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Abstract

Quotation recommendation is an inherently
asymmetric retrieval task, where the intended
meaning of a quote often diverges from sur-
face expressions, creating significant seman-
tic shifts. Combined with minimal lexical
overlap, this poses a core challenge for clas-
sic dense retrievers, which struggle to cap-
ture non-literal and rhetorical alignments. To
bridge this semantic gap, we propose in-
troducing controllable signals to guide the
model’s attention toward abstract, context-
relevant concepts. We propose CTRLSHIFT,
a framework that leverages a Variational Au-
toencoder (VAE) to capture latent associa-
tions between context and quotation, which
is used to derive context-aware control sig-
nals to modulate semantic focus and sup-
port bidirectional alignment and rhetorical in-
tent modeling. Experiments show that our
method consistently outperforms baselines on
the quotation recommendation task and can
be effectively transfered to the general pur-
posed benchmark. Further, CTRLSHIFT in-
tegrates seamlessly with general-purpose gen-
erative models without additional fine-tuning,
and provides satisfactory interpretability by
generating textual explaination to uncover the
model’s focus on abstract, citation-aligned se-
mantics.

1 Introduction

Quotation recommendation, the task of retrieving
classical excerpts to enrich modern literature (Tan
et al., 2015), serves as a powerful tool for enhanc-
ing rhetorical expression. However, this task poses
a significant challenge for standard dense retrieval
(DR) models, revealing fundamental limitations in
their design. As our preliminary experiments in
Appendix Table 6 show, even state-of-the-art em-
bedding models perform poorly, underscoring the
need for a different retrieval paradigm.

This performance gap arises from the intrinsic
properties of the task. Quotation recommenda-

tion is inherently asymmetric (Liao et al., 2024);
modern contexts and classical quotes differ starkly
in style, abstraction, and vocabulary (Qi et al.,
2022). As illustrated in Figure 1 (right), rele-
vance depends less on lexical overlap and more
on functional alignment. Quotations often rely
on metaphor or imagery, introducing a gap be-
tween surface form and intended meaning—what
we term a semantic shift. Tellingly, interaction-
heavy models like ColBERT (Khattab and Za-
haria, 2020), which rely on fine-grained token
similarity, perform even worse (see Appendix
Table 7), suggesting that over-reliance on sur-
face matching is counterproductive. This need
for functional alignment challenges traditional re-
trieval systems designed for semantic similar-
ity (Thakur et al., 2021).

The reliance of dense retrievers on surface-
level lexical signals is well-documented; they of-
ten fail to capture salient keywords (Karpukhin
et al., 2020; Chen et al., 2021) and tend to pri-
oritize superficial overlaps over factual or func-
tional relevance (Fayyaz et al., 2025). As a re-
sult, they struggle to model the kinds of seman-
tic shifts and abstract alignments required for ef-
fective quotation recommendation. While com-
monly used (Wu and Cao, 2024; Metzler et al.,
2021), pseudo-query generation is unstable and
unreliable in open-ended citation tasks (Abe et al.,
2025).

Importantly, recent embedding models, espe-
cially those based on decoder-only LLMs (Chen
et al., 2024; Muennighoff et al., 2024; Wang et al.,
2024a), exhibit emergent capabilities (Wei et al.,
2022) that arise from scale and representation
learning. These models inherently possess the ca-
pacity to capture abstract reasoning and contextual
nuance, offering a bottom-up mechanism for mod-
eling semantic drift and latent alignment.

We propose a modular soft control mech-
anism to dynamically steer embedding gener-
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Figure 1: An overview of our CTRLSHIFT framework. Left: The main pipeline, which uses a shared encoder and
a two-stage process. An initial embedding is passed through an external prompt generator to produce a dynamic
control vector, which is then injected into a frozen language model to yield a refined, context-aware representation
for retrieval. Right: Illustrative examples demonstrating that effective quotation matching hinges on deeper func-
tional alignment rather than mere surface-level lexical overlap.

ation—shifting focus from surface-level token
overlap to abstract, functional semantics. As
shown in Figure 1 (right), this enables the model to
move beyond superficial matches (e.g., "day and
night") and instead align with contextually rele-
vant concepts (e.g., "selfless dedication"), even in
the absence of lexical overlap.

