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Abstract

This paper focuses on α-divergence minimisation methods for Variational Inference.
We consider the case where the posterior density is approximated by a mixture
model and we investigate algorithms optimising the mixture weights of this mixture
model by α-divergence minimisation, without any information on the underlying
distribution of its mixture components parameters. The Power Descent, defined
for all α ̸= 1, is one such algorithm and we establish in our work the full proof
of its convergence towards the optimal mixture weights when α < 1. Since the
α-divergence recovers the widely-used exclusive Kullback-Leibler when α → 1,
we then extend the Power Descent to the case α = 1 and show that we obtain
an Entropic Mirror Descent. This leads us to investigate the link between Power
Descent and Entropic Mirror Descent: first-order approximations allow us to
introduce the Rényi Descent, a novel algorithm for which we prove an O(1/N)
convergence rate. Lastly, we compare numerically the behavior of the unbiased
Power Descent and of the biased Rényi Descent and we discuss the potential
advantages of one algorithm over the other.

1 Introduction

Bayesian Inference involves being able to compute or sample from the posterior density. For many
useful models, the posterior density can only be evaluated up to a normalisation constant and we
must resort to approximation methods.

One major category of approximation methods is Variational Inference, a wide class of optimisation
methods which introduce a simpler variational family Q and use it to approximate the posterior
density (see for example Variational Bayes [1, 2] and Stochastic Variational Inference [3]). The crux
of these methods consists in finding the best approximation of the posterior density among the family
Q in the sense of a certain measure of dissimilarity, most typically the exclusive Kullback-Leibler
divergence.

However, the exclusive Kullback-Leibler divergence is known to have some undesirable properties,
e.g. posterior variance underestimation, difficulty to capture multimodal posterior densities [4, 5, 6].
As a consequence, the α-divergence [7, 8] and Rényi’s α-divergence [9, 10] have gained a lot of
attention recently and are presented as more general alternatives that permit to bypass the issues of
the exclusive Kullback-Leibler when α < 1 [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Noticeably, [19] introduced the (α,Γ)-descent, a general family of gradient-based algorithms that
approximate the posterior density by a mixture model and that are able to optimise the mixture
weights of this mixture model by α-divergence minimisation. The benefit of these types of algorithms
is that (i) they expand the traditional parametric variational family to better capture complex (e.g.
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multimodal) posterior densities (ii) they allow, in an Sequential Monte Carlo fashion [23], to select
the mixture components according to their overall importance in the set of components parameters,
without needing to know the distribution of the mixture components parameters. The (α,Γ)-descent
step is then paired up with an Exploration step that acts on the mixture components parameters, so
that a complete algorithm is obtained by alternating between these two steps [19].

The key algorithm of [19] is the Power Descent, which sets Γ(v) = [(α−1)v+1]η/(1−α) with α ̸= 1
and η > 0 in the (α,Γ)-descent. Indeed, when α < 1 and as the dimension increases, numerical
experiments in [19] show that the Power Descent outperforms the Entropic Mirror Descent (a classical
algorithm from the optimisation litterature corresponding to Γ(v) = e−ηv with η > 0).

Nonetheless, the global convergence of the Power Descent algorithm when α < 1, as stated in [19,
Theorem 4], assumes the existence of the limit and does not provide conditions that satisfy this
assumption. Furthermore, even though the convergence towards the global optimum is derived, there
is no convergence rate available for the Power Descent when α < 1. After recalling the basics of the
Power Descent algorithm in Section 2, we make the following contributions in this paper:

• In Section 3, we prove the full convergence of the Power Descent algorithm towards the optimal
mixture weights when α < 1 (Theorem 2).
• Since the α-divergence becomes the traditional exclusive Kullback-Leibler when α → 1, we next
investigate the extension of the Power Descent to the case α = 1 in Proposition 1 from Section 4
and we obtain that the Power Descent recovers an Entropic Mirror Descent performing exclusive
Kullback-Leibler minimisation.
• We further study the connections between Power Descent and Entropic Mirror Descent by con-
sidering first-order approximations, in the hope of finding an algorithm close to the Power Descent
and for which we can prove a convergence rate when α < 1. As a result, we are able to go beyond
the (α,Γ)-descent framework from [19] by introducing an algorithm closely-related to the Power
Descent, that is proved to converge at an O(1/N) rate when α < 1 as a consequence of Theorem 3
from Section 4. We call this algorithm the Rényi Descent due to the link we establish between the
Rényi Descent and Entropic Mirror Descent steps applied to the Variational Rényi bound [12].
• Finally, we run some numerical experiments in Section 5 to compare the behavior of the Power
Descent and of the Rényi Descent altogether, before discussing the potential benefits of one approach
over the other.

2 Background

This section reviews the Power Descent algorithm from [19] and details how it is applied to mixture
weights optimisation in a Variational Inference context.

