bones or fresh bread” 043

(Shane, 2019), but also pose significant dangers in 044

real-world settings (Bender et al., 2021). 045

These deviations present a core theoretical and 046

methodological challenge for computational lin- 047

guistics. How do we elicit and characterize the 048

full prior1 that a particular model has learned over 049

possible sentences in a language? A dominant ap- 050

proach has been to design benchmark suites that 051

probe theoretically important aspects of the prior, 052

1We use the term prior to refer to graded linguistic knowl-
edge assigning probabilities to all possible sentences. While
we focus on a text-based domain, this prior is also the founda-
tion for grounded, pragmatic language.
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Voices rapped on the incremental door.
Our train started to aware and backtrack.
Irene-spilled’s lips settled on Coa.
A private apartment with nothing but hot cooled water.
He has performed faculty and lectures at the University
of Eindhoven, and the University of Nazaire, prospective,
Oxford and the University of Kidnapped Children in the
Netherlands.

Table 1: Examples of sentences from BERT’s prior that
received low naturalness ratings from our participants,
including predicability or category errors (e.g. doors
typically do not have the property of “incrementality”),
semantic incoherence (“hot cooled water”), or unusual
constructions (especially for longer sentences).

and compare model behavior to human behavior053

on those tasks (e.g. Warstadt et al., 2020; Ettinger,054

2020). Yet this approach can be restrictive and055

piecemeal: it is not clear ahead of time which056

tasks will be most diagnostic, and many sources of057

“weirdness” are not easily operationalized.058

A more holistic, bottom-up alternative is to di-059

rectly examine samples from the model’s prior and060

compare them against those from human priors.061

However, many successful models do not explic-062

itly expose this distribution, and many generation063

methods optimize for “good” sentences rather than064

representative ones. For example, masked language065

models (MLMs) like BERT (Devlin et al., 2018)066

are dependency networks (Heckerman et al., 2000;067

Toutanova et al., 2003), trained to efficiently learn068

an independent collection of conditional distribu-069

tions without enforcing consistency between them.070

In other words, these conditionals may not cor-071

respond to any coherent joint distribution at all,072

leading recent work to focus on other score-based073

sampling objectives (Goyal et al., 2021).074

Here, we explore the use of serial reproduction075

chains (see Fig. 1) to overcome these challenges.076

While a naive (pseudo-)Gibbs sampler is indeed077

problematic for MLMs, the formal study of Gener-078

ative Stochastic Networks (GSNs; Bengio et al.,079

2014) has shown that a simple variant we call080

GSN sampling produces a unique stationary dis-081

tribution that is, in fact, a consistent estimator of082

the ground-truth joint distribution. Furthermore,083

while the independent conditionals learned by de-084

pendency networks may be arbitrarily inconsistent085

in theory, empirical work has found that these devi-086

ations tend to be negligible in practice, especially087

on larger datasets (Heckerman et al., 2000; Neville088

and Jensen, 2007). Thus, we argue that it is both089

theoretically and empirically justified to take these 090

samples as representative of the model’s prior. 091

We begin in Section 2 by introducing the serial 092

reproduction approach and clarifying the problem 093

of re-constructing a joint distribution from a depen- 094

dency network. We then validate that our chains are 095

well-behaved (Section 3) and compare the statis- 096

tics of samples from BERT’s prior to the lexical 097

and syntactic statistics of its ground-truth training 098

corpus to identify large-scale distributional devia- 099

tions (Section 4). Finally, in Section 5, we present 100

a large-scale behavioral study eliciting naturalness 101

judgments from human speakers on sentences pro- 102

duced from different methods, and identify features 103

of the generated sentences which most strongly pre- 104