To this end, we introduce CTRLSHIFT, a
lightweight framework that equips frozen lan-
guage models with dynamic, context-aware em-
bedding capabilities. As illustrated in Figure 1
left, CTRLSHIFT follows a two-stage process: an
initial embedding is produced, then a lightweight
control module—implemented as a VAE—derives
a context-sensitive control vector. This vector is
injected back into the LLM to yield refined em-
beddings aligned with abstract semantics. The en-
tire framework is trained end-to-end with a self-
supervised objective.

We conduct extensive experiments demonstrat-
ing that CTRLSHIFT improves performance across
multiple languages and generalizes well to MS
MARCO. This is significant because direct fine-
tuning on this saturated benchmark often degrades
performance by disrupting the model’s pre-trained
knowledge (Pande et al., 2025). Our method
avoids this pitfall by adapting the model with-
out altering its weights. Furthermore, it en-
ables general-purpose LLMs to produce compet-
itive embeddings without task-specific tuning, and
supports interpretability via decoding of abstract
control signals.

Our contributions are as follows:

* We present CTRLSHIFT, a lightweight con-

trol framework that explores a novel form of
model self-refinement. It enables fine-grained
semantic modulation of frozen language mod-
els by using a VAE to learn latent, context-
aware concepts for functional alignment.

* We demonstrate that CTRLSHIFT achieves
consistent and significant performance gains
on the specialized quotation recommendation
task, and generalizes robustly to the general-
purpose MS MARCO benchmark.

* We show that CTRLSHIFT enables effective
retrieval with general-purpose decoder-only
language models, without task-specific fine-
tuning, and inherently supports interpretabil-
ity by decoding control vectors into abstract
citation-related concepts, leveraging the gen-
erative capabilities of LLMs.

2 Related Work

Dense Retrieval Dense retrieval (DR) encodes
queries and documents into a shared embed-
ding space to support efficient retrieval beyond
lexical matching. The field has evolved from
early bi-encoders trained with contrastive fine-
tuning (Karpukhin et al., 2020; Xiong et al.,
2021) to modern models pretrained at scale like
E5 (Wang et al., 2022), GTE (Li et al., 2023),
and BGE (Chen et al., 2024). To further improve
the performance of these bi-encoders, a com-
mon technique is to distill knowledge from more
powerful but computationally expensive cross-
encoders (Rosa et al., 2022; Qu et al., 2021; Ren
etal., 2021a; Zhang et al., 2021; Ren et al., 2021b).

The advent of Large Language Models (LLMs)
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Figure 2: The core mechanisms of CTRLSHIFT. (Left) The Controlled Embedding Refinement process. An initial
embedding is generated from input tokens. A VAE, modulated by a FiLM layer, models this embedding to produce
a control vector. In a second pass, this control vector is injected into the frozen language model as a form of teacher
forcing to generate the refined final embedding. (Right) Semantic Shift Modeling. The semantic shift (ep;f¢) is
the difference between an item’s embedding in context (€;,, contert) and in isolation (€;so7qteq), forming the basis
for our control vector. The VAE on the left learns to generate a latent representation that captures this shift.

has spurred new embedding models, from
decoder-only architectures (Liu et al., 2024; Wang
et al., 2024b; Lee et al., 2024a,b) to special-
ists created by fine-tuning generative models like
Gemini-embedding (Lee et al., 2025) and Qwen3-
embedding (Zhang et al., 2025) on synthetic
data (Wang et al., 2024a). However, these mod-
els act as static encoders, unable to leverage their
instruction-following ability for dynamic contex-
tual adaptation—a core limitation our work ad-
dresses.

Prompting for Retrieval Prompting improves
dense retrieval in a parameter-efficient way. Most
prior prompting methods in retrieval rely on static
strategies (Peng et al., 2025; Lee et al., 2022; Ma
et al., 2022), including instruction-based prompt-
ing with synthetic data (Dai et al., 2022; Asai
et al., 2022; Su et al., 2022; Wang et al., 2024a).
These global approaches overlook input-specific
semantics. While dynamic prompting has been
explored for reranking (Wu et al., 2024), we in-
troduce the first dynamic control mechanism for
dense retrieval.

Quotation Recommendation  Quotation rec-
ommendation has evolved from a learning-to-rank
task with hand-crafted features (Tan et al., 2015)
to early neural models (LSTMs/CNNs) (Tan et al.,
2016, 2018; Ahn et al., 2016). Research has
since improved semantic alignment using struc-
tured knowledge (Xu et al., 2022; Liu et al., 2021),
established benchmarks (Qi et al., 2022), and ex-
tended the task to dialogue and generation (Lee
et al., 2016; Wang et al., 2021; Xiao et al., 2024).