Notation and problem statement. Let (Y,Y, ν) be a measured space, where ν is a σ-finite measure
on (Y,Y). Assume that we are given some observed data D generated from a probabilistic model
p(D |y) that is parameterised by a latent variable y ∈ Y. Further assuming that y is drawn from a
certain prior p0(y), the posterior density of the latent variable y given the data D is then defined by:

p(y|D) =
p(y,D)

p(D)
=

p0(y)p(D |y)
p(D)

,

where the normalisation constant p(D) =
∫
Y
p0(y)p(D |y)ν(dy) is called the marginal likelihood or

model evidence. For many complex models arising in Bayesian Inference, we do not know how to
directly sample from the posterior density, nor do we know the value of the marginal likelihood.

To remedy this problem, the Power Descent is a Variational Inference algorithm that introduces a
certain measurable space (T, T ) and offers to approximate the posterior density by a variational
family Q of the form

Q =

{
y 7→

∫
T

µ(dθ)k(θ, y) : µ ∈ M

}
, (1)

where M is a convenient subset of M1(T), the set of probability measures on (T, T ). In doing so, it
extends the usual parametric variational family

Q = {y 7→ k(θ, y) : θ ∈ T}

2



since it amounts to putting a prior over the parameter θ in the form of a probability measure. In
particular, one strong motivation behind the variational family (1) is that it recovers mixture models
as a special case. To see this, let J ∈ N⋆, Θ = (θ1, . . . , θJ) ∈ TJ and define the simplex of RJ by:

SJ =

λ = (λ1, . . . , λJ) ∈ RJ : ∀j ∈ {1, . . . , J} , λj ⩾ 0 and
J∑

j=1

λj = 1

 . (2)

Observe then that when µ is chosen as a weighted sum of Dirac measures, i.e. µ =
∑J

j=1 λjδθj with
λ ∈ SJ , the variational family (1) becomes

Q =

y 7→
J∑

j=1

λjk(θj , y) : λ ∈ SJ

 , (3)

which corresponds to the class of mixture models parameterised by the mixture weights λ and with
fixed mixture components parameters Θ. Here, the j-th component y 7→ k(θj , y) could for example
be a multivariate Gaussian density with mean θj and known covariance matrix, but one strength of
the Power Descent is that it is not limited to a specific choice for k. We will refer to k as a kernel
density thereafter and we now introduce some more notation, before stating the optimisation problem
solved by the Power Descent.

Denote by P the probability measure on (Y,Y) with corresponding density p(·|D) with respect to ν
and by K : (θ,A) 7→

∫
A
k(θ, y)ν(dy) the Markov transition kernel on T× Y with kernel density k

defined on T × Y. For all µ ∈ M1(T) and all y ∈ Y, we denote µk(y) =
∫
T
µ(dθ)k(θ, y) and we

let µK denote the probability measure with density µk with respect to ν. Then, letting α ∈ R and
assuming that µK and P are both absolutely continuous with respect to ν, the α-divergence between
µK and P (extended by continuity to the cases α = 0 and α = 1 as in [24]) is given by

Dα(µK||P) =
∫
Y

fα

(
µk(y)

p(y|D)

)
p(y|D)ν(dy) ,

where fα is the convex function on (0,+∞) defined by f0(u) = u− 1− log(u), f1(u) = 1− u+
u log(u) and fα(u) =

1
α(α−1) [u

α − 1− α(u− 1)] for all α ∈ R \ {0, 1}.

Letting α ̸= 1, the Power Descent seeks to solve the Variational Inference optimisation problem

inf
µ∈M

Dα(µK||P) , (4)

meaning that for µ =
∑J

j=1 λjδθj (with corresponding approximating family (3)), it seeks to
optimise λ by α-divergence minimisation i.e. to select mixture components according to their overall
importance in the set of components parameters. More generally, the Power Descent aims at solving

inf
µ∈M

Ψα(µ; p) , (5)

where p is any measurable positive function on (Y,Y) and where for all µ ∈ M1(T), Ψα(µ; p) =∫
Y
fα (µk(y)/p(y)) p(y)ν(dy). Crucially, (4) can be reframed as an instance of (5) that sets p =

p(·,D) in (5) and that thus does not involve the unknown normalising constant p(D) anymore (see
Appendix A.1). In the following, the dependency on p in Ψα may be dropped throughout the paper
for notational ease when no ambiguity occurs and we next present the Power Descent algorithm.