dict human ratings of “weirdness.” We find that 105

the GSN samples closely approximate the ground- 106

truth distribution and are judged to be more natural 107

than other methods, while also revealing areas of 108

improvement. 109

2 Approach 110

2.1 Serial reproduction 111

Our approach is inspired by serial reproduction 112

games like Telephone, where an initial message is 113

gradually relayed along a chain from one speaker 114

to the next. At each step, the message is changed 115

subtly as a result of noisy transmission and recon- 116

struction, and the final version of the message often 117

differs drastically from the first. This serial repro- 118

duction method, initially introduced to psychology 119

by Bartlett (1932), has become an invaluable tool 120

for revealing human inductive biases (Xu and Grif- 121

fiths, 2010; Langlois et al., 2021; Sanborn et al., 122

2010; Harrison et al., 2020). Because reconstruct- 123

ing a noisy message is guided by the listener’s prior 124

expectations, it can be shown that such chains even- 125

tually converge to a stationary distribution that is 126

equivalent to the population’s prior, reflecting what 127

people expect others to say (Kalish et al., 2007; 128

Griffiths and Kalish, 2007; Beppu and Griffiths, 129

2009). For example, Meylan et al. (2021) recently 130

evaluated the ability of neural language models to 131

predict the changes made to the sentence by human 132

participants at each step of a serial reproduction 133

chain, finding that the models’ predictions gradu- 134

ally improved as the chains converged toward more 135

representative language. Thus, while serial repro- 136

duction is commonly used to probe human priors, 137

and to compare models against human data, it is not 138

yet in wide use for probing the models themselves. 139
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Bayes net (acyclic) dependency net (cyclic)
LM MLM

Figure 2: While autoregressive language models (LMs)
are Bayes nets, masked language models (MLMs) are
dependency networks with cyclic dependencies.

2.2 BERT as a dependency network140

There has been considerable confusion in the recent141

literature over how to interpret the MLM objective142

used to train models like BERT, and how to inter-143

pret samples from such models. Wang and Cho144

(2019) initially observed that BERT was a Markov145

Random Field (MRF) and proposed a Gibbs sam-146

pler that iteratively masking and reconstructing dif-147

ferent sites k by sampling from the conditional148

given the tokens at all other sites P̂ (wk|w−k). As149

observed by Goyal et al. (2021)2, however, this pro-150

cedure does not actually correspond to inference151

in the MRF. Unlike auto-regression language mod-152

els (LMs) like GPT-3 (Brown et al., 2020), which153

define an acyclic dependency graph (or Bayes net)154

from left-to-right, MLMs have cyclic dependencies155

(see Fig. 2) and are therefore usefully interpreted as156

dependency networks rather than Bayes networks157

(Heckerman et al., 2000). Because dependency net-158

works estimate independent conditionals, there is159

no guarantee that these conditionals are consistent160

(i.e. they may violate Bayes rule) and therefore do161

not represent a coherent joint distribution.162

Still, it is possible to re-construct a joint dis-163

tributions from these conditionals. For example,164

Heckerman et al. (2000) proved that if sites are165

visited in a fixed order, a (pseudo-)Gibbs chain166

similar to the one used by Wang and Cho (2019)167

does converge to a stationary distribution that is168

a well-formed joint. The problem is that differ-169

ent orders may yield different joint distributions,170

making it difficult to interpret any distributions as171

definitive. This ambiguity was resolved by the Gen-172

erative Stochastic Network framework proposed by173

Bengio et al. (2014). Instead of visiting sites in174

a fixed order, a GSN sampler randomly chooses175

which site to visit at each step (with replacement),176

2And corrected by the original authors in an earlier erra-
tum: https://kyunghyuncho.me/bert-has-a-mouth-and-must-
speak-but-it-is-not-an-mrf/