We are the first to frame this task from a mod-

ern dense retrieval perspective, with CTRLSHIFT
designed to capture deep, context-dependent rele-
vance beyond surface similarity.

3 Approach

As shown in Figure 1 (left), CTRLSHIFT reformu-
lates dense retrieval as a two-stage process: gen-
erating a general-purpose embedding followed by
context-aware refinement. The name CTRLSHIFT
reflects our core idea—using a dynamically gen-
erated control(Ctrl) vector to capture the semantic
shift of text in context. The main pipeline, Con-
trolled Embedding Refinement (Figure 2, left),
is guided by Semantic Shift Modeling (Figure 2,
right), which provides auxiliary supervision for
the control vector.

3.1 Problem Formulation

Let C' be an input context and P =
{P1,P,,...,Py} be a corpus of N source
poems. The objective is to retrieve the specific
poem P; € P thatis functionally and semantically
aligned with the context C'.

We formulate this as a dense retrieval task, aim-
ing to learn an embedding function f(-) that maps
both contexts and poems into a shared semantic
space R%. For a given context C, the model is
trained to ensure that its embedding f(C') is closer
to that of the source poem f(F;) than to any non-
source poem f(F;) (i # j), under a similarity
metric sim(-, -). Following the standard dense re-
trieval pipeline, all poems in the corpus P are en-
coded offline via f(-) to construct an embedding
index. At inference time, C is encoded into a



query vector and matched against the index to re-
trieve top-ranked candidates.

3.2 Controlled Embedding Refinement

Our refinement process enables model self-
adaptation via an external control mechanism. By
generating dynamic control vectors, it steers a
frozen language model toward functional, context-
aware semantics suitable for asymmetric retrieval.
As shown in Figure 2 (left), this process is
parameter-efficient and leaves the base LLM un-
touched.

We begin by generating an initial embedding
einit, which is passed through a lightweight Vari-
ational Autoencoder (VAE) (Kingma et al., 2013)
to produce a latent variable z capturing the abstract
“citation concept.” A Feature-wise Linear Modu-
lation (FiILM) layer (Perez et al., 2018) conditions
einit on z, and a ControlHead transforms z into a
dynamic control vector c:

¢ = v(z) © ejit + ControlHead(z) (1)

where () and ControlHead(-) are MLPs that
generate scaling and shifting parameters, respec-
tively. This operation preserves the richness of
einit While aligning it with the structured abstrac-
tion in z, enabling precise semantic refinement
without modifying the language model.

3.3 Semantic Shift Modeling

While our end-to-end retrieval objective implic-
itly encourages the model to understand contex-
tual meaning, we introduce Semantic Shift Mod-
eling as an auxiliary objective to make this process
more explicit and robust. This approach is con-
ceptually grounded in the distributional hypothesis
(Firth, 1957) and the additive properties of word
embeddings (Mikolov et al., 2013). Inspired by
relational embedding models that model relations
as translations in vector space (Bordes et al., 2013;
Wang et al., 2014), we explicitly model the seman-
tic shift a poem undergoes.

As shown in Figure 2 (right), the shift vector
€qnift 18 defined as:

€shift = €in_context — €isolated ()

This vector is intended to capture the contextual
transformation of the poem’s semantics. To guide
this process, we train the control vector c to ap-
proximate the semantic shift vector egif; using an

auxiliary loss (see Section 3.4). This additional su-
pervision encourages the control module to model
nuanced, context-dependent meaning, which we
hypothesize to be beneficial for achieving better
functional alignment.

3.4 Training Objectives

CTRLSHIFT is trained end-to-end using multiple
objectives that jointly encourage structured latent
representations and controllable, context-sensitive
semantics.

