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Abstract

We can learn as much about language models
from what they say as we learn from their per-
formance on targeted benchmarks. Sampling
is a promising bottom-up method for probing,
but generating samples from successful mod-
els like BERT remains challenging. Taking
inspiration from theories of iterated learning
in cognitive science, we explore the use of se-
rial reproduction chains to probe BERT’s pri-
ors. Although the masked language model-
ing objective does not guarantee a consistent
joint distribution, we observe that a unique
and consistent estimator of the ground-truth
joint distribution may be obtained by a GSN
sampler, which randomly selects which word
to mask and reconstruct on each step. We
compare the lexical and syntactic statistics of
sentences from the resulting prior distribution
against those of the ground-truth corpus distri-
bution and elicit a large empirical sample of
naturalness judgments to investigate how, ex-
actly, the model deviates from human speakers.
Our findings suggest the need to move beyond
top-down evaluation methods toward bottom-
up probing to capture the full richness of what
has been learned about language.

1 Introduction

Large neural language models have become the
representational backbone of natural language pro-
cessing. By learning to predict words from their
context, these models have induced surprisingly
human-like linguistic knowledge, from syntactic
structure (Linzen and Baroni, 2021; Tenney et al.,
2019; Warstadt et al., 2019) and subtle lexical pref-
erences (Hawkins et al., 2020) to more insidious
social biases and stereotypes (Caliskan et al., 2017;
Garg et al., 2018). At the same time, efforts to
probe these models have revealed significant de-
viations from natural language (Braverman et al.,
2020; Holtzman et al., 2019; Dasgupta et al., 2020).
Observations of incoherent or “weird” behavior

food was running short, and winters were colder.
time was running short, and winters were colder.
time was running out, and winters were colder.

Figure 1: We use a serial reproduction method to probe
BERT’s prior over possible sentences (visualization of
reproduction chains obtained by running t-sne on sen-
tence embeddings; chains are color-coded and fade to
black across their burn-in period).

may often be amusing, as when a generated recipe
begins with “1/4 pounds of bones or fresh bread”
(Shane, 2019), but also pose significant dangers in
real-world settings (Bender et al., 2021).

These deviations present a core theoretical and
methodological challenge for computational lin-
guistics. How do we elicit and characterize the
full prior! that a particular model has learned over
possible sentences in a language? A dominant ap-
proach has been to design benchmark suites that
probe theoretically important aspects of the prior,

"We use the term prior to refer to graded linguistic knowl-
edge assigning probabilities to all possible sentences. While
we focus on a text-based domain, this prior is also the founda-
tion for grounded, pragmatic language.



Voices rapped on the incremental door.

Our train started to aware and backtrack.

Irene-spilled’s lips settled on Coa.

A private apartment with nothing but hot cooled water.

He has performed faculty and lectures at the University
of Eindhoven, and the University of Nazaire, prospective,
Oxford and the University of Kidnapped Children in the
Netherlands.

Table 1: Examples of sentences from BERT’s prior that
received low naturalness ratings from our participants,
including predicability or category errors (e.g. doors
typically do not have the property of “incrementality”),
semantic incoherence (“hot cooled water”), or unusual
constructions (especially for longer sentences).

and compare model behavior to human behavior
on those tasks (e.g. Warstadt et al., 2020; Ettinger,
2020). Yet this approach can be restrictive and
piecemeal: it is not clear ahead of time which
tasks will be most diagnostic, and many sources of
“weirdness” are not easily operationalized.

A more holistic, bottom-up alternative is to di-
rectly examine samples from the model’s prior and
compare them against those from human priors.
However, many successful models do not explic-
itly expose this distribution, and many generation
methods optimize for “good” sentences rather than
representative ones. For example, masked language
models (MLMs) like BERT (Devlin et al., 2018)
are dependency networks (Heckerman et al., 2000;
Toutanova et al., 2003), trained to efficiently learn
an independent collection of conditional distribu-
tions without enforcing consistency between them.
In other words, these conditionals may not cor-
respond to any coherent joint distribution at all,
leading recent work to focus on other score-based
sampling objectives (Goyal et al., 2021).

