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Abstract
Simulation modeling offers a flexible approach
to constructing high-fidelity synthetic represen-
tations of complex real-world systems. How-
ever, the increased complexity of such models
introduces additional complications, for example
when carrying out statistical inference procedures.
This has motivated a large and growing litera-
ture on likelihood-free or simulation-based infer-
ence methods, which approximate (e.g., Bayesian)
inference without assuming access to the simu-
lator’s intractable likelihood function. A hith-
erto neglected problem in the simulation-based
Bayesian inference literature is the challenge of
constructing minimally informative reference pri-
ors for complex simulation models. Such priors
maximise an expected Kullback-Leibler distance
from the prior to the posterior, thereby influencing
posterior inferences minimally and enabling an
“objective” approach to Bayesian inference that
does not necessitate the incorporation of strong
subjective prior beliefs. In this paper, we propose
and test a selection of likelihood-free methods for
learning reference priors for simulation models,
using variational approximations to these priors
and a variety of mutual information estimators.
Our experiments demonstrate that good approxi-
mations to reference priors for simulation models
are in this way attainable, providing a first step
towards the development of likelihood-free objec-
tive Bayesian inference procedures.

1. Introduction
Simulation models have played a crucial role across diverse
scientific disciplines, offering a powerful framework for
understanding complex systems. From epidemiology (Kerr

*Equal contribution 1University of Oxford. Correspon-
dence to: Nicholas Bishop <nicholas.bishop@cs.ox.ac.uk>,
Daniel Jarne Ornia <daniel.jarneornia@cs.ox.ac.uk>, Joel Dyer
<joel.dyer@cs.ox.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

et al., 2021) to economics (Wiese et al., 2024; Dyer et al.,
2024a) and robotics (Todorov et al., 2012), these models can
be used to explore intricate dynamics, test hypotheses, and
make predictions about real-world phenomena. However,
these models often lack an analytically tractable likelihood
function for the outputs they produce. This intractability
prevents the direct application of classical statistical infer-
ence methods. For this reason, a set of simulation-based
inference (SBI) techniques has emerged, including Approxi-
mate Bayesian Computation (Beaumont, 2019) and modern
methods based on density and density ratio estimation (see,
e.g., Thomas et al., 2016; Papamakarios & Murray, 2016;
Hermans et al., 2020; Greenberg et al., 2019). These meth-
ods approximate common statistical inference procedures
using only the ability to simulate from the simulator, rather
than the ability to evaluate the model’s likelihood function.

Given a simulator with implicit density pθ, a prior distribu-
tion π over model parameters θ ∈ Θ ⊆ Rd, and observed iid
data x1:n := (x1, . . . , xn), xi ∈ X , the goal of simulation-
based Bayesian inference methods, is to approximate the
posterior distribution given by Bayes’s theorem:

πx1:n(θ) ∝ pθ(x1:n)π(θ). (1)

The prior, π, is intended to encapsulate pre-existing knowl-
edge or beliefs about the plausible parameter values, while
πx1:n

encapsulates the updated beliefs about plausible val-
ues for θ. However, in many practical scenarios, strong prior
information regarding likely values for the model param-
eters may be unavailable or unreliable. Even when prior
beliefs exist and can be readily expressed in the form of a
prior distribution, they may not be confidently held, or the
modeller might fear that they are unduly influencing the re-
sults of their Bayesian analyses by incorporating strong prior
beliefs into π. The modeller may therefore wish to carry out
Bayesian inference in a way that minimises the influence
of their own prior beliefs on the resulting inferences, and
determine what posterior beliefs would arise when minimal
prior information is encoded into the inference procedure.

Such considerations have motivated the development of
objective Bayesian methods, which offer a principled ap-
proach to constructing priors that are minimally informative
and, correspondingly, posteriors that are maximally data-
driven. This has often been solved through reference priors
(Bernardo, 1979; Berger & Yang, 1994; Bernardo, 1997;
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Berger et al., 2009), defined to be a prior distribution π∗,
within some class Π of distributions on Θ, that maximizes
the expected information gain from the data and minimises
the influence of the prior on the posterior:

π∗
n = argmax

π∈Π
E θ∼π
x1:n∼pθ

[
log

πx1:n
(θ)

π(θ)

]
. (2)

The right-hand side of Equation (2) can be recognised as
the mutual information Iπ(x1:n, θ) between x1:n and θ ∼ π.
Such reference priors (RPs) have additional desirable prop-
erties, such as invariance under reparameterization, good fre-
quentist coverage (Consonni et al., 2018), and they asymp-
totically achieve the minimax entropy risk when Π is the
class of continuous priors on Θ (Clarke & Barron, 1994).

Solving Equation (2) is, however, difficult except for in the
simplest of cases. As described above, it is generally not
the case that the model’s likelihood function is tractable,
let alone the mutual information (MI) between the model’s
parameter and output. Identifying a prior π∗

n that solves
Equation (2) for a given simulator is therefore challenging.

In this paper, we address this problem by proposing and
testing a selection of likelihood-free approaches to learning
RPs for implicit simulation models. A subset of these ap-
proaches allow for the simulator to be differentiable, while
others address the case of non-differentiable simulators. To
learn these RPs, we leverage recent advances in informa-
tion theory and machine learning to estimate and maximise
Iπ(x1:n, θ). Specifically, we consider both non-parametric
entropy estimators, such as the Kozachenko-Leonenko es-
timator (Kozachenko & Leonenko, 1987; Kraskov et al.,
2004), and more recent powerful neural MI estimators (Oord
et al., 2018; Song & Ermon, 2020; Letizia et al., 2023).
By maximizing the estimated MI, we approximate the RP
without requiring explicit access to the likelihood function
or the MI between θ and x1:n. Through experiments, we
demonstrate the effectiveness of our approach and compare
methods across a series of benchmarks, showcasing their
potential for enabling objective Bayesian inference in simu-
lation modelling.

2. Background
2.1. Reference Priors

Reference priors (RPs) were introduced in Bernardo (1979)
as an approach to designing prior distributions representing
a vague initial state of knowledge. Such priors aim to be
minimally informative about the parameter θ, in the sense of
maximising the missing information to be gained from the
data. This can be seen more explicitly by rewriting Equation
(2) as a difference between the prior and posterior entropies:

π∗
n = argmax

π
Hπ [θ]− Ex1:n∼mπ

Hπx1:n
[θ] , (3)

where Hπ [θ] = Eθ∼π [− log π(θ)] is the entropy of θ when
generated from π and

mπ(x1:n) = Eθ∼π [pθ(x1:n)] (4)

is the marginal likelihood associated with prior π. Equation
(3) makes it apparent that RPs aim to maximise the initial
uncertainty in the prior while minimising, in expectation,
the posterior uncertainty.

By specifying a maximally vague initial state of knowledge,
RPs provide a useful tool for conducting prior sensitivity
analysis: they provide the modeller with a way to assess
what posterior inferences would ensue when those infer-
ences are dominated by the observed data, rather than by
the modeller’s own subjective prior (Bernardo, 1997). In
this way, the modeller can assess the relative influence of
their own subjective prior on the final inference.

It is typical (Bernardo, 1979; Berger & Bernardo, 1992;
Lafferty & Wasserman, 2001) to distinguish between the
n-reference prior, defined by Equation (2) for finite n, and
the reference prior, defined to be

π∗(θ) = lim
n→∞

π∗
n(θ)

π∗
n(θ0)

, (5)

where θ0 ∈ Θ is an arbitrary reference value for θ for which
π∗
n(θ0) > 0 for all n. This latter definition provides instead

a measure of the total information that is missing about the
value of θ, while circumventing issues resulting from the
fact that Iπ(x1:n, θ) often diverges with infinite data.

A known result in the objective1 prior literature is that n-
reference priors are often only supported on a finite, discrete
set of atoms in Θ (Berger et al., 1988; Zhang, 1994). This
restriction can be undesirable, and in conflict with the aim
for a minimally informative prior. To counteract this, it is
sometimes preferred to consider only continuous, positive
priors that maximise the objective in Equation (2) (Nalis-
nick & Smyth, 2017); we will assume this approach when
describing the methods under consideration in Section 4.

