
Under review as a conference paper at ICLR 2024

PREDICTION TASKS IN GRAPHS: A FRAMEWORK
TO CONTROL THE INTERPRETABILITY-PERFORMANCE
TRADE-OFF

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have emerged as state-of-the-art methods for
solving graph-level tasks in diverse domains, such as social network analysis
and bioinformatics. However, their complex nature results in a lack of human-
interpretable predictions, which can hinder their practical impact. Here, we aim
at improving GNN interpretability by targeting sparsity during GNN training, i.e.,
by minimizing the size (and/or number) of subgraphs used to make predictions.
Existing solutions in the literature suffer from two main limitations: i) they still
rely on information about the entire graph; and/or ii) they do not allow practitioners
to directly control the trade-off between predictive performance and sparsity. To
address the above limitations, in this paper, we formulate GNN training as a bi-level
optimization task, where the trade-off between interpretability and performance
can be controlled by a hyperparameter. Our framework relies on reinforcement
learning to iteratively maximize predictive performance and sparsity by removing
edges or nodes from the input graph. Our empirical results on nine different
graph classification datasets show that our method competes in performance with
baselines that use information from the whole graph, while relying on significantly
sparser subgraphs, leading to more interpretable GNN-based predictions.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become a cornerstone in modern machine learning, excelling
in diverse domains such as social network analysis Cao et al. (2019b;a), recommender systems Fan
et al. (2019); Bai et al. (2020) and bioinformatics Guo et al. (2021); Ramirez et al. (2020); Xiong et al.
(2020).However, the complexity of GNNs contributes to one of their principal shortcoming: a lack of
human-interpretable predictions. This opacity hinders their potential for practical, real-world impact,
as practitioners often require interpretable models to inform decision-making, ensure trustworthiness,
and comply with regulations Doshi-Velez & Kim (2017).
Current interpretability methods obtain the most relevant subgraph from an original graph using a
GNN-based predictor Sun et al. (2021). In essence, interpretability in this context is linked to graph
sparsity. This means using a minimal set of nodes and edges from the graph for prediction rather than
the entire graph. A sparser graph reduces the volume of information used in predictions, making it
easier for humans to understand. It is crucial to note that sparsity achieves interpretability only when
the subgraph completely excludes information from the omitted nodes and edges. This scenario does
not occur, for instance, if message passing is employed before obtaining the sparser graph. Some
methods aim to identify subgraphs during training Cangea et al. (2018); Sun et al. (2021). However,
these methods suffer from two primary shortcomings: i) they typically depend on the entire graph’s
information for predictions Cangea et al. (2018), which can complicate explanations, and ii) they do
not permit direct control of the trade-off between predictive performance and sparsity. In practice, this
adaptability is highly desirable. For instance, accuracy might be prioritized in specific applications
such as community detection in social networks Contisciani et al. (2020); Shchur & Günnemann
(2018). Conversely, in other application scenarios, such as risk assessment Bi et al. (2022), the
capability to interpret predictions becomes essential and cannot be traded by model performance.
In this paper, we present a novel framework named GCIP. This framework enables interpretable
GNN-based predictions in graphs, and to control the interpretability-performance trade-off. We
jointly optimize performance and sparsity via a bi-level optimization strategy. Specifically, sparsity is

1

Under review as a conference paper at ICLR 2024

achieved through a policy-based reinforcement learning method, which aids in node/edge removal
decision-making. We propose a reward function with two parameters that enable the addition of
inductive biases toward sparsity or performance. Our framework allows practitioners to specify the
type of removal (node or edge) and easily control the sparsity-performance trade-off.
To summarize, the key contributions of our work are: (i) A novel framework to solve graph-level
classification using sparse subgraphs for prediction, leading to more interpretable solutions. (ii) The
possibility to choose between achieving sparsity through node or edge removal, which broadens the
range of application scenarios. (iii) The design of a reward function that allows for a priori inductive
biases towards sparser or more high-performing solutions (adaptability). (iv) A comprehensive
comparison of nine graph classification datasets, demonstrating that GCIP achieves competitive
performance while utilizing significantly sparser graphs for predictive tasks.