The Power Descent algorithm. Let α ̸= 1. Given an initial probability measure µ1 ∈ M1(T) such
that Ψα(µ1) < ∞, η > 0 and κ such that (α− 1)κ ⩾ 0, the Power Descent algorithm introduced in
[19] is an iterative scheme which builds the sequence of probability measures (µn)n∈N⋆

µn+1 = Iα(µn) , n ∈ N⋆ , (6)

where for all µ ∈ M1(T), the one-step transition µ 7→ Iα(µ) is given by Algorithm 1 and where for
all v ∈ Domα, Γ(v) = [(α− 1)v + 1]η/(1−α) [and Domα denotes an interval of R such that for all
θ ∈ T and all µ ∈ M1(T), bµ,α(θ) + κ and µ(bµ,α) + κ ∈ Domα].
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Algorithm 1: Power descent one-step transition (Γ(v) = [(α− 1)v + 1]η/(1−α))

1. Expectation step : bµ,α(θ) =

∫
Y

k(θ, y)f ′
α

(
µk(y)

p(y)

)
ν(dy)

2. Iteration step : Iα(µ)(dθ) =
µ(dθ) · Γ(bµ,α(θ) + κ)

µ(Γ(bµ,α + κ))

The Power Descent is known to have a gradient-based structure since θ 7→ bµ,α(θ) acts as the
gradient of µ 7→ Ψα(µ) and η plays the role of a learning rate [19]. Furthermore, a remarkable
property of the Power Descent is that under (A1) as defined below

(A1) The density kernel k on T× Y, the function p on Y and the σ-finite measure ν on
(Y,Y) satisfy, for all (θ, y) ∈ T× Y, k(θ, y) > 0, p(y) > 0 and

∫
Y
p(y)ν(dy) < ∞.

the Power Descent ensures a monotonic decrease in Ψα at each step for all η ∈ (0, 1] (this result is
a special case of [19, Theorem 1] with Γ(v) = [(α − 1)v + 1]η/(1−α) that is recalled in Theorem
4 of Appendix A.2 for the sake of completeness). Under the additional assumptions that κ > 0 and

sup
θ∈T,µ∈M1(T)

|bµ,α| < ∞ and Ψα(µ1) < ∞ , (7)

the Power Descent is also known to converge towards its optimal value at an O(1/N) rate when
α > 1 [19, Theorem 3]. On the other hand, when α < 1, the convergence towards the optimum as
written in [19] holds under different assumptions including

(A2) (i) T is a compact metric space and T is the associated Borel σ-field;
(ii) for all y ∈ Y, θ 7→ k(θ, y) is continuous;

(iii) we have
∫
Y
supθ∈T k(θ, y)× supθ′∈T

(
k(θ′,y)
p(y)

)α−1

ν(dy) < ∞.

If α = 0, assume in addition that
∫
Y
supθ∈T

∣∣∣log (k(θ,y)
p(y)

)∣∣∣p(y)ν(dy) < ∞.

so that [19, Theorem 4], that is recalled below under the form of Theorem 1, states the convergence
of the Power Descent algorithm towards the global optimum.

Theorem 1 ([19, Theorem 4]). Assume (A1) and (A2). Let α < 1 and let κ ⩽ 0. Then, for all
µ ∈ M1(T), Ψα(µ) < ∞ and any η > 0 satisfies 0 < µ(Γ(bµ,α + κ)) < ∞. Further assume
that η ∈ (0, 1] and that there exist µ1, µ

⋆ ∈ M1(T) such that the (well-defined) sequence (µn)n∈N⋆

defined by (6) weakly converges to µ⋆ as n → ∞. Finally, denote by M1,µ1
(T) the set of probability

measures dominated by µ1. Then the following assertions hold

(i) (Ψα(µn))n∈N⋆ is nonincreasing,

(ii) µ⋆ is a fixed point of Iα,

(iii) Ψα(µ
⋆) = infζ∈M1,µ1

(T) Ψα(ζ).

The above result assumes there must exist µ1, µ
⋆ ∈ M1(T) such that the sequence (µn)n∈N⋆ defined

by (6) weakly converges to µ⋆ as n → ∞, that is it assumes the limit already exists. Our first
contribution consists in showing that this assumption can be alleviated when µ is chosen a weighted
sum of Dirac measures, that is when we seek to perform mixture weights optimisation by α-divergence
minimisation. In doing so, we provide additionnal theoretical justification behind the use of the Power
Descent when α < 1, which is crucial in practice for reasons already outlined in the introduction and
further detailed for the particular case of the Power Descent in Appendix A.3.

3 Convergence of the Power Descent algorithm in the mixture case

Before we state our convergence result, let us first make two comments on the assumptions from
Theorem 1 that shall be retained in our upcoming convergence result.
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A first comment is that (A1) is mild since the assumption that p(y) > 0 for all y ∈ Y can be discarded
and is kept for convenience [19, Remark 4]. A second comment is that (A2) is also mild and covers
(7) as it amounts to assuming that θ 7→ bµ,α(θ) and µ 7→ Ψα(µ) are uniformly bounded with respect
to µ and θ. To see this, we give below an example for which (A2) is satisfied.
Example 1. Consider the case Y = Rd with α ∈ [0, 1). Let r > 0 and let T = B(0, r) ⊂ Rd.
Furtheremore, let Kh be a Gaussian transition kernel with bandwidth h and denote by kh its associ-
ated kernel density. Finally, let p be a mixture density of two d-dimensional Gaussian distributions
multiplied by a positive constant c such that p(y) = c× [0.5N (y; θ⋆1 , Id) + 0.5N (y; θ⋆2 , Id)] for all
y ∈ Y, where θ⋆1 , θ

⋆
2 ∈ T and Id is the identity matrix. Then, (A2) holds (see Appendix B.1).

