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Abstract

Quotation recommendation is an inherently001
asymmetric retrieval task, where the intended002
meaning of a quote often diverges from sur-003
face expressions, creating significant seman-004
tic shifts. Combined with minimal lexical005
overlap, this poses a core challenge for clas-006
sic dense retrievers, which struggle to cap-007
ture non-literal and rhetorical alignments. To008
bridge this semantic gap, we propose in-009
troducing controllable signals to guide the010
model’s attention toward abstract, context-011
relevant concepts. We propose CTRLSHIFT,012
a framework that leverages a Variational Au-013
toencoder (VAE) to capture latent associa-014
tions between context and quotation, which015
is used to derive context-aware control sig-016
nals to modulate semantic focus and sup-017
port bidirectional alignment and rhetorical in-018
tent modeling. Experiments show that our019
method consistently outperforms baselines on020
the quotation recommendation task and can021
be effectively transfered to the general pur-022
posed benchmark. Further, CTRLSHIFT in-023
tegrates seamlessly with general-purpose gen-024
erative models without additional fine-tuning,025
and provides satisfactory interpretability by026
generating textual explaination to uncover the027
model’s focus on abstract, citation-aligned se-028
mantics.029

1 Introduction030

Quotation recommendation, the task of retrieving031

classical excerpts to enrich modern literature (Tan032

et al., 2015), serves as a powerful tool for enhanc-033

ing rhetorical expression. However, this task poses034

a significant challenge for standard dense retrieval035

(DR) models, revealing fundamental limitations in036

their design. As our preliminary experiments in037

Appendix Table 6 show, even state-of-the-art em-038

bedding models perform poorly, underscoring the039

need for a different retrieval paradigm.040

This performance gap arises from the intrinsic041

properties of the task. Quotation recommenda-042

tion is inherently asymmetric (Liao et al., 2024); 043

modern contexts and classical quotes differ starkly 044

in style, abstraction, and vocabulary (Qi et al., 045

2022). As illustrated in Figure 1 (right), rele- 046

vance depends less on lexical overlap and more 047

on functional alignment. Quotations often rely 048

on metaphor or imagery, introducing a gap be- 049

tween surface form and intended meaning—what 050

we term a semantic shift. Tellingly, interaction- 051

heavy models like ColBERT (Khattab and Za- 052

haria, 2020), which rely on fine-grained token 053

similarity, perform even worse (see Appendix 054

Table 7), suggesting that over-reliance on sur- 055

face matching is counterproductive. This need 056

for functional alignment challenges traditional re- 057

trieval systems designed for semantic similar- 058

ity (Thakur et al., 2021). 059

The reliance of dense retrievers on surface- 060

level lexical signals is well-documented; they of- 061

ten fail to capture salient keywords (Karpukhin 062

et al., 2020; Chen et al., 2021) and tend to pri- 063

oritize superficial overlaps over factual or func- 064

tional relevance (Fayyaz et al., 2025). As a re- 065

sult, they struggle to model the kinds of seman- 066

tic shifts and abstract alignments required for ef- 067

fective quotation recommendation. While com- 068

monly used (Wu and Cao, 2024; Metzler et al., 069

2021), pseudo-query generation is unstable and 070

unreliable in open-ended citation tasks (Abe et al., 071

2025). 072

Importantly, recent embedding models, espe- 073

cially those based on decoder-only LLMs (Chen 074

et al., 2024; Muennighoff et al., 2024; Wang et al., 075

2024a), exhibit emergent capabilities (Wei et al., 076

2022) that arise from scale and representation 077

learning. These models inherently possess the ca- 078

pacity to capture abstract reasoning and contextual 079

nuance, offering a bottom-up mechanism for mod- 080

eling semantic drift and latent alignment. 081

We propose a modular soft control mech- 082

anism to dynamically steer embedding gener- 083
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Figure 1: An overview of our CTRLSHIFT framework. Left: The main pipeline, which uses a shared encoder and
a two-stage process. An initial embedding is passed through an external prompt generator to produce a dynamic
control vector, which is then injected into a frozen language model to yield a refined, context-aware representation
for retrieval. Right: Illustrative examples demonstrating that effective quotation matching hinges on deeper func-
tional alignment rather than mere surface-level lexical overlap.

