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Abstract

Large language models (LLMs) have shown
remarkable reasoning capabilities at increased
scales, spurring efforts to distill such capabili-
ties into smaller, compact models via teacher-
student learning. Previous works directly fine-
tune student models on teachers’ generated
Chain-of-Thoughts (CoTs) data or learn it in
a multi-task framework. However, these meth-
ods struggle with CoTs generalization due to
spurious correlations between questions and
answers, as well as inconsistencies in the
logic connecting the rationales to the answers.
In this paper, we propose Cascaded CoTs
Distillation (CasCoD), a straightforward but ef-
fective method to address these issues. Specifi-
cally, we decompose the full CoTs distillation
into two comprehensive tasks and learn it in a
cascade way by sharing the input prefix. By
separating and cascading the tasks, CasCoD
not only enables the student model to concen-
trate on reasoning without the distraction of
answers but ensures faithful reasoning in stu-
dents, thus enhancing the generalizability of
CoTs. Extensive experiments and further anal-
ysis demonstrate the effectiveness of CasCoD
on both in-domain and out-of-domain bench-
mark reasoning datasets.

1 Introduction

Recent developments in large language models
(LLMs) have brought remarkable improvements in
reasoning via Chain-of-Thought (CoT) prompting
(Wei et al., 2022b). However, these great reasoning
capabilities are often associated with more param-
eters (Wei et al., 2022a), which is not practical to
emergent in smaller language models (SLMs). To
address this, there is a lot of work (Magister et al.,
2023; Ho et al., 2023; Shridhar et al., 2023; Fu et al.,
2023) trying to make the reasoning capabilities iso-
lated and distilled to SLMs by directly fine-tuning
on teacher LLMs generated CoTs data. This pro-
cess, known as standard CoTs distillation, requires
SLMs to generate CoTs in a single step. However,
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Figure 1: An illustration of the distinction between our
approach and previous methods. (a) Standard CoTs
distillation suffers from inefficient CoTs learning by
the spurious correlation between the question and an-
swer, leading to poor out-of-distribution generalization;
(b) Multi-task distillation makes students inconsistently
reason due to the isolated tasks; (c) Our approach de-
composes CoTs and learn its in a cascaded multi-task
way to address these issues.

due to the influence of spurious correlations be-
tween the question and the answer (Wang et al.,
2023a), the student may learn reasoning shortcuts,
which in turn reduces the generalizability of the in-
termediate reasoning process (rationale), as shown
in Figure 1 (a). Some studies (Hsieh et al., 2023;
Li et al., 2022) employ a multi-task learning frame-
work to distill the CoTs by learning the rationale
(the intermediate reasoning process) and the answer
separately. However, this approach may result in
logical inconsistency, with the student’s rationale
failing to support the correctness of its predicted
answer, as illustrated in Figure 1 (b).

The flaws of the above two methods result in
CoTs distilled student models that perform worse
on unseen reasoning tasks than models directly fine-
tuned on answers '. Different from recent works

'Confirmed experimentally, see §4.3.



(Wang et al., 2023c; Liu et al., 2023) that primar-
ily focus on in-domain tasks, we argue that the
challenge of CoTs distillation lies in empower-
ing students to truly learn reasoning—not only
to excel in seen tasks but also to correctly reason
for unseen problems.

To address the above issues, we posit that the
essence of effective CoTs distillation is tailoring
the CoT learning approach for student models with
limited parameters. This involves breaking down
the CoT to enable students to learn in a manner that
is both coherent and focused. Building on this basic
insight, we propose Cascaded Chain-of-Thoughts
Distillation (CasCoD), a straightforward but effec-
tive CoTs distillation method that decomposes the
full CoT learning into a series of successive, cas-
caded learning tasks. Specifically, we reorganize
the standard CoTs distillation from Question to (Ra-
tionale, Answer) into two consecutive steps: first
from Question to Rationale, and then from (Ques-
tion, Rationale) to Answer, as shown in Figure 1
(c). In the first step, the student model is not re-
quired to consider the answer, allowing it to focus
solely on the rationale learning, thereby enhancing
the generalizability of the CoT. In the second step,
where the student predicts the answer based on the
question and rationale, it ensures that students can
engage in faithful reasoning.