Next, we introduce some notation that are specific to the case of mixture models we aim at studying
in this section (and which, as seen previously, corresponds to choosing µ as a weighted sum of Dirac
measures in (1) yielding (3)). For this purpose, let J ∈ N⋆, let Θ = (θ1, . . . , θJ) ∈ TJ be fixed,
let α ̸= 1, η > 0, κ be such that (α − 1)κ ⩾ 0 and recall that the simplex of RJ defined in (2) is
denoted by SJ . We define S+

J = {λ ∈ SJ : ∀j ∈ {1, . . . , J} , λj > 0} and for all λ ∈ SJ and
we also define µλ,Θ =

∑J
j=1 λjδθj . Now letting (µn)n∈N⋆ be defined by µ1 = µλ,Θ and (6), an

immediate induction yields that for every n ∈ N⋆, µn can be expressed as µn =
∑J

j=1 λj,nδθj where
λn = (λ1,n, . . . , λJ,n) ∈ SJ satisfies the initialisation λ1 = λ and the update formula:

λn+1 = Imixt
α (λn) , n ∈ N⋆ , (8)

with

Imixt
α (λ) :=

(
λj [(α− 1)(bµλ,Θ,α(θj) + κ) + 1]

η
1−α∑J

ℓ=1 λℓ [(α− 1)(bµλ,Θ,α(θℓ) + κ) + 1]
η

1−α

)
1⩽j⩽J

, λ ∈ SJ .

Finally, let us rewrite (A2) in the simplified case where µ = µλ,Θ, which gives (A3) below.

(A3) (i) For all y ∈ Y, θ 7→ k(θ, y) is continuous;

(ii) we have
∫
Y

max
1⩽j⩽J

k(θj , y)× max
1⩽j′⩽J

(
k(θj′ ,y)

p(y)

)α−1

ν(dy) < ∞.

If α = 0, we assume in addition that
∫
Y

max
1⩽j⩽J

∣∣∣log (k(θj ,y)
p(y)

)∣∣∣ p(y)ν(dy) < ∞.

We then have the following theorem, which establishes the full proof of the global convergence
towards the optimum for the mixture weights when α < 1.
Theorem 2. Assume (A1) and (A3). Let α < 1, let Θ = (θ1, . . . , θJ) ∈ TJ be fixed and let κ be such
that κ ⩽ 0. Then for all λ ∈ SJ , Ψα(µλ,Θ) < ∞ and for any η > 0 the sequence (λn)n∈N⋆ defined
by λ1 ∈ SJ and (8) is well-defined. If in addition (λ1, η) ∈ S+

J ×(0, 1] and {K(θ1, ·), . . . ,K(θJ , ·)}
are linearly independent, then

(i) (Ψα(µλn,Θ))n∈N⋆ is nonincreasing,

(ii) the sequence (λn)n∈N⋆ converges to some λ⋆ ∈ SJ which is a fixed point of Imixt
α ,

(iii) Ψα(µλ⋆,Θ) = infλ′∈SJ
Ψα(µλ′,Θ).

The proof of this result builds on Theorem 1 and Theorem 4 of Appendix A.2 and is deferred to
Appendix B.2. Notice that since Ψα depends on λ through µλ,ΘK, an identifiably condition was to
be expected in order to achieve the convergence of the sequence (λn)n∈N⋆ in Theorem 2. Following
Example 1, this identifiably condition notably holds for J ⩽ d under the assumption that the θ1, ..., θJ
are full-rank.

We thus have the convergence of the Power Descent under less stringent conditions when α < 1
and when we consider the particular case of mixture models. This algorithm can easily become
feasible for any choice of kernel K by resorting to an unbiased estimator of (bµλn,Θ,α(θj))1⩽j⩽J in
the update formula (8) (see Algorithm 3 of Appendix B.3).

Nevertheless, contrary to the case α > 1 we still do not have a convergence rate for the Power
Descent when α < 1. Furthermore, the important case α → 1, which corresponds to performing

5



exclusive Kullback-Leibler minimisation, is not covered by the Power Descent algorithm. In the
next section, we extend the Power Descent to the case α = 1. As we shall see, this will lead us to
investigate the connections between the Power Descent and the Entropic Mirror Descent beyond the
(α,Γ)-descent framework from [19]. As a result, we will introduce a novel algorithm closely-related
to the Power Descent that yields an O(1/N) convergence rate when µ = µλ,Θ and α < 1 (and more
generally when µ ∈ M1(T) and α ̸= 1).