A further motivation for restricting attention to continu-
ous priors that solve Equation (2) is provided by Bernardo
(1979); Clarke & Barron (1994). Here, it is established
that – asymptotically (i.e., as n→∞) and under regularity
conditions (such as asymptotic Normality of the posterior
distribution; see Clarke & Barron (1994) for details) – Jef-
freys’ prior, which has density

πJ(θ) ∝ (det(F(θ)))1/2 (6)

1The term “objective” has been historically adopted for meth-
ods giving rise to “minimally informative” priors, according to
different definitions of “minimally informative”. We use this term
to align with existing literature, but note that “objective” is in some
senses a problematic term; see, e.g., Bernardo (1997).
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is a solution, and is the unique solution among continuous
positive priors. Here, F(θ) is the Fisher information matrix

F(θ) = Ex1:n∼pθ [∇θ log pθ(x1:n)⊗∇θ log pθ(x1:n)]

with determinant det(F(θ)), and⊗ denotes an outer product.
Clarke & Barron (1994) prove that the continuous positive
prior asymptotically solving Equation (2) – i.e., Jeffreys’
prior, Equation (6) – induces a marginal likelihood function
mπJ

that asymptotically minimises the largest distance be-
tween the spaceMn of all densities on Xn and members
of the model family {pθ : θ ∈ Θ}; that is, as n→∞,

mπJ
= arg inf

m∈Mn

{
sup
θ∈Θ

Ex1:n∼pθ

[
log

pθ(x1:n)

m(x1:n)

]}
. (7)

That is, asymptotically, RPs identified in the space of contin-
uous positive distributions also satisfy the alternative notion
of uninformativeness captured by (7).

2.2. Simulation-based Inference

Approximate, simulation-based inference (SBI) procedures
for performing parameter inference for complex models
have been in development for multiple decades. Beginning
with approaches such as Approximate Bayesian Computa-
tion (Diggle & Gratton, 1984; Pritchard et al., 1999; Beau-
mont, 2019; Dyer et al., 2024b) and synthetic likelihood
(Wood, 2010) methods, the past decade has seen multi-
ple innovations in SBI methods from the machine learning
community, such as through the use of neural density (e.g.,
Papamakarios & Murray, 2016; Greenberg et al., 2019) or
density ratio (e.g., Thomas et al., 2016; Hermans et al.,
2020) estimation techniques. This literature has, however,
primarily focused on the problem of estimating the poste-
rior density for a given prior and simulator, rather than on
the problem of finding priors with different properties of
interest. Our work addresses this gap.

3. Related Work
Early work on RPs have proposed procedures for pointwise
estimation or generating samples via, e.g., Markov chain
Monte Carlo (MCMC). An example of the former is Algo-
rithm 1 of Berger et al. (2009), which exploits the following
form of π∗ as obtained through a calculus of variations
argument (Bernardo, 1979; Berger & Bernardo, 1992):

π∗(θ) ∝ exp (Ex1:n∼pθ [log πx1:n
(θ)]) . (8)

The posterior appearing in the exponent on the right-hand
side of this expression is typically taken to be the limiting
posterior as n → ∞, which is (under certain regularity
conditions, see Van der Vaart (2000)) independent of the
(continuous, positive) prior that generates it. Berger et al.

(2009) then propose to evaluate the right-hand side of Equa-
tion (8), which we denote below with π̃∗, pointwise using
Mote Carlo estimates of the expectations in Equation (8)
and an arbitrary positive prior c : Θ→ R+:

π̃∗(θ) ≈ exp

(
1

R

R∑
r=1

log
pθ(x

(r)
1:n)c(θ)

1
L

∑L
l=1 pθ(l)(x

(r)
1:n)

)
, (9)

with x(r)1:n ∼ pθ, θ(l) ∼ c, and n large. In contrast, Figure
1 of Lafferty & Wasserman (2001), describes an iterative
MCMC algorithm inspired by the Blahut-Arimoto algorithm
(Blahut, 1972; Arimoto, 1972) for sampling from a model’s
RP. In each of these procedures, knowledge of and the abil-
ity to easily calculate (exactly or numerically) the likelihood
function corresponding to the model under consideration
is assumed. More recent and more closely related work by
Nalisnick & Smyth (2017) consider the problem of learning
variational approximations to RPs, once again by assum-
ing knowledge and tractability of the likelihood function
associated with the model. Gao et al. (2022) consider how
n-reference priors can be used to pre-train deep neural net-
works in classification settings. In contrast to these prior
works, we do not assume that the modeller enjoys access
to the likelihood function associated with their simulator,
expanding the scope of the literature on objective priors in
Bayesian inference to the case of likelihood-free simulation
models that are either differentiable or non-differentiable.

4. Methods
In this section, we provide details on the methods we pro-
pose and test for learning (n-)reference priors in likelihood-
free settings for simulation models. Each of the methods we
consider entails optimising a (lower bound on a )n estimate
Î for the MI between x1:n and θ. The main structure of the
optimisation loop is shown diagrammatically in Figure 1.

Throughout, we assume the use of a parameterised varia-
tional family Π := {πϕ | ϕ ∈ Φ} of proper priors (see
Appendix A.1) with tractable density function, such as nor-
malising flows (Rezende & Mohamed, 2015). We will at
times omit the dependence on ϕ for ease of notation. Such
continuous approximations to (n-)reference priors can be ad-
vantageous, as discussed in Section 2.1. Further, by chang-
ing the number n of independent replications of the simula-
tor output, the modeller can decide whether to approximate
an n-reference prior for smaller values of n, or approximate
the RP (5) by taking larger n.

We also assume that data samples x1:n are generated from a
simulator with implicit likelihood function pθ that is depen-
dent on parameters θ. By sequentially sampling parameters
θ ∼ π and data x1:n ∼ pθ we can construct a dataset
Dϕ = (x

(r)
1:n, θ

(r))r=1,...,R generated from the joint distribu-
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Flow πϕϕ θ Simulator pθ x1, . . . , xn

Encoder sφsφ(x1, . . . , xn)
MI

EstimatorÎ

Figure 1. A schematic of the overall pipeline for our methods.

tion (x1:n, θ) ∼ hπ , where

hπ(x1:n, θ) = pθ(x1:n)π(θ) (10)

is the joint distribution of (x1:n, θ) under prior π, and dis-
card the θ(r) to produce samples from mπ .

4.1. Difference of Entropy Estimators

From the definition of MI between model parameters and
outputs, we obtain the following equivalent expressions (see
Appendix A.2):

Iπ(x1:n, θ) = Hπ[θ]− Ex1:n∼mπ
Hπx1:n

[θ] (11)

= Hπ[θ] +Hmπ
[x1:n]−Hhπ

[x1:n, θ]. (12)

As one of the main approaches, we consider a set of methods
that rely on estimating MI through a difference of entropy re-
lation, either through estimating the entropy of the prior and
the posterior (11), or through estimating the prior, marginal
and joint entropies (12). The problem of estimating (and
maximising) MI now becomes a problem of effectively esti-
mating the entropy of these different distributions.

Given that we have assumed a variational prior family with
tractable density π(θ), the first term in equations (11) and
(12) can be directly estimated without bias through a Monte-
Carlo entropy estimate for B prior samples:

Ĥπ[θ] = −
1

B

B∑
b=1

log π(θ(b)). (13)

Then, to estimate the terms Ex1:n∼mπ
Hπx1:n

[θ], Hmπ
[x1:n]

and Hhπ
[x1:n, θ] in likelihood free SBI settings there ex-

ist different parametric (Pichler et al., 2022) and non-
parametric (Kraskov et al., 2004) approaches. In a non-
parametric approach, we can follow Jarne Ornia et al. (2024)
and exploit the differentiability of entropy estimators (e.g.,
the Kozachenko-Leonenko estimator, Kozachenko & Leo-
nenko (1987)) and of differentiable simulators to propagate
gradients backwards from outputs to prior; a parametric
approach would instead construct density estimates of the
corresponding distributions and compute the entropy di-
rectly. We propose the use of a parametric estimator in the
interest of stability and flexibility2.

