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Abstract
Large language models (LLMs) have shown001
remarkable reasoning capabilities at increased002
scales, spurring efforts to distill such capabili-003
ties into smaller, compact models via teacher-004
student learning. Previous works directly fine-005
tune student models on teachers’ generated006
Chain-of-Thoughts (CoTs) data or learn it in007
a multi-task framework. However, these meth-008
ods struggle with CoTs generalization due to009
spurious correlations between questions and010
answers, as well as inconsistencies in the011
logic connecting the rationales to the answers.012
In this paper, we propose Cascaded CoTs013
Distillation (CasCoD), a straightforward but ef-014
fective method to address these issues. Specifi-015
cally, we decompose the full CoTs distillation016
into two comprehensive tasks and learn it in a017
cascade way by sharing the input prefix. By018
separating and cascading the tasks, CasCoD019
not only enables the student model to concen-020
trate on reasoning without the distraction of021
answers but ensures faithful reasoning in stu-022
dents, thus enhancing the generalizability of023
CoTs. Extensive experiments and further anal-024
ysis demonstrate the effectiveness of CasCoD025
on both in-domain and out-of-domain bench-026
mark reasoning datasets.027

1 Introduction028

Recent developments in large language models029

(LLMs) have brought remarkable improvements in030

reasoning via Chain-of-Thought (CoT) prompting031

(Wei et al., 2022b). However, these great reasoning032

capabilities are often associated with more param-033

eters (Wei et al., 2022a), which is not practical to034

emergent in smaller language models (SLMs). To035

address this, there is a lot of work (Magister et al.,036

2023; Ho et al., 2023; Shridhar et al., 2023; Fu et al.,037

2023) trying to make the reasoning capabilities iso-038

lated and distilled to SLMs by directly fine-tuning039

on teacher LLMs generated CoTs data. This pro-040

cess, known as standard CoTs distillation, requires041

SLMs to generate CoTs in a single step. However,042

I have a yam, a bed, a door,

two onions. How many

vegetables in total?

We start by iden�fying ... -

Bed (1) - Door (1). Now,

let's add the ... : 1 + 1 = 2.

Therefore, the answer is 2.

Ques�on           Ra�onale            Answer

(a)  Spurious correla�ons between Q and A lead to spuriously correct R

I have a yam, a bed, a door,

two onions. How many

vegetables in total?

We start by iden�fying ... -

Yam (1) - Onion (2). Now,

let's add the ... : 1  +  2 = 3.

The answer is 5.

(b)  Logical inconsistency between R and A

I have a yam, a bed, a door,

two onions. How many

vegetables in total?

We start by iden�fying ... -

Yam (1) - Onion (2). Now,

let's add the ... : 1  +  2 = 3.

The answer is 3.

(c)  Learning R and A with cascaded mul�-task.
Step2

Predict

Student

Predict

Explain

Explain
Step1

Figure 1: An illustration of the distinction between our
approach and previous methods. (a) Standard CoTs
distillation suffers from inefficient CoTs learning by
the spurious correlation between the question and an-
swer, leading to poor out-of-distribution generalization;
(b) Multi-task distillation makes students inconsistently
reason due to the isolated tasks; (c) Our approach de-
composes CoTs and learn its in a cascaded multi-task
way to address these issues.

due to the influence of spurious correlations be- 043

tween the question and the answer (Wang et al., 044

2023a), the student may learn reasoning shortcuts, 045

which in turn reduces the generalizability of the in- 046

termediate reasoning process (rationale), as shown 047

in Figure 1 (a). Some studies (Hsieh et al., 2023; 048

Li et al., 2022) employ a multi-task learning frame- 049

work to distill the CoTs by learning the rationale 050

(the intermediate reasoning process) and the answer 051

separately. However, this approach may result in 052

logical inconsistency, with the student’s rationale 053

failing to support the correctness of its predicted 054

answer, as illustrated in Figure 1 (b). 055

The flaws of the above two methods result in 056

CoTs distilled student models that perform worse 057

on unseen reasoning tasks than models directly fine- 058

tuned on answers 1. Different from recent works 059

1Confirmed experimentally, see §4.3.
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(Wang et al., 2023c; Liu et al., 2023) that primar-060