4 Power Descent and Entropic Mirror Descent

Recall from Section 2 that the Power Descent is defined for all α ̸= 1. In this section, we first establish
in Proposition 1 that the Power Descent can be extended to the case α = 1 and that we recover an
Entropic Mirror Descent, showing that a deeper connection runs between the two approaches beyond
the one identified by the (α,Γ)-descent framework of [19]. This result relies on typical convergence
and differentiability assumptions summarised in (D1) and which are deferred to Appendix C.1,
alongside with the proof of Proposition 1.
Proposition 1 (Limiting case α → 1). Assume (A1) and (D1). Let η > 0 and κ be such that
(α− 1)κ ⩾ 0. Then, for all µ ∈ M1(T) and all continuous and bounded real-valued functions h on
T, we have that

lim
α→1

[Iα(µ)](h) = [I1(µ)](h) ,

where for all θ ∈ T, we have set

I1(µ)(dθ) =
µ(dθ)e−ηbµ,1(θ)

µ (e−ηbµ,1)
and bµ,1(θ) =

∫
Y

k(θ, y) log

(
µk(y)

p(y)

)
ν(dy) , (9)

and where for all ζ ∈ M1(T), we have used the notation ζh =
∫
T
ζ(dθ)h(θ).

Here, we recognise the one-step transition associated to the Entropic Mirror Descent applied to Ψ1.
This algorithm is a special case of [19] with Γ(v) = e−ηv and α = 1 and as such, it is known to
lead to a systematic decrease in the exclusive Kullback-Leibler divergence and to enjoy an O(1/N)
convergence rate under the assumptions that (7) holds and η ∈ (0, 1) [19, Theorem 3].

We have thus obtained that the Power Descent coincides exactly with the Entropic Mirror Descent
applied to Ψ1 when α = 1 and we now focus on understanding the links between Power Descent and
Entropic Mirror Descent when α ̸= 1. For this purpose, let κ be such that (α− 1)κ ⩾ 0 and let us
study first-order approximations of the Power Descent and of the Entropic Mirror Descent applied to
Ψα when bµn,α(θ) ≈ µn(bµn,α) for all θ ∈ T.

Letting η > 0 and following (6), we have that the update formula for the Power Descent is given by

µn+1(dθ) =
µn(dθ) [(α− 1)(bµn,α(θ) + κ) + 1]

η
1−α

µn([(α− 1)(bµn,α + κ) + 1]
η

1−α )
, n ∈ N⋆ ,

and using the first-order approximation u
η

1−α ≈ v
η

1−α − η
α−1v

η
1−α−1(u − v) with u =

(α−1)(bµn,α(θ)+κ)+1
(α−1)(µ(bµn,α)+κ)+1 and v = 1, we can deduce the following approximated update formula

µn+1(dθ) = µn(dθ)

[
1− η

α− 1

bµn,α(θ)− µn(bµn,α)

µn(bµn,α) + κ+ 1/(α− 1)

]
, n ∈ N⋆ .

In addition, the update formula for the Entropic Mirror Descent applied to Ψα can be written as

µn+1(dθ) =
µn(dθ) exp [−η(bµn,α(θ) + κ)]

µn(exp [−η(bµn,α + κ)])
, n ∈ N⋆ , (10)

and we obtain in a similar fashion that an approximated version of this iterative scheme is

µn+1(dθ) = µn(dθ) [1− η (bµn,α(θ)− µn(bµn,α))] , n ∈ N⋆ .

As is, the two approximated formulas above do not coincide. This leads us to modify (10) as follows

µn+1(dθ) =
µn(dθ) exp

[
−η

bµn,α(θ)
(α−1)(µn(bµn,α)+κ)+1

]
µn

(
exp

[
−η

bµn,α

(α−1)(µn(bµn,α)+κ)+1

]) , n ∈ N⋆ , (11)
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that is, it leads us to move from a constant learning rate η in (10) to an adaptive learning rate
η′ = η [(α− 1)(µn(bµn,α) + κ) + 1]

−1 in (11). While this change is subtle, a first remark is that
[19] only considered a constant learning rate when performing Entropic Mirror Descent steps applied
to Ψα, meaning that we are now deviating from the framework of [19]. A second remark is that
we can motivate (11) by observing that it can be seen as an Entropic Mirror Descent too, but this
time applied to the objective function defined for all measurable positive function p on (Y,Y), all
µ ∈ M1(T) and all α ∈ R \ {0, 1} by