We conduct extensive experiments to assess the
CoT reasoning capabilities of the distilled student
model across both in-domain (IND) and out-of-
domain (OOD) benchmark reasoning datasets. Ex-
periments show that: (1) Previous CoTs distillation
methods underperform in OOD tasks compared
to direct fine-tuning on answers, but our proposed
method CasCoD overcomes this limitation by learn-
ing the CoT in a cascade way. (2) CasCoD signif-
icantly outperforms the best distillation baselines
on both IND and OOD tasks, achieving an average
improvement of 6.4%. (3) CasCoD is universally
applicable to student SLMs of varying sizes and
outperforms the standard CoTs distillation with
much less training data. (4) Different components
within CoTs should be allocated different attention
and learned across multiple steps rather than in a
single step for better generalizability. (5) An addi-
tional faithfulness evaluation experiment demon-
strates that student SLMs distilled by CasCoD can
generate more self-consistent CoTs compared to
the distillation baselines.

2 Related Works

CoT Capability of Language Models LLMs
have demonstrated a wide array of capabilities
in numerous Natural Language Processing (NLP)
tasks, underscored by various studies (Chowdhery
et al., 2023; Wei et al., 2022a). One notable man-
ifestation of this is the Chain-of-Thought (CoT)
prompting method (Wei et al., 2022b), which fa-
cilitates models in articulating a series of deduc-
tive reasoning steps. This method has substantially
enhanced LLMs’ problem-solving abilities, as ev-
idenced in several works (Kojima et al., 2022a;
Wang et al., 2023b; Huang et al., 2023). De-
spite these advancements, the effectiveness of CoT
prompting notably diminishes in smaller models
(Wei et al., 2022a). Research by Chung et al. (2022)
indicates that with targeted training on CoT data
via instruction tuning, SLMs can unlock CoT capa-
bilities. In our study, we demonstrate that SLMs’
CoT performance can be further enhanced by de-
composing the complete CoT training process into
a structured sequence of progressive learning tasks.

Distilling Knowledge from LLLMs Numerous
studies (Taori et al., 2023; Chiang et al., 2023; Peng
et al., 2023) have explored the knowledge distilla-
tion from advanced, proprietary LLMs like Chat-
GPT (OpenAl, 2023), employing strategies akin to
black-box model extraction (Krishna et al., 2020;
Dai et al., 2023) or model imitation (Gudibande
et al., 2023). These efforts typically concentrate on
distilling a broad range of abilities via instruction
tuning on extensive and varied datasets (Xu et al.,
2023; Wu et al., 2023; Jiang et al., 2023). Our work,
however, is aimed at distilling the CoT reasoning
capabilities from LLMs, aligning with the objec-
tives of Magister et al. (2023); Ho et al. (2023),
who propose a standard CoTs distillation method
that directly fine-tunes SLMs on CoTs produced
by teacher LLMs. Fu et al. (2023) expands on this
by fine-tuning with various reasoning data formats
for specializing domain-specific SLMs. Addition-
ally, Wang et al. (2023c) distill SLMs via learn-
ing from self-reflection and feedback in an inter-
active, multi-round paradigm with teacher LLMs.
However, the above methods are derivatives of the
standard CoT distillation which suffers from ineffi-
cient CoT learning by the spurious correlation. In
contrast, we decompose the CoT distillation into
multi-task distillation to enable students to focus
on learning reasoning for better generalizability.
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Figure 2: Overview of our proposed method Cascaded CoTs Distillation (CasCoD). Different from the standard
CoTs distillation, we decompose the CoTs into rationales and answers and learn them in a cascaded way by adding
task prefixes and labels of pre-task into inputs for student models.

Multi-task CoTs Distillation Hsieh et al. (2023)
propose to learn the rationale and answers by
adding task prefixes to the input as separate goals
for optimizing. Li et al. (2022) propose learning
two tasks including the entire CoTs and the single
answers to enhance the reasoning of student SLMs.
Based on these foundations, Liu et al. (2023) in-
troduce an additional distillation objective, self-
evaluation, aiming for SLMs to assess the accuracy
of their CoTs akin to LLMs’ evaluative processes.
Recognizing that previous methods fail to link mul-
tiple tasks, potentially confusing learners, we in-
troduce cascaded multi-task learning to clarify the
learning process and ensure faithful reasoning.

3 Methodology

We propose a novel distillation method that decom-
poses the original one-time CoT distillation train-
ing process into two consecutive training steps, as
illustrated in Figure 2. We aim to tailor the learn-
ing process for the student model by dividing the
training into cascaded, simpler stages. Formally,
the standard CoTs distillation objective q — r, a
is split into two distinct learning tasks: q — r and
q,r — a, each tagged with a unique task prefix.
Below we describe the vanilla CoTs distillation
method in §3.2 and then discuss the limitations and
propose our method in §3.3.