2Non-parametric, sample based entropy estimators are usually
high variance and numerically unstable (Bonachela et al., 2008).

4.1.1. GENERATIVE ENTROPY DIFFERENCE ESTIMATOR

Making use of (11), we devise an approach for estimating
the mutual information. Recall that we can obtain estimates
Ĥπ[θ] directly from (13). Therefore, it only remains to find
an estimate for Ex1:n∼mπ

Hπx1:n
[θ]. Taking inspiration from

Pichler et al. (2022), a practical approach is to construct pa-
rameterised estimators for the conditional distribution πx1:n

,
denoted as π̂ψx1:n

(for parameters ψ ∈ Ψ), and use these to
directly estimate this term using Monte Carlo sampling as in
(13). Pichler et al. (2022) propose doing so by assuming the
parameters ψ to be a function of the conditioning variable
(the observed data). This yields the estimator:

Îψ,ϕ(Dϕ) = Ĥπ[θ] +
1

B

B∑
b=1

log π̂ψ
x
(b)
1:n

(θ(b)). (14)

An important caveat is that in our case, the data marginal
mπ depends on a prior π that changes iteratively (as the
parameters ϕ evolve). Then, such an approach would entail
repeating the following iteratively: (1) For the current prior
π, sample Dϕ from hπ. (2) Build the estimator π̂ψx1:n

. (3)
Compute Îψ,ϕ(Dϕ). (4) Update ϕ by SGD on∇ϕÎψ,ϕ(Dϕ).

Step 2 above requires possibly learning a new estimator
each time we update ϕ, which can be sampling and com-
putationally inefficient. Instead, we adopt a two time-scale
approach (Borkar, 1997). We consider the prior π and the
estimator π̂x1:n

to pertain to the same parameterised model
class (particularly, a normalizing flow). We then update the
conditional density estimator π̂x1:n with a faster learning
rate3 than the prior π.

MI Estimator: Generative Entropy Difference (GED)
Therefore, to learn a RP using a parametric MI estimator,
we propose defining π and π̂x1:n to belong to some param-
eterised class of conditional density estimators, and use
Îψ,ϕ(Dϕ) (14) as an estimate of the MI. We then update
both π̂x1:n

at each iteration through maximum likelihood
on the sampled data, and π through SGD on the MI estima-
tor, with a slower learning rate. For further implementation
details, see Appendix B.6.

4.2. Variational Lower Bound Estimators

When the simulator is differentiable, we may also exploit
variational lower bounds on the mutual information to learn
an approximate RP. A wide range of variational lower

3The formal two time-scale argument by Borkar (1997) requires
learning rates α(t) and β(t) decay to zero for t → ∞, to have infi-
nite sum and finite sum of squares. Then, for the resulting stochas-
tic approximation to guarantee convergence, limt→∞

α(t)
β(t)

= 0

must hold. We instead adopt an approximated argument, and
choose fixed β ≫ α. This proved sufficient to learn the RPs
correctly. See appendix for further details.
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bounds have been proposed in the literature (see Poole
et al. (2019) for a thorough overview). Many such bounds
rely on the following variational characterization of the
KL-divergence (Donsker & Varadhan, 1975) between two
distributions P and Q:

DKL(P∥Q) = sup
T∈L∞

EP [T ]− logEQ[eT ], (15)

where L∞ is the space of essentially bounded measurable
functions. In particular, Belghazi et al. (2018) exploit Equa-
tion (15) by proposing MINE, which parameterises T with
a neural network (commonly referred to as a critic) so that
a reasonably tight lower bound on the MI can be learned via
stochastic gradient ascent. Due to the second term of Equa-
tion (15), which corresponds to the log-partition function of
Q, MINE suffers from high variance, especially when the
MI is large (Song & Ermon, 2020; McAllester & Stratos,
2020). To mitigate this issue, Song & Ermon (2020) pro-
pose SMILE, which clips empirical approximations of the
log-parition function to lie in the range [−τ, τ ], where τ > 0
is a hyperparameter controlling the bias-variance trade-off
associated with truncating the log-partition function.

In the context of contrastive predictive coding, the InfoNCE
objective was proposed by Oord et al. (2018) for the purpose
of density ratio estimation:

sup
T

EPn(X,Y )

[
1

n

n∑
i=1

log
T (xi, yi)

1
n

∑
j ̸=i T (xi, yj)

]
. (16)

Oord et al. (2018) observes that InfoNCE implicitly max-
imises a variational lower bound on the MI. Song & Ermon
(2020) further show that MI estimation methods derived
from the Barber-Akov inequality (Barber & Agakov, 2003)
may be reformulated as an optimization over density ratios.
That is, from an estimate of the density ratio one may esti-
mate MI and, by optimising a variational lower bound on
the MI, one obtains an estimate of the density ratio.

Given a variational lower bound on the MI, we may jointly
train a critic T and a variational prior to learn a RP. The
variational family is responsible for producing a prior that
induces high MI between x1:n and θ by maximising the
variational lower bound. Meanwhile, the critic is tasked
with keeping the variational lower bound tight so that the
variational family has a good approximation of the MI to
benchmark against. Both networks may be simultaneously
updated via stochastic gradient ascent. For instance, using
InfoNCE, a critic Tµ with parameters µ, and a flow πϕ we
may proceed as follows:

1. Sample Dϕ ∼ hϕ.

2. Compute the variational lower bound using critic Tµ:

Îϕ,µ(Dϕ) =
1

B

B∑
b=1

log
Tµ(x

(b)
1:n, θ

(b))
1
B

∑
a̸=b Tµ(x

(b)
1:n, θ

(a))
.

3. Update the parameters ϕ and µ via stochastic gradient
ascent using∇ϕ,µÎϕ,µ(Dϕ).

The procedure outlined above relies on differentiability of
the simulator, as gradients must backpropagate through the
critic and then the simulator before reaching the variational
prior. We show in experiments that this requirement, while
apparently stringent, can be reliably circumvented using
surrogate gradients (Blondel & Roulet, 2024).

Additionally, note that the critic and the variational prior are
updated simultaneously. As a result, the critic is optimizing
a non-stationary objective. If the variational prior changes
too rapidly the MI estimate provided by the critic may de-
grade, in turn causing the performance of the variational
prior to degrade. In practice, we stabilize training through a
two time-scale scheme, as described in Section 4.1.

In experiments, we adopt both SMILE and InfoNCE as vari-
ational objectives, for several reasons. Many real-world
simulators produce high dimensional outputs such as time
series, leading to the possibility of high variance. SMILE
is naturally suited to this setting due to the hyperparame-
ter τ that enables explicit management of the bias-variance
trade-off. Meanwhile, InfoNCE typically exhibits low vari-
ance, since the optimal critic does not depend on batch size
(Poole et al., 2019). This property is especially important
for expensive simulators, since only smaller batch sizes can
be used under limited simulation budgets.

4.3. Performing Simulation-based Inference

It is worthwhile highlighting that, with each of the methods
described in the previous subsections, the ability to perform
SBI for the implicit model and learned RP π̂∗ comes at no
further training cost. In the case of GED, the method entails
the construction of an amortised (in x1:n) estimator π̂ψx1:n

(θ)
for the posterior density θ that results from the use of the
learned prior π̂∗ in Bayes’s theorem, which can be imme-
diately reused to generate samples from π̂ψx1:n

through, for
example, Markov chain Monte Carlo (MCMC) or forward
passage through the network defining the normalising flow
model. Similarly, in the case of the approaches outlined
in Section 4.2, which are based on optimising a variational
lower bound to the mutual information between x1:n and
θ, the learned discriminators T̂ estimate a function w of
the density ratio hπ̂∗(x1:n, θ)/mπ̂∗(x1:n)π̂

∗(θ). (For exam-
ple, in the case of SMILE, w is the identity.) Since we
have assumed that the variational RP density π̂∗ is tractable
through the use of, for example, a normalising flow model
for the variational family, estimates log π̂∗

x1:n
(θ) of the log-

posterior density log π∗
x1:n

(θ) resulting from the use of the
true RP π∗ may then be obtained as

log π̂∗
x1:n

(θ) = logw−1(T̂ (x1:n, θ)) + log π̂∗(θ). (17)
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(a) Gaussian Scale Model (b) Exponential Model (c) Triangular Model (d) AR(1) Model

Figure 2. Comparison of proposed methods for learning reference priors on tractable models.