ΨAR
α (µ; p) :=

1

α(α− 1)
log

(∫
Y

µk(y)αp(y)1−αν(dy) + (α− 1)κ

)
(see Appendix C.2 for the derivation of (11) based on the objective function ΨAR

α ). Since the function
ΨAR

α can be obtained by applying the increasing transformation

u 7→ 1

α(α− 1)
log

(
α(α− 1)u+ α+ (1− α)

∫
Y

p(y)ν(dy) + (α− 1)κ

)
to the objective function Ψα, this notably means that our novel Entropic Mirror Descent-based
update formula (11) will aim at solving the initial optimisation problem (5) defined in Section 2 (i.e.
minimising Ψα(µ; p) with µ ∈ M). In addition, when p = p(·,D), κ = 0 and α > 0 in ΨAR

α (µ; p),
we obtain that minimising ΨAR

α (µ; p) w.r.t µ is equivalent to setting q = µk and maximising the
Variational Rényi bound Lα(q;D) from [12] w.r.t µ, since for all probability density q,

Lα(q;D) :=
1

1− α
log

[
Eq

(
p(y,D)

q(y)

)1−α
]

.

As a result, we can classify the scheme (11) as a Rényi’s α-divergence gradient-based approach
[11, 12]. This is in contrast with the framework of [19], that is an α-divergence gradient-based
approach and for this reason we call the algorithm given by (11) the Rényi Descent.

We have thus obtained that the Entropic Mirror Descent applied to Ψα does not share the same
first-order approximation as the Power Descent, contrary to the newly-introduced Rényi Descent.
This might explain why the behavior of the Entropic Mirror Descent applied to Ψα and of the
Power Descent differed greatly when α < 1 in the numerical experiments from [19] (indeed, despite
their theoretical connection through the (α,Γ)-descent framework, the former performs poorly
numerically compared to the later as the dimension increases). This also sparks our interest in
studying convergence results for the Rényi Descent.

Strikingly, we can prove an O(1/N) convergence rate towards the global optimum for the Rényi
Descent. Letting κ′ ∈ R, denoting by DomAR

α an interval of R such that for all θ ∈ T and all
µ ∈ M1(T),

bµ,α(θ) + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1
+ κ′ and

µ(bµ,α) + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1
+ κ′ ∈ DomAR

α

and introducing the assumption on η

(A4) For all v ∈ DomAR
α , 1− η(α− 1)(v − κ′) ⩾ 0.

we indeed have the following convergence result.
Theorem 3. Assume (A1) and (A4). Let α ̸= 1 and let κ be such that (α − 1)κ > 0. Define
|B|∞,α := supθ∈T,µ∈M1(T) |bµ,α(θ) + 1/(α − 1)| and assume that |B|∞,α < ∞. Moreover, let
µ1 ∈ M1(T) be such that Ψα(µ1) < ∞. Then, the following assertions hold.

(i) The sequence (µn)n∈N⋆ defined by (11) is well-defined and the sequence (Ψα(µn))n∈N⋆ is
non-increasing.

(ii) For all N ∈ N⋆, we have

Ψα(µN )−Ψα(µ
⋆) ⩽

Lα,2

N

[
KL(µ⋆||µ1) + L

Lα,3

Lα,1(α− 1)κ
∆1

]
, (12)

where µ⋆ is such that Ψα(µ
⋆) = infζ∈M1,µ1

(T) Ψα(ζ), M1,µ1
(T) denotes the set of

probability measures dominated by µ1, KL(µ⋆||µ1) =
∫
T
log (dµ⋆/dµ1) dµ

⋆, ∆1 =
Ψα(µ1)−Ψα(µ

⋆) and L, Lα,1, Lα,2, Lα,3 are finite constants defined in (25).
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Table 1: Summary of the theoretical results obtained in this paper compared to [19]
Power Descent Rényi Descent

[19] α < 1: convergence under restrictive assumptions; not covered
α > 1: O(1/N) convergence rate

This paper α < 1: full proof of convergence for mixture weights; O(1/N)
extension to α = 1 convergence rate

The proof of this result is deferred to Appendix C.3 and we present in the next example an application
of this theorem to the particular case of mixture models.
Example 2. Let α ̸= 1, κ be such that (α − 1)κ > 0, J ∈ N⋆, Θ = (θ1, . . . , θJ) ∈ TJ , µ1 =

J−1
∑J

j=1 δθj and DomAR
α = [− |B|∞,α

(α−1)κ + κ′,
|B|∞,α

(α−1)κ + κ′] with κ′ ∈ R. In addition, assume that

1− η|κ|−1|B|∞,α > 0. Then, taking κ′ = −3
|B|∞,α

(α−1)κ , we obtain

Ψα(µN )−Ψα(µ
⋆) ⩽

|α− 1|(|B|∞,α + |κ|)
N

[
log J

η
+

√
2 log(J)|B|∞,α

(α− 1)κ(1− η|κ|−1|B|∞,α)

]
,

where we have used that KL(µ⋆||µ1) ⩽ log J , ∆1 ⩽
√
2 log J |B|∞,α and that the constants defined

in (25) satisfy Lα,2 = η−1|α− 1|(|B|∞,α + |κ|), L = η2eη
|B|∞,α
(α−1)κ

−ηκ′
, Lα,3 = eη

|B|∞,α
(α−1)κ

+ηκ′
and

Lα,1 = (1− η|κ|−1|B|∞,α)ηe
−η

|B|∞,α
(α−1)κ

−ηκ′
.