thus preserving aperiodicity and ergodicity. Specif- 177

ically, we begin by initializing with a sequence 178

{w0
1, . . . , w

0
n}. At each step t, we randomly choose 179

a site k ∈ 1, . . . , n to mask out, and we sample a 180

new value wt+1
k from the conditional distribution 181

P (wk|wt
−k) with the other n− 1 sites fixed. 182

It can be shown that this the stationary distribu- 183

tion arising from this procedure defines a unique 184

joint distribution, and furthermore, this stationary 185

distribution is a consistent estimator of the ground- 186

truth joint distribution (Bengio et al., 2014)3. Im- 187

portantly, this stationary distribution differs from 188

the one given by the Metropolis-Hastings (MH) 189

approach suggested by Goyal et al. (2021), which 190

uses the GSN sampler as a proposal distribution 191

but accepts or rejects proposals based on an energy- 192

based pseudo-likelihood defined by the sum of the 193

conditional scores at each location (Salazar et al., 194

2019). This method converges to an implicit sta- 195

tionary distribution defined by this energy objec- 196

tive4. 197

2.3 Mixture kernels 198

In practice, these methods have many failure modes. 199

Most prominently, because samples in the chains 200

are not independent, it is challenging to guarantee 201

convergence to a stationary distribution, and the 202

chain is easily “stuck” in local regions of the sam- 203

ple space (Gelman et al., 1992). Typically, samples 204

from a burn-in period (e.g. the first m epochs) 205

are discarded to reduce dependence on the initial 206

state, and a lag between samples (e.g. recording 207

only every l epochs) is introduced to reduce auto- 208

correlation. However, the problem is particularly 209

severe for language models like BERT where there 210

are strong mutual dependencies between words at 211

different sites. For example, once the chain reaches 212

a tri-gram like ‘Papua New Guinea’, it is unlikely 213

to change any single word while keeping the other 214

words constant. To ensure ergodicity, we use a mix- 215

ture kernel introducing a small constant probability 216

(ε = 0.001) of returning to the initial distribution 217

of [MASK] tokens on each epoch, allowing the 218

chain to burn in again. 219

3Technically, this only holds if the dependency network
was trained using consistent estimators for the conditionals,
which is the case for the cross-entropy loss used by BERT; see
also McAllester (2019).

4Although our focus is on evaluation rather than algorith-
mic performance characteristics, we note that because GSN
sampling does not require calculating scores to determine
the acceptance probability for each sample, it is significantly
faster, especially for longer sequences.
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3 Validating the stationary distribution220