VAE Regularization. To enable the latent vari-
able z to capture rich and generalizable seman-
tic features, we adopt a variational autoencod-
ing framework. A KL-divergence regularization
encourages the approximate posterior to remain
close to a standard Gaussian prior:

Lxr = Dxr (g4(2 | emit) [| N(0,I))  (3)

Retrieval Loss. To align the learned embed-
dings with downstream retrieval objectives, we
adopt an InfoNCE loss (Oord et al., 2018). Given
a context embedding ep, its corresponding poem
embedding elﬁ, and a set of negative samples ep,,
the loss is defined as:

ﬁretrieval = - log p* (4)

q'p—-m
. exp( D )

! exp (qu;_m> + 2 q-en(q) &P <(q7T)Tp>

)
where sim(-, -) is cosine similarity and 7 is a tem-
perature hyperparameter. Negatives are sampled
from within the batch.

Semantic Shift Prediction Loss. To further
guide latent learning, we introduce an auxiliary
reconstruction objective that explicitly supervises
semantic transformations. A decoder conditioned
on z predicts a shift vector égyif, trained to match
a reference shift embedding egy;s derived from the
context—poem pair:

Lnite = ||shirc — esnire 5 (6)

This loss anchors the latent space to interpretable
transformations, encouraging z to encode control-
lable semantic variations. As shown in our abla-
tions, incorporating this shift supervision leads to
more structured and effective representations.



Backbone Method | English | Modern Chinese | Traditional Chinese

‘ MRR nDCG R@I10 ‘ MRR nDCG R@I10 ‘ MRR nDCG R@I10

BGE-M3 Raw 0.094 0.104 16.28 | 0.095 0.106 17.11 0.070  0.085 13.26
(Encoder-only) CTRLSHIFT 0.446 0.466 59.78 | 0.423 0.457 58.59 | 0.344 0.375 50.11
y DPTDR 0.4379  0.470 59.68 | 0.329 0.364 50.13 | 0.320 0.353 48.80
Qwen3-E-4B Raw 0.182 0.203 30.29 0.136 0.154 24.37 0.145 0.164 25.63
(Decoder-only) CTRLSHIFT 0.588 0.624 75.87 | 0480 0.523 68.20 | 0.438 0.483 65.02
y DPTDR 0.542 0.586 74.74 0.363 0.407 57.15 0.377 0.423 60.06
Qwen3-E-0.6B Raw 0.047 0.050 8.21 0.043  0.047 7.79 0.038  0.040 6.62
(Deco der—or;l ) CTRLSHIFT 0.497 0.544 67.02 | 0.404 0.443 59.28 | 0.367 0.406 56.12
y DPTDR 0.474 0.512 65.74 | 0.301 0.330 4530 | 0.338 0.374 51.65

BERT-base QuoteR ‘ 0.572 0.580 69.03 ‘ 0.541 0.548 64.97 ‘ 0.484  0.490 60.78

Table 1: Quotation retrieval performance (MRR, nDCG, Recall@10) across diverse backbones and languages.
CTRLSHIFT consistently outperforms the "Raw" and DPTDR baselines while being significantly more efficient
(one input token vs. 64 per-layer tokens in DPTDR). Notably, our lightweight method achieves performance
competitive with the fully fine-tuned QuoteR benchmark.

Overall Loss.

The final training objective is a

weighted sum of all components:

Liotal = M Lretrieval + A2LkL + A3Lghite,  (7)

where A1, Ao, and A3 are tunable hyperparameters
controlling the contribution of each loss.

4 Experiments

We evaluate CTRLSHIFT on the QuoteR bench-
mark (Qi et al., 2022), a large-scale benchmark
designed to test retrieval in complex, functionally-
driven scenarios. It comprises three challenging
subsets: English (with approx. 127k context-
quote pairs), Modern Chinese (sChinese, approx.
41k pairs), and Classical Chinese (cChinese, ap-
prox. 117k pairs). These datasets require models
to handle metaphorical shifts, low lexical overlap,
and domain-specific semantics, providing a robust
testbed for our method.

We treat quote recommendation as a single-
stage dense retrieval task, where the input is a
passage and the goal is to retrieve the most se-
mantically aligned quote. Models are evaluated
using Recall@10, nDCG, and MRR. All experi-
ments are conducted on a single NVIDIA A800
80GB GPU using the official PyTorch 2.5.1 con-
tainer. We employ the PyTorch Lightning frame-
work with mixed-precision training (bfloatl6) to
improve computational efficiency. Further imple-
mentation details and the code repository are pro-
vided in Section A.2.