ily focus on in-domain tasks, we argue that the061

challenge of CoTs distillation lies in empower-062

ing students to truly learn reasoning—not only063

to excel in seen tasks but also to correctly reason064

for unseen problems.065

To address the above issues, we posit that the066

essence of effective CoTs distillation is tailoring067

the CoT learning approach for student models with068

limited parameters. This involves breaking down069

the CoT to enable students to learn in a manner that070

is both coherent and focused. Building on this basic071

insight, we propose Cascaded Chain-of-Thoughts072

Distillation (CasCoD), a straightforward but effec-073

tive CoTs distillation method that decomposes the074

full CoT learning into a series of successive, cas-075

caded learning tasks. Specifically, we reorganize076

the standard CoTs distillation from Question to (Ra-077

tionale, Answer) into two consecutive steps: first078

from Question to Rationale, and then from (Ques-079

tion, Rationale) to Answer, as shown in Figure 1080

(c). In the first step, the student model is not re-081

quired to consider the answer, allowing it to focus082

solely on the rationale learning, thereby enhancing083

the generalizability of the CoT. In the second step,084

where the student predicts the answer based on the085

question and rationale, it ensures that students can086

engage in faithful reasoning.087

We conduct extensive experiments to assess the088

CoT reasoning capabilities of the distilled student089

model across both in-domain (IND) and out-of-090

domain (OOD) benchmark reasoning datasets. Ex-091

periments show that: (1) Previous CoTs distillation092

methods underperform in OOD tasks compared093

to direct fine-tuning on answers, but our proposed094

method CasCoD overcomes this limitation by learn-095

ing the CoT in a cascade way. (2) CasCoD signif-096

icantly outperforms the best distillation baselines097

on both IND and OOD tasks, achieving an average098

improvement of 6.4%. (3) CasCoD is universally099

applicable to student SLMs of varying sizes and100

outperforms the standard CoTs distillation with101

much less training data. (4) Different components102

within CoTs should be allocated different attention103

and learned across multiple steps rather than in a104

single step for better generalizability. (5) An addi-105

tional faithfulness evaluation experiment demon-106

strates that student SLMs distilled by CasCoD can107

generate more self-consistent CoTs compared to108

the distillation baselines.109

2 Related Works 110

CoT Capability of Language Models LLMs 111

have demonstrated a wide array of capabilities 112

in numerous Natural Language Processing (NLP) 113

tasks, underscored by various studies (Chowdhery 114

et al., 2023; Wei et al., 2022a). One notable man- 115

ifestation of this is the Chain-of-Thought (CoT) 116

prompting method (Wei et al., 2022b), which fa- 117

cilitates models in articulating a series of deduc- 118

tive reasoning steps. This method has substantially 119

enhanced LLMs’ problem-solving abilities, as ev- 120

idenced in several works (Kojima et al., 2022a; 121

Wang et al., 2023b; Huang et al., 2023). De- 122

spite these advancements, the effectiveness of CoT 123

prompting notably diminishes in smaller models 124

(Wei et al., 2022a). Research by Chung et al. (2022) 125

indicates that with targeted training on CoT data 126

via instruction tuning, SLMs can unlock CoT capa- 127

bilities. In our study, we demonstrate that SLMs’ 128

CoT performance can be further enhanced by de- 129

composing the complete CoT training process into 130

a structured sequence of progressive learning tasks. 131

Distilling Knowledge from LLMs Numerous 132

studies (Taori et al., 2023; Chiang et al., 2023; Peng 133

et al., 2023) have explored the knowledge distilla- 134

tion from advanced, proprietary LLMs like Chat- 135

GPT (OpenAI, 2023), employing strategies akin to 136

black-box model extraction (Krishna et al., 2020; 137

Dai et al., 2023) or model imitation (Gudibande 138

et al., 2023). These efforts typically concentrate on 139

distilling a broad range of abilities via instruction 140

tuning on extensive and varied datasets (Xu et al., 141

2023; Wu et al., 2023; Jiang et al., 2023). Our work, 142

however, is aimed at distilling the CoT reasoning 143

capabilities from LLMs, aligning with the objec- 144

tives of Magister et al. (2023); Ho et al. (2023), 145

who propose a standard CoTs distillation method 146

that directly fine-tunes SLMs on CoTs produced 147

by teacher LLMs. Fu et al. (2023) expands on this 148

by fine-tuning with various reasoning data formats 149

for specializing domain-specific SLMs. Addition- 150

ally, Wang et al. (2023c) distill SLMs via learn- 151

ing from self-reflection and feedback in an inter- 152

active, multi-round paradigm with teacher LLMs. 153

However, the above methods are derivatives of the 154

standard CoT distillation which suffers from ineffi- 155

cient CoT learning by the spurious correlation. In 156

contrast, we decompose the CoT distillation into 157

multi-task distillation to enable students to focus 158

on learning reasoning for better generalizability. 159
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          Student Small Language Model

...How many ...? We start ... Let's add ... 1 + 2 = 3 . The is 3.[BOS] answer

...How many ...? We start ... Let's add ... 1 + 2 = 3 . The is 3. [EOS]answer

Ignored Output Single Task Loss

          Student Small Language Model

...How many ...?
[Ra"o
nale]

We ... Let's add ... 1 + 2 = 3 .[BOS]
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          Student Small Language Model
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[Ans
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Standard CoTs Dis�lla�on

Cascaded CoTs Dis�lla�on

Figure 2: Overview of our proposed method Cascaded CoTs Distillation (CasCoD). Different from the standard
CoTs distillation, we decompose the CoTs into rationales and answers and learn them in a cascaded way by adding
task prefixes and labels of pre-task into inputs for student models.