Equation (17) can then be used in, e.g., an MCMC procedure
to generate samples from the posterior π̂∗

x1:n
. In both cases,

Bayesian SBI can immediately be performed with no further
training of density ratio or posterior estimators.

5. Experiments
Here, we present a series of experiments4 to assess the RP-
learning methods described in Section 4. In the first instance,
we consider their ability to recover the RPs for a collection
of simulators with known RPs, before considering more
complex simulation models whose RPs are unknown.

5.1. Tractable Examples

5.1.1. MODEL OVERVIEWS

Gaussian Scale Model. The first tractable example we
consider simulates Gaussian random variables. For this
model, n samples are generated iid from N (µ, σ2) as
xt = µ + θut, with ut ∼ N (0, 1), and where µ ∈ R is
known, θ > 0 is a free parameter, andN (a, b2) is a Normal
distribution with mean a and variance b2. Here, the RP
(Yang & Berger, 1996) for θ is π∗(θ) ∝ 1/θ.

Exponential Rate Model. We next consider an Exponen-
tial model, whose generative process is as follows: for t =
1, . . . , n, we generate random variables xt from an Exp(θ)
density as xt = − log (1− ut) /θ, where ut ∼ U(0, 1),
θ > 0 is a parameter, and U(a, b) is a uniform distribution
on [a, b]. As with the Gaussian scale model, the RP for θ is
known (Yang & Berger, 1996) to be π∗(θ) ∝ 1/θ.

Triangular Model. In this example, we generate random
variables from a Triangular distribution on [0, 1]. Here, iid
data is generated for t = 1, . . . , n as

xt = I [ut ≤ θ]
√
θ · ut

+ (1− I [ut ≤ θ])
(
1−

√
(1− ut) (1− θ)

)
,

(18)

4Code available at https://github.com/
joelnmdyer/lf_reference_priors.

where θ ∈ (0, 1) is a free parameter and ut ∼ U(0, 1) is
a random variable distributed uniformly on [0, 1]. While
the RP for θ in this model is not available analytically, it
is known (Berger et al., 2009) to be approximated well by
a Beta(1/2, 1/2) distribution. Additionally, although the
derivative of xt with respect to θ for fixed ut is 0 almost ev-
erywhere when defined in the usual sense, we may nonethe-
less define an approximate surrogate gradient through, e.g.,
the straight-through gradient trick (Bengio et al., 2013) in
order to backpropagate through xt. In this way, we may con-
tinue to apply the methods described in Section 4.2, which
require a differentiable simulator.

Autoregressive Time-series Model. Finally, we consider
the standard autoregressive time-series model of order 1
(AR(1)). Using ut ∼ N (0, 1), t = 1, . . . , n, this model
generates a time-series x1, . . . , xn as

x1 = σu1, and xt = θxt−1+σut for t = 2, . . . , n, (19)

where σ > 0 is fixed and θ ∈ [−1, 1] is a free parameter. It
can be shown (Berger & Yang, 1994) that the corresponding
RP for θ ∈ [−1, 1] is π∗(θ) ∝

(
1− θ2

)−1/2
.

5.1.2. RESULTS

Figure 2 shows the obtained RPs for each method in Section
4 alongside their ground-truth counterparts. Each prior is
generated from N = 104 samples and building a histogram
(with fixed number of 30 bins). In general, the GED and
variational lower bound (VLB) methods obtain accurate
approximations of the ground truth RPs. However, bigger
discrepancies can be observed especially near asymptotic
parameter limits: both the Gaussian and Exponential models
have asymptotic densities at θ = 0, the AR(1) model has
asymptotes at θ ∈ {−1, 1} and the Triangular model at
θ ∈ {0, 1}. These asymptotes are in general difficult to
reproduce for generative models; for example, we see that
InfoNCE and SMILE slightly overestimate densities close
to the boundaries in Figure 2c. However, the proposed
architecture of bounded generative flows are overall able to
reconstruct these densities and approximate the true priors
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Table 1. Performance metrics (mean [standard deviation] from 5 repeats) for different prior methods. Bold indicates best performance.

WASSERSTEIN C2ST
TASK NUMERICAL INFONCE SMILE GED NUMERICAL INFONCE SMILE GED

GAUSS. 6.95 [0.64] 7.08 [0.56] 6.77 [0.53] 1.66 [0.20] 0.90 [0.01] 0.62 [<0.005] 0.63 [0.01] 0.49 [0.01]
EXP. 4.25 [0.39] 2.43 [0.61] 3.83 [0.75] 2.04 [0.32] 0.91 [0.01] 0.58 [0.04] 0.61 [0.02] 0.59 [0.06]
TRI. 0.08 [0.01] 0.04 [<0.005] 0.05 [0.01] 0.02 [0.01] 0.64 [0.01] 0.54 [0.02] 0.55 [0.02] 0.51 [0.02]
AR(1) 0.14 [0.01] 0.06 [0.02] 0.05 [0.03] 0.06 [0.02] 0.62 [0.01] 0.50 [0.02] 0.50 [0.01] 0.51 [0.01]

relatively accurately.

To provide a quantitative analysis, we compare each learned
prior to the corresponding ground truth RP using two com-
mon metrics in the SBI literature: the Wasserstein distance
and a classifier two-sample test (C2ST) (Lueckmann et al.,
2021). Lower values are preferred in both cases, and indi-
cate closer match to the ground truth RP. As a baseline, we
use the numerical method described in Berger et al. (2009),
which generates pointwise evaluations of the unnormalised
RP using (9). Full results are provided in Table 1. From this
we see that, for the Exponential, Triangular, and AR(1) mod-
els, all of our proposed methods perform consistently well.
Indeed, each outperforms the numerical method from Berger
et al. (2009) according to both metrics. For the Gaussian
Scale model, InfoNCE marginally underperforms compared
to this numerical method in terms of the Wasserstein dis-
tance to the true RP; this is likely due to the difficulties of
capturing asymptotic behaviour with proper densities.

5.2. Complex Examples

5.2.1. SIMPLE LIKELIHOOD, COMPLEX POSTERIOR

We next consider the popular SBI benchmark task SLCP-
D (Lueckmann et al., 2021), based on the experiment first
introduced by Papamakarios et al. (2019). This simulator
has 5 parameters, θ = (θ1, . . . , θ5), taking values in Θ =
[−3, 3]5 and parameterising the following data-generating
process: zi ∼ N (µ(θ),Σ(θ)), i = 1, . . . , k, where

µ(θ) = (θ1, θ2)
′, Σ(θ) =

(
θ43 ρ θ23 θ

2
4

ρ θ23 θ
2
4 θ44

)
(20)

and ρ = tanh θ5. Distractor variables δi are also drawn
from a mixture of Student t-distributions, with the final
model output constructed as xi = (zi, δi). Further details
are provided in Appendix C.1. The RP for θ is not analyti-
cally known. Further, this model has a higher dimensional
parameter space than the experiments in Section 5.1, and
is known to generate complex posteriors; this makes this
experiment more challenging than those in Section 5.1.

While the RP for θ in the SLCP model is unknown, it should
be expected that the RP for the transformed parameter ϑ =
(µ(θ),Σ(θ)) should adhere to the shape of the RP for a
multivariate Normal. In particular, we should expect the

marginal distributions for the µi(θ) to be uniform in the
range [−3, 3], and the marginal distribution for detΣ(θ),
where detΣ(θ) is the determinant of the model’s covariance
matrix, to decay rapidly in detΣ(θ) (Yang & Berger, 1996).

Results In Figure 3, we plot the marginal distributions
for the priors learned via the InfoNCE lower bound in Sec-
tion 4.2 and the GED objective in Section 4.1; we see that
both methods have been able to recover this general shape,
with InfoNCE doing so more successfully than GED. This is
in line with our expectation that GED will underperform in
this case, given that SLCP-D is known to generate complex
posteriors that can be difficult to approximate accurately.