Here, we explore the use of serial reproduction
chains (see Fig. 1) to overcome these challenges.
While a naive (pseudo-)Gibbs sampler is indeed
problematic for MLMs, the formal study of Gener-
ative Stochastic Networks (GSNs; Bengio et al.,
2014) has shown that a simple variant we call
GSN sampling produces a unique stationary dis-
tribution that is, in fact, a consistent estimator of
the ground-truth joint distribution. Furthermore,
while the independent conditionals learned by de-
pendency networks may be arbitrarily inconsistent
in theory, empirical work has found that these devi-
ations tend to be negligible in practice, especially
on larger datasets (Heckerman et al., 2000; Neville
and Jensen, 2007). Thus, we argue that it is both

theoretically and empirically justified to take these
samples as representative of the model’s prior.

We begin in Section 2 by introducing the serial
reproduction approach and clarifying the problem
of re-constructing a joint distribution from a depen-
dency network. We then validate that our chains are
well-behaved (Section 3) and compare the statis-
tics of samples from BERT’s prior to the lexical
and syntactic statistics of its ground-truth training
corpus to identify large-scale distributional devia-
tions (Section 4). Finally, in Section 5, we present
a large-scale behavioral study eliciting naturalness
judgments from human speakers on sentences pro-
duced from different methods, and identify features
of the generated sentences which most strongly pre-
dict human ratings of “weirdness.” We find that
the GSN samples closely approximate the ground-
truth distribution and are judged to be more natural
than other methods, while also revealing areas of
improvement.

2 Approach

2.1 Serial reproduction

Our approach is inspired by serial reproduction
games like Telephone, where an initial message is
gradually relayed along a chain from one speaker
to the next. At each step, the message is changed
subtly as a result of noisy transmission and recon-
struction, and the final version of the message often
differs drastically from the first. This serial repro-
duction method, initially introduced to psychology
by Bartlett (1932), has become an invaluable tool
for revealing human inductive biases (Xu and Grif-
fiths, 2010; Langlois et al., 2021; Sanborn et al.,
2010; Harrison et al., 2020). Because reconstruct-
ing a noisy message is guided by the listener’s prior
expectations, it can be shown that such chains even-
tually converge to a stationary distribution that is
equivalent to the population’s prior, reflecting what
people expect others to say (Kalish et al., 2007;
Griffiths and Kalish, 2007; Beppu and Griffiths,
2009). For example, Meylan et al. (2021) recently
evaluated the ability of neural language models to
predict the changes made to the sentence by human
participants at each step of a serial reproduction
chain, finding that the models’ predictions gradu-
ally improved as the chains converged toward more
representative language. Thus, while serial repro-
duction is commonly used to probe human priors,
and to compare models against human data, it is not
yet in wide use for probing the models themselves.



Figure 2: While autoregressive language models (LMs)
are Bayes nets, masked language models (MLMs) are
dependency networks with cyclic dependencies.

2.2 BERT as a dependency network

There has been considerable confusion in the recent
literature over how to interpret the MLM objective
used to train models like BERT, and how to inter-
pret samples from such models. Wang and Cho
(2019) initially observed that BERT was a Markov
Random Field (MRF) and proposed a Gibbs sam-
pler that iteratively masking and reconstructing dif-
ferent sites k£ by sampling from the conditional
given the tokens at all other sites P(wg|w_y,). As
observed by Goyal et al. (2021)2, however, this pro-
cedure does not actually correspond to inference
in the MRF. Unlike auto-regression language mod-
els (LMs) like GPT-3 (Brown et al., 2020), which
define an acyclic dependency graph (or Bayes net)
from left-to-right, MLMs have cyclic dependencies
(see Fig. 2) and are therefore usefully interpreted as
dependency networks rather than Bayes networks
(Heckerman et al., 2000). Because dependency net-
works estimate independent conditionals, there is
no guarantee that these conditionals are consistent
(i.e. they may violate Bayes rule) and therefore do
not represent a coherent joint distribution.

Still, it is possible to re-construct a joint dis-
tributions from these conditionals. For example,
Heckerman et al. (2000) proved that if sites are
visited in a fixed order, a (pseudo-)Gibbs chain
similar to the one used by Wang and Cho (2019)
does converge to a stationary distribution that is
a well-formed joint. The problem is that differ-
ent orders may yield different joint distributions,
making it difficult to interpret any distributions as
definitive. This ambiguity was resolved by the Gen-
erative Stochastic Network framework proposed by
Bengio et al. (2014). Instead of visiting sites in
a fixed order, a GSN sampler randomly chooses
which site to visit at each step (with replacement),

2And corrected by the original authors in an earlier erra-
tum: https://kyunghyuncho.me/bert-has-a-mouth-and-must-
speak-but-it-is-not-an-mrf/

thus preserving aperiodicity and ergodicity. Specif-
ically, we begin by initializing with a sequence
{w?, ..., wd}. Ateach step ¢, we randomly choose
asite k € 1,...,n to mask out, and we sample a
new value wltjl from the conditional distribution
P(wg|w' ;) with the other n — 1 sites fixed.