Multi-task CoTs Distillation Hsieh et al. (2023)160

propose to learn the rationale and answers by161

adding task prefixes to the input as separate goals162

for optimizing. Li et al. (2022) propose learning163

two tasks including the entire CoTs and the single164

answers to enhance the reasoning of student SLMs.165

Based on these foundations, Liu et al. (2023) in-166

troduce an additional distillation objective, self-167

evaluation, aiming for SLMs to assess the accuracy168

of their CoTs akin to LLMs’ evaluative processes.169

Recognizing that previous methods fail to link mul-170

tiple tasks, potentially confusing learners, we in-171

troduce cascaded multi-task learning to clarify the172

learning process and ensure faithful reasoning.173

3 Methodology174

We propose a novel distillation method that decom-175

poses the original one-time CoT distillation train-176

ing process into two consecutive training steps, as177

illustrated in Figure 2. We aim to tailor the learn-178

ing process for the student model by dividing the179

training into cascaded, simpler stages. Formally,180

the standard CoTs distillation objective q → r,a181

is split into two distinct learning tasks: q → r and182

q, r → a, each tagged with a unique task prefix.183

Below we describe the vanilla CoTs distillation184

method in §3.2 and then discuss the limitations and185

propose our method in §3.3.186

3.1 Extract Rationale From Teacher LLMs187

The initial phase of the distillation is to derive CoTs188

from teacher LLMs for each question-answer pair189

{q, a} in a raw dataset. This involves using a CoT 190

prompting technique (Wei et al., 2022b), detailed 191

in Appendix C.1, which guides the teacher LLMs 192

to generate CoTs that follow a prescribed format 193

with multiple reasoning steps. The prompt template 194

is shown in Appendix C.1. It’s important to note 195

that the rationale r and answers a produced by the 196

LLMs may not always align with accuracy. To 197

maintain CoT quality, we selectively retain only 198

those that match the ground truth in the dataset, 199

effectively building a CoT dataset D = {q, r, a} 200

for training the student model. 201

3.2 Preliminaries for CoTs Distillation 202

The Standard CoTs Distillation (Magister et al., 203

2023; Ho et al., 2023), often referred to as single- 204

task learning, is to teach SLMs to generate the 205

rationale and answer in one time as follows: 206

Lsingle = Eq,r,a∼D [ℓ (q, r ⊕ a)] (1) 207

where ℓ signifies the negative log-likelihood loss 208

function, expressed as: 209

ℓ (x, y) = −
∑
yt∈y

logP (yt | x, y<t) (2) 210

This approach differs from Multi-task Learning 211

(Hsieh et al., 2023), where taking rationale genera- 212

tion as an auxiliary task besides answer prediction 213

and training the two tasks in parallel as: 214

Lmulti = Eq,r,a∼D [ℓ (q ⊕A, a) + λℓ (q ⊕R, r)]
(3) 215
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where A and R denote the task prefixes "[Answer]"216