ation—shifting focus from surface-level token084

overlap to abstract, functional semantics. As085

shown in Figure 1 (right), this enables the model to086

move beyond superficial matches (e.g., "day and087

night") and instead align with contextually rele-088

vant concepts (e.g., "selfless dedication"), even in089

the absence of lexical overlap.090

To this end, we introduce CTRLSHIFT, a091

lightweight framework that equips frozen lan-092

guage models with dynamic, context-aware em-093

bedding capabilities. As illustrated in Figure 1094

left, CTRLSHIFT follows a two-stage process: an095

initial embedding is produced, then a lightweight096

control module—implemented as a VAE—derives097

a context-sensitive control vector. This vector is098

injected back into the LLM to yield refined em-099

beddings aligned with abstract semantics. The en-100

tire framework is trained end-to-end with a self-101

supervised objective.102

We conduct extensive experiments demonstrat-103

ing that CTRLSHIFT improves performance across104

multiple languages and generalizes well to MS105

MARCO. This is significant because direct fine-106

tuning on this saturated benchmark often degrades107

performance by disrupting the model’s pre-trained108

knowledge (Pande et al., 2025). Our method109

avoids this pitfall by adapting the model with-110

out altering its weights. Furthermore, it en-111

ables general-purpose LLMs to produce compet-112

itive embeddings without task-specific tuning, and113

supports interpretability via decoding of abstract114

control signals.115

Our contributions are as follows:116

• We present CTRLSHIFT, a lightweight con-117

trol framework that explores a novel form of 118

model self-refinement. It enables fine-grained 119

semantic modulation of frozen language mod- 120

els by using a VAE to learn latent, context- 121

aware concepts for functional alignment. 122

• We demonstrate that CTRLSHIFT achieves 123

consistent and significant performance gains 124

on the specialized quotation recommendation 125

task, and generalizes robustly to the general- 126

purpose MS MARCO benchmark. 127

• We show that CTRLSHIFT enables effective 128

retrieval with general-purpose decoder-only 129

language models, without task-specific fine- 130

tuning, and inherently supports interpretabil- 131

ity by decoding control vectors into abstract 132

citation-related concepts, leveraging the gen- 133

erative capabilities of LLMs. 134

2 Related Work 135

Dense Retrieval Dense retrieval (DR) encodes 136

queries and documents into a shared embed- 137

ding space to support efficient retrieval beyond 138

lexical matching. The field has evolved from 139

early bi-encoders trained with contrastive fine- 140

tuning (Karpukhin et al., 2020; Xiong et al., 141

2021) to modern models pretrained at scale like 142

E5 (Wang et al., 2022), GTE (Li et al., 2023), 143

and BGE (Chen et al., 2024). To further improve 144

the performance of these bi-encoders, a com- 145

mon technique is to distill knowledge from more 146

powerful but computationally expensive cross- 147

encoders (Rosa et al., 2022; Qu et al., 2021; Ren 148

et al., 2021a; Zhang et al., 2021; Ren et al., 2021b). 149

The advent of Large Language Models (LLMs) 150
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Figure 2: The core mechanisms of CTRLSHIFT. (Left) The Controlled Embedding Refinement process. An initial
embedding is generated from input tokens. A VAE, modulated by a FiLM layer, models this embedding to produce
a control vector. In a second pass, this control vector is injected into the frozen language model as a form of teacher
forcing to generate the refined final embedding. (Right) Semantic Shift Modeling. The semantic shift (eshift) is
the difference between an item’s embedding in context (ein_context) and in isolation (eisolated), forming the basis
for our control vector. The VAE on the left learns to generate a latent representation that captures this shift.