3.1 Extract Rationale From Teacher LLMs

The initial phase of the distillation is to derive CoTs
from teacher LLMs for each question-answer pair

{q,a} in a raw dataset. This involves using a CoT
prompting technique (Wei et al., 2022b), detailed
in Appendix C.1, which guides the teacher LLMs
to generate CoTs that follow a prescribed format
with multiple reasoning steps. The prompt template
is shown in Appendix C.1. It’s important to note
that the rationale r and answers a produced by the
LLMs may not always align with accuracy. To
maintain CoT quality, we selectively retain only
those that match the ground truth in the dataset,
effectively building a CoT dataset D = {q,7,a}
for training the student model.

3.2 Preliminaries for CoTs Distillation

The Standard CoTs Distillation (Magister et al.,
2023; Ho et al., 2023), often referred to as single-
task learning, is to teach SLMs to generate the
rationale and answer in one time as follows:

Esingle = Eq,r,cwD [E (q’ rd a’)] (1)

where / signifies the negative log-likelihood loss
function, expressed as:

€($7y) = - Z lOgP(yt ‘ l',y<t) (2)

Yt€Y

This approach differs from Multi-task Learning
(Hsieh et al., 2023), where taking rationale genera-
tion as an auxiliary task besides answer prediction
and training the two tasks in parallel as:

Emulti = Eq,'r,aND [f (q D Aa (1) + M (q @ Ra T)]
(3)



where A and R denote the task prefixes "[Answer]"
and "[Rationale]", respectively. The parameter A
adjusts the emphasis on rationale generation loss.

3.3 Cascaded CoTs Distillation

As previously noted, the above two methods can
lead to challenges in effectively learning rationales
due to the spurious correlation between questions
and answers, or they may cause students to neglect
the logical consistency between rationales and an-
swers, impacting the generalizability of CoTs. Our
proposed CasCoD leverages the advantages of both
methods and addresses their shortcomings by de-
composing the CoT learning objective into two
distinct but cascaded tasks: Rationale Learning and
Answer Learning as shown in Figure 2.

Rationale Learning For rationale learning, each
question g is combined with the task prefix R as
the input for the student model, with the rationale
r produced by the teacher serving as the label. The
loss function of rationale learning is as follows:

Lyrationale = Eq,r,aND [f (q DR, r)] 4)

Answer Learning For answer learning, the input
of student models is composed of the question ¢
and the teacher’s rationale r that is used as the label
in the rationale learning, along with the task prefix
A and the answer a serves as the label. The loss
function of answer learning is thus:

ﬁanswer

=Egrap [l (g RET B A a)] (5)

Weighted Multi-task Learning Loss To main-
tain emphasis in cascaded multi-task learning, we
add adjustable weights « for each loss. The com-
bined loss for CasCoD is given by:

Lcascaded = (1 - a)ﬁrationale + O‘»Canswer (6)

During inference, student models perform two for-
ward computations, mirroring the training process:
the first for generating rationales and the second
for predicting the final answer.

Relationship with Standard CoTs Distillation
It’s important to note that in cascaded multi-task
learning, the tasks share the same prefix, and the
label of the previous task serves as the input for
the next. Under the teacher-forcing training mode
(Goodfellow et al., 2016), this might suggest at
first glance that cascaded CoTs distillation closely
resembles standard CoTs distillation, with the pri-
mary distinction being the introduction of weights

for more nuanced, token-level learning adjustments.
However, this perception overlooks a critical differ-
ence: CasCoD strategically segments the learning
process, first focusing on rationale generation be-
fore proceeding to answer generation, a capability
not achievable with standard CoTs distillation.

How about aligning standard CoTs distillation
to cascade multi-task learning by adding special
tokens such as task prefixes R,.A and end-of-
sequence tokens [EOS] as follows?

['aligned = Eq,r,awD %)
wl(g®R,r® EOS| & Ad a)
where w denotes the token-level weights and A in
the label can be masked in calculating the loss.
However, it turns out that this alignment can-
not be completely achieved. This is because even
if there is formal alignment, inserting an [EOS]
token between rationale and answer means that
during answer prediction, the attention mechanism
(Vaswani et al., 2017) will make the student model
notice this ending token. As a result, the student
model may consider the subsequent generation task
as an entirely new task unrelated to the preceding
tasks, cutting off the connection between answer
generation and the previous question and rationale.
In §4.4, we will compare the effects of such "com-
plete" alignment approach, the method utilizing
only weight alignment, and our CasCoD approach.