and "[Rationale]", respectively. The parameter λ217

adjusts the emphasis on rationale generation loss.218

3.3 Cascaded CoTs Distillation219

As previously noted, the above two methods can220

lead to challenges in effectively learning rationales221

due to the spurious correlation between questions222

and answers, or they may cause students to neglect223

the logical consistency between rationales and an-224

swers, impacting the generalizability of CoTs. Our225

proposed CasCoD leverages the advantages of both226

methods and addresses their shortcomings by de-227

composing the CoT learning objective into two228

distinct but cascaded tasks: Rationale Learning and229

Answer Learning as shown in Figure 2.230

Rationale Learning For rationale learning, each231

question q is combined with the task prefix R as232

the input for the student model, with the rationale233

r produced by the teacher serving as the label. The234

loss function of rationale learning is as follows:235

Lrationale = Eq,r,a∼D [ℓ (q ⊕R, r)] (4)236

Answer Learning For answer learning, the input237

of student models is composed of the question q238

and the teacher’s rationale r that is used as the label239

in the rationale learning, along with the task prefix240

A and the answer a serves as the label. The loss241

function of answer learning is thus:242

Lanswer = Eq,r,a∼D [ℓ (q ⊕R⊕ r ⊕A, a)] (5)243

Weighted Multi-task Learning Loss To main-244

tain emphasis in cascaded multi-task learning, we245

add adjustable weights α for each loss. The com-246

bined loss for CasCoD is given by:247

Lcascaded = (1− α)Lrationale + αLanswer (6)248

During inference, student models perform two for-249

ward computations, mirroring the training process:250

the first for generating rationales and the second251

for predicting the final answer.252

Relationship with Standard CoTs Distillation253

It’s important to note that in cascaded multi-task254

learning, the tasks share the same prefix, and the255

label of the previous task serves as the input for256

the next. Under the teacher-forcing training mode257

(Goodfellow et al., 2016), this might suggest at258

first glance that cascaded CoTs distillation closely259

resembles standard CoTs distillation, with the pri-260

mary distinction being the introduction of weights261

for more nuanced, token-level learning adjustments. 262

However, this perception overlooks a critical differ- 263

ence: CasCoD strategically segments the learning 264

process, first focusing on rationale generation be- 265

fore proceeding to answer generation, a capability 266

not achievable with standard CoTs distillation. 267

How about aligning standard CoTs distillation 268

to cascade multi-task learning by adding special 269

tokens such as task prefixes R,A and end-of- 270

sequence tokens [EOS] as follows? 271

Laligned = Eq,r,a∼D

[ωℓ (q ⊕R, r ⊕ [EOS]⊕A⊕ a)]
(7) 272

where ω denotes the token-level weights and A in 273

the label can be masked in calculating the loss. 274

However, it turns out that this alignment can- 275

not be completely achieved. This is because even 276

if there is formal alignment, inserting an [EOS] 277

token between rationale and answer means that 278

during answer prediction, the attention mechanism 279

(Vaswani et al., 2017) will make the student model 280

notice this ending token. As a result, the student 281

model may consider the subsequent generation task 282

as an entirely new task unrelated to the preceding 283

tasks, cutting off the connection between answer 284

generation and the previous question and rationale. 285

In §4.4, we will compare the effects of such "com- 286

plete" alignment approach, the method utilizing 287

only weight alignment, and our CasCoD approach. 288

4 Experiments 289

In this section, we conduct extensive experiments 290

and comprehensive analysis to evaluate the ef- 291

fectiveness of our method across both in-domain 292

(IND) and out-of-domain (OOD) datasets. 293

4.1 Datasets 294

4.1.1 In-domain 295

BIG-Bench Hard (BBH) (Suzgun et al., 2023) 296

comprises 27 challenging tasks covering arithmetic, 297

symbolic reasoning et al. from BIG-Bench (BB) 298

(Guo et al., 2023). The majority of the data in- 299

volve multiple-choice questions, with a few be- 300

ing open-ended. To underscore the superiority of 301

our approach, we chose to perform distillation on 302

this most challenging dataset. Specifically, we ran- 303

domly divide the BBH dataset into a training set 304

(BBH-train) for distillation and a test set (BBH- 305

test) as the IND evaluation task, in a 4:1 ratio. 306
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4.1.2 Out-of-domain307

BIG-Bench Sub (BB-sub). BB is a popular308

benchmark consisting of 203 tasks covering a wide309

range of topics, including mathematics, common-310

sense reasoning, and various other domains. For311

ease of evaluation, we filter the subtasks within312

BB based on subtask keywords, specifically focus-313

ing on tasks related to "multiple-choice" and "rea-314

soning"2, and ensure that tasks from BBH were315

excluded, resulting in 61 subtasks. Then we ran-316

domly sample up to 100 instances for each subtask,317

resulting in the creation of BB-sub.318

AGIEval (Zhong et al., 2023) is a renowned319

human-centric benchmark used to assess LMs’ rea-320

soning abilities, whose tasks span various domains,321

including college entrance exams (English / Math322

/ Law), logic tests et al. We evaluate our method323

on the subtasks that are related to multiple-choice324

questions in the English language.325

AI2 Reasoning Challenge (ARC) (Clark et al.,326

2018) consists of ARC-Easy (ARC-E) and ARC-327

Challenge (ARC-C). The distinction lies in ARC-328

E consisting of relatively simpler questions from329

middle and high school science exams, while ARC-330

C comprises more complex and challenging ques-331

tions. We utilize the testing set of the ARC dataset332

for evaluation. The statistics of the all above333

datasets can be found in Appendix B.1.334

4.2 Models & Baselines & Setup335

Models We employ the contemporary, popular336

open-source language model LLaMA2-7B (Tou-337

vron et al., 2023) as the student SLM. Consider-338

ing the pricing and capabilities, we utilize Ope-339

nAI’s powerful black-box LLM, ChatGPT3, as the340

teacher. We query ChatGPT to annotate the CoT341

data with the same manual prompt used in the pre-342

vious work (Suzgun et al., 2023).343

Baselines We compare our method with the fol-344

lowing baselines: (1) Teacher & Vanilla Student345

under various settings, e.g., Zero-shot (+CoT) or346

Few-shot (+CoT), for showing the impact of dis-347

tilling reasoning ability from LLMs. (2) Std-CoT348

(Magister et al., 2023), which is a standard CoTs349

distillation method that directly fine-tune student350

2For detailed descriptions of the subtasks in BIG-Bench,
please refer to https://github.com/google/BIG-bench/
blob/main/bigbench/benchmark_tasks/README.md.