has spurred new embedding models, from151

decoder-only architectures (Liu et al., 2024; Wang152

et al., 2024b; Lee et al., 2024a,b) to special-153

ists created by fine-tuning generative models like154

Gemini-embedding (Lee et al., 2025) and Qwen3-155

embedding (Zhang et al., 2025) on synthetic156

data (Wang et al., 2024a). However, these mod-157

els act as static encoders, unable to leverage their158

instruction-following ability for dynamic contex-159

tual adaptation—a core limitation our work ad-160

dresses.161

Prompting for Retrieval Prompting improves162

dense retrieval in a parameter-efficient way. Most163

prior prompting methods in retrieval rely on static164

strategies (Peng et al., 2025; Lee et al., 2022; Ma165

et al., 2022), including instruction-based prompt-166

ing with synthetic data (Dai et al., 2022; Asai167

et al., 2022; Su et al., 2022; Wang et al., 2024a).168

These global approaches overlook input-specific169

semantics. While dynamic prompting has been170

explored for reranking (Wu et al., 2024), we in-171

troduce the first dynamic control mechanism for172

dense retrieval.173

Quotation Recommendation Quotation rec-174

ommendation has evolved from a learning-to-rank175

task with hand-crafted features (Tan et al., 2015)176

to early neural models (LSTMs/CNNs) (Tan et al.,177

2016, 2018; Ahn et al., 2016). Research has178

since improved semantic alignment using struc-179

tured knowledge (Xu et al., 2022; Liu et al., 2021),180

established benchmarks (Qi et al., 2022), and ex-181

tended the task to dialogue and generation (Lee182

et al., 2016; Wang et al., 2021; Xiao et al., 2024).183

We are the first to frame this task from a mod-184

ern dense retrieval perspective, with CTRLSHIFT 185

designed to capture deep, context-dependent rele- 186

vance beyond surface similarity. 187

3 Approach 188

As shown in Figure 1 (left), CTRLSHIFT reformu- 189

lates dense retrieval as a two-stage process: gen- 190

erating a general-purpose embedding followed by 191

context-aware refinement. The name CTRLSHIFT 192

reflects our core idea—using a dynamically gen- 193

erated control(Ctrl) vector to capture the semantic 194

shift of text in context. The main pipeline, Con- 195

trolled Embedding Refinement (Figure 2, left), 196

is guided by Semantic Shift Modeling (Figure 2, 197

right), which provides auxiliary supervision for 198

the control vector. 199

3.1 Problem Formulation 200

Let C be an input context and P = 201

{P1, P2, . . . , PN} be a corpus of N source 202

poems. The objective is to retrieve the specific 203

poem Pj ∈ P that is functionally and semantically 204

aligned with the context C. 205

We formulate this as a dense retrieval task, aim- 206

ing to learn an embedding function f(·) that maps 207

both contexts and poems into a shared semantic 208

space Rd. For a given context C, the model is 209

trained to ensure that its embedding f(C) is closer 210

to that of the source poem f(Pj) than to any non- 211

source poem f(Pi) (i ̸= j), under a similarity 212

metric sim(·, ·). Following the standard dense re- 213

trieval pipeline, all poems in the corpus P are en- 214

coded offline via f(·) to construct an embedding 215

index. At inference time, C is encoded into a 216
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query vector and matched against the index to re-217