4.1 Baselines

We compare CTRLSHIFT against two primary
baselines that use a unified dual-encoder archi-

Model Variant Recall@10 MRR nDCG
Full CTRLSHIFT 56.12 0.406 0.366
w/o Shift 54.09 0.351 0.367
w/o FILM 54.75 0.358 0.371
w/o VAE 8.25 0.037 0.082

Table 2: Ablation of key components. Both shift mod-
eling and VAE are critical.

tecture with parameter-efficient tuning: (1) a
Raw baseline that directly uses the pooled rep-
resentations from the pretrained models, and (2)
DPTDR (Ma et al., 2022), a strong prompt-based
dense retrieval method. We also include the results
from the original QuoteR paper (Qi et al., 2022) as
a key historical benchmark.

It is important to note the significant method-
ological differences between our approach and the
QuoteR baseline. The QuoteR model is an inde-
pendent dual-encoder that undergoes multi-stage,
full fine-tuning. In contrast, both CTRLSHIFT
and DPTDR employ a unified dual-encoder (i.e.,
a shared backbone) and use lightweight prompt
tuning, keeping the base model frozen. Further-
more, the original QuoteR task assumes a specific
insertion point for the quote, whereas our setup ad-
dresses the more general task of retrieving a rele-
vant quote for an entire passage.

4.2 Main Results

We present the main results in Table 1. The
data reveals a clear and consistent pattern: CTRL-
SHIFT substantially improves performance across
all tested backbones (BGE-M3, Qwen3 series) and
language datasets (English, Modern Chinese, and



/Input

REAEEHREENOA, RE—MEMEKRLTRYN, BEESD
FUHHBNEEN. KEATFRIERE: “DLHTENGEAET
fti—4E 5 THEF T 6002 HFIEME, ”

CtrlShift

1: BI&7] 2: #hEF 3: effort 4: ¥§77 5: creativity 6: TYFREE 7: 551 8:
talents 9: travail 10: creat 11: talent 12: work 13: 8l3i& 14: R/ 15: 81
{E 16: working 17: diligence 18: £ /=#E/] 19: efficiency 20: Work

Raw

1:452: 0k 3: KFE 4: work 5: 4 6: X 7: FE8: " 9: F 10: 49 11:
accomplishment 12: Bk 13: 4 14: & 15: fER 16: A 17: A& 18:

B9T{E 19: (work 20: achievement

/Input
ERILSR, WIERICRIAT.

CtriShift

1: MR 2: %% 3: 8 4: 577 5: 8 6: moth 7: [X] 8: %6 9: TFh 10: F 11:
IR 12: BFEARMWE 13: 7 14: spiders 15: 7% 16: Education 17: &
18: #23F 19: iter 20: &Y

Raw

1: & 2: & 3: £ 4: {4 5: filament 6: Silk 7: £& 8: spring 9: 1if 10:
dead 11: 3£ 12: ¥ 13: silk 14: Spring 15: & 16: HER 17: 1§46

U\

18: & 19: 3E 20: ,.

/

Figure 3: Qualitative analysis of the semantic space. By decoding embeddings, we show that CTRLSHIFT steers
the model’s focus from surface-level keywords (Raw) to abstract, functional concepts for both a modern context

(left) and a classical poem (right).

Traditional Chinese). Our framework consistently
outperforms both the unmodified base models and
the strong prompt-based DPTDR baseline.

Crucially, our method achieves these gains with
remarkable efficiency. While DPTDR injects 64
virtual tokens per layer, CTRLSHIFT adds only a
single token to the input, making it significantly
more lightweight. Despite this efficiency, our
method achieves performance that is competitive
with the fully fine-tuned QuoteR. This demon-
strates that our parameter-efficient, external con-
trol mechanism can match a much heavier, multi-
stage, full fine-tuning approach, highlighting the
power and efficiency of our method.

For DPTDR, GPU memory limitations necessi-
tated a smaller batch size and gradient accumu-
lation to ensure stable training, are provided in
Appendix A.2. In addition, implementation-level
adjustments were required to support backbones
that adopt grouped query attention (GQA, Ainslie
et al., 2023), such as Qwen3.

4.3 Ablation Studies

We conduct ablation studies on the Traditional
Chinese dataset using Qwen3-embedding-0.6B as
the backbone to assess the impact of key compo-
nents. As shown in Table 2, each architectural el-
ement contributes meaningfully to overall perfor-
mance.