3https://chat.openai.com/chat. We utilize the gpt−
3.5− turbo− 0613 for CoTs extraction.

models on the CoTs data. (3) Step-by-step (Hsieh 351

et al., 2023) is a multi-task CoT distillation method 352

that separately optimizes the objectives of answer 353

learning and inference process learning. (4) MT- 354

CoT (Li et al., 2022) is also a multi-task CoTs dis- 355

tillation method, but unlike Step-by-step, it simulta- 356

neously optimizes the objectives of answer predic- 357

tion and CoTs learning. (5) SCOTT that enhances 358

the reasoning consistency of the student model by 359

introducing additional counterfactual data. 360

Setup We employ LoRA (Hu et al., 2022) for 361

parameter-efficient fine-tuning of the student SLMs. 362

We empirically set α in multi-task learning as 363

0.3. All experiments are conducted using a mixed- 364

precision training strategy on 4 × A100 GPUs. For 365

the inference stage, vLLM4 (Kwon et al., 2023) is 366

utilized to accelerate inference, employing a greedy 367

decoding strategy to generate text on one single 368

A100 GPU. Further details on training and hyper- 369

parameters can be found in Appendix B.2. 370

4.3 Main Results 371

Table 1 presents the automatic evaluation results of 372

our proposed CasCoD and baselines on in-domain 373

(IND) and out-of-domain (OOD) datasets. 374

CoTs distillation enhances the reasoning perfor- 375

mance of students. Comparing with the Zero- 376

shot-CoT and Few-shot-CoT settings of student 377

models, the performance of those with distillation 378

is significantly improved by learning the teacher 379

LLM’s CoTs. Except for BB-sub, the student 380

model has 3-4 times improvement compared to 381

vanilla ones across all datasets. 382

CasCoD overcomes limitations of distillation 383

baselines in OOD performance. From the ta- 384

ble, we can find that Answer-SFT on the OOD 385

datasets outperforms all the distillation baselines by 386

an average of 5%, which indicates that it seems stu- 387

dent models’ performance decreases when learning 388

the CoTs. This pattern is also noticeable in mod- 389

els without distillation, as evidenced by the com- 390

parison between Zero-shot and Zero-shot-CoT (or 391

Few-shot and Few-shot-CoT) settings. We attribute 392

this to spurious correlations between questions and 393

answers in these implicit reasoning task datasets 394

(Gururangan et al., 2018; Zellers et al., 2019; Blod- 395

gett et al., 2020), which students can easily learn 396

by directly fine-tuning. The distillation baselines 397

that require students to consider predicting answers 398

4https://github.com/vllm-project/vllm
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Method Distill? Gen CoT? BBH-test BB-sub AGIEval ARC-E ARC-C AVG
In-domain? ✓ ✕ ✕ ✕ ✕

Teacher: ChatGPT (gpt-3.5-turbo)

Zero-shot-CoT ✕ ✓ 42.7 44.1 49.5 91.9 81.1 61.9
Few-shot-CoT ✕ ✓ 73.1 - - - - -

Student: LLaMA2-7B

Zero-shot ✕ ✕ 14.8 15.5 6.9 18.2 13.9 13.9
Zero-shot-CoT ✕ ✓ 10.6 7.7 7.1 18.4 14.8 11.7
Few-shot ✕ ✕ 15.1 28.5 25.5 25.5 25.4 24.0
Few-shot-CoT ✕ ✓ 16.3 25.3 9.9 17.2 17.2 17.2
Answer-SFT ✕ ✕ 51.5 33.2 31.2 71.6 53.7 48.2

Std-CoT (Magister et al., 2023) ✓ ✓ 54.2 28.7 21.6 59.6 45.1 41.8
SCOTT (Wang et al., 2023a) ✓ ✓ 42.4 18.8 13.0 45.7 34.1 30.8
MT-CoT (Li et al., 2022) ✓ ✓ 56.8 30.3 22.0 49.4 38.2 39.3
Step-by-step (Wang et al., 2023c) ✓ ✓ 42.4 27.7 28.8 68.5 48.6 43.2
CasCoD (ours) ✓ ✓ 59.4+2.6 37.0+6.7 28.3−0.5 70.6+2.1 52.7+3.9 49.6+6.4

Table 1: Accuracy (%) on in-domain and out-of-domain datasets with different methods. We employ "Let’s think
step by step" (Kojima et al., 2022b) for Zero-shot-CoT settings and the manually curated prompt (Suzgun et al.,
2023) for Few-shot-CoT settings. The best performance among distilled student models is marked in bold. The
subscript shows the performance gap between our method and the best baselines on each dataset.