2 PRELIMINARIES

This section outlines necessary background information on two key building blocks of the proposed
framework: reinforcement learning and message-passing graph neural networks. We begin by
introducing the notation used throughout this work.

Notation. A graph is denoted as G = (V, E) where V 2 1, . . . , n is the set of n nodes and
E ✓ V ⇥V is the set of edges. The size of a set is represented as |V| = n. A subgraph of G is denoted
as Gs = (Vs, Es) ✓ G comprising subsets of nodes Vs ✓ V and edges Es ⇢ E . A labeled dataset is
represented as D = {Gi,yi}i where yi denotes the target of Gi. Here, without loss of generality, we
focus on K classes graph classification, hence yi 2 1, . . . ,K.

2.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a learning paradigm in which an agent learns to optimize decisions
by interacting with an environment Sutton & Barto (2005). The objective is to derive a policy ⇡
that maximizes the expected cumulative reward. An RL problem is typically modeled as a Markov
Decision Process (MDP), defined by a tuple (S,A,P,R, �), where S and A denote the state and
action spaces, P the transition probability, R the reward function, and � the discount factor.

Policy Gradient Methods. Policy gradient methods directly optimize the policy using gradient
ascent on the expected cumulative reward Sutton et al. (1999). Proximal Policy Optimization (PPO)
Schulman et al. (2017b) is a policy gradient method that introduces an objective function fostering
exploration while mitigating drastic policy updates. PPO aims to solve the optimization problem:

LCLIP
(�) = Et

h
min

⇣
rt(�)Ât, clip(rt(�), 1� ✏, 1 + ✏)Ât

⌘i
(1)

where rt(�) =
⇡�(at|st)

⇡�old
(at|st) is the probability ratio, Ât an estimator of the advantage function at time

t, and ✏ a hyperparameter controlling the deviation from the old policy.

2.2 GRAPH NEURAL NETWORKS

Message passing Graph Neural Networks (GNNs) are designed for graph-structured data processing.
Each node v 2 V has a feature vector h, and the GNN transforms these features into more informative
representations using neighborhood information. Formally, a GNN performs K update rounds,
updating each node’s feature vector h(k)

i at step k � 1:

h(k)
i = f✓u

0

@
M

j2Ni

m✓m(h(k�1)

i ,h(k�1)

j)

1

A . (2)

Here, f✓u and m✓m are differentiable, parameterized functions, Ni represents node i’s neighbors,
and

L
denotes permutation invariant operations, i.e., sum, mean, or max. After K steps, we obtain

the final node representations h(K)

i 8i 2 V . These representations are used for tasks like graph-
level prediction, employing a permutation-invariant readout function ŷ = g

⇣n
h(K)

i : i 2 V
o⌘

that
ensures the output is node order independent.

2

Under review as a conference paper at ICLR 2024

3 RELATED WORK

GNNs extend deep learning models to incorporate graph-structured data Bronstein et al. (2016).
Numerous architecture proposals tailored for node, link, and graph prediction tasks have been
proposed Scarselli et al. (2009); Gilmer et al. (2017); Wu et al. (2019; 2020); Xu et al. (2018); Corso
et al. (2020); Chen et al. (2020). However, these approaches, rely on the complete graph data and
often disregard interpretability, which is the focus of our work. More recently, there are works that
aim for sparsification Zheng et al. (2020); Hasanzadeh et al. (2020); Rong et al. (2019); Oono &
Suzuki (2019); Loukas (2019); Li et al. (2020); Luo et al. (2021); Wickman et al. (2021); Wang
et al. (2021) but do not offer control over the interpretability-performance trade-off, are tailored to a
specific mode