To put things into perspective, as an Entropic Mirror Descent algorithm, the Rényi Descent al-
ready enjoys an O(1/

√
N) convergence rate for the sequence (Ψα(N

−1
∑N

n=1 µn))N∈N⋆ under our
assumptions and when η is proportional to 1/

√
N , N being fixed (see [25] or [26, Theorem 4.2.]).

The improvement thus lies in the fact that deriving an O(1/N) convergence rate usually requires
stronger assumptions on Ψα [26, Theorem 6.2] that we do not need to assume in Theorem 3 thanks
to the specific form of Ψα. Furthermore, due to the monotonicity property, our result only involves
the measure µN at time N while typical Entropic Mirror Descent results are expressed in terms of
the average N−1

∑N
n=1 µn.

Finally, observe that the Rényi Descent becomes feasible in practice for any choice of kernel K by
letting µ be a weighted sum of Dirac measures i.e µ = µλ,Θ and by resorting to an unbiased estimate
of (bµ,α(θj))1⩽j⩽J (see Algorithm 4 of Appendix D.1 for details). The theoretical results we have
obtained are summarised in Table 1 and we next move on to numerical experiments.

5 Simulation study

The code for all the subsequent numerical experiments is available at https://github.com/
kdaudel/MixtureWeightsAlphaVI.

Let the target p be a mixture density of two d-dimensional Gaussian distributions multiplied by a
positive constant c such that p(y) = c× [0.5N (y;−sud, Id) + 0.5N (y; sud, Id)], where ud is the
d-dimensional vector whose coordinates are all equal to 1, s = 2, c = 2 and Id is the identity matrix.
Let Kh be a Gaussian transition kernel on T× Y with bandwidth h and let kh denote its associated
kernel density on T×Y. Let J ∈ N⋆ and recall the previously-defined notation µλ,Θ =

∑J
j=1 λjδθj

with λ ∈ SJ and Θ ∈ TJ . We consider the variational family described by

Q =

y 7→ µλ,Θkh(y) =

J∑
j=1

λjkh(y − θj) : λ ∈ SJ ,Θ ∈ TJ

 .

Following the reasoning of [19], since the Power Descent and the Rényi Descent operate only on the
mixture weights λ of µλ,Θkh during the optimisation, a fully adaptive algorithm can be obtained by
alternating T times between an Exploitation step where the mixture weights are optimised and an
Exploration step where the mixture components parameters are updated, as written in Algorithm 2.
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Algorithm 2: Complete Exploitation-Exploration Algorithm
Input: p: measurable positive function, α: α-divergence parameter, q0: initial sampler, Kh:
Gaussian transition kernel, T : total number of iterations, J : dimension of the parameter set.

Output: Optimised weights λ and parameter set Θ.
Draw θ1,1, . . . , θJ,1 from q0.
for t = 1 . . . T do

Exploitation step : Set Θ = {θ1,t, . . . , θJ,t}. Perform the Power Descent or the Rényi
Descent algorithm and obtain the optimised mixture weights λ.
Exploration step : Perform any Exploration step of our choice and obtain
θ1,t+1, . . . , θJ,t+1.

Many choices of Exploration steps can be envisioned in Algorithm 2. We first consider the Exploration
step used in [19]: h ∝ J−1/(4+d) and the particles are updated by i.i.d sampling according to µλ,Θkh.
Since the Entropic Mirror Descent applied to Ψα is known to break down when d = 16 for this
Exploration step [19], this case is a good starting point in order to investigate if the novel Rényi
Descent is a suitable alternative to the Entropic Mirror Descent applied Ψα as d increases.

More precisely, at each time t = 1 . . . T , we perform N transitions of either the Power Descent
or the Rényi Descent according to Algorithm 3 and 4 of the appendix, in which the initial weights
are set to be [1/J, . . . , 1/J ], η = η0/

√
N with η0 > 0 and M samples are used in the estimation

of (bµλ,Θ,α(θj,t))1⩽J at each iteration n = 1 . . . N . We take J = 100, M ∈ {100, 1000, 2000},
α = 0.5, κ = 0, η0 = 0.3 and q0 is a centered normal distribution with covariance matrix 5Id. We
let T = 10, N = 20 and we replicate the experiment 100 times independently for each algorithm.