To conclude this experiment, we consider how the quality of
the estimated RPs might be assessed when the form of the
RP is unknown, as will be the case in practical applications.
Given that the purpose of the RP is to maximise the MI
between θ and model output, a simple method for assessing
the relative performance of a procedure for learning RPs
is to perform a classifier two-sample test. In particular,
we train a binary classifier to distinguish between samples
pairs (x1:n, θ) drawn jointly from hπϕ

and drawn from the
product of the marginal distributions, πϕ and mπϕ

. Such
metrics for assessing performance are common in SBI (see,
e.g., Lueckmann et al., 2021).

In Table 2, we report classification accuracies for this classi-
fication task under four different choices for priors: a Uni-
form distribution on Θ, and the approximate RPs estimated
via InfoNCE, SMILE, and GED. From this, we see that the
RPs estimated through our methods produce a higher classi-
fication accuracy than the Uniform distribution – a common
default choice of prior – with the variational lower bound
(VLB) methods outperforming the GED method in this in-
stance. In summary, this practical method for assessing the
quality of the learned RP corroborates our expectations that
a Uniform distribution is a poor approximation to the RP
for this model, while GED generates a better approximation
that is inferior to those generated by the VLB methods.

5.2.2. AN EPIDEMIC AGENT-BASED MODEL

As a final example of a complex simulation model, we
consider a susceptible-infected-recovered (SIR) agent-based
model of disease spread in a population of N interacting
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Figure 3. Marginal distributions of the priors learned for SLCP with distractors (SLCP-D) simulator.

Table 2. C2ST metrics (mean [standard deviation] from 5 repeats)
for different priors in the SLCP-D experiment (Section 5.2.1).
Higher values are better; bold denotes best performance.

UNIFORM INFONCE SMILE GED

0.55 [0.01] 0.99 [<0.005] 0.98 [<0.005] 0.69 [0.10]

individuals (the “agents”). Agents in the model interact
via a network, through which disease transmission occurs.
Specifically, at time t = 1, . . . , τ, the state zi,t of agent i is

zi,t = I[zi,t−1 = 0] I[ui,t ≤ (1− (1− β)ηi,t)]
+ I[zi,t−1 = 1] (I[ui,t ≤ γ] + 1) + 2 I[zi,t−1 = 2],

(21)

where the states zi,t = 0, 1, 2 represent, respectively, that
agent i is susceptible, infected, or recovered at time t. In the
above, ui,t ∼ U(0, 1), ηi,t counts the number of agent i’s
neighbours that are infected at time t, and β, γ ∈ (0, 1) are
parameters that determine the rate of infection and recovery.
The initial states zi,0 ∼ Bernoulli(i0), where i0 ∈ (0, 1)
determines the proportion of individuals who are infected at
time 0. Further details on the model and its implementation
are given in Appendix C.2. Finally, we extract the total
number of infected agents at each step, such that

xt =

N∑
i=1

I[zi,t = 1].

Taking i0 = 0.1, τ = 50, and N = 200, we learn an
n-reference prior for the parameter θ = (β, γ) ∈ (0, 1)2,
where in this case n is the number of iid length-τ trajectories
generated at each θ.

Results To illustrate the impact of RPs in simulation mod-
els, we plot in Figure 4 trajectories generated from the
marginal likelihood functions corresponding to each of the
learned priors for the SIR model. From each learned prior,
we sample 10 values for θ, and for each of these we generate
10 trajectories. Trajectories simulated from the same param-
eter value share the same colour. Visually, it is apparent
that the priors that have been trained to maximise MI (via
InfoNCE and GED) produce a much more diverse set of

outcomes while retaining low conditional entropy of individ-
ual parameter outcomes; in contrast, while the conditional
entropies are still relatively low for the Uniform prior, the
diversity in the sampled trajectories from across all param-
eter values is visibly lower. This can be especially useful
for model designers, as with very few runs RPs produce
specific (and diverse) outcomes.

Finally, we demonstrate our claim in Section 4.3 that SBI can
be performed at no extra cost using the posterior and critic
networks trained during GED and VLB-based methods. In
particular, we compare inferences obtained by sampling
directly from the posterior network trained in GED; per-
forming MCMC using the critic network produced from the
InfoNCE objective; sampling directly from a neural poste-
rior estimator (NPE) trained as in Greenberg et al. (2019);
performing MCMC using a neural density ratio estimator
(NRE) trained as in Miller et al. (2022). For NPE (resp.
NRE) we use the RP learned via GED (resp. InfoNCE) as
the prior density, and use 104 simulations. In Figure 5, we
show that samples from the posterior predictive distribu-
tions for each method are comparable, demonstrating that
SBI can be performed accurately at no additional training
cost once RPs are learned via the GED and VLB methods
we consider.

6. Discussion
Main Results In this paper, we study and test multiple
approaches to learning RPs for arbitrary simulation models.
Through experiments on tractable and intractable exam-
ples, we have shown that these methods can to some extent
construct good RPs and attain properties of interest: they
have been able to recover the overall shape of known RPs, in
many cases being indistinguishable from the ground truth ac-
cording to standard two-sample tests, and produce behaviour
that can be seen visibly as achieving high MI between model
parameters and model output in comparison to common
“default” priors used in Bayesian inference (e.g., the Uni-
form distribution). Using these methods for constructing
approximate RPs may therefore be useful in practice for
complementing subjective, modeller-specified priors during

8
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(a) InfoNCE SIR results (b) GED SIR results (c) Uniform SIR results

Figure 4. Prior predictive simulations for the SIR model, as induced by (a) the InfoNCE prior, (b) the GED prior, and (c) a Uniform prior.

Figure 5. Posterior predictive samples for the SIR model conditioned on synthetic data sampled from learned RPs. The top rows displays
samples generated using the density ratio/posterior estimator trained whilst learning each RP, whilst the bottom row shows samples
generated using density ratio/posterior estimators seperately trained via NRE/NPE.

real-world Bayesian analyses involving simulation models:
they can allow modellers to assess the degree to which their
inferences differ from the case where “minimal” informa-
tion – as measured by the MI between θ and data – is built
in to their subjective priors. This is, we believe, the main
practical benefit of our work.

Method choice and the complexity of learning reference
priors From a technical perspective, learning (good) RPs
proved a relatively difficult task even with the chosen gener-
ative models and (deep learning) heuristics employed: RPs
are not necessarily proper, which means that estimating
them via generative models introduces inevitable biases and
approximation errors. Further, we have on occasion seen
that multiple runs of the same method can produce approx-
imated RPs that differ substantially. This may reflect the
fact that multiple (local) optima may exist; as discussed in
Section 5.2.1, metrics such as classifier two-sample tests
may be useful for identifying this if it occurs.

With respect to choosing between methods, a number of fac-
tors are to be considered. VLB methods seemed faster and
more stable, but do not produce precise estimates of MI. Fur-
ther, VLB methods involve only one density estimation task
– that of estimating the prior density – while GED involves
two – learning both the prior and posterior density – and
for this reason VLB can be less computationally expensive
and more accurate when in settings with complex posteriors.
This is reflected to some degree in our experiments with the
SLCP model in Section 5.2.1; however, the fact that GED
has nonetheless produced a good approximate RP even in
this case demonstrates that this may not be as limiting a fac-
tor. Additionally, we have seen that while GED can produce

reasonable estimates, training can also be unstable, exhibit-
ing sensitivity to learning rates. However, GED methods
can be applied to non-differentiable simulators, while cur-
rently the VLB methods we consider are only applicable to
simulators for which derivatives of the model output with
respect to the input parameters can be constructed through,
e.g., reparameterisation tricks (see, e.g., Jang et al., 2016).
Further, through GED, posterior samples can be generated
rapidly via a forward pass through the posterior network,
while for VLB posterior samples must be generated via
MCMC. Thus, since MCMC can be more time consuming,
GED methods may be preferred when fast posterior sam-
pling is also required. In general, however, we recommend
applying both methods where this can be done, since it may
in general be difficult to predict beforehand which approach
will perform best for any given problem.