trieve top-ranked candidates.218

3.2 Controlled Embedding Refinement219

Our refinement process enables model self-220

adaptation via an external control mechanism. By221

generating dynamic control vectors, it steers a222

frozen language model toward functional, context-223

aware semantics suitable for asymmetric retrieval.224

As shown in Figure 2 (left), this process is225

parameter-efficient and leaves the base LLM un-226

touched.227

We begin by generating an initial embedding228

einit, which is passed through a lightweight Vari-229

ational Autoencoder (VAE) (Kingma et al., 2013)230

to produce a latent variable z capturing the abstract231

“citation concept.” A Feature-wise Linear Modu-232

lation (FiLM) layer (Perez et al., 2018) conditions233

einit on z, and a ControlHead transforms z into a234

dynamic control vector c:235

c = γ(z)⊙ einit + ControlHead(z) (1)236

where γ(·) and ControlHead(·) are MLPs that237

generate scaling and shifting parameters, respec-238

tively. This operation preserves the richness of239

einit while aligning it with the structured abstrac-240

tion in z, enabling precise semantic refinement241

without modifying the language model.242

3.3 Semantic Shift Modeling243

While our end-to-end retrieval objective implic-244

itly encourages the model to understand contex-245

tual meaning, we introduce Semantic Shift Mod-246

eling as an auxiliary objective to make this process247

more explicit and robust. This approach is con-248

ceptually grounded in the distributional hypothesis249

(Firth, 1957) and the additive properties of word250

embeddings (Mikolov et al., 2013). Inspired by251

relational embedding models that model relations252

as translations in vector space (Bordes et al., 2013;253

Wang et al., 2014), we explicitly model the seman-254

tic shift a poem undergoes.255

As shown in Figure 2 (right), the shift vector256

eshift is defined as:257

eshift = ein_context − eisolated (2)258

This vector is intended to capture the contextual259

transformation of the poem’s semantics. To guide260

this process, we train the control vector c to ap-261

proximate the semantic shift vector eshift using an262

auxiliary loss (see Section 3.4). This additional su- 263

pervision encourages the control module to model 264

nuanced, context-dependent meaning, which we 265

hypothesize to be beneficial for achieving better 266

functional alignment. 267

3.4 Training Objectives 268

CTRLSHIFT is trained end-to-end using multiple 269

objectives that jointly encourage structured latent 270

representations and controllable, context-sensitive 271

semantics. 272

VAE Regularization. To enable the latent vari- 273

able z to capture rich and generalizable seman- 274

tic features, we adopt a variational autoencod- 275

ing framework. A KL-divergence regularization 276

encourages the approximate posterior to remain 277

close to a standard Gaussian prior: 278

LKL = DKL (qϕ(z | einit) ∥ N (0, I)) (3) 279

Retrieval Loss. To align the learned embed- 280

dings with downstream retrieval objectives, we 281

adopt an InfoNCE loss (Oord et al., 2018). Given 282

a context embedding eP , its corresponding poem 283

embedding e+P , and a set of negative samples e−Pi
, 284

the loss is defined as: 285

Lretrieval = − log p∗ (4) 286

287

p∗ =
exp

(
q⊤p−m

τ

)
exp

(
q⊤p−m

τ

)
+
∑

q−∈N (q) exp
(
(q−)⊤p

τ

)
(5) 288

where sim(·, ·) is cosine similarity and τ is a tem- 289

perature hyperparameter. Negatives are sampled 290

from within the batch. 291

Semantic Shift Prediction Loss. To further 292

guide latent learning, we introduce an auxiliary 293

reconstruction objective that explicitly supervises 294

semantic transformations. A decoder conditioned 295

on z predicts a shift vector êshift, trained to match 296

a reference shift embedding eshift derived from the 297

context–poem pair: 298

Lshift = ∥êshift − eshift∥22 (6) 299

This loss anchors the latent space to interpretable 300

transformations, encouraging z to encode control- 301

lable semantic variations. As shown in our abla- 302

tions, incorporating this shift supervision leads to 303

more structured and effective representations. 304
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Backbone Method English Modern Chinese Traditional Chinese

MRR nDCG R@10 MRR nDCG R@10 MRR nDCG R@10

BGE-M3
(Encoder-only)

Raw 0.094 0.104 16.28 0.095 0.106 17.11 0.070 0.085 13.26
CTRLSHIFT 0.446 0.466 59.78 0.423 0.457 58.59 0.344 0.375 50.11
DPTDR 0.4379 0.470 59.68 0.329 0.364 50.13 0.320 0.353 48.80

Qwen3-E-4B
(Decoder-only)

Raw 0.182 0.203 30.29 0.136 0.154 24.37 0.145 0.164 25.63
CTRLSHIFT 0.588 0.624 75.87 0.480 0.523 68.20 0.438 0.483 65.02
DPTDR 0.542 0.586 74.74 0.363 0.407 57.15 0.377 0.423 60.06

Qwen3-E-0.6B
(Decoder-only)

Raw 0.047 0.050 8.21 0.043 0.047 7.79 0.038 0.040 6.62
CTRLSHIFT 0.497 0.544 67.02 0.404 0.443 59.28 0.367 0.406 56.12
DPTDR 0.474 0.512 65.74 0.301 0.330 45.30 0.338 0.374 51.65

BERT-base QuoteR 0.572 0.580 69.03 0.541 0.548 64.97 0.484 0.490 60.78

Table 1: Quotation retrieval performance (MRR, nDCG, Recall@10) across diverse backbones and languages.
CTRLSHIFT consistently outperforms the "Raw" and DPTDR baselines while being significantly more efficient
(one input token vs. 64 per-layer tokens in DPTDR). Notably, our lightweight method achieves performance
competitive with the fully fine-tuned QuoteR benchmark.