Removing the semantic shift prediction loss
("w/o Shift") led to a noticeable drop in re-
trieval performance, underscoring the importance
of modeling contextual transformation explicitly.
Disabling the FiLM layer ("w/o FILM") similarly
degraded performance, indicating its role in effec-
tively modulating the control signal. Most notably,
replacing the VAE with a simple two-layer MLP

bottleneck ("w/o VAE") resulted in the most se-
vere performance degradation. This highlights the
limitations of a deterministic bottleneck and con-
firms the VAE’s effectiveness in learning a struc-
tured latent space crucial for dynamic control.

4.4 Qualitative Analysis: Interpreting the
Semantic Space

To analyze the effect of CTRLSHIFT, we decode
the final embedding vectors via the model’s de-
coder head (1m_head), using the top predicted
tokens as interpretable proxies for semantic focus.

As illustrated in Figure 3 (with English
translations provided in Appendix A.3), CTRL-
SHIFT shifts representations from surface-level
co-occurrences (e.g., “achievement”, “work™) to
more abstract drivers of meaning (e.g., “creativ-
ity”, “diligence”). For classical texts, it similarly
redirects outputs from literal tokens (e.g., “silk-
worm”, “spring”) toward deeper thematic con-
cepts such as “selfless” and “perseverance”.

These results suggest that CTRLSHIFT guides
the model toward functional semantics over lexical
overlap. To our knowledge, it is the first to lever-
age decoder-only LL.M-based embeddings for in-
terpretability in dense retrieval, offering simple yet
effective semantic insight.

Effect of Control Target. To examine whether
explicitly modeling semantic shift improves con-
trol effectiveness, we compare our default tar-
get embedding (eghirr) With two alternatives: the
embedding of the full poem within context
(€poem-in-context) and that of the isolated poem
alone (epgem-isolated). As shown in Table 3, et
consistently yields the best performance across all
metrics. In contrast, using the full poem or iso-
lated poem as the target leads to substantial drop



in retrieval quality, likely due to semantic ambi-
guity or overfitting to surface features. All mod-
els show consistent gains when integrated with our
framework, suggesting its potential generality and
applicability.

Control Target Recall@10 MRR nDCG
esnire (default) 56.12 0.366 0.406
€poem-in-context 53.62 0.344 0.375
€poem-isolated 54.76 0.351 0.381

Table 3: Comparison of control targets. Modeling the
semantic shift vector is most effective.

4.5 Analysis of Implementation Choices

We evaluate key design choices for pooling and
control vector injection on the Traditional Chinese
dataset using the Qwen3-0.6B backbone, with re-
sults shown in Figure 4.

Pooling Strategies. As shown in Figure 4a, we
compare three pooling methods. While standard
approaches like Mean Pooling and Last Token
Pooling are common, they can be suboptimal;
mean pooling may dilute important semantic sig-
nals, while last-token pooling may not capture the
full context of a sequence. Our results confirm that
Latent Attention (Lee et al., 2024a), which uses a
learnable query to perform task-adaptive aggrega-
tion of token-level hidden states, achieves the best
performance. This highlights the benefit of a more
expressive and flexible pooling mechanism for our
task.

Control Vector Injection. We also compare
four strategies for injecting the control vector c
into the frozen LLM (Figure 4b). The simplest
method, Add, which merely perturbs the input
embeddings, yields the poorest results, suggest-
ing a weak conditioning effect. Prepend and Ap-
pend, which insert ¢ as pseudo-tokens, perform
better but are still significantly outperformed by
our main approach. The Attach strategy proves
decisively superior. By treating c as a virtual token
injected directly via the model’s past_key_values
cache, it allows the LLM to strongly and di-
rectly condition its final representation on our con-
trol signal without any architectural modifications.
This result indicates that direct autoregressive con-
ditioning is a more effective mechanism for se-
mantic modulation than simple input sequence
manipulation.

(a) Comparison of Pooling Methods
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Figure 4: Ablation study on pooling methods (a) and
control vector injection strategies (b). Results on the
Traditional Chinese dataset with the Qwen3-0.6B back-
bone show that Latent Attention and the Attach strategy
yield the best performance.

Table 4: Retrieval performance of a specialized em-
bedding model vs. a general-purpose LLM, with and
without CTRLSHIFT.