It can be shown that this the stationary distribu-
tion arising from this procedure defines a unique
joint distribution, and furthermore, this stationary
distribution is a consistent estimator of the ground-
truth joint distribution (Bengio et al., 2014)3. Im-
portantly, this stationary distribution differs from
the one given by the Metropolis-Hastings (MH)
approach suggested by Goyal et al. (2021), which
uses the GSN sampler as a proposal distribution
but accepts or rejects proposals based on an energy-
based pseudo-likelihood defined by the sum of the
conditional scores at each location (Salazar et al.,
2019). This method converges to an implicit sta-
tionary distribution defined by this energy objec-
tive®.

2.3 Mixture kernels

In practice, these methods have many failure modes.
Most prominently, because samples in the chains
are not independent, it is challenging to guarantee
convergence to a stationary distribution, and the
chain is easily “stuck” in local regions of the sam-
ple space (Gelman et al., 1992). Typically, samples
from a burn-in period (e.g. the first m epochs)
are discarded to reduce dependence on the initial
state, and a lag between samples (e.g. recording
only every [ epochs) is introduced to reduce auto-
correlation. However, the problem is particularly
severe for language models like BERT where there
are strong mutual dependencies between words at
different sites. For example, once the chain reaches
a tri-gram like ‘Papua New Guinea’, it is unlikely
to change any single word while keeping the other
words constant. To ensure ergodicity, we use a mix-
ture kernel introducing a small constant probability
(e = 0.001) of returning to the initial distribution
of [MASK] tokens on each epoch, allowing the
chain to burn in again.

3Technically, this only holds if the dependency network
was trained using consistent estimators for the conditionals,
which is the case for the cross-entropy loss used by BERT; see
also McAllester (2019).

# Although our focus is on evaluation rather than algorith-
mic performance characteristics, we note that because GSN
sampling does not require calculating scores to determine
the acceptance probability for each sample, it is significantly
faster, especially for longer sequences.
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3 Validating the stationary distribution

In this section, we validate that the samples pro-
duced by our serial reproduction method are repre-
sentative of the stationary prior distribution. More
specifically, we consider two basic properties of the
chain: convergence and independence. For these
analyses, we consider samples from the pretrained
bert-base-uncased model with 12 layers, 16
heads, and 340M parameters>.

3.1 Convergence

We begin by checking the convergence time for
chains generated by GSN sampling. Theoretical
bounds derived for serial reproduction chains give a
convergence time of n log n, where n is the number
of sites (see Rafferty et al., 2014). To check these
convergence bounds in practice, we set n = 21
and select 20 sentences from Wikipedia to serve as
initial states, and run 10 chains initialized at each
sentence. We ensured that half of these sentences
have high initial probability (under BERT’s energy
score) and half have low initial probability. We
find that these distributions indeed begin to quickly
mix in probability (see Figure S1). Because longer
sentences may require a longer burn-in time, we
conservatively set our burn-in window to m =
1000 epochs for our subsequent experiments.

3.2 Independence

Second, we want to roughly ensure independence
of samples, so that the statistics of our distribution
of samples isn’t simply reflecting auto-correlation
in the chain. For a worst-case analysis of a local
minimum, suppose P(w;|w_;) < § (0 < < 1)
foralli € [1,..., k], where k is the sentence length
in tokens. Then the probability of re-sampling the
same sentence is roughly < 6% after n epochs.
We can solve for the number of epochs n we need
to bound the probability of re-sampling the exact
same sentence under € for a given worst-case 9. For
example, if § = 0.99 and we want to ensure that
the probability of re-sampling the same sentence is
below a threshold e = 0.01, then n = 47 epochs
will likely suffice. Ensuring complete turnover in
the worst case scenario requires much longer lags,
ie. [1—(1-0)F" <e

To evaluate the extent to which these cases arise
in practice, we examine auto-correlation rates on
longer chains (50,000 epochs). We calculate cor-
relations between the energy scores at each epoch

Shttps://huggingface.co/bert-base-uncased

as a proxy for the state: when the chain gets stuck
re-sampling the same sentence, the same scores
appear repeatedly. We find that auto-correlation is
generally high, but our mixture kernel prevents the
worst local minima for both the MH chain (Goyal
et al.,, 2021) and our GSN chain (see Fig. S2),
although we still found higher auto-correlation
rates for the MH chain. To further examine these
minima, we examined edit rates: the number of
changes made to the sentence within an epoch.
Without the mixture kernel, we observe long re-
gions of consistently low edit rates (e.g. in some
cases, 5000 epochs in a row of exactly the same
sentence) which disappear under the mixture ker-
nel (see Fig. S3). Based on these observations, we
set the lag to [ = 500 epochs to maintain relatively
high independence between samples.