4 Experiments

In this section, we conduct extensive experiments
and comprehensive analysis to evaluate the ef-
fectiveness of our method across both in-domain
(IND) and out-of-domain (OOD) datasets.

4.1 Datasets

4.1.1 In-domain

BIG-Bench Hard (BBH) (Suzgun et al., 2023)
comprises 27 challenging tasks covering arithmetic,
symbolic reasoning et al. from BIG-Bench (BB)
(Guo et al., 2023). The majority of the data in-
volve multiple-choice questions, with a few be-
ing open-ended. To underscore the superiority of
our approach, we chose to perform distillation on
this most challenging dataset. Specifically, we ran-
domly divide the BBH dataset into a training set
(BBH-train) for distillation and a test set (BBH-
test) as the IND evaluation task, in a 4:1 ratio.



4.1.2 Out-of-domain

BIG-Bench Sub (BB-sub). BB is a popular
benchmark consisting of 203 tasks covering a wide
range of topics, including mathematics, common-
sense reasoning, and various other domains. For
ease of evaluation, we filter the subtasks within
BB based on subtask keywords, specifically focus-
ing on tasks related to "multiple-choice" and "rea-
soning"?, and ensure that tasks from BBH were
excluded, resulting in 61 subtasks. Then we ran-
domly sample up to 100 instances for each subtask,
resulting in the creation of BB-sub.

AGIEval (Zhong et al., 2023) is a renowned
human-centric benchmark used to assess LMs’ rea-
soning abilities, whose tasks span various domains,
including college entrance exams (English / Math
/ Law), logic tests et al. We evaluate our method
on the subtasks that are related to multiple-choice
questions in the English language.

AI2 Reasoning Challenge (ARC) (Clark et al.,
2018) consists of ARC-Easy (ARC-E) and ARC-
Challenge (ARC-C). The distinction lies in ARC-
E consisting of relatively simpler questions from
middle and high school science exams, while ARC-
C comprises more complex and challenging ques-
tions. We utilize the testing set of the ARC dataset
for evaluation. The statistics of the all above
datasets can be found in Appendix B.1.

4.2 Models & Baselines & Setup

Models We employ the contemporary, popular
open-source language model LLaMA2-7B (Tou-
vron et al., 2023) as the student SLM. Consider-
ing the pricing and capabilities, we utilize Ope-
nAI’s powerful black-box LLM, ChatGPT?, as the
teacher. We query ChatGPT to annotate the CoT
data with the same manual prompt used in the pre-
vious work (Suzgun et al., 2023).

Baselines We compare our method with the fol-
lowing baselines: (1) Teacher & Vanilla Student
under various settings, e.g., Zero-shot (+CoT) or
Few-shot (+CoT), for showing the impact of dis-
tilling reasoning ability from LLMs. (2) Std-CoT
(Magister et al., 2023), which is a standard CoTs
distillation method that directly fine-tune student

%For detailed descriptions of the subtasks in BIG-Bench,
please refer to https://github.com/google/BIG-bench/
blob/main/bigbench/benchmark_tasks/README . md.

3h’ctps ://chat.openai.com/chat. We utilize the gpt —
3.5 — turbo — 0613 for CoTs extraction.

models on the CoTs data. (3) Step-by-step (Hsieh
et al., 2023) is a multi-task CoT distillation method
that separately optimizes the objectives of answer
learning and inference process learning. (4) MT-
CoT (Li et al., 2022) is also a multi-task CoTs dis-
tillation method, but unlike Step-by-step, it simulta-
neously optimizes the objectives of answer predic-
tion and CoTs learning. (5) SCOTT that enhances
the reasoning consistency of the student model by
introducing additional counterfactual data.

Setup We employ LoRA (Hu et al., 2022) for
parameter-efficient fine-tuning of the student SLMs.
We empirically set a in multi-task learning as
0.3. All experiments are conducted using a mixed-
precision training strategy on 4 x A100 GPUs. For
the inference stage, vLLM* (Kwon et al., 2023) is
utilized to accelerate inference, employing a greedy
decoding strategy to generate text on one single
A100 GPU. Further details on training and hyper-
parameters can be found in Appendix B.2.

4.3 Main Results

Table 1 presents the automatic evaluation results of
our proposed CasCoD and baselines on in-domain
(IND) and out-of-domain (OOD) datasets.