Limitations Our work naturally suffers limitations. In
this paper, we focus our attention to scenarios in which
all components of the parameter vector θ are of interest to
the modeller, with no nuisance parameters present. Nui-
sance parameters introduce additional complications, and
constructing RPs in their presence requires a more nuanced
treatment (Bernardo, 1979; Berger & Bernardo, 1992). Fi-
nally, RPs are only one possible approach to conducting
“objective” Bayesian inference, and other considerations can
lead to alternative objective priors in Bayesian analysis (see,
e.g., Consonni et al., 2018). The present paper is a first step
towards enabling objective Bayesian inference for implicit
simulation models; developing likelihood-free methods for
estimating other classes of objective priors would also con-
stitute interesting future work.
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A. Further Background
A.1. Proper and Improper Priors

An improper prior π on space Θ is one for which the quantity∫
Θ

π(θ)dθ (22)

diverges (see, e.g., Berger et al., 2009). In contrast, a prior π is said to be proper if (22) is finite, such that π corresponds
to (or can be appropriately normalised to correspond to) a probability measure. While not corresponding to probability
distributions in their own right, improper priors are sometimes still used in Bayesian analysis if the posterior distribution
they induce via Bayes’ theorem corresponds to a probability distribution; that is, if the posteriors they generate are proper.

A.2. Relationships between Mutual Information and Entropies

We provide some basic relationships between MI and entropies for the unfamiliar reader. With MI under prior π defined as

Iπ(x1:n, θ) := E θ∼π
x1:n∼pθ

[
log

πx1:n
(θ)

π(θ)

]
, (23)

we can separate out the logarithms to obtain

Iπ(x1:n, θ) = E θ∼π
x1:n∼pθ

[log πx1:n
(θ)− log π(θ)] (24)

= E θ∼π
x1:n∼pθ

[log πx1:n
(θ)] − E θ∼π

x1:n∼pθ
[log π(θ)] (linearity of expectation) (25)

= −Ex1:n∼mπ
θ∼πx1:n

[− log πx1:n(θ)]− Eθ∼π [− log π(θ)] (26)

= −Ex1:n∼mπ

[
Hπx1:n

[θ]
]
+Hπ[θ], (27)

revealing the relationship stated in (11). Finally, the relationship observed in (12) is obtained by recognising that

−Ex1:n∼mπ

[
Hπx1:n

[θ]
]
= E θ∼π

x1:n∼pθ
[log πx1:n

(θ)] (28)

= E θ∼π
x1:n∼pθ

[
log

hπ(x1:n, θ)

mπ(x1:n)

]
(Bayes’ theorem) (29)

= E θ∼π
x1:n∼pθ

[log hπ(x1:n, θ)]− E θ∼π
x1:n∼pθ

[logmπ(x1:n)] (30)

= −E(x1:n,θ)∼hπ
[− log hπ(x1:n, θ)] + Ex1:n∼mπ

[− logmπ(x1:n)] (31)
= −Hhπ

[x1:n, θ] +Hmπ
[x1:n]. (32)

B. Experimental Details
In this section, we provide additional details regarding each of our experiments including the neural architectures used to
implement variational families and mutual information estimators. We also provide a more in depth overview of our training
procedures.

B.1. Variational Prior Families

To describe the variational family Π in each of our experiments we use normalizing flows. Each flow is composed of a
sequence of blocks. Each block is comprised of a masked affine autoregressive layer (Papamakarios et al., 2017) and an
LU permute block (Durkan et al., 2019). If required, we use a sigmoid flow layer at the end of the flow to ensure that the
flow’s output are bounded to lie within the range support by the simulator of study. Details about the sigmoid flow layer are
presented in Section B.2.

B.2. Sigmoid Flow Layer

The variational family Π must be constrained to produce parameters within the range supported by the simulator. As
previously mentioned, this is achieved via a sigmoid flow layer. Let mi and Mi respectively define the minimum and
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Algorithm 1 Flow Pretraining Procedure pretrain

Hyperparameters: Learning rate β, Epochs R, Pretrain epochs Rpre
Input: Variational prior πϕ
t = 1
for t ≤ Rpre do

Sample {θ(b)}Bb=1 ∼ πBϕ
Compute loss Lϕ = 1

B

∑B
b=1 log πϕ(θ

(b)).
Update prior parameters ϕ← ADAMβ(ϕ, µ,∇ϕL̂ϕ)

end for

maximum permissible values of the parameter θi. Given an output z ∈ Rd from the previous flow layer, the sigmoid flow
layer performs the following forward transformation:

θ̂i = mi + (Mi −mi)σ(zi), ∀i = 1, 2, . . . , d, (33)

where σ(zi) is the logistic sigmoid function. Note that θi is now guaranteed to lie in the range [mi,Mi]. The corresponding
inverse (or backwards) transformation is given by:

zi = log (θ̂i −mi)− log (Mi − θ̂i). (34)

Meanwhile, the log-determinants of the forward and backwards transformations can be readily computed:

log

∣∣∣∣∣det ∂θ̂∂z
∣∣∣∣∣ =

d∑
i=1

(
log(Mi −mi) + log σ(zi) + log (1− σ(zi))

)
,

log

∣∣∣∣∣det ∂θ̂∂z
∣∣∣∣∣ =

d∑
i=1

(
log(Mi −mi) + log σ(zi) + log (1− σ(zi))

)
.

(35)

B.3. Notation for Network Architectures

Throughout the remainder of the Appendix, we will use the following notation to describe network architectures. We use
MLP(·) to refer to fully connected multilayer perceptrons (MLPs). For example, MLP(10, 16, 32, 64, 1) refers to a three
layer MLP with input dimension 10, hidden layer dimensions 16, 32, and 64, and final output dimension 1. Likewise, we
use LSTMh(·) to refer to a stacked Long Short-Term Memory units (LSTM) with hidden state dimension h. For example,
LSTM8(4, 2) denotes a stacked LSTM unit with input dimension 4 that is comprised of two LSTMs each with hidden
dimension 8. Similarly, we use FLOW()̇ to refer to a normalizing flow. For example, FLOW(4, 10, 16) refers to a normalizing
flow with input dimension 4 composed of 10 blocks (as described in Section B.1) each with 16 hidden neurons. Enclosed
brackets are used to denote concatenated network architectures For example (LSTM8(4, 1),MLP(8, 16, 1)) denotes a network
which passes a time-series of 4-dimensional inputs through an LSTM, before passing the 8-dimensional final hidden state of
the LSTM to an MLP, which produces a final 1-dimensional output.

Similarly, we use SET(·, ·) to describe the set encoder architecture proposed by (Zaheer et al., 2017). More specifically,
SET(ρ, ϕ) first applies the network ϕ to each individual element of a set {xi}ni=1 before passing their sum to the network
ρ, which produces the final output. As shown by Zaheer et al. (2017), such encoders are capable of representing any
permutation-invariant function for sets of fixed size. As a result, set-encoders are well-suited to encoding the independently
and identically distributed outputs {x(b)1:n} generated by a simulator under parameter θ(b). We also use TRANSFORMER to
refer to the transformer-based set encoder architecture proposed by (Lee et al., 2019). The transformer used is the same
across all experiments and consists of two ISAB blocks and one PMA block, each with four attention heads and four
inducing points.

B.4. Pretraining Procedure for Variational Lower Bound Methods

In all of our training procedures, we first pretrain the variational prior to maximise entropy over the parameter space.
Experimentally, we found that this helped prevent the reference prior from getting stuck in local optima, and reduced the
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Algorithm 2 Training Procedure with Variational Lower Bounds

Hyperparameters: Batch size B, interval l, Learning rates α, β, epochs R, pretrain epochs Rpre
Inputs: Variational prior πϕ, Critic Tµ,φ, Simulator pθ
ϕ← pretrain(ϕ, β,Rpre)
t = 1
for t ≤ R do

Sample {θ(b)}Bb=1 ∼ πBϕ
Simulate x(b)1:n ∼ pnθ(b) for b = 1, . . . , B.