Overall Loss. The final training objective is a305

weighted sum of all components:306

Ltotal = λ1Lretrieval + λ2LKL + λ3Lshift, (7)307

where λ1, λ2, and λ3 are tunable hyperparameters308

controlling the contribution of each loss.309

4 Experiments310

We evaluate CTRLSHIFT on the QuoteR bench-311

mark (Qi et al., 2022), a large-scale benchmark312

designed to test retrieval in complex, functionally-313

driven scenarios. It comprises three challenging314

subsets: English (with approx. 127k context-315

quote pairs), Modern Chinese (sChinese, approx.316

41k pairs), and Classical Chinese (cChinese, ap-317

prox. 117k pairs). These datasets require models318

to handle metaphorical shifts, low lexical overlap,319

and domain-specific semantics, providing a robust320

testbed for our method.321

We treat quote recommendation as a single-322

stage dense retrieval task, where the input is a323

passage and the goal is to retrieve the most se-324

mantically aligned quote. Models are evaluated325

using Recall@10, nDCG, and MRR. All experi-326

ments are conducted on a single NVIDIA A800327

80GB GPU using the official PyTorch 2.5.1 con-328

tainer. We employ the PyTorch Lightning frame-329

work with mixed-precision training (bfloat16) to330

improve computational efficiency. Further imple-331

mentation details and the code repository are pro-332

vided in Section A.2.333

4.1 Baselines334

We compare CTRLSHIFT against two primary335

baselines that use a unified dual-encoder archi-336

Model Variant Recall@10 MRR nDCG

Full CTRLSHIFT 56.12 0.406 0.366
w/o Shift 54.09 0.351 0.367
w/o FiLM 54.75 0.358 0.371
w/o VAE 8.25 0.037 0.082

Table 2: Ablation of key components. Both shift mod-
eling and VAE are critical.

tecture with parameter-efficient tuning: (1) a 337

Raw baseline that directly uses the pooled rep- 338

resentations from the pretrained models, and (2) 339

DPTDR (Ma et al., 2022), a strong prompt-based 340

dense retrieval method. We also include the results 341

from the original QuoteR paper (Qi et al., 2022) as 342

a key historical benchmark. 343

It is important to note the significant method- 344

ological differences between our approach and the 345

QuoteR baseline. The QuoteR model is an inde- 346

pendent dual-encoder that undergoes multi-stage, 347

full fine-tuning. In contrast, both CTRLSHIFT 348

and DPTDR employ a unified dual-encoder (i.e., 349

a shared backbone) and use lightweight prompt 350

tuning, keeping the base model frozen. Further- 351

more, the original QuoteR task assumes a specific 352

insertion point for the quote, whereas our setup ad- 353

dresses the more general task of retrieving a rele- 354

vant quote for an entire passage. 355

4.2 Main Results 356

We present the main results in Table 1. The 357

data reveals a clear and consistent pattern: CTRL- 358

SHIFT substantially improves performance across 359

all tested backbones (BGE-M3, Qwen3 series) and 360

language datasets (English, Modern Chinese, and 361
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Figure 3: Qualitative analysis of the semantic space. By decoding embeddings, we show that CTRLSHIFT steers
the model’s focus from surface-level keywords (Raw) to abstract, functional concepts for both a modern context
(left) and a classical poem (right).