CoTs distillation enhances the reasoning perfor-
mance of students. Comparing with the Zero-
shot-CoT and Few-shot-CoT settings of student
models, the performance of those with distillation
is significantly improved by learning the teacher
LLM’s CoTs. Except for BB-sub, the student
model has 3-4 times improvement compared to
vanilla ones across all datasets.

CasCoD overcomes limitations of distillation
baselines in OOD performance. From the ta-
ble, we can find that Answer-SFT on the OOD
datasets outperforms all the distillation baselines by
an average of 5%, which indicates that it seems stu-
dent models’ performance decreases when learning
the CoTs. This pattern is also noticeable in mod-
els without distillation, as evidenced by the com-
parison between Zero-shot and Zero-shot-CoT (or
Few-shot and Few-shot-CoT) settings. We attribute
this to spurious correlations between questions and
answers in these implicit reasoning task datasets
(Gururangan et al., 2018; Zellers et al., 2019; Blod-
gett et al., 2020), which students can easily learn
by directly fine-tuning. The distillation baselines
that require students to consider predicting answers

*https://github.com/vllm-project/vlim
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Method Distill? Gen CoT? BBH-test BB-sub AGIEval ARC-E ARC-C ‘ AVG
In-domain? ‘ v X X X X ‘
Teacher: ChatGPT (gpt-3.5-turbo)
Zero-shot-CoT X v 42.7 44.1 49.5 91.9 81.1 61.9
Few-shot-CoT X v 73.1 - - - - -
Student: LLaMA2-7B
Zero-shot X X 14.8 15.5 6.9 18.2 13.9 13.9
Zero-shot-CoT X v 10.6 7.7 7.1 18.4 14.8 11.7
Few-shot X X 15.1 28.5 25.5 25.5 25.4 24.0
Few-shot-CoT X v 16.3 25.3 9.9 17.2 17.2 17.2
Answer-SFT X X 51.5 332 31.2 71.6 53.7 48.2
Std-CoT (Magister et al., 2023) v v 54.2 28.7 21.6 59.6 45.1 41.8
SCOTT (Wang et al., 2023a) v v 424 18.8 13.0 45.7 34.1 30.8
MT-CoT (Li et al., 2022) v v 56.8 30.3 22.0 494 38.2 39.3
Step-by-step (Wang et al., 2023c) v v 424 27.7 28.8 68.5 48.6 43.2
CasCoD (ours) v v 594,056 37.0.67 283_05 706,201 527,39 49.6.6.4

Table 1: Accuracy (%) on in-domain and out-of-domain datasets with different methods. We employ "Let’s think
step by step” (Kojima et al., 2022b) for Zero-shot-CoT settings and the manually curated prompt (Suzgun et al.,
2023) for Few-shot-CoT settings. The best performance among distilled student models is marked in bold. The
subscript shows the performance gap between our method and the best baselines on each dataset.

while generating the rationale, inadvertently make
the simpler task of answer prediction interfere with
the rationale learning, thus reducing the general-
ization of CoTs. In contrast, CasCoD not only sur-
passes Answer-SFT by 7.9% in IND datasets but
also achieves comparable results in OOD scenarios.
This underscores the effectiveness of our strategy,
which involves decomposing CoTs and engaging
in cascaded multi-task learning, in enhancing rea-
soning capabilities across diverse datasets.

CasCoD significantly outperforms the distilla-
tion baselines across IND and OOD datasets.
From Table 1, it can be observed that CasCoD out-
performs baselines on both IND and OOD datasets
in most cases. Specifically, CasCoD secures an
average in-domain improvement of 5.2% and an
out-of-domain enhancement of 8.4% over the Std-
CoT, along with an overall 6.4% improvement com-
pared to the multi-task learning (Step-by-step) ap-
proach. Impressively, CasCoD achieves 80.1% of
the teacher LLM’s performance in Zero-shot-CoT
settings. These results underscore the efficacy of
CasCoD, significantly boosting the generative ca-
pabilities of CoTs on unseen tasks.

4.4 Ablation Study

CasCoD is universally applicable to models of
varying sizes. We perform model distillation on

TinyLLaMA-1.1B> (Zhang et al., 2024), LLaMA2-
7B, and LLaMA2-13B, respectively and compare
with standard CoTs distillation (Std-CoT) and
multi-task distillation (MT-CoT & Step-by-step).
In Figure 3 and 7, we can find that CasCoD consis-
tently outperforms the baselines on both IND and
OOD datasets across various sizes of student mod-
els. Notably, the performance improvement of our
method is the most obvious in the BB-sub, where
the performance of the 13B student model reaches
92.7% of the teacher LLM’s performance. Further-
more, as model sizes increase, the performance
gap between CasCoD and the baselines widens on
OOD datasets, highlighting CasCoD’s superior ef-
ficiency in distilling CoTs for larger models.