4 Distributional comparisons

In this section, we examine the extent to which
higher-order statistics of sentences from BERT’s
prior are well-calibrated to the data it was trained
on. This kind of comparison provides a richer sense
of what the model has learned or failed to learn
than traditional scalar metrics like perplexity (Taka-
hashi and Tanaka-Ishii, 2017; Meister and Cotterell,
2021; Takahashi and Tanaka-Ishii, 2019).

4.1 Corpus preparation

The version of BERT we analyzed in the previ-
ous section was trained on a combination of two
corpora: Wikipedia and BookCorpus. In order to
make valid comparisons between human priors and
machine priors, we needed to closely match BERT-
generated sentences with a comparable subset of
human-generated sentences from these combined
corpora. There are two technical challenges we
must overcome to ensure comparable samples, con-
cerning the sentencizer and tokenizer steps.

First, because our unit of comparison is the sen-
tence, we needed to control for any artifacts that
may be induced by how we determine what sen-
tences are (e.g. if our Wikipedia sentences were
systematically split on abbreviations, skewing the
distribution toward fragments). We therefore ap-
plied the same punkt sentencizer to create our
distribution of Wikipedia sentences and to check
our BERT samples for cases where the generated
sequence contained multiple sentences or ended
with a colon or semicolon.

Second, we needed a tokenizer that equates sen-
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Figure 3: The lexical distribution of the GSN samples
is calibrated to the corpus distribution better than that
of the MH samples (r = 0.75 for GSN; 0.48 for MH).

tence length. Because bi-directional models like
BERT operate over sequences of fixed length, all
samples drawn from a single chain have the same
number of tokens. Critically, however, BERT
chains are defined over sequences of WordPiece
tokens, so once these sequences are decoded back
into natural language text, they may yield sentences
of varying length, depending on how the sub-word
elements are combined together® (see Fig. S4). We
solve this alignment problem by using the Word-
Piece tokenizer to extract sentences of fixed sub-
word token length from our text corpora, yielding
equivalence classes of corpus sentences that are
all tokenized to the same number of WordPiece to-
kens. We ran GSN and MH chains over sentences
of n = 11 tokens, representing the modal lengths
of sentences in BookCorpus (see Fig. S5). We
obtained 5,000 independent sentences from each
sampling method after applying our conservative
burn-in and lag, and combined the Wikipedia and
BookCorpus sentences together into a single corpus
that is representative of BERT’s training regime.

4.2 Lexical distributions

We begin by comparing the lexical frequency statis-
tics of our samples from BERT against the ground-

®0ne additional complexity is that the mapping between
WordPiece tokens and word tokens is non-injective. There
exist multiple sequences of sub-word tokens that render to
the same word (e.g. the WordPiece vocabulary contains a
token for the full word ‘missing’ but it is also able to generate
‘missing’ by combining the sub-word tokens ‘miss’+‘#ing’).
However, these cases are rare.

truth corpus statistics. First, we note that the rela-
tionship between rank and frequency of tokens in
the GSN sampling matches the Zipfian distribution
of its training corpus better than those produced
by MH sampling (see Fig. S6). However, it is
possible to produce the same overall distribution
without matching the empirical frequencies of in-
dividual words. We next examined the respective
ranks of each word across the two distributions.
Overall, the word ranks in the GSN samples had
a strong Spearman rank correlation of r = 0.75
with the word ranks in the ground-truth corpus; the
MH samples had a significantly lower correlation
of r = 0.48 (Pearson z = 17,p < 0.001, Fig
3). Most disagreements lay in the tails where fre-
quency estimates are particularly poor (e.g. many
words only appeared once in our collection of sam-
ples). Indeed, among words with greater than 10
occurrences, the correlation improved to r = 0.83
for GSN and r = 0.65 for MH.