while generating the rationale, inadvertently make399

the simpler task of answer prediction interfere with400

the rationale learning, thus reducing the general-401

ization of CoTs. In contrast, CasCoD not only sur-402

passes Answer-SFT by 7.9% in IND datasets but403

also achieves comparable results in OOD scenarios.404

This underscores the effectiveness of our strategy,405

which involves decomposing CoTs and engaging406

in cascaded multi-task learning, in enhancing rea-407

soning capabilities across diverse datasets.408

CasCoD significantly outperforms the distilla-409

tion baselines across IND and OOD datasets.410

From Table 1, it can be observed that CasCoD out-411

performs baselines on both IND and OOD datasets412

in most cases. Specifically, CasCoD secures an413

average in-domain improvement of 5.2% and an414

out-of-domain enhancement of 8.4% over the Std-415

CoT, along with an overall 6.4% improvement com-416

pared to the multi-task learning (Step-by-step) ap-417

proach. Impressively, CasCoD achieves 80.1% of418

the teacher LLM’s performance in Zero-shot-CoT419

settings. These results underscore the efficacy of420

CasCoD, significantly boosting the generative ca-421

pabilities of CoTs on unseen tasks.422

4.4 Ablation Study423

CasCoD is universally applicable to models of424

varying sizes. We perform model distillation on425

TinyLLaMA-1.1B5 (Zhang et al., 2024), LLaMA2- 426

7B, and LLaMA2-13B, respectively and compare 427

with standard CoTs distillation (Std-CoT) and 428

multi-task distillation (MT-CoT & Step-by-step). 429

In Figure 3 and 7, we can find that CasCoD consis- 430

tently outperforms the baselines on both IND and 431

OOD datasets across various sizes of student mod- 432

els. Notably, the performance improvement of our 433

method is the most obvious in the BB-sub, where 434

the performance of the 13B student model reaches 435

92.7% of the teacher LLM’s performance. Further- 436

more, as model sizes increase, the performance 437

gap between CasCoD and the baselines widens on 438

OOD datasets, highlighting CasCoD’s superior ef- 439

ficiency in distilling CoTs for larger models. 440

CasCoD significantly outperforms standard 441

CoTs distillation on OOD with much less train- 442

ing data. In Figure 4, CasCoD achieves a 6.3% 443

improvement over Std-CoT on the BB-sub dataset, 444

using only 25% of the full BBH-train data. In 445

the case of other OOD datasets, CasCoD requires 446

merely 12.5% of the full training data to surpass 447

the Std-CoT trained with the full dataset by 5% to 448

7% in performance. These results demonstrate the 449

efficiency of CasCoD, capable of enhancing CoTs 450

generalization with a smaller amount of CoTs data. 451

Rationales and answers should be allocated 452

varying levels of attention and learned across 453

5https://huggingface.co/TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T
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Figure 3: Ablation study on model size for four OOD datasets. The dotted line indicates the performance of the
teacher LLM under the Zero-shot-CoT setting. The results in IND dataset can be found in Appendix A.1.
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Figure 4: Ablation study on training data size for four OOD datasets. The dotted line indicates the performance of
fine-tuning the student models by standard CoTs distillation using the full set (100% of) BBH-train dataset. The
results in IND dataset can be found in Appendix A.2.

multiple steps rather than in a single step. As454

mentioned in §3.3, we further experimentally ex-455

plore the relationship between CasCoD and single-456

task learning (e.g. Std-CoT) under the teacher457

forcing. In Figure 5, we can see that the "Weight458

Aligned" method, which simply adds weights com-459

pared to Std-CoT, enhances performance on both460

IND and OOD datasets, highlighting the benefit461

of tailored attention levels for rationales and an-462

swers. Moreover, the "All Aligned" shows sig-463

nificant improvement in OOD datasets compared464

to the "Weight Aligned" by incorporating task pre-465

fixes and sentence-ending tokens, suggesting that466

separating the learning phases for rationales and467

answers helps in minimizing distractions. How-468

ever, we also notice that even attempting to align469

with CasCoD in single-step, there remains a per-470

formance gap. This suggests that despite using471

teacher forcing mode, single-task learning cannot472

fully align with multi-task learning, as the intro-473

duction of [EOS] tokens disrupts the correlation474

between multiple tasks.475

BBH-test BB-sub AGIEval ARC-E ARC-C0
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40

60

80
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cu

ra
cy
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)

Std-CoT
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CasCoD

Figure 5: Ablation study on multi-steps across the IND
and OOD datasets. "Weight Aligned" refers to the ap-
proach of adding token-level weights in the Std-CoT.
"All Aligned" builds upon "Weight Aligned" by further
incorporating special task prefixes and end-of-sequence
tokens, aiming for structural alignment with CasCoD.
For both single step settings, we set weights as 0.3 on
the answer tokens and 0.7 on the rationale tokens.