In this section, we validate that the samples pro-221

duced by our serial reproduction method are repre-222

sentative of the stationary prior distribution. More223

specifically, we consider two basic properties of the224

chain: convergence and independence. For these225

analyses, we consider samples from the pretrained226

bert-base-uncased model with 12 layers, 16227

heads, and 340M parameters5.228

3.1 Convergence229

We begin by checking the convergence time for230

chains generated by GSN sampling. Theoretical231

bounds derived for serial reproduction chains give a232

convergence time of n log n, where n is the number233

of sites (see Rafferty et al., 2014). To check these234

convergence bounds in practice, we set n = 21235

and select 20 sentences from Wikipedia to serve as236

initial states, and run 10 chains initialized at each237

sentence. We ensured that half of these sentences238

have high initial probability (under BERT’s energy239

score) and half have low initial probability. We240

find that these distributions indeed begin to quickly241

mix in probability (see Figure S1). Because longer242

sentences may require a longer burn-in time, we243

conservatively set our burn-in window to m =244

1000 epochs for our subsequent experiments.245

3.2 Independence246

Second, we want to roughly ensure independence247

of samples, so that the statistics of our distribution248

of samples isn’t simply reflecting auto-correlation249

in the chain. For a worst-case analysis of a local250

minimum, suppose P (wi|w−i) < δ (0 < δ < 1)251

for all i ∈ [1, . . . , k], where k is the sentence length252

in tokens. Then the probability of re-sampling the253

same sentence is roughly < δk·n after n epochs.254

We can solve for the number of epochs n we need255

to bound the probability of re-sampling the exact256

same sentence under ε for a given worst-case δ. For257

example, if δ = 0.99 and we want to ensure that258

the probability of re-sampling the same sentence is259

below a threshold ε = 0.01, then n = 47 epochs260

will likely suffice. Ensuring complete turnover in261

the worst case scenario requires much longer lags,262

i.e. [1− (1− δ)k]n < ε.263

To evaluate the extent to which these cases arise264

in practice, we examine auto-correlation rates on265

longer chains (50,000 epochs). We calculate cor-266

relations between the energy scores at each epoch267

5https://huggingface.co/bert-base-uncased

as a proxy for the state: when the chain gets stuck 268

re-sampling the same sentence, the same scores 269

appear repeatedly. We find that auto-correlation is 270

generally high, but our mixture kernel prevents the 271

worst local minima for both the MH chain (Goyal 272

et al., 2021) and our GSN chain (see Fig. S2), 273

although we still found higher auto-correlation 274

rates for the MH chain. To further examine these 275

minima, we examined edit rates: the number of 276

changes made to the sentence within an epoch. 277

Without the mixture kernel, we observe long re- 278

gions of consistently low edit rates (e.g. in some 279

cases, 5000 epochs in a row of exactly the same 280

sentence) which disappear under the mixture ker- 281

nel (see Fig. S3). Based on these observations, we 282

set the lag to l = 500 epochs to maintain relatively 283

high independence between samples. 284

4 Distributional comparisons 285

In this section, we examine the extent to which 286

higher-order statistics of sentences from BERT’s 287

prior are well-calibrated to the data it was trained 288

on. This kind of comparison provides a richer sense 289

of what the model has learned or failed to learn 290

than traditional scalar metrics like perplexity (Taka- 291

hashi and Tanaka-Ishii, 2017; Meister and Cotterell, 292

2021; Takahashi and Tanaka-Ishii, 2019). 293

4.1 Corpus preparation 294

The version of BERT we analyzed in the previ- 295

ous section was trained on a combination of two 296

corpora: Wikipedia and BookCorpus. In order to 297

make valid comparisons between human priors and 298

machine priors, we needed to closely match BERT- 299

generated sentences with a comparable subset of 300

human-generated sentences from these combined 301

corpora. There are two technical challenges we 302

must overcome to ensure comparable samples, con- 303

cerning the sentencizer and tokenizer steps. 304

First, because our unit of comparison is the sen- 305

tence, we needed to control for any artifacts that 306

may be induced by how we determine what sen- 307

tences are (e.g. if our Wikipedia sentences were 308

systematically split on abbreviations, skewing the 309

distribution toward fragments). We therefore ap- 310

plied the same punkt sentencizer to create our 311

distribution of Wikipedia sentences and to check 312

our BERT samples for cases where the generated 313

sequence contained multiple sentences or ended 314

with a colon or semicolon. 315

Second, we needed a tokenizer that equates sen- 316
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Figure 3: The lexical distribution of the GSN samples
is calibrated to the corpus distribution better than that
of the MH samples (r = 0.75 for GSN; 0.48 for MH).

tence length. Because bi-directional models like317

BERT operate over sequences of fixed length, all318

samples drawn from a single chain have the same319

number of tokens. Critically, however, BERT320

chains are defined over sequences of WordPiece321

tokens, so once these sequences are decoded back322

into natural language text, they may yield sentences323

of varying length, depending on how the sub-word324

elements are combined together6 (see Fig. S4). We325

solve this alignment problem by using the Word-326

Piece tokenizer to extract sentences of fixed sub-327

word token length from our text corpora, yielding328

equivalence classes of corpus sentences that are329

all tokenized to the same number of WordPiece to-330

kens. We ran GSN and MH chains over sentences331

of n = 11 tokens, representing the modal lengths332

of sentences in BookCorpus (see Fig. S5). We333

obtained 5,000 independent sentences from each334

sampling method after applying our conservative335

burn-in and lag, and combined the Wikipedia and336

BookCorpus sentences together into a single corpus337

that is representative of BERT’s training regime.338

4.2 Lexical distributions339

We begin by comparing the lexical frequency statis-340

tics of our samples from BERT against the ground-341

6One additional complexity is that the mapping between
WordPiece tokens and word tokens is non-injective. There
exist multiple sequences of sub-word tokens that render to
the same word (e.g. the WordPiece vocabulary contains a
token for the full word ‘missing’ but it is also able to generate
‘missing’ by combining the sub-word tokens ‘miss’+‘#ing’).
However, these cases are rare.