To understand this relationship further, we con-
ducted an error analysis of lexical items which
were systematically over- or under-produced by
BERT relative to its training corpus. We found
that certain punctuation tokens (e.g. parentheses)
were over-represented in both the GSN samples
and the MH samples, while contractions like ’s
and ’'d were under-represented. The MH samples
specifically over-produced proper names such as
Nina and Jones. Finally, due to the use of sub-word
representations, we found a long tail of morpho-
logically complex words that did not appear at all
in the training corpus (e.g. names like Kyftenberg
or Streckenstein and seemingly invented scientific
terms like lymphoplasmic, neopomphorus, or pyra-
nolamines).

4.3 Syntactic distributions

While the lexical distributions were overall well-
matched for GSN samples, our error analysis sug-
gested potential structure in the deviations. In
other words, entire grammatical constructions may
be over- or under-represented, not just particular
words. To investigate these patterns, we used the
spacy library to extract the parts of speech and
dependency relations that are present within each
sentence. We are then able to examine, in aggre-
gate, whether certain classes of constructions are
disproportionately responsible for deviations. Our
findings are shown in Fig. 4. Overall, the distri-
butions are close, but several areas of misalign-
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Figure 4: The relative frequencies of different parts of speech (left) and dependencies (right) in the ground-truth
training corpora closely matched for GSN samples. In all cases, the GSN frequencies fell closer to the ground-truth

than the MH frequencies.

ment emerge. For parts of speech, we observe
that the GSN sampler is slightly over-producing
nouns (and proper nouns) while under-producing
verbs and prepositions. We also observe that it
is over-producing noun-related dependencies (e.g.
compound nouns and appositional modifiers, which
are noun phrases modifying other noun phrases, as
in “Bill, my brother, visited town”). This pattern
suggests that BERT’s prior may be skewed toward
(simpler) noun phrases while neglecting more com-
plex constructions.

4.4 Sentence complexity

One hypothesis raised by comparing distributions
of syntactic features is that BERT may be regu-
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Figure 5: Cumulative probability distribution of depen-
dency lengths across sentences from BERT chains and
from the training corpus.

larizing the complex structure of its input toward
simpler constructions. To test this hypothesis, we
operationalize syntactic complexity using a mea-
sure known as the average dependency length of
a sentence (Futrell et al., 2015; Grodner and Gib-
son, 2005). This measure captures the (linear) dis-
tance between syntactically related words, which
increases with more complex embedded phrase
structures. We found that the distribution of de-
pendency distances in the sentences produced by
GSN sampling is overall more similar to those in its
training corpus than the MH (Fig. 5), although pre-
liminary analyses suggest it is still skewed slightly
simpler (see Fig. S8).

S Human judgments

Finally, while our corpus comparisons highlighted
particular ways in which samples from BERT’s
prior were well-calibrated to the high-level statis-
tics of its training distribution, it is unclear whether
these agreements or deviations ‘matter’ in terms of
naturalness. In this section, we elicit human natu-
ralness judgments in order to provide a more holis-
tic measure of potential ‘weirdness’ with BERT
sentences.

5.1 Experimental methods

We recruited 1016 fluent English speakers on the
Prolific platform and asked them to judge the natu-
ralness of 4040 unique sentences from three length
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Figure 6: Empirical naturalness ratings elicited from
the stationary GSN distribution, compared to different
baselines at different sentence lengths. Error bars are
bootstrapped 95% Cls.

classes: short (11 tokens), medium (21 tokens),
and long (37 tokens). 1675 of these sentences were
from the stationary state of the different chains,
2339 were from the burn-in phase (i.e. < 1000
epochs), and the remainder were baseline sentences
(149 from Wikipedia, 48 from a 5-gram model, and
42 from an LSTM model; see Appendix for details).
Each participant was shown a sequence of 25 sen-
tences in randomized order, balanced across differ-
ent properties of the stimulus set (in a later batch,
we increased the number of sentences per partici-
pant to 40). On each trial, one of these sentences ap-
peared with a slider ranging from O (‘“very weird”)
to 100 (“completely natural”)’. After excluding
8 participants who failed the attention check (i.e.
failed to rate a scrambled sentence below the mid-
point of the scale and a human-generated sentence
above the midpoint), we were left with an average
of 7.3 responses per sentence.