CasCoD significantly outperforms standard
CoTs distillation on OOD with much less train-
ing data. In Figure 4, CasCoD achieves a 6.3%
improvement over Std-CoT on the BB-sub dataset,
using only 25% of the full BBH-train data. In
the case of other OOD datasets, CasCoD requires
merely 12.5% of the full training data to surpass
the Std-CoT trained with the full dataset by 5% to
7% in performance. These results demonstrate the
efficiency of CasCoD, capable of enhancing CoTs
generalization with a smaller amount of CoTs data.

Rationales and answers should be allocated
varying levels of attention and learned across

Shttps://huggingface.co/TinyLlama/TinylLlama-1.
1B-intermediate-step-1431k-3T
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Figure 3: Ablation study on model size for four OOD datasets. The dotted line indicates the performance of the
teacher LLM under the Zero-shot-CoT setting. The results in IND dataset can be found in Appendix A.1.

Std-CoT CasCoD Std-CoT (Full Set)

40 BB-sub 35 AGIEval 80 ARC-E 60 ARC-C
9
535 25 65 45
[}
©
35
930
< 15 50 30

25

5 35 15
b o o O h N O o h O N O h N N O
N N N S

Ratio of Training Dataset (%) Ratio of Training Dataset (%)

Ratio of Training Dataset (%) Ratio of Training Dataset (%)

Figure 4: Ablation study on training data size for four OOD datasets. The dotted line indicates the performance of
fine-tuning the student models by standard CoTs distillation using the full set (100% of) BBH-train dataset. The

results in IND dataset can be found in Appendix A.2.

multiple steps rather than in a single step. As
mentioned in §3.3, we further experimentally ex-
plore the relationship between CasCoD and single-
task learning (e.g. Std-CoT) under the teacher
forcing. In Figure 5, we can see that the "Weight
Aligned" method, which simply adds weights com-
pared to Std-CoT, enhances performance on both
IND and OOD datasets, highlighting the benefit
of tailored attention levels for rationales and an-
swers. Moreover, the "All Aligned" shows sig-
nificant improvement in OOD datasets compared
to the "Weight Aligned" by incorporating task pre-
fixes and sentence-ending tokens, suggesting that
separating the learning phases for rationales and
answers helps in minimizing distractions. How-
ever, we also notice that even attempting to align
with CasCoD in single-step, there remains a per-
formance gap. This suggests that despite using
teacher forcing mode, single-task learning cannot
fully align with multi-task learning, as the intro-
duction of [EOS] tokens disrupts the correlation
between multiple tasks.

80
Std-CoT All Aligned
Weight Aligned CasCoD
60
S
>
@ 40
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Figure 5: Ablation study on multi-steps across the IND
and OOD datasets. "Weight Aligned" refers to the ap-
proach of adding token-level weights in the Std-CoT.
"All Aligned" builds upon "Weight Aligned" by further
incorporating special task prefixes and end-of-sequence
tokens, aiming for structural alignment with CasCoD.
For both single step settings, we set weights as 0.3 on
the answer tokens and 0.7 on the rationale tokens.

4.5 Robustness W.R.T. Weights

In this subsection, we explore how variations in
weights affect the performance of models with
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Figure 6: Ablation study on task weights a.. The results are reported by IND-AVG and OOD-AVG that respectively

denote averge accuracy on IND and OOD datasets. The best performance among weights are marked with

different parameter sizes on both IND and OOD
datasets, as shown in Figure 6.

Students’ performance is not sensitive to weights
on OOD datasets. From the figure, we observe
that regardless of weight changes, CasCoD consis-
tently outperforms Std-CoT in OOD by average,
even at & = 0.9 (meaning the model allocated only
10% of its attention to rationales generation). This
demonstrates that CasCoD exhibits robust general-
ization in OOD and also underscores the effective-
ness of decomposing CoTs for distillation.

CasCoD is more robust for smaller student mod-
els. We observe that the 1.1B model shows less
variation in performance compared to the 7B and
13B models in IND. Notably, the performance of
the 13B model drops sharply as a changes from 0.5
to 0.9, indicating that larger models are more sus-
ceptible to weight adjustments in the IND dataset.