4.5 Robustness W.R.T. Weights 476

In this subsection, we explore how variations in 477

weights affect the performance of models with 478
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Figure 6: Ablation study on task weights α. The results are reported by IND-AVG and OOD-AVG that respectively
denote averge accuracy on IND and OOD datasets. The best performance among weights are marked with "✩".

different parameter sizes on both IND and OOD479

datasets, as shown in Figure 6.480

Students’ performance is not sensitive to weights481

on OOD datasets. From the figure, we observe482

that regardless of weight changes, CasCoD consis-483

tently outperforms Std-CoT in OOD by average,484

even at α = 0.9 (meaning the model allocated only485

10% of its attention to rationales generation). This486

demonstrates that CasCoD exhibits robust general-487

ization in OOD and also underscores the effective-488

ness of decomposing CoTs for distillation.489

CasCoD is more robust for smaller student mod-490

els. We observe that the 1.1B model shows less491

variation in performance compared to the 7B and492

13B models in IND. Notably, the performance of493

the 13B model drops sharply as α changes from 0.5494

to 0.9, indicating that larger models are more sus-495

ceptible to weight adjustments in the IND dataset.496

Prioritizing the rationale over the answer yields497

better results. It is evident that across different498

model sizes, the optimal weights on both IND and499

OOD datasets are less than 0.5, which indicates that500

focusing on the rationale enables student models to501

learn CoTs with greater generalizability.502

4.6 Faithfulness of Students503

To ensure that the rationale provided by students504

supports their predicted answers, another metric505

for evaluating CoTs distillation is the faithfulness506

of students. Following the previous work (Wang507

et al., 2023a), we use the LAS metric (Hase et al.,508

2020), whose core idea is to measure the extent509

that the rationales r′ aid a simulator in predicting510

the answers a′, defined as:511

LAS = Acc
(
q, r′ → a′

)
−Acc

(
q → a′

)
(8)512

where we employ ChatGPT and GPT4 as the simu- 513

lator, respectively. The results are shown in Table 514

2. CasCoD is observed to generate rationales that 515

are more consistent than those from baselines, par- 516

ticularly MT-CoT and step-by-step methods. This 517

suggests that despite CasCoD being a multi-task 518

learning framework, the introduction of cascading 519

learning ensures that students can faithfully reason. 520

Method ChatGPT GPT4 AVG

Std-CoT 40.8 29.8 35.3
SCOTT 36.2 29.4 32.8
MT-CoT 36.2 25.8 31

Step-by-step 6.6 -0.1 3.25
CasCoD (ours) 40.8 31.6 36.2

Table 2: Faithfulness (LAS, %) of the compared meth-
ods with different LLM evaluators on the IND dataset.
The prompt templates can be found in Appendix C.2

.

521

5 Conclusion 522

This work presents a staightforward yet effective 523

CoTs distillation method CasCoD as a solution 524

to the challenges of distilling reasoning capabil- 525

ities from LLMs into smaller ones. Specifically, 526

we break down the full CoT distillation process 527

into two cascade tasks by sharing the input prefix, 528

leading to enhanced CoTs generalizability. Exten- 529

sive experiments show that our proposed method 530

significantly outpeforms the baselines across both 531

in-domain and out-of-domain benchmark reason- 532

ing datasets. Further analysis reveals that CasCoD 533

is robust to model size and task weights and can 534

lead to a faithful student models. 535
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Limitations536

Considering the cost such as API calls and GPU537

training expenses, we only choose ChatGPT as the538

teacher LLM and the widely-used model LLaMA2539

as the student SLM. Employing GPT-4 as the540

teacher provides high-quality CoTs, which could541

better validate the effectiveness of our proposed542

method CasCoD. Besides, when distilling the stu-543

dent model using CasCoD, it requires two forward544

computations, increasing the training time cost. Ad-545

ditionally, some research (Schaeffer et al., 2023a)546

indicates that the emergent abilities of LLMs are547

the result of accomplishing multiple sub-tasks cor-548

rectly at the same time, leading to a quantitative549

change that results in a qualitative transformation.550

This paper merely explores distilling CoT into two551

steps, envisioning that CoT could be broken down552

into even more steps to allow the student model553

to focus on learning specific tasks. However, the554

questions of how to decompose CoTs, when to do555

so, and how to allocate attention remain unresolved.556

We leave these issues for future research.557

Ethics Statement558

It is important to note that this work utilizes CoT559

data extracted from ChatGPT for distillation, which560

may result in inheriting the social biases (Schaeffer561

et al., 2023b) and hallucination (Zhang et al., 2023)562

present in LLMs. However, we are optimistic that563

future advancements in resolving these issues in564

LLMs will naturally lead to the development of565

student models with reduced toxicity.566
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7B and 13B model and significantly surpasses the 830

teacher LLMs in the Zero-shot CoT setting.
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Figure 7: Ablation study on model size in the IND
(BBH-test). The dotted line indicates the performance
of the teacher LLM under the Zero-shot-CoT setting.

831

A.2 W.R.T. Training Data Size 832

The results of the training data ablation study 833

on IND datasets, as shown in Figure 8, indicate 834

that CasCoD outperforms standard CoT distillation 835

across various sizes of training data. This demon- 836

strates the efficiency of our proposed method. 837
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Figure 8: Ablation study on training data size in the
IND (BBH-test). The dotted line indicates the perfor-
mance of fine-tuning the student models by standard
CoT distillation using the full set (100% of) BBH-train
dataset.