5.2 Behavioral results

We begin by comparing the naturalness of sen-
tences from the stationary GSN distribution to
other baselines (see Fig. 6), using a linear regres-
sion model predicting trial-by-trial judgments as
a function of categorical variables encoding sen-
tence length (short, medium, long) and the source
of the sentence (Wikipedia, GSN, MH, LSTM, or
n-gram). First, we find that the naturalness of sen-
tences from GSN declines by 14 points at longer
sentence lengths, p < 0.001, while the naturalness
of Wikipedia sentences is unaffected by length (in-

"See Clark et al. (2021) for a discussion of the merits of
phrasing the question in terms of naturalness instead of asking
participants to judge whether it was produced by a human or
machine.

teraction term, p < 0.001), consistent with results
reported by Ippolito et al. (2020). Furthermore,
among short sentences, where we included addi-
tional baselines, we find that GSN sentences tend
to be rated as slightly natural than sentences from
Wikipedia (+10 points, p < 0.001) but more nat-
ural than those produced by an n-gram model (-
52 points, p < 0.001), LSTM model (-25 points,
p < 0.001); or MH sampling from the same BERT
conditionals (-15 points, p < 0.001; see Table S1).
MH samples also deteriorate significantly in nat-
uralness for longer sentences compared to GSN
samples p < 0.001. Finally, we examine natu-
ralness ratings across the the burn-in period, find-
ing that ratings decline steadily across the board
as the chain takes additional steps (linear term:
t(7297) = —12.4,p < 0.001), suggesting grad-
ual deviation away from the initial distribution of
Wikipedia sentences toward the stationary distribu-
tion (shown as the green and grey regions, respec-
tively, in Fig. S7).

5.3 Predicting naturalness

Given that sentences from the stationary GSN dis-
tribution are judged to be less natural than human-
generated sentences overall, we are interested in
explaining why. Which properties of these sen-
tences make them sound strange? We approach this
problem by training a regression model to predict
human judgments from attributes of each sentence.
We include all part of speech tag counts and depen-
dency counts, as well as the sentence probability
scored under BERT, and the sentence length. We
use a cross-validated backwards feature selection
procedure to select the most predictive set of these
features for a linear regression (Kuhn and Johnson,
2013)8.

The best-fitting model used 26 features and
achieved an (adjusted) R? = 0.21. The only fea-
tures associated with significantly lower ratings
were the use of adpositions (e.g. before, after)
and coordinating conjunctions. Importantly, we
found that including a categorical variable of cor-
pus (i.e. Wikipedia vs. GSN) significantly im-
proved model fit even after controlling for all other
features, x?(1) = 7135,p < 0.001, suggesting
that sources of “weirdness” are not being captured
by typical statistics. We show some of these low-
naturalness sentences in Table 1.

8Specifically, we used the 1mSt epAIC procedure imple-
mented in the caret R package, with £ = 10 folds.



6 Discussion

6.1 Probing through generation

A core idea of our serial reproduction approach
is to use generation as a window into a model’s
prior over language. While a variety of metrics
and techniques have been proposed to quantify the
“quality” of generation, especially in the domains of
open-ended text generation and dialogue systems
(Caccia et al., 2018; Li et al., 2019; Guidotti et al.,
2018; Celikyilmaz et al., 2020), these metrics have
typically been applied to compare specific genera-
tion algorithms and operationalize specific pitfalls,
such as incoherence, excess repetition, or lack of
diversity. Consequently, it has been difficult to dis-
entangle the extent to which deviations resulting
from generations are an artifact of specific decod-
ing algorithms (e.g. greedy search vs. beam search)
or run deeper, into the prior itself. For the purposes
of probing, we suggest that it is important to ask
not only how to generate the highest-scoring sen-
tences but how to generate sentences that may be
interpreted as representative of the model’s prior,
as formal results on GSNs effectively provided.

6.2 GSN vs. energy-based objectives

We found that the prior distribution yielded by the
GSN sampler more closely approximated the lexi-
cal and syntactic distributions of the ground-truth
corpus and also sounded more “natural” to humans
than the samples yielded by MH. These results are
in contrast to findings by Goyal et al. (2021), show-
ing that MH produced high-quality BLEU scores
on a Machine Translation (MT) task compared to
a degenerate (pseudo-)Gibbs sampler. There are
several possible reasons for this discrepancy. One
possibility may be task-specific: while we focused
on unconditional generation, Goyal et al. (2021)
focused on a neural machine translation (MT) task,
where sentence generation was always conditioned
on a high-quality source text and thus remained
within a constrained region of sentence space. An-
other possibility is that we ran substantially longer
chains (50,000 epochs compared to only 33 epochs)
and the pitfalls of MH sampling only emerged later
in the chain.