Model Method R@10 MRR nDCG
Raw 662 00375 0.0400
Embed-0.6b i pySuirr 5612 0366 0.406
Raw 104 00082 0.0073
LLM-0.6b oy pySuier  53.61 0354 0.390

4.6 Unifying Generative and Embedding
Models

A key motivation for our work is to explore the
potential of using a single, general-purpose gen-
erative LLM for both text generation and high-
quality text embedding. To this end, we conducted
an experiment comparing the retrieval perfor-
mance of a specialized embedding model (Qwen3-
embedding-0.6b) with a general-purpose genera-
tive model (Qwen3-0.6b) of a similar scale.

As shown in Table 4, the raw generative model
(Qwen3-0.6b) performs poorly on the retrieval
task, achieving an nDCG of only 0.0073. This
is expected, as it was not trained for discrimina-
tive embedding tasks. However, when augmented
with our CTRLSHIFT framework, its performance



dramatically improves to an nDCG of 0.3905.

Remarkably, this result is nearly identical
to the performance of the specialized Qwen3-
embedding-0.6b model equipped with CTRL-
SHIFT (0.4065 nDCG). This demonstrates that
our lightweight control mechanism can effectively
steer a general-purpose generative model to pro-
duce embeddings that are competitive with state-
of-the-art specialized models, without requiring
any fine-tuning of the base model’s weights. This
finding highlights a promising path toward uni-
fying text generation and representation learning
within a single, versatile architecture.

4.7 Generalization to Other Benchmarks

Table 5: Performance on the MS MARCO passage
ranking dev set. CTRLSHIFT maintains the strong per-
formance of the base models, avoiding the performance
degradation often seen with fine-tuning on this bench-
mark.

Model Method Recall@10 MRR nDCG
Raw 5333 04715 0.4852
BGE-M3 CtrlShift 5348 04723 0.4876
Raw 30.70  0.1913 0.2130
Qwen3-E-0.6B  ~iohift 5347 04688 0.4836

To test generalization beyond quotation recom-
mendation, we evaluated CTRLSHIFT on the MS
MARCO passage ranking benchmark (Bajaj et al.,
2016). We report results on the development set
(as the test set is unavailable), restricting retrieval
to the labeled passages due to memory constraints.

As shown in Table 5, applying CTRLSHIFT pre-
serves the high performance of strong base mod-
els like BGE-M3 and Qwen3-embedding-0.6b on
this general-domain task. The two models perform
comparably, as expected given their similar scale.

This result is notable given recent findings
that fine-tuning strong sentence transformers on
MS MARCO can degrade performance by dis-
rupting the semantic structure built during large-
scale pre-training (Pande et al., 2025). In con-
trast, CTRLSHIFT leaves the base model un-
changed, adapting its representations externally
via a lightweight control signal.  This pre-
serves pre-trained knowledge while improving
task-specific alignment—a particularly beneficial
property on saturated benchmarks.

5 Conclusion

We introduce CTRLSHIFT, a lightweight frame-
work that steers a frozen language model via
dynamic control vectors to capture functional,
context-aware semantics for asymmetric retrieval
tasks. Our experiments show this approach sig-
nificantly improves performance on quotation rec-
ommendation and generalizes robustly to standard
benchmarks like MS MARCO, notably avoid-
ing the performance degradation common to fine-
tuning on saturated benchmarks. Furthermore,
by enabling general-purpose generative models to
produce embeddings competitive with specialized
retrieval systems, our work highlights a promising
path toward unifying representation learning and
generation through dynamic semantic control.

6 Ethical Considerations

This work focuses on retrieval-based writing as-
sistance, a relatively low-risk application domain.
All evaluations are conducted on publicly avail-
able datasets (e.g., QuoteR), promoting trans-
parency and reproducibility.

However, since our framework builds on large
language models, it may inherit biases or stereo-
typical associations from the underlying models,
potentially leading to inappropriate outputs. We
do not recommend deployment in sensitive con-
texts where such risks could cause harm. While
some interpretability analyses are included, fur-
ther work is needed to ensure transparency and ro-
bustness. Our method is lightweight in terms of
parameter updates, though we do not quantify its
environmental impact.