The convergence is assessed using Monte Carlo estimates of the Variational Rényi bound from [12].
The results for the Power Descent and the Rényi Descent are displayed on Figure 1, in which the
Entropic Mirror Descent applied to Ψα is added as a reference (and additonnal plots in dimension
d < 16 are provided in Appendix D.2 for the sake of completeness).

Figure 1: Plotted is the average Variational Rényi bound for the Power Descent (PD), the Rényi
Descent (RD) and the Entropic Mirror Descent applied to Ψα (EMD) in dimension d = 16 computed
over 100 replicates with η0 = 0.3 and α = 0.5 and an increasing number of samples M .

We then observe that the Rényi Descent is indeed better-behaved compared to the Entropic Mirror
Descent applied to Ψα. Furthermore, it matches the performances of the Power Descent as M
increases in our numerical experiment, which illustrates the link between the two algorithms we have
established in the previous section.

Note that the Exploration step considered in [19] does not optimise over Θ. In an SMC fashion, it
indeed resamples in the interesting regions for Θ (selection) and then applies a Gaussian pertubation
(mutation). While we are not trying to discriminate between various choices of Exploration steps in
this paper, an important remark is that the choice of the Exploration step in Algorithm 2 will become
increasingly important as the dimension increases. For this reason, we have outlined in Appendix
D.3 some potentially suitable Exploration steps that optimise over Θ.

In particular, we also ran our numerical experiments with the Exploration step from Appendix D.3.2.
The plots for d = 16 are available in Appendix D.3.2 and we present below the plots for the higher-
dimensional setting where d = 100. We observe that the Rényi Descent and the Power Descent do
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not break down as we increase the dimension up to d = 100 and that they share a similar behavior,
which reinforces our conclusions.

Figure 2: Plotted is the average Variational Rényi bound for the Power Descent (PD) and the Rényi
Descent (RD) in dimension d = 100 computed over 100 replicates with the Exploration Step from
Appendix D.3.2, η0 = 0.3 and α = 0.5 and an increasing number of samples M .

Discussion From a theoretical standpoint, no convergence rate is yet available for the Power Descent
algorithm when α < 1. An advantage of the novel Rényi Descent algorithm is then that while being
close to the Power Descent, it also benefits from the Entropic Mirror Descent optimisation literature so
that O(1/

√
N) convergence rates hold, which we have been able to improve to O(1/N) convergence

rates.

A practical use of the Power Descent and of the Rényi Descent algorithms requires approximations to
handle intractable integrals appearing in the update formulas. As such, the Power Descent applies the
function Γ(v) = [(α−1)v+1]η/(1−α) to an unbiased estimator of the translated gradient bµ,α(θ)+κ
before renormalising, while the the Rényi Descent applies the Entropic Mirror Descent function
Γ(v) = e−ηv to a biased estimator of bµn,α(θ)/(µn(bµn,α) + κ+ 1/(α− 1)) before renormalising.

Finding which approach is most suitable between biased and unbiased α-divergence minimisation
is still an open issue in the literature, both theoretically and empirically [17, 18, 21]. Due to the
exponentiation, considering the α-divergence instead of Rényi’s α-divergence has for example been
said to lead to high-variance gradients [13, 12] and low Signal-to-Noise ratio when α ̸= 0 [18] during
the stochastic gradient descent optimisation.

In that regard, our work sheds light on additional links between unbiased and biased α-divergence
methods beyond the framework of stochastic gradient descent algorithms, as both the unbiased Power
Descent and the biased Rényi Descent share the same first-order approximation.

Our work also contributes towards deriving convergence results of variational objective functions,
which is an active area of research [5, 27, 28, 29, 30]. The particularity of our results is then that, in
line with the research work started in [19], we focus on mixture weights gradient-based updates in the
optimisation procedures, that are carried out via α-divergence minimisation and for general choices
of kernel K. Compared to [19], we also bring into play Rényi’s α-divergence-based types of updates,
which is a novel idea when it comes to mixture weights optimisation by α-divergence minimisation.

6 Conclusion

We investigated algorithms that can be used to perform mixture weights optimisation for α-divergence
minimisation regardless of how the mixture components parameters are obtained. We have established
the full proof of the convergence of the Power Descent algorithm in the case α < 1 when we consider
mixture models and bridged the gap with the case α = 1. We also introduced a closely-related
algorithm called the Rényi Descent. We proved it enjoys an O(1/N) convergence rate and illustrated
in practice the proximity between these two algorithms.

Further work could include establishing theoretical results regarding the stochastic version of these
two algorithms, as well as providing complementary empirical results comparing the performances
of the unbiased α-divergence-based Power Descent algorithm to those of the biased Rényi’s α-
divergence-based Rényi Descent. Since our contributions are mainly theoretical, we believe these
will not result in any negative societal impacts.
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