Prioritizing the rationale over the answer yields
better results. It is evident that across different
model sizes, the optimal weights on both IND and
OOD datasets are less than 0.5, which indicates that
focusing on the rationale enables student models to
learn CoTs with greater generalizability.

4.6 Faithfulness of Students

To ensure that the rationale provided by students
supports their predicted answers, another metric
for evaluating CoTs distillation is the faithfulness
of students. Following the previous work (Wang
et al., 2023a), we use the LAS metric (Hase et al.,
2020), whose core idea is to measure the extent
that the rationales r’ aid a simulator in predicting
the answers a’, defined as:

LAS = Acc (q, r— a') — Acc (q — a’) )

nan

where we employ ChatGPT and GPT4 as the simu-
lator, respectively. The results are shown in Table
2. CasCoD is observed to generate rationales that
are more consistent than those from baselines, par-
ticularly MT-CoT and step-by-step methods. This
suggests that despite CasCoD being a multi-task
learning framework, the introduction of cascading
learning ensures that students can faithfully reason.

Method \ ChatGPT GPT4 \ AVG
Std-CoT 40.8 29.8 353
SCOTT 36.2 29.4 32.8
MT-CoT 36.2 25.8 31
Step-by-step 6.6 -0.1 3.25
CasCoD (ours) 40.8 31.6 36.2

Table 2: Faithfulness (LAS, %) of the compared meth-
ods with different LLM evaluators on the IND dataset.
The prompt templates can be found in Appendix C.2

5 Conclusion

This work presents a staightforward yet effective
CoTs distillation method CasCoD as a solution
to the challenges of distilling reasoning capabil-
ities from LLMs into smaller ones. Specifically,
we break down the full CoT distillation process
into two cascade tasks by sharing the input prefix,
leading to enhanced CoTs generalizability. Exten-
sive experiments show that our proposed method
significantly outpeforms the baselines across both
in-domain and out-of-domain benchmark reason-
ing datasets. Further analysis reveals that CasCoD
is robust to model size and task weights and can
lead to a faithful student models.



Limitations

Considering the cost such as API calls and GPU
training expenses, we only choose ChatGPT as the
teacher LLM and the widely-used model LLaMA2
as the student SLM. Employing GPT-4 as the
teacher provides high-quality CoTs, which could
better validate the effectiveness of our proposed
method CasCoD. Besides, when distilling the stu-
dent model using CasCoD, it requires two forward
computations, increasing the training time cost. Ad-
ditionally, some research (Schaeffer et al., 2023a)
indicates that the emergent abilities of LLMs are
the result of accomplishing multiple sub-tasks cor-
rectly at the same time, leading to a quantitative
change that results in a qualitative transformation.
This paper merely explores distilling CoT into two
steps, envisioning that CoT could be broken down
into even more steps to allow the student model
to focus on learning specific tasks. However, the
questions of how to decompose CoTs, when to do
so, and how to allocate attention remain unresolved.
We leave these issues for future research.

Ethics Statement

It is important to note that this work utilizes CoT
data extracted from ChatGPT for distillation, which
may result in inheriting the social biases (Schaeffer
et al., 2023b) and hallucination (Zhang et al., 2023)
present in LLMs. However, we are optimistic that
future advancements in resolving these issues in
LLMs will naturally lead to the development of
student models with reduced toxicity.
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A Ablation Study on In-domain Dataset

A.1 W.R.T. Model Size

The results of the model size ablation study on
IND datasets are presented in Figure 7. We observe
that CasCoD outperforms the baselines on both the
7B and 13B model and significantly surpasses the
teacher LLMs in the Zero-shot CoT setting.
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Figure 7: Ablation study on model size in the IND
(BBH-test). The dotted line indicates the performance
of the teacher LLM under the Zero-shot-CoT setting.

A.2 W.R.T. Training Data Size

The results of the training data ablation study
on IND datasets, as shown in Figure 8, indicate
that CasCoD outperforms standard CoT distillation
across various sizes of training data. This demon-
strates the efficiency of our proposed method.
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Figure 8: Ablation study on training data size in the
IND (BBH-test). The dotted line indicates the perfor-
mance of fine-tuning the student models by standard
CoT distillation using the full set (100% of) BBH-train
dataset.

B Details of Experiment

B.1 Dataset Statistics

Table 3, Table 4, Table 5 and Table 6 show the
data statistics of AGIEval, ARC, BIG-Bench Hard
(BBH) and BIG-Bench Sub (BB-sub), respectively.