truth corpus statistics. First, we note that the rela- 342

tionship between rank and frequency of tokens in 343

the GSN sampling matches the Zipfian distribution 344

of its training corpus better than those produced 345

by MH sampling (see Fig. S6). However, it is 346

possible to produce the same overall distribution 347

without matching the empirical frequencies of in- 348

dividual words. We next examined the respective 349

ranks of each word across the two distributions. 350

Overall, the word ranks in the GSN samples had 351

a strong Spearman rank correlation of r = 0.75 352

with the word ranks in the ground-truth corpus; the 353

MH samples had a significantly lower correlation 354

of r = 0.48 (Pearson z = 17, p < 0.001, Fig 355

3). Most disagreements lay in the tails where fre- 356

quency estimates are particularly poor (e.g. many 357

words only appeared once in our collection of sam- 358

ples). Indeed, among words with greater than 10 359

occurrences, the correlation improved to r = 0.83 360

for GSN and r = 0.65 for MH. 361

To understand this relationship further, we con- 362

ducted an error analysis of lexical items which 363

were systematically over- or under-produced by 364

BERT relative to its training corpus. We found 365

that certain punctuation tokens (e.g. parentheses) 366

were over-represented in both the GSN samples 367

and the MH samples, while contractions like ’s 368

and ’d were under-represented. The MH samples 369

specifically over-produced proper names such as 370

Nina and Jones. Finally, due to the use of sub-word 371

representations, we found a long tail of morpho- 372

logically complex words that did not appear at all 373

in the training corpus (e.g. names like Kyftenberg 374

or Streckenstein and seemingly invented scientific 375

terms like lymphoplasmic, neopomphorus, or pyra- 376

nolamines). 377

4.3 Syntactic distributions 378

While the lexical distributions were overall well- 379

matched for GSN samples, our error analysis sug- 380

gested potential structure in the deviations. In 381

other words, entire grammatical constructions may 382

be over- or under-represented, not just particular 383

words. To investigate these patterns, we used the 384

spacy library to extract the parts of speech and 385

dependency relations that are present within each 386

sentence. We are then able to examine, in aggre- 387

gate, whether certain classes of constructions are 388

disproportionately responsible for deviations. Our 389

findings are shown in Fig. 4. Overall, the distri- 390

butions are close, but several areas of misalign- 391

5



NUM

CCONJ

ADJ

ADV

AUX

ADP

PROPN

DET

PRON

VERB

NOUN

PUNCT

0.0 0.1 0.2 0.3
frequency of part of speech

source corpus GSN MH

neg
prt

advcl
npadvmod
nsubjpass

xcomp
auxpass
nummod

acomp
ccomp

attr
conj

cc
poss

compound
amod

dobj
advmod

pobj
nsubj

0.0 0.1 0.2 0.3
frequency of dependency

source corpus GSN MH

Figure 4: The relative frequencies of different parts of speech (left) and dependencies (right) in the ground-truth
training corpora closely matched for GSN samples. In all cases, the GSN frequencies fell closer to the ground-truth
than the MH frequencies.

ment emerge. For parts of speech, we observe392

that the GSN sampler is slightly over-producing393

nouns (and proper nouns) while under-producing394

verbs and prepositions. We also observe that it395

is over-producing noun-related dependencies (e.g.396

compound nouns and appositional modifiers, which397

are noun phrases modifying other noun phrases, as398

in “Bill, my brother, visited town”). This pattern399

suggests that BERT’s prior may be skewed toward400

(simpler) noun phrases while neglecting more com-401

plex constructions.402

4.4 Sentence complexity403

One hypothesis raised by comparing distributions404

of syntactic features is that BERT may be regu-405

0.00

0.25

0.50

0.75

1.00

0 10 20 30
dependency length

C
D

F

combined
corpora GSN MH

Figure 5: Cumulative probability distribution of depen-
dency lengths across sentences from BERT chains and
from the training corpus.

larizing the complex structure of its input toward 406

simpler constructions. To test this hypothesis, we 407

operationalize syntactic complexity using a mea- 408

sure known as the average dependency length of 409

a sentence (Futrell et al., 2015; Grodner and Gib- 410

son, 2005). This measure captures the (linear) dis- 411

tance between syntactically related words, which 412

increases with more complex embedded phrase 413

structures. We found that the distribution of de- 414

pendency distances in the sentences produced by 415

GSN sampling is overall more similar to those in its 416

training corpus than the MH (Fig. 5), although pre- 417

liminary analyses suggest it is still skewed slightly 418

simpler (see Fig. S8). 419

5 Human judgments 420

Finally, while our corpus comparisons highlighted 421

particular ways in which samples from BERT’s 422

prior were well-calibrated to the high-level statis- 423

tics of its training distribution, it is unclear whether 424

these agreements or deviations ‘matter’ in terms of 425

naturalness. In this section, we elicit human natu- 426

ralness judgments in order to provide a more holis- 427

tic measure of potential ‘weirdness’ with BERT 428

sentences. 429

5.1 Experimental methods 430

We recruited 1016 fluent English speakers on the 431

Prolific platform and asked them to judge the natu- 432

ralness of 4040 unique sentences from three length 433
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Figure 6: Empirical naturalness ratings elicited from
the stationary GSN distribution, compared to different
baselines at different sentence lengths. Error bars are
bootstrapped 95% CIs.

classes: short (11 tokens), medium (21 tokens),434

and long (37 tokens). 1675 of these sentences were435

from the stationary state of the different chains,436

2339 were from the burn-in phase (i.e. < 1000437

epochs), and the remainder were baseline sentences438

(149 from Wikipedia, 48 from a 5-gram model, and439

42 from an LSTM model; see Appendix for details).440

Each participant was shown a sequence of 25 sen-441

tences in randomized order, balanced across differ-442

ent properties of the stimulus set (in a later batch,443

we increased the number of sentences per partici-444

pant to 40). On each trial, one of these sentences ap-445

peared with a slider ranging from 0 (“very weird”)446

to 100 (“completely natural”)7. After excluding447

8 participants who failed the attention check (i.e.448

failed to rate a scrambled sentence below the mid-449

point of the scale and a human-generated sentence450

above the midpoint), we were left with an average451

of 7.3 responses per sentence.452

5.2 Behavioral results453

We begin by comparing the naturalness of sen-454

tences from the stationary GSN distribution to455

other baselines (see Fig. 6), using a linear regres-456

sion model predicting trial-by-trial judgments as457

a function of categorical variables encoding sen-458

tence length (short, medium, long) and the source459

of the sentence (Wikipedia, GSN, MH, LSTM, or460

n-gram). First, we find that the naturalness of sen-461

tences from GSN declines by 14 points at longer462

sentence lengths, p < 0.001, while the naturalness463

of Wikipedia sentences is unaffected by length (in-464

7See Clark et al. (2021) for a discussion of the merits of
phrasing the question in terms of naturalness instead of asking
participants to judge whether it was produced by a human or
machine.