7 Limitations

Our work explores a novel form of model self-
refinement via an external control mechanism, but
several limitations remain. First, the approach
relies on supervised signals (i.e., context-quote
pairs), which may limit its applicability in low-
resource domains. Second, the exploration is pre-
liminary: experiments are limited in scale and
model diversity, including our unified use of gen-
erative and embedding models, which requires
broader validation. Third, performance on other
asymmetric retrieval tasks remains untested. Fi-
nally, deeper theoretical analysis is needed to char-
acterize how the control vector shapes the seman-
tic space and the latent concepts learned by the
VAE.
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A Appendix
A.1 Embedding Model Performance

Table 6: Performance of strong embedding models
on classical poetry citation retrieval. Standard models
struggle to capture the required functional and asym-
metric relevance.

Model Recall@10 MRR nDCG
BGE-M3 13.26 0.0700 0.0848
GTE-Qwen2-7B 24.29 0.1284 0.1556
GTE-Qwen2-1.5B 20.68 0.1060 0.1298
ES5-large 12.65 0.0651 0.0796

Table 7: ColBERT underperforms on poetic citation
tasks, suggesting that fine-grained token interactions
alone are insufficient for capturing semantic resonance.

Model Recall@10 MRR nDCG
BGE-M3 13.26 0.0700 0.0848
BGE-M3 (ColBERT) 12.41 0.0631 0.0774

A.2 Training Environment

Optimization is performed using AdamW with
default weight decay. The learning rate is dy-
namically adjusted via a ReduceLROnPlateau
scheduler, which reduces it by a factor of
0.5 if the validation performance plateaus for
more than 3 consecutive epochs. Early stop-
ping is applied with a patience of 5 epochs
based on validation retrieval metrics. These
strategies improve convergence and general-
ization across model variants. = We provide
our implementation at the following anonymous
repository: https://anonymous.4open.
science/r/CtrlShift-0222

Table 8: Training and model hyperparameters for
CTRLSHIFT.

Hyperparameter Value
vae_latent_dim 128
vae_hidden_dim 512
free_nats 0.8
loss_retrieval_temp 0.035
batch_size 256
accumulate_grad_batches 1
epoch 25
k_recall 10
loss_weight_formulas.loss_kl ~ 0.02 * progress
loss_weights.loss_pred 1.0
loss_weights.loss_retrieval 1.0

Ir 0.002
Ir_decay_factor 0.5

Ir_scheduler_type plateau

Table 8 summarizes the hyperparameters used for
training CTRLSHIFT. For the DPTDR baseline,
we adopt a different tuning configuration better
suited for prompt-based methods, as detailed in
Table 9.

Table 9: Additional hyperparameters specific to
DPTDR.
Hyperparameter Value
batch_size 16
accumulate_grad_batches 16
num_virtual_token 64
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A.3 English translation of the qualitative
analysis

Table 10: Full English translation of the qualitative
analysis examples presented in Figure 3, showing the
top 20 decoded tokens from the embedding space for
each method.

Input Text Method Top Decoded Tokens

"Anyone who has achieved CTRLSHIFT 1: creativity, 2: diligence, 3: effort, 4: en-
great things in life did not get ergy, 5: creativity, 6: work efficiency, 7:
them by waiting in bed, but effort, 8: talents, 9: travail, 10: creat, 11:
through tireless effort. The great talent, 12: work, 13: creation, 14: inspira-
British philosopher Bacon said: tion, 15: creative work, 16: working, 17:
’Shakespeare’s greatness lies in diligence, 18: productivity, 19: efficiency,
the fact that he wrote and 20: Work

translated over 6 million words

e Raw 1: achievement, 2: deed, 3: great event, 4:
in his lifetime.”"

work, 5: achievement, 6: , 7: matter, 8: °,
9: notable, 10: thing, 11: accomplishment,
12: career, 13: grand, 14: form, 15: work
of art, 16: effort, 17: 1is, 18: work, 19:
(work, 20: achievement

"The spring silkworm spins CTRLSHIFT 1: exert, 2: silkworm, 3: hardworking, 4:
until it dies; the candle burns effort, 5: moth, 6: moth, 7: , 8: pupa,
until its tears dry." 9: selfless, 10: cocoon, 11: tenacious, 12:

perseverance, 13: all, 14: spiders, 15: un-
remitting, 16: Education, 17: hardship,
18: transformation, 19: iter, 20: of life

Raw 1: silkworm, 2: spring, 3: silk, 4: candle,
5: filament, 6: Silk, 7: thread, 8: spring,
9: Iif, 10: dead, 11: die, 12: bow, 13: silk,
14: Spring, 15: Tang, 16: I love you, 17:
verse, 18: spring breeze, 19: die, 20: ..
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