No. | Task | Size | # Choices
1 AQuA-RAT 254 5
2 LogiQA-EN 651 4
3 LSAT-AR 230 5
4 LSAT-LR 510 5
5 LSAT-RC 269 5
6 SAT-Math 220 4
7 SAT-EN 206 4
8 SAT-EN (w/o Psg.) 206 4
| Sum | 2546 | -

Table 3: Statistics of AGIEval dataset.

Task | Size | # Choices

ARC-E | 2376 4-5
ARC-C | 1172 4-5

Table 4: Statistics of ARC test dataset.

No. | Task | Size | # Choices
1 Boolean Expressions 250 2
2 Causal Judgement 187 2
3 Date Understanding 250 6
4 Disambiguation QA 250 4
5 Dyck Languages 250 -
6 Formal Fallacies Syllogisms Negation 250 2
7 Geometric Shapes 250 11
8 Hyperbaton (Adjective Ordering) 250 2
9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Movie Recommendation 250 5
13 Multi-Step Arithmetic 250 -
14 Navigate 250 2
15 Object Counting 250 -
16 Penguins in a Table 146 5
17 Reasoning about Colored Objects 250 18
18 Ruin Names 250 11
19 Salient Translation Error Detection 250 6
20 Snarks 178 2
21 Sports Understanding 250 2
22 Temporal Sequences 250 4
23 Tracking Shuffled Objects (3 objects) 250 3
24 Tracking Shuffled Objects (5 objects) 250 5
25 Tracking Shuffled Objects (7 objects) 250 7
26 Web of Lies 250 2
27 Word Sorting 250 -
| Sum | 6511 |

Table 5: Statistics of BIG-Bench Hard dataset.

B.2 Hyperparameters Settings

The hyperparameters in training and inference can
be found in Table 7 and Table 8, respectively.

C Prompts

C.1 Prompts of Generating CoTs for
ChatGPT

We use the prompt template shown in Table 9 to
call the ChatGPT API to generate the CoTs for the
BBH-train datasets.

C.2 Prompts of Simulators

We use the prompt templates shown in Table 10
and Table 11 to call the ChatGPT and GPT4 API
to predict the answers given a question or with an
additional rationale, respectively.



No. | Task | Size | # Choices
1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_ga 100 5
12 emoji_movie 100 5
13 empirical_judgments 99 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4
32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_ga 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iqa 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2
‘ Sum ‘ 5384 ‘ -

Table 6: Statistics of BIG-Bench sub dataset. We filter
the original dataset by retrieving tasks with keywords
"multiple choice" and randomly sample up to 100 exam-
ples per task. Note, the task in BBH will not be involved
in BB-sub.
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Hyperparameter \ TinyLLaMA-1.1B LLaMA2-7B LLaMA2-13B
gradient accumulation steps 8

per device batch size 8
learning rate 2e-4 2e-4 2e-4
epoches 10

max length 1024 1024 1024

3 of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999)
€ of AdamW le-8 le-8 le-8

~ of Scheduler 0.95 0.95 0.95
weight decay 0
warmup ratio 0

rank of LoORA 64

a of LoRA 32
target modules q_proj, v_proj q_proj, v_proj q_proj, v_proj
drop out of LoRA 0.05 0.05 0.05

Table 7: Training hyperparameters.

Arguments \ Student  Teacher
do sample False True
temperature - 0.2
top-p 1.0 1.0
top-k - -
max new tokens 1024 2048
# return sequences 1 1

Table 8: Generation configs of students and teachers.



{Task Description}. Your response should conclude with the format "Therefore, the answer is".

Q: {Task Example Question No.1}
A: Let’s think step by step. {Human-Curated-CoTs}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs}.

Q: {QUESTION}
A: Let’s think step by step.

Table 9: Prompt template of gpt-3.5-turbo for generating the CoTs data.

system content \ You are a helpful and precise assistant for following the given instruction.

[Instruction] {Please read the question and then give your answer based on the
question without any explanations.?}

Task Description: {TASK_DESCRIPTION}
user content

Question: {QUESTION}

Your Answer:

Table 10: Prompt template of simulators for predicting the answers when given the question.

system content ‘ You are a helpful and precise assistant for following the given instruction.

[Instruction] {Please read the question and the rationale, and then give your answer
based on the question and the rationale without any explanations.}

Task Description: {TASK_DESCRIPTION}
user content Question: {QUESTION}
Rationale: {RATIONALE}

Your Answer:

Table 11: Prompt template of simulators for predicting the answers when given the question and rationale.
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