B Details of Experiment838

B.1 Dataset Statistics839

Table 3, Table 4, Table 5 and Table 6 show the840

data statistics of AGIEval, ARC, BIG-Bench Hard841

(BBH) and BIG-Bench Sub (BB-sub), respectively.842

No. Task Size # Choices

1 AQuA-RAT 254 5
2 LogiQA-EN 651 4
3 LSAT-AR 230 5
4 LSAT-LR 510 5
5 LSAT-RC 269 5
6 SAT-Math 220 4
7 SAT-EN 206 4
8 SAT-EN (w/o Psg.) 206 4

Sum 2546 -

Table 3: Statistics of AGIEval dataset.

843

Task Size # Choices

ARC-E 2376 4-5
ARC-C 1172 4-5

Table 4: Statistics of ARC test dataset.

No. Task Size # Choices

1 Boolean Expressions 250 2
2 Causal Judgement 187 2
3 Date Understanding 250 6
4 Disambiguation QA 250 4
5 Dyck Languages 250 -
6 Formal Fallacies Syllogisms Negation 250 2
7 Geometric Shapes 250 11
8 Hyperbaton (Adjective Ordering) 250 2
9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Movie Recommendation 250 5
13 Multi-Step Arithmetic 250 -
14 Navigate 250 2
15 Object Counting 250 -
16 Penguins in a Table 146 5
17 Reasoning about Colored Objects 250 18
18 Ruin Names 250 11
19 Salient Translation Error Detection 250 6
20 Snarks 178 2
21 Sports Understanding 250 2
22 Temporal Sequences 250 4
23 Tracking Shuffled Objects (3 objects) 250 3
24 Tracking Shuffled Objects (5 objects) 250 5
25 Tracking Shuffled Objects (7 objects) 250 7
26 Web of Lies 250 2
27 Word Sorting 250 -

Sum 6511 -

Table 5: Statistics of BIG-Bench Hard dataset.

B.2 Hyperparameters Settings 844

The hyperparameters in training and inference can 845

be found in Table 7 and Table 8, respectively. 846

C Prompts 847

C.1 Prompts of Generating CoTs for 848

ChatGPT 849

We use the prompt template shown in Table 9 to 850

call the ChatGPT API to generate the CoTs for the 851

BBH-train datasets. 852

C.2 Prompts of Simulators 853

We use the prompt templates shown in Table 10 854

and Table 11 to call the ChatGPT and GPT4 API 855

to predict the answers given a question or with an 856

additional rationale, respectively. 857
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No. Task Size # Choices

1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_qa 100 5
12 emoji_movie 100 5
13 empirical_judgments 99 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4
32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_qa 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iqa 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2

Sum 5384 -

Table 6: Statistics of BIG-Bench sub dataset. We filter
the original dataset by retrieving tasks with keywords
"multiple choice" and randomly sample up to 100 exam-
ples per task. Note, the task in BBH will not be involved
in BB-sub.

Hyperparameter TinyLLaMA-1.1B LLaMA2-7B LLaMA2-13B

gradient accumulation steps 4 4 8
per device batch size 16 16 8
learning rate 2e-4 2e-4 2e-4
epoches 20 15 10
max length 1024 1024 1024
β of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999)
ϵ of AdamW 1e-8 1e-8 1e-8
γ of Scheduler 0.95 0.95 0.95
weight decay 0 0 0
warmup ratio 0 0 0
rank of LoRA 64 64 64
α of LoRA 32 32 32
target modules q_proj, v_proj q_proj, v_proj q_proj, v_proj
drop out of LoRA 0.05 0.05 0.05

Table 7: Training hyperparameters.

Arguments Student Teacher

do sample False True
temperature - 0.2
top-p 1.0 1.0
top-k - -
max new tokens 1024 2048
# return sequences 1 1

Table 8: Generation configs of students and teachers.
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{Task Description}. Your response should conclude with the format "Therefore, the answer is".

Q: {Task Example Question No.1}
A: Let’s think step by step. {Human-Curated-CoTs}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs}.

Q: {QUESTION}
A: Let’s think step by step.

Table 9: Prompt template of gpt-3.5-turbo for generating the CoTs data.

system content You are a helpful and precise assistant for following the given instruction.

user content

[Instruction] {Please read the question and then give your answer based on the
question without any explanations.}

Task Description: {TASK_DESCRIPTION}

Question: {QUESTION}

Your Answer:

Table 10: Prompt template of simulators for predicting the answers when given the question.

system content You are a helpful and precise assistant for following the given instruction.

user content

[Instruction] {Please read the question and the rationale, and then give your answer
based on the question and the rationale without any explanations.}

Task Description: {TASK_DESCRIPTION}

Question: {QUESTION}

Rationale: {RATIONALE}

Your Answer:

Table 11: Prompt template of simulators for predicting the answers when given the question and rationale.
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