teraction term, p < 0.001), consistent with results 465

reported by Ippolito et al. (2020). Furthermore, 466

among short sentences, where we included addi- 467

tional baselines, we find that GSN sentences tend 468

to be rated as slightly natural than sentences from 469

Wikipedia (+10 points, p < 0.001) but more nat- 470

ural than those produced by an n-gram model (- 471

52 points, p < 0.001), LSTM model (-25 points, 472

p < 0.001); or MH sampling from the same BERT 473

conditionals (-15 points, p < 0.001; see Table S1). 474

MH samples also deteriorate significantly in nat- 475

uralness for longer sentences compared to GSN 476

samples p < 0.001. Finally, we examine natu- 477

ralness ratings across the the burn-in period, find- 478

ing that ratings decline steadily across the board 479

as the chain takes additional steps (linear term: 480

t(7297) = −12.4, p < 0.001), suggesting grad- 481

ual deviation away from the initial distribution of 482

Wikipedia sentences toward the stationary distribu- 483

tion (shown as the green and grey regions, respec- 484

tively, in Fig. S7). 485

5.3 Predicting naturalness 486

Given that sentences from the stationary GSN dis- 487

tribution are judged to be less natural than human- 488

generated sentences overall, we are interested in 489

explaining why. Which properties of these sen- 490

tences make them sound strange? We approach this 491

problem by training a regression model to predict 492

human judgments from attributes of each sentence. 493

We include all part of speech tag counts and depen- 494

dency counts, as well as the sentence probability 495

scored under BERT, and the sentence length. We 496

use a cross-validated backwards feature selection 497

procedure to select the most predictive set of these 498

features for a linear regression (Kuhn and Johnson, 499

2013)8. 500

The best-fitting model used 26 features and 501

achieved an (adjusted) R2 = 0.21. The only fea- 502

tures associated with significantly lower ratings 503

were the use of adpositions (e.g. before, after) 504

and coordinating conjunctions. Importantly, we 505

found that including a categorical variable of cor- 506

pus (i.e. Wikipedia vs. GSN) significantly im- 507

proved model fit even after controlling for all other 508

features, χ2(1) = 7135, p < 0.001, suggesting 509

that sources of “weirdness” are not being captured 510

by typical statistics. We show some of these low- 511

naturalness sentences in Table 1. 512

8Specifically, we used the lmStepAIC procedure imple-
mented in the caret R package, with k = 10 folds.
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6 Discussion513