Traditional Chinese). Our framework consistently362

outperforms both the unmodified base models and363

the strong prompt-based DPTDR baseline.364

Crucially, our method achieves these gains with365

remarkable efficiency. While DPTDR injects 64366

virtual tokens per layer, CTRLSHIFT adds only a367

single token to the input, making it significantly368

more lightweight. Despite this efficiency, our369

method achieves performance that is competitive370

with the fully fine-tuned QuoteR. This demon-371

strates that our parameter-efficient, external con-372

trol mechanism can match a much heavier, multi-373

stage, full fine-tuning approach, highlighting the374

power and efficiency of our method.375

For DPTDR, GPU memory limitations necessi-376

tated a smaller batch size and gradient accumu-377

lation to ensure stable training, are provided in378

Appendix A.2. In addition, implementation-level379

adjustments were required to support backbones380

that adopt grouped query attention (GQA, Ainslie381

et al., 2023), such as Qwen3.382

4.3 Ablation Studies383

We conduct ablation studies on the Traditional384

Chinese dataset using Qwen3-embedding-0.6B as385

the backbone to assess the impact of key compo-386

nents. As shown in Table 2, each architectural el-387

ement contributes meaningfully to overall perfor-388

mance.389

Removing the semantic shift prediction loss390

("w/o Shift") led to a noticeable drop in re-391

trieval performance, underscoring the importance392

of modeling contextual transformation explicitly.393

Disabling the FiLM layer ("w/o FiLM") similarly394

degraded performance, indicating its role in effec-395

tively modulating the control signal. Most notably,396

replacing the VAE with a simple two-layer MLP397

bottleneck ("w/o VAE") resulted in the most se- 398

vere performance degradation. This highlights the 399

limitations of a deterministic bottleneck and con- 400

firms the VAE’s effectiveness in learning a struc- 401

tured latent space crucial for dynamic control. 402

4.4 Qualitative Analysis: Interpreting the 403

Semantic Space 404

To analyze the effect of CTRLSHIFT, we decode 405

the final embedding vectors via the model’s de- 406

coder head (lm_head), using the top predicted 407

tokens as interpretable proxies for semantic focus. 408

As illustrated in Figure 3 (with English 409

translations provided in Appendix A.3), CTRL- 410

SHIFT shifts representations from surface-level 411

co-occurrences (e.g., “achievement”, “work”) to 412

more abstract drivers of meaning (e.g., “creativ- 413

ity”, “diligence”). For classical texts, it similarly 414

redirects outputs from literal tokens (e.g., “silk- 415

worm”, “spring”) toward deeper thematic con- 416

cepts such as “selfless” and “perseverance”. 417

These results suggest that CTRLSHIFT guides 418

the model toward functional semantics over lexical 419

overlap. To our knowledge, it is the first to lever- 420

age decoder-only LLM-based embeddings for in- 421

terpretability in dense retrieval, offering simple yet 422

effective semantic insight. 423

Effect of Control Target. To examine whether 424

explicitly modeling semantic shift improves con- 425

trol effectiveness, we compare our default tar- 426

get embedding (eshift) with two alternatives: the 427

embedding of the full poem within context 428

(epoem-in-context) and that of the isolated poem 429

alone (epoem-isolated). As shown in Table 3, eshift 430

consistently yields the best performance across all 431

metrics. In contrast, using the full poem or iso- 432

lated poem as the target leads to substantial drop 433
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in retrieval quality, likely due to semantic ambi-434

guity or overfitting to surface features. All mod-435

els show consistent gains when integrated with our436

framework, suggesting its potential generality and437

applicability.438

Control Target Recall@10 MRR nDCG

eshift (default) 56.12 0.366 0.406
epoem-in-context 53.62 0.344 0.375
epoem-isolated 54.76 0.351 0.381

Table 3: Comparison of control targets. Modeling the
semantic shift vector is most effective.

4.5 Analysis of Implementation Choices439

We evaluate key design choices for pooling and440

control vector injection on the Traditional Chinese441

dataset using the Qwen3-0.6B backbone, with re-442

sults shown in Figure 4.443

Pooling Strategies. As shown in Figure 4a, we444

compare three pooling methods. While standard445

approaches like Mean Pooling and Last Token446

Pooling are common, they can be suboptimal;447

mean pooling may dilute important semantic sig-448

nals, while last-token pooling may not capture the449

full context of a sequence. Our results confirm that450

Latent Attention (Lee et al., 2024a), which uses a451

learnable query to perform task-adaptive aggrega-452

tion of token-level hidden states, achieves the best453

performance. This highlights the benefit of a more454

expressive and flexible pooling mechanism for our455

task.456

Control Vector Injection. We also compare457

four strategies for injecting the control vector c458

into the frozen LLM (Figure 4b). The simplest459

method, Add, which merely perturbs the input460

embeddings, yields the poorest results, suggest-461

ing a weak conditioning effect. Prepend and Ap-462

pend, which insert c as pseudo-tokens, perform463

better but are still significantly outperformed by464

our main approach. The Attach strategy proves465

decisively superior. By treating c as a virtual token466

injected directly via the model’s past_key_values467

cache, it allows the LLM to strongly and di-468

rectly condition its final representation on our con-469

trol signal without any architectural modifications.470

This result indicates that direct autoregressive con-471

ditioning is a more effective mechanism for se-472

mantic modulation than simple input sequence473

manipulation.474

Figure 4: Ablation study on pooling methods (a) and
control vector injection strategies (b). Results on the
Traditional Chinese dataset with the Qwen3-0.6B back-
bone show that Latent Attention and the Attach strategy
yield the best performance.

Table 4: Retrieval performance of a specialized em-
bedding model vs. a general-purpose LLM, with and
without CTRLSHIFT.