Dϕ ← {(θ(b), x(b)1:n)}Bb=1

Compute Îφ,µ(Dϕ) via SMILE or InfoNCE
Update critic parameters µ, φ← ADAMα((φ, µ),∇φ,µÎφ,µ(Dϕ))
if t (mod l) = 0 then

Update prior parameters ϕ← ADAMβ(ϕ,∇ϕÎϕ(Dϕ))
end if
t← t+ 1

end for

total number of epochs required for training to converge. As we use normalizing flows to implement the variational family
Π in each of our experiments, the density of the variational prior can be easily evaluated. We exploit this fact to compute a
plug-in estimate of the entropy and pretrain the prior using stochastic gradient descent. This pretraining loop is described in
Algorithm 1.

B.5. Training Procedure for Variational Lower Bound Methods

Here, we outline the training procedure for learning a reference prior using a variational lower bound, such as SMILE or
InfoNCE. The general procedure is outlined in Algorithm 2. On each epoch a batch of B samples {θ(b)}Bb=1 ∼ πϕ are
sampled from the variational prior. Each θ(b) is run on the simulator n times to generate input-output pairs of the form
Dϕ = {(θ(b), x(b)1:n)}Bb=1.

These pairs are used to estimate a variational lower bound on the mutual information Îφ,µ(Dϕ), which relies on a critic form
Tφ = fφ(sφ(·), ·) to score input-output pairs. We refer to as sφ as the encoder as it is responsible for encoding outputs into
lower-dimension representations, whilst we refer to fφ as the score network as it is responsible producing a scalar value
scoring a given parameter and its corresponding encoded output. In other words, for any input-output pair (θ, x1:n) the score
is computed as Tµ,φ(θ, x1:n) = fµ(sφ(x1:n), θ).

As mentioned in the main body, we use two variational lower bounds in our experiments; InfoNCE and SMILE. The
InfoNCE objective is given by

Îφ,µ(Dϕ) =
1

B

B∑
b=1

log
Tµ,φ(x

(b)
1:n, θ

(b))
1
B

∑
a̸=b Tµ,φ(x

(b)
1:n, θ

(a))
, (36)

while the SMILE objective is given by

Îφ,µ(Dϕ) =
1

B

B∑
b=1

Tµ,φ(x
(b)
1:n, θ

(b))− log
1

B(B − 1)

B∑
b=1

B∑
a̸=b

clip(eTµ,φ(x
(b)
1:n,θ

(b)), e−τ , eτ ), (37)

where clip denotes the clipping function clip(a, b, c) = min(max(a, b), c). Given Îφ,µ(Dϕ), we then update ϕ, φ and
µ using a standard gradient ascent rule such as Adam (Kingma, 2014) using ∇ϕ,φ,µÎφ,µ(Dϕ). Note that the parameters ϕ
of the variational reference prior are only updated every l epochs. This provides the critic Tµ,φ time to adjust so that the
variational reference prior has a good lower bound to train against. Additionally, for some complex simulators, we normalize
the gradient to unit length before performing a gradient update.

The neural architectures used for each experiment are display in Table 3, whilst the training hyperparameters used are
described in Table 4. The variational prior and the critic are updated with learning rates α and β respectively.
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Table 3. Neural Architectures used in each SMILE and InfoNCE experiment.

SIMULATOR VARIATIONAL FAMILY ENCODER SCORE NETWORK

GAUSSIAN SCALE FLOW(1, 4, 16) TRANSFORMER MLP(9, 64, 64, 64, 1)
EXPONENTIAL FLOW(1, 4, 8) TRANSFORMER MLP(2, 32, 1)
TRIANGULAR FLOW(1, 5, 16) SET(MLP(1, 16, 16, 1),MLP(1, 8, 8, 1)) MLP(2, 16, 16, 1)
AR(1) FLOW(1, 6, 16) (LSTM16(1, 2),MLP(16, 1)) MLP(2, 8, 8, 1)
SLCP FLOW(5, 6, 8) SET(MLP(100, 64, 32),MLP(32, 64, 32)) MLP(37, 64, 1)
G-AND-K FLOW(4, 8, 16) × MLP(k + 1, 128, 1)
SIR FLOW(2, 8, 16) SET((LSTM8(3, 2),MLP(8, 8, 16, 8)),MLP(8, 8, 8, 8)) MLP(10, 16, 8, 1)

Table 4. Hyperparameter settings for InfoNCE and SMILE experiments.

SIMULATOR RPRE EPOCHS GRADIENT NORM l B n τ α β

GAUSSIAN SCALE 200 3000 YES 1 256 50 10 5× 10−3 5× 10−4

EXPONENTIAL 200 2000 YES 1 256 50 ∞ 5× 10−3 5× 10−4

TRIANGULAR 200 2000 NO 1 256 50 10 5× 10−3 5× 10−4

AR(1) 200 2500 YES 3 256 1 5 5× 10−3 5× 10−3

SLCP 1000 1000 YES 1 256 100 100 5× 10−3 5× 10−4

G-AND-K 1000 1000 YES 5 256 100 5 1× 10−3 1× 10−3

SIR 250 2000 NO 10 64 1 5 5× 10−3 5× 10−4

B.6. GED

The following sections include details on our implementation of the GED method described in Section 4.1.

Architectures The GED method requires learning an estimator π̂ψx1:n
for the conditional distribution p(θ | x1:n). For

consistency, we use the same general architecture5 for this estimator as for the proposal π, but we use a conditional
normal distribution as the base distribution, and use an encoder sφ : Xn →W that maps the sampled data x1:n to some
latent variable w. As a result, the base distribution q0 for the normalizing flow π̂ψx1:n

is a conditional Gaussian denoted as
q0(z | sφ(x1:n)). The way to apply this conditional is by having sφ(x1:n) ∈ R2×d where d is the number of parameters in
the model. Then,

q0(z | sφ(x1:n)) ∼ N (sφ(x1:n)1:d | sφ(x1:n)d:2d).

In other words, the encoder is trained to output the mean and the variance of the base flow distribution.

B.6.1. REFERENCE PRIOR TRAINING

The main training loop follows Algorithm 4. We set α≫ β to induce a two time-scale learning dynamic. Both update steps
are computed through an Adam optimizer (Kingma, 2014). As in section B.5, each parameter is simulated n times to ensure
that the asymptotic posterior can be well approximated. The architectures and hyperparameters used are presented in Tables
5 and 6. The same architectures were used for both the prior and the conditional density estimator per experiment.

B.6.2. REFERENCE PRIOR TRAINING WITHOUT SIMULATOR GRADIENTS

For each experiment discussed in the main body, GED was used in conjunction with pathwise simulator gradients in order to
provide a more like-for-like comparison with VLB methods. Next, we show how GED can be applied to arbitrary simulators
by providing an an estimator for network gradients that does not rely on differentiability of the simulator.

To begin, we restate the objective function for GED:

Iψ,ϕ(Dϕ) = Eθ∼πϕ
[− log πϕ(θ)]− Eθ∼πϕ

Ex∼pθ [− log πψ(θ | x)] . (38)

The derivative of the first term with respect to ϕ is easy to compute. Since the variational prior family has reparameterisable

5While we assume that the prior and posterior estimators belong to the same variational family in our experiments, in the interest of
simplicity, this is not an essential aspect of this method, and in general they may belong to different variational families.
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Algorithm 3 Flow Pretraining Procedure pretrain-conditional

Hyperparameters: Learning rate α, Pretrain epochs Rpre, Batch size B
Input: Variational prior πϕ, Density Estimator π̂ψ

t = 1
for t ≤ Rpre do

Sample {θ(b), x(b)1:n}Bb=1 ∼ hπϕ

Compute loss Lψ = 1
B

∑B
b=1 log π̂

ψ(θ(b) | sφ(x(b)1:n)).
Update estimator ψ ← ADAMβ(ψ,∇ϕL̂ψ)

end for

Algorithm 4 Training for GED

Hyperparameters: Batch size B, Interval l, Learning rates α, β, epochs R, pretrain epochs Rpre
Input: Variational prior πϕ, Simulator pθ, encoder sφ, density estimator π̂ψx1:n

ϕ← pretrain(ϕ, β,Rpre)
ψ ← pretrain-conditional(ϕ, α,Rpre)
t = 1
for t ≤ R do

Sample θ(b) ∼ π, repeat each sample k times (b = 1, . . . , B × k).
Simulate x(b)1:n, θ