6.1 Probing through generation514

A core idea of our serial reproduction approach515

is to use generation as a window into a model’s516

prior over language. While a variety of metrics517

and techniques have been proposed to quantify the518

“quality” of generation, especially in the domains of519

open-ended text generation and dialogue systems520

(Caccia et al., 2018; Li et al., 2019; Guidotti et al.,521

2018; Celikyilmaz et al., 2020), these metrics have522

typically been applied to compare specific genera-523

tion algorithms and operationalize specific pitfalls,524

such as incoherence, excess repetition, or lack of525

diversity. Consequently, it has been difficult to dis-526

entangle the extent to which deviations resulting527

from generations are an artifact of specific decod-528

ing algorithms (e.g. greedy search vs. beam search)529

or run deeper, into the prior itself. For the purposes530

of probing, we suggest that it is important to ask531

not only how to generate the highest-scoring sen-532

tences but how to generate sentences that may be533

interpreted as representative of the model’s prior,534

as formal results on GSNs effectively provided.535

6.2 GSN vs. energy-based objectives536

We found that the prior distribution yielded by the537

GSN sampler more closely approximated the lexi-538

cal and syntactic distributions of the ground-truth539

corpus and also sounded more “natural” to humans540

than the samples yielded by MH. These results are541

in contrast to findings by Goyal et al. (2021), show-542

ing that MH produced high-quality BLEU scores543

on a Machine Translation (MT) task compared to544

a degenerate (pseudo-)Gibbs sampler. There are545

several possible reasons for this discrepancy. One546

possibility may be task-specific: while we focused547

on unconditional generation, Goyal et al. (2021)548

focused on a neural machine translation (MT) task,549

where sentence generation was always conditioned550

on a high-quality source text and thus remained551

within a constrained region of sentence space. An-552

other possibility is that we ran substantially longer553

chains (50,000 epochs compared to only 33 epochs)554

and the pitfalls of MH sampling only emerged later555

in the chain.556

More broadly, our corpus comparisons and hu-557

man evaluations suggest possible limitations of sim-558

ple “quality” metrics like energy values. We found559

that the best-scoring states were often degenerate560

local minima with mutually supporting n-grams561

(such as repetitive phases and names like “Papua562

New Guinea”). Indeed, there was only a loose re- 563

lationship between energy scores and participants’ 564

judgments, with many poorer-scoring sentences 565

judged to be more natural than better-scoring sen- 566

tences (e.g. overall, the distribution of Wikipedia 567

sentences tended to be much lower-scoring un- 568

der the model despite being rated as more natu- 569

ral). Meanwhile, we empirically validated that the 570

stationary distribution of the GSN chain indeed 571

approximates even higher-order statistics of the 572

ground-truth corpus, suggesting that the raw condi- 573

tionals of the dependency network may implicitly 574

represent the joint distribution, without requiring 575

guarantees of consistency. 576

6.3 Other architectures 577

Serial reproduction methods are particularly useful 578

for probing models that do not directly generate 579

samples from their prior: for auto-regressive mod- 580

els like GPT-2, these samples are obtained more 581

simply by running the model forward. While we 582

focused on BERT, this method may be particularly 583

useful for encoder-decoder architectures like BART 584

(Lewis et al., 2019) which more closely resemble 585

the Telephone Game task, requiring full reconstruc- 586

tion of the entire sentence from noisy input rather 587

than reconstruction of a single missing word. In- 588

deed, these architectures may overcome an impor- 589

tant limitation of serial reproduction with BERT: 590

because these chains operate over a fixed sequence 591

length, the resulting prior is not over all of language 592

but only over sentences with the given number of 593

WordPiece tokens. 594

6.4 Conclusions 595

Serial reproduction paradigms have been central for 596

exposing human priors in the cognitive sciences. 597

In this paper, we suggested that the theory of it- 598

erated learning may also be useful for exposing 599

the priors of large neural language models, which 600

are often similarly inscrutable. We hope future 601

work will consider other points of contact between 602

these areas and draw more extensively from the 603

theory developed to understand dependency net- 604

works. More broadly, as language models become 605

increasingly adaptive and deployed in increasingly 606

unconstrained settings, bottom-up generative prob- 607

ing has the potential to reveal a broader spectrum of 608

“weirdness” than the top-down evaluative probes 609

researchers design. 610
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Wikipedia sentences were randomly selected from 823

the full sentencized corpus English Wikipedia that 824

tokenized to 12, 21, and 37 WordPiece tokens for 825
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the short, medium, and long conditions, respec-826