Model Method R@10 MRR nDCG

Embed-0.6b Raw 6.62 0.0375 0.0400
CTRLSHIFT 56.12 0.366 0.406

LLM-0.6b Raw 1.04 0.0082 0.0073
CTRLSHIFT 53.61 0.354 0.390

4.6 Unifying Generative and Embedding 475

Models 476

A key motivation for our work is to explore the 477

potential of using a single, general-purpose gen- 478

erative LLM for both text generation and high- 479

quality text embedding. To this end, we conducted 480

an experiment comparing the retrieval perfor- 481

mance of a specialized embedding model (Qwen3- 482

embedding-0.6b) with a general-purpose genera- 483

tive model (Qwen3-0.6b) of a similar scale. 484

As shown in Table 4, the raw generative model 485

(Qwen3-0.6b) performs poorly on the retrieval 486

task, achieving an nDCG of only 0.0073. This 487

is expected, as it was not trained for discrimina- 488

tive embedding tasks. However, when augmented 489

with our CTRLSHIFT framework, its performance 490
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dramatically improves to an nDCG of 0.3905.491

Remarkably, this result is nearly identical492

to the performance of the specialized Qwen3-493

embedding-0.6b model equipped with CTRL-494

SHIFT (0.4065 nDCG). This demonstrates that495

our lightweight control mechanism can effectively496

steer a general-purpose generative model to pro-497

duce embeddings that are competitive with state-498

of-the-art specialized models, without requiring499

any fine-tuning of the base model’s weights. This500

finding highlights a promising path toward uni-501

fying text generation and representation learning502

within a single, versatile architecture.503

4.7 Generalization to Other Benchmarks504

Table 5: Performance on the MS MARCO passage
ranking dev set. CTRLSHIFT maintains the strong per-
formance of the base models, avoiding the performance
degradation often seen with fine-tuning on this bench-
mark.

Model Method Recall@10 MRR nDCG

BGE-M3 Raw 53.33 0.4715 0.4852
CtrlShift 53.48 0.4723 0.4876

Qwen3-E-0.6B Raw 30.70 0.1913 0.2130
CtrlShift 53.47 0.4688 0.4836

To test generalization beyond quotation recom-505

mendation, we evaluated CTRLSHIFT on the MS506

MARCO passage ranking benchmark (Bajaj et al.,507

2016). We report results on the development set508

(as the test set is unavailable), restricting retrieval509

to the labeled passages due to memory constraints.510

As shown in Table 5, applying CTRLSHIFT pre-511

serves the high performance of strong base mod-512

els like BGE-M3 and Qwen3-embedding-0.6b on513

this general-domain task. The two models perform514

comparably, as expected given their similar scale.515

This result is notable given recent findings516

that fine-tuning strong sentence transformers on517

MS MARCO can degrade performance by dis-518

rupting the semantic structure built during large-519

scale pre-training (Pande et al., 2025). In con-520

trast, CTRLSHIFT leaves the base model un-521

changed, adapting its representations externally522

via a lightweight control signal. This pre-523

serves pre-trained knowledge while improving524

task-specific alignment—a particularly beneficial525

property on saturated benchmarks.526

5 Conclusion 527

We introduce CTRLSHIFT, a lightweight frame- 528

work that steers a frozen language model via 529

dynamic control vectors to capture functional, 530

context-aware semantics for asymmetric retrieval 531

tasks. Our experiments show this approach sig- 532

nificantly improves performance on quotation rec- 533

ommendation and generalizes robustly to standard 534

benchmarks like MS MARCO, notably avoid- 535

ing the performance degradation common to fine- 536

tuning on saturated benchmarks. Furthermore, 537

by enabling general-purpose generative models to 538

produce embeddings competitive with specialized 539

retrieval systems, our work highlights a promising 540

path toward unifying representation learning and 541

generation through dynamic semantic control. 542

6 Ethical Considerations 543

This work focuses on retrieval-based writing as- 544

sistance, a relatively low-risk application domain. 545

All evaluations are conducted on publicly avail- 546

able datasets (e.g., QuoteR), promoting trans- 547

parency and reproducibility. 548

However, since our framework builds on large 549

language models, it may inherit biases or stereo- 550

typical associations from the underlying models, 551

potentially leading to inappropriate outputs. We 552

do not recommend deployment in sensitive con- 553

texts where such risks could cause harm. While 554

some interpretability analyses are included, fur- 555

ther work is needed to ensure transparency and ro- 556

bustness. Our method is lightweight in terms of 557

parameter updates, though we do not quantify its 558

environmental impact. 559

7 Limitations 560

Our work explores a novel form of model self- 561

refinement via an external control mechanism, but 562

several limitations remain. First, the approach 563

relies on supervised signals (i.e., context-quote 564

pairs), which may limit its applicability in low- 565

resource domains. Second, the exploration is pre- 566

liminary: experiments are limited in scale and 567

model diversity, including our unified use of gen- 568

erative and embedding models, which requires 569

broader validation. Third, performance on other 570

asymmetric retrieval tasks remains untested. Fi- 571

nally, deeper theoretical analysis is needed to char- 572

acterize how the control vector shapes the seman- 573

tic space and the latent concepts learned by the 574

VAE. 575
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A Appendix828

A.1 Embedding Model Performance829

Table 6: Performance of strong embedding models
on classical poetry citation retrieval. Standard models
struggle to capture the required functional and asym-
metric relevance.