(b) ∼ hπϕ
, b = 1, . . . , B × k.

for 1 ≤ i ≤ l do

Update ψ ← ADAMα

(
ψ,− log

(
π̂ψ
x
(b)
1:n

(θ(b))}
))

end for
Update ϕ← ADAMβ

(
ϕ, Ĥπ[θ]− Ĥψπx1:n

[θ]
)

t← t+ 1
end for

sampling paths, we have θ = gϕ(z) where gϕ is a differentiable function (such as flow) and z ∼ t is a random sample from a
base distribution t independent of ϕ. Using the Law of the Unconscious Statistician (Grimmett & Stirzaker, 2001), we obtain

∇ϕEθ∼πϕ
[− log πϕ(θ)] = ∇ϕEz∼t[− log πϕ(gϕ(z))] (39)

= Ez∼t[−∇ϕ log πϕ(gϕ(z))] (40)

≈ 1

N

N∑
n=1

−∇ϕ log πϕ(gϕ(z(n))). (41)

Meanwhile, the derivative of the second term with respect to ϕ can be estimated as follows:

∇ϕEθ∼πϕ
Ex∼pθ [− log πψ(θ | x)] = Eθ∼πϕ

[∇ϕ log πϕ(θ)Ex∼pθ [− log πψ(θ | x)]] (42)
= Eθ∼πϕ

Ex∼pθ [−∇ϕ log πϕ(θ) log πψ(θ | x)] (43)

=
1

N

N∑
n=1

−∇ϕ log πϕ(θ(n)) log πψ(θ(n) | x(n)) (44)

where x(n), θ(n) are drawn jointly by first sampling θ(n) from πϕ, and then forward-simulating. In practice, Equation (44)
can be evaluated (Paszke et al., 2019) by applying a .stop_gradient() method (e.g., .detach() in PyTorch ) to
θ(n) after it is sampled from the prior. Summarising, we may compute the full gradient in PyTorch as follows:

1

N

N∑
n=1

[
− log πϕ(θ

(n)) + log πϕ(θ
(n).detach()) · log πψ(θ(n).detach() | x(n).detach())

]
. (45)

Figure 6 shows the results of applying the above described gradient-free GED method to three of the models studied. As it
can be seen quality of the learned priors differs slightly when compared to the differentiable models, but is still representative
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Table 5. Neural Architectures Used in Each GED experiment.

SIMULATOR VARIATIONAL FAMILY ENCODER

GAUSSIAN SCALE FLOW(1, 8, 16) SET(ID,MLP(64, 128, 2))
EXPONENTIAL FLOW(1, 4, 16) SET(ID,MLP(64, 128, 2))
TRIANGULAR FLOW(1, 8, 16) SET(ID,MLP(64, 128, 2))
AR(1) FLOW(1, 8, 16) SET((LSTM32(1, 2),MLP(32, 64)),MLP(64, 128, 2))
SLCP FLOW(1, 8, 16) SET(MLP(100, 64, 64),MLP(64, 128, 2))
G-AND-K FLOW(4, 8, 16) MLP(8, 16, 8)
SIR FLOW(3, 8, 16) SET(LSTM8(3, 2),MLP(8, 16, 6))

Table 6. Hyperparameter settings for GED.

SIMULATOR RPRE EPOCHS GRADIENT NORM l B n α β

GAUSSIAN SCALE 100 1000 YES 2 256 1 5× 10−3 1× 10−4

EXPONENTIAL 100 1000 YES 2 128 8 5× 10−3 1× 10−4

TRIANGULAR 100 1000 YES 2 256 8 5× 10−3 1× 10−4

AR(1) 100 2000 YES 2 128 1 5× 10−3 1× 10−4

SLCP 1000 3000 YES 4 256 100 5× 10−3 1× 10−4

G-AND-K 100 2000 YES 4 256 128 5× 10−3 1× 10−4

SIR 100 2000 YES 4 64 1 5× 10−3 5× 10−4

of the true underlying reference prior. As a qualitative note, training reference priors without model gradients seem to yield
higher variance learning processes, which (in this case) was compensated by slightly increasing the batch sizes and learning
rates.

B.7. Entropy Estimation for Models with Tractable Likelihood functions

For simulators with tractable likelihood functions, we are able to obtain Monte Carlo estimates for the MI between x1:n
generated from the model at θ and θ ∼ π using the decomposition

I(x1:n, θ) = Hmπ [x1:n]− Eθ∼πHpθ [x1:n]. (46)

Using the the Law of the Unconscious Statistician (Grimmett & Stirzaker, 2001) and the model’s likelihood function, the
first term in Equation (46) may be estimated as follows:

Hmπ
[x1:n] = Ex1:n∼mπ

[− logEθ′∼π [pθ′(x1:n)]] (47)

≈ − 1

B

B∑
b=1

log

[
1

R

R∑
r=1

pθ(r)(x
(b)
1:n)

]
, θ(r) ∼ π, x(b)1:n ∼ mπ (48)

This provides a (biased) estimator for Hmπ
[x1:n]. The second term can be estimated this straightforwardly as follows:

Eθ∼πHpθ [x1:n] = Eθ∼πEx1:n∼pθ [− log pθ(x1:n)] (49)

≈ − 1

B

B∑
b=1

log pθ(b)(x
(b)
1:n), x

(b)
1:n, θ

(b) ∼ hπ. (50)

C. Further Details on Complex Experiments
C.1. Simple likelihood, complex posterior with distractors

Our implementation of SLCP with distractors follows that detailed in Appendix T.4 of (Lueckmann et al., 2021). In
particular, distractors are sampled in from a mixture of t-distributions

(δi)
100
i=9 ∼

1

20

20∑
j=1

t2(µ
j ,Σj), (51)
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(a) Gaussian Scale Model (b) Exponential Model (c) Triangular Model

Figure 6. Reference prior learned for each model, with and without gradients, for the GED method.

where µi ∼ N (0, 152I), Σi
j,k ∼ N (0, 9) if j > k, Σj,j = 3ea, where a ∼ N (0, 1), and Σij,k = 0 otherwise.

C.2. The SIR agent-based model

We use an SIR simulator similar in nature to the model supplied as part of the BlackBIRDS software package (Quera-
Bofarull et al., 2023). In order to make the model differentiable, we make use of surrogate Gumbel-Softmax gradients (Jang
et al., 2016) to backpropagate through Bernoulli random variables used to determine the discrete transitions between agent
states. Each simulation involves simulating 200 agents for T = 50 time steps on a Watts-Strogatz random network (Watts &
Strogatz, 1998), initialised with 10 edges per node and a rewiring probability of 0.1.

C.3. The g-and-k model

The g-and-k model appears frequently as a benchmark case study for SBI methods (see, e.g., Fearnhead & Prangle, 2012).
Inference is challenging for this model due to its ability to produce a wide range of data distributions from relatively few
parameters. The generative process is as follows: for zt ∼ N (0, 1) and parameters θ = (a, b, g, k) ∈ Θ = [0, 5]4, output
xt ∈ R is generated as

xt = a+ b

(
1 + c

1− exp(−gzt)
1 + exp(−gzt)

)(
1 + z2t

)k
zt., (52)

where it is customary to take c = 0.8 as fixed. In this case, the true (n-)reference prior isn’t available. However, we can
expect two features to be present in the g-and-k reference prior based on the roles the parameters play in the data-generating
process, (52): since a plays the role of a location parameter, we can expect the reference prior to be flat in a (Yang & Berger,
1996); in contrast, since b is a scale parameter determining the magnitude of the contribution from the second term in (52),
we might expect the reference prior to decay as approximately 1/b (Yang & Berger, 1996).

The RPs obtained by GED, SMILE and InfoNCE for the same random seed are plotted in Figure 7. We emphasise that each
method failed to generate consistent prior estimates across random seeds, suggesting that the asymptotic RP associated
with the g-and-k model is particularly difficult to estimate. We conjecture that this is due to the heavy tails of the g-and-k
distribution. The development of RP estimators that perform consistently on the g-and-k model forms an interesting open
challenge.

19



Learning Likelihood-Free Reference Priors

Figure 7. Learned RPs for the g-and-k model.
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