tively. These sentences were also chosen to span a827

broad range of sentence probabilities under BERT828

(i.e. logP (p1, . . . , pn) =
∑

k logP (pk|p−k)).829

For our ngram baseline, we trained a 5-gram830

model with Kneser-Ney smoothing (Kneser and831

Ney, 1995) on English Wikipedia using the kenlm832

library (Heafield, 2011), and generated sentences833

of length 10 by sampling from the resulting condi-834

tional distributions. Because this model stripped835

punctuation, and was therefore unable to emit an836

“end of sentence” token, we expected it to serve as837

a lower bound on the naturalness scale.838

For our LSTM baseline, we used the network839

pre-trained by Gulordava et al. (2018) on English840

Wikipedia. This model was trained to emit an end841

of sentence (<eos>) token, allowing us to rejec-842

tion sample to obtain sentences that were exactly 10843

words long with no unknown words (i.e. <unk> to-844

kens). Because it was not trained with a <start>845

token, however, we needed to initialize it with the846

initial word of the sentence. We randomly selected847

this initial word from a small set of common sen-848

tence openers (e.g. the, a, it, his, her). As a849

result of our initial token selection, this model does850

not precisely sample from its true prior over sen-851

tences. Thus, it is best viewed as another baseline852

of sentences rather than as a careful architectural853

comparison.854

Because we were asking participants to judge855

the naturalness of complete sentences, we did not856

want to include samples which clearly violated sen-857

tencehood, as these would not be informative (e.g.858

fragments from Wikipedia that were incorrectly859

sentencized and ended with an abbreviation, bibli-860

ographic text like “korsakov (1976) r.s.,” or table861

markdown with pipes like “| a | b |”). We automat-862

ically removed any sentences containing pipes or863

ending with colons or semicolons, as these were864

associated with sentencizer inconsistency, as well865

as sequences that contained multiple sentences (ac-866

cording to our sentencizer). Finally, the authors867

took a manual pass to exclude other non-sentential868

fragments from the stimulus set.869

Appendix B: Corpus details870

We downloaded cleaned Wikipedia data provided871

by GluonNLP (https://github.com/dmlc/gluon-872

nlp/tree/master/scripts/datasets/pretrain_corpus),873

and BookCorpus data from HuggingFace Datasets874

(https://huggingface.co/datasets/bookcorpus).875
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Figure S1: We examine the convergence time by initial-
izing different chains at different classes of sentences
(red is high probability under BERT’s energy function,
blue is low probability). Faint lines show smoothed tra-
jectories for individual chains and error bars are boot-
strapped 95% confidence intervals across chains.
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Figure S2: MCMC methods like GSN and MH sam-
pling tend to get stuck in local regions with high auto-
correlation. We find that a minimal autocorrelation is
achievable with lower lag (500 epochs between sam-
ples) using a mixture kernel with a constant probabil-
ity of resetting the chain. Error ribbons are 95% confi-
dence intervals.
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Figure S3: Without mixing in a constant probability of returning to the initial distribution, the GSN chain (and MH
chain, not shown) goes through periods of stasis with low edit rates (red curves), contributing to high autocorrela-
tions.

term estimate std.error statistic p.value
1 (Intercept) 67.33 1.14 59.08 < 0.001
2 short vs. long (GSN) -14.49 1.60 -9.08 < 0.001
3 short vs. medium (GSN) -10.21 1.60 -6.39 < 0.001
5 GSN vs. LSTM (short) -28.60 2.04 -14.05 < 0.001
6 GSN vs. MH (short) -14.76 1.59 -9.26 < 0.001
7 GSN vs. ngram (short) -54.26 2.00 -27.07 < 0.001
8 GSN vs. wiki (short) 10.40 1.70 6.13 < 0.001

13 interaction (short vs. long; GSN vs. MH) -12.31 2.23 -5.51 < 0.001
14 interaction (short vs. medium; GSN vs. MH) -7.33 2.23 -3.29 < 0.001
17 interaction (short vs. long; GSN vs. wiki) 11.22 2.39 4.70 < 0.001
18 interaction (short vs. medium; GSN vs. wiki) 5.56 2.37 2.35 0.02

Table S1: Fixed effect estimates for regression on human scores. Length class and source are dummy coded with
short lengths and GSN as baselines.

sub-word tokens word tokens
BERT chains corpus text

Figure S4: There is a misalignment between the space
of sentences obtainable by a BERT chain of a fixed to-
ken length (in sub-word tokens) and natural language
sentences of a fixed length (in words). We consider
the distribution of corpus sentences that are obtainable
from a fixed-length BERT chain, which may decode to
different lengths in natural text (black arrows).
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Figure S5: Empirical distribution of sentence lengths in Wikipedia and BookCorpus training corpora, after Word-
Piece tokenization. For our corpus comparisons, we selected the modal Wikipedia sentence length of 21 tokens and
the modal BookCorpus length of 11 tokens. For our human judgment experiment, we included baseline sentences
only from Wikipedia for shorter (12 tokens) and longer sentences (37 tokens), with roughly equal prevalence in
the corpus (orange dots).
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Figure S6: The lexical statistics of our GSN samples closely match the Zipfian distribution of the corpus. To place
both distributions on the same scale, frequencies were computed on the full corpus but ranks were computed only
among the subset of words appearing both in the GSN and Metropolis-Hastings samples.
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Figure S7: Sentences gradually drift away from the initial distribution across the burn-in period. Light green
region represents the 95% confidence interval for the mean naturalness of Wikipedia sentences while grey region
represents the same interval around the stationary distribution of the converged chain. Top row represents chains
that are initialized at high-probability states, while bottom row is initialized in low-probability states.
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Figure S8: Dependency distances are similar for sentences sampled from BERT’s prior and sentences from its
training corpus, but the BERT distribution is more bimodal and tends to skew simpler.
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