More broadly, our corpus comparisons and hu-
man evaluations suggest possible limitations of sim-
ple “quality” metrics like energy values. We found
that the best-scoring states were often degenerate
local minima with mutually supporting n-grams
(such as repetitive phases and names like “Papua

New Guinea”). Indeed, there was only a loose re-
lationship between energy scores and participants’
judgments, with many poorer-scoring sentences
judged to be more natural than better-scoring sen-
tences (e.g. overall, the distribution of Wikipedia
sentences tended to be much lower-scoring un-
der the model despite being rated as more natu-
ral). Meanwhile, we empirically validated that the
stationary distribution of the GSN chain indeed
approximates even higher-order statistics of the
ground-truth corpus, suggesting that the raw condi-
tionals of the dependency network may implicitly
represent the joint distribution, without requiring
guarantees of consistency.

6.3 Other architectures

Serial reproduction methods are particularly useful
for probing models that do not directly generate
samples from their prior: for auto-regressive mod-
els like GPT-2, these samples are obtained more
simply by running the model forward. While we
focused on BERT, this method may be particularly
useful for encoder-decoder architectures like BART
(Lewis et al., 2019) which more closely resemble
the Telephone Game task, requiring full reconstruc-
tion of the entire sentence from noisy input rather
than reconstruction of a single missing word. In-
deed, these architectures may overcome an impor-
tant limitation of serial reproduction with BERT:
because these chains operate over a fixed sequence
length, the resulting prior is not over all of language
but only over sentences with the given number of
WordPiece tokens.

6.4 Conclusions

Serial reproduction paradigms have been central for
exposing human priors in the cognitive sciences.
In this paper, we suggested that the theory of it-
erated learning may also be useful for exposing
the priors of large neural language models, which
are often similarly inscrutable. We hope future
work will consider other points of contact between
these areas and draw more extensively from the
theory developed to understand dependency net-
works. More broadly, as language models become
increasingly adaptive and deployed in increasingly
unconstrained settings, bottom-up generative prob-
ing has the potential to reveal a broader spectrum of
“weirdness” than the top-down evaluative probes
researchers design.
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Appendix A: Baseline details

Wikipedia sentences were randomly selected from
the full sentencized corpus English Wikipedia that
tokenized to 12, 21, and 37 WordPiece tokens for


https://machinethoughts.wordpress.com/2019/07/14/a-consistency-theorem-for-bert/
https://machinethoughts.wordpress.com/2019/07/14/a-consistency-theorem-for-bert/
https://machinethoughts.wordpress.com/2019/07/14/a-consistency-theorem-for-bert/
https://machinethoughts.wordpress.com/2019/07/14/a-consistency-theorem-for-bert/
https://machinethoughts.wordpress.com/2019/07/14/a-consistency-theorem-for-bert/
https://doi.org/10.18653/v1/2021.acl-long.414
https://doi.org/10.18653/v1/2021.acl-long.414
https://doi.org/10.18653/v1/2021.acl-long.414

the short, medium, and long conditions, respec-
tively. These sentences were also chosen to span a
broad range of sentence probabilities under BERT
(i.e. log P(p1, .., pn) = >op log P(pr|p—k))-

For our ngram baseline, we trained a 5-gram
model with Kneser-Ney smoothing (Kneser and
Ney, 1995) on English Wikipedia using the kenlm
library (Heafield, 2011), and generated sentences
of length 10 by sampling from the resulting condi-
tional distributions. Because this model stripped
punctuation, and was therefore unable to emit an
“end of sentence” token, we expected it to serve as
a lower bound on the naturalness scale.

For our LSTM baseline, we used the network
pre-trained by Gulordava et al. (2018) on English
Wikipedia. This model was trained to emit an end
of sentence (<eos>) token, allowing us to rejec-
tion sample to obtain sentences that were exactly 10
words long with no unknown words (i.e. <unk> to-
kens). Because it was not trained with a <start>
token, however, we needed to initialize it with the
initial word of the sentence. We randomly selected
this initial word from a small set of common sen-
tence openers (e.g. the, a, it, his, her). Asa
result of our initial token selection, this model does
not precisely sample from its true prior over sen-
tences. Thus, it is best viewed as another baseline
of sentences rather than as a careful architectural
comparison.

Because we were asking participants to judge
the naturalness of complete sentences, we did not
want to include samples which clearly violated sen-
tencehood, as these would not be informative (e.g.
fragments from Wikipedia that were incorrectly
sentencized and ended with an abbreviation, bibli-
ographic text like “korsakov (1976) r.s.,” or table
markdown with pipes like “| a | b |”). We automat-
ically removed any sentences containing pipes or
ending with colons or semicolons, as these were
associated with sentencizer inconsistency, as well
as sequences that contained multiple sentences (ac-
cording to our sentencizer). Finally, the authors
took a manual pass to exclude other non-sentential
fragments from the stimulus set.