Model Recall@10 MRR nDCG

BGE-M3 13.26 0.0700 0.0848
GTE-Qwen2-7B 24.29 0.1284 0.1556
GTE-Qwen2-1.5B 20.68 0.1060 0.1298
E5-large 12.65 0.0651 0.0796

Table 7: ColBERT underperforms on poetic citation
tasks, suggesting that fine-grained token interactions
alone are insufficient for capturing semantic resonance.

Model Recall@10 MRR nDCG

BGE-M3 13.26 0.0700 0.0848
BGE-M3 (ColBERT) 12.41 0.0631 0.0774

A.2 Training Environment 830

Optimization is performed using AdamW with 831

default weight decay. The learning rate is dy- 832

namically adjusted via a ReduceLROnPlateau 833

scheduler, which reduces it by a factor of 834

0.5 if the validation performance plateaus for 835

more than 3 consecutive epochs. Early stop- 836

ping is applied with a patience of 5 epochs 837

based on validation retrieval metrics. These 838

strategies improve convergence and general- 839

ization across model variants. We provide 840

our implementation at the following anonymous 841

repository: https://anonymous.4open. 842

science/r/CtrlShift-0222 843

Table 8: Training and model hyperparameters for
CTRLSHIFT.

Hyperparameter Value

vae_latent_dim 128
vae_hidden_dim 512
free_nats 0.8
loss_retrieval_temp 0.035
batch_size 256
accumulate_grad_batches 1
epoch 25
k_recall 10
loss_weight_formulas.loss_kl 0.02 * progress
loss_weights.loss_pred 1.0
loss_weights.loss_retrieval 1.0
lr 0.002
lr_decay_factor 0.5
lr_scheduler_type plateau

Table 8 summarizes the hyperparameters used for 844

training CTRLSHIFT. For the DPTDR baseline, 845

we adopt a different tuning configuration better 846

suited for prompt-based methods, as detailed in 847

Table 9. 848

Table 9: Additional hyperparameters specific to
DPTDR.

Hyperparameter Value

batch_size 16
accumulate_grad_batches 16
num_virtual_token 64
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A.3 English translation of the qualitative849

analysis850

Table 10: Full English translation of the qualitative
analysis examples presented in Figure 3, showing the
top 20 decoded tokens from the embedding space for
each method.

Input Text Method Top Decoded Tokens

"Anyone who has achieved
great things in life did not get
them by waiting in bed, but
through tireless effort. The great
British philosopher Bacon said:
’Shakespeare’s greatness lies in
the fact that he wrote and
translated over 6 million words
in his lifetime.’"

CTRLSHIFT 1: creativity, 2: diligence, 3: effort, 4: en-
ergy, 5: creativity, 6: work efficiency, 7:
effort, 8: talents, 9: travail, 10: creat, 11:
talent, 12: work, 13: creation, 14: inspira-
tion, 15: creative work, 16: working, 17:
diligence, 18: productivity, 19: efficiency,
20: Work

Raw 1: achievement, 2: deed, 3: great event, 4:
work, 5: achievement, 6: , 7: matter, 8: ´,
9: notable, 10: thing, 11: accomplishment,
12: career, 13: grand, 14: form, 15: work
of art, 16: effort, 17: is, 18: work, 19:
(work, 20: achievement

"The spring silkworm spins
until it dies; the candle burns
until its tears dry."

CTRLSHIFT 1: exert, 2: silkworm, 3: hardworking, 4:
effort, 5: moth, 6: moth, 7: , 8: pupa,
9: selfless, 10: cocoon, 11: tenacious, 12:
perseverance, 13: all, 14: spiders, 15: un-
remitting, 16: Education, 17: hardship,
18: transformation, 19: iter, 20: of life

Raw 1: silkworm, 2: spring, 3: silk, 4: candle,
5: filament, 6: Silk, 7: thread, 8: spring,
9: lif, 10: dead, 11: die, 12: bow, 13: silk,
14: Spring, 15: Tang, 16: I love you, 17:
verse, 18: spring breeze, 19: die, 20: ,.
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