Appendix B: Corpus details

We downloaded cleaned Wikipedia data provided
by GluonNLP (https://github.com/dmlc/gluon-
nlp/tree/master/scripts/datasets/pretrain_corpus),

and BookCorpus data from HuggingFace Datasets
(https://huggingface.co/datasets/bookcorpus).
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Figure S1: We examine the convergence time by initial-
izing different chains at different classes of sentences
(red is high probability under BERT’s energy function,
blue is low probability). Faint lines show smoothed tra-
jectories for individual chains and error bars are boot-
strapped 95% confidence intervals across chains.
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Figure S2: MCMC methods like GSN and MH sam-
pling tend to get stuck in local regions with high auto-
correlation. We find that a minimal autocorrelation is
achievable with lower lag (500 epochs between sam-
ples) using a mixture kernel with a constant probabil-
ity of resetting the chain. Error ribbons are 95% confi-
dence intervals.
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Figure S3: Without mixing in a constant probability of returning to the initial distribution, the GSN chain (and MH

chain, not shown) goes through periods of stasis with low edit rates (red curves), contributing to high autocorrela-
tions.

term estimate std.error statistic  p.value

1 (Intercept) 67.33 1.14 59.08 < 0.001
2 short vs. long (GSN) -14.49 1.60 -9.08 < 0.001
3 short vs. medium (GSN) -10.21 1.60 -6.39 < 0.001
5 GSN vs. LSTM (short) -28.60 2.04 -14.05 < 0.001
6 GSN vs. MH (short) -14.76 1.59 -9.26 < 0.001
7 GSN vs. ngram (short) -54.26 2.00 -27.07 < 0.001
8 GSN vs. wiki (short) 10.40 1.70 6.13 < 0.001
13  interaction (short vs. long; GSN vs. MH) -12.31 2.23 -5.51 < 0.001
14 interaction (short vs. medium; GSN vs. MH) -7.33 2.23 -3.29 < 0.001
17 interaction (short vs. long; GSN vs. wiki) 11.22 2.39 470 < 0.001
18 interaction (short vs. medium; GSN vs. wiki) 5.56 2.37 2.35 0.02

Table S1: Fixed effect estimates for regression on human scores. Length class and source are dummy coded with
short lengths and GSN as baselines.

BERT chains corpus text

sub-word tokens word tokens

Figure S4: There is a misalignment between the space
of sentences obtainable by a BERT chain of a fixed to-
ken length (in sub-word tokens) and natural language
sentences of a fixed length (in words). We consider
the distribution of corpus sentences that are obtainable
from a fixed-length BERT chain, which may decode to
different lengths in natural text (black arrows).

12



Number of BERT tokens for Wiki corpus

in range [2,38696] with mode at 21

Orage dots at [12,21,37]

0.035 A

0.030 4

0.025 4

0.020 4

0.015

0.010 4

0.005

0.000

T
10!

T T
10? 10°

T
10*

0.05 4

0.02 4

0.01 4

0.00 +

Number of BERT tokens for Book corpus

in range [3,65890] with mode at 11
Orage dot at 11

T
10!

10? 10° 10* 10°

Figure S5: Empirical distribution of sentence lengths in Wikipedia and BookCorpus training corpora, after Word-
Piece tokenization. For our corpus comparisons, we selected the modal Wikipedia sentence length of 21 tokens and
the modal BookCorpus length of 11 tokens. For our human judgment experiment, we included baseline sentences
only from Wikipedia for shorter (12 tokens) and longer sentences (37 tokens), with roughly equal prevalence in
the corpus (orange dots).
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Figure S6: The lexical statistics of our GSN samples closely match the Zipfian distribution of the corpus. To place
both distributions on the same scale, frequencies were computed on the full corpus but ranks were computed only
among the subset of words appearing both in the GSN and Metropolis-Hastings samples.
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Figure S7: Sentences gradually drift away from the initial distribution across the burn-in period. Light green
region represents the 95% confidence interval for the mean naturalness of Wikipedia sentences while grey region
represents the same interval around the stationary distribution of the converged chain. Top row represents chains
that are initialized at high-probability states, while bottom row is initialized in low-probability states.
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Figure S8: Dependency distances are similar for sentences sampled from BERT’s prior and sentences from its
training corpus, but the BERT distribution is more bimodal and tends to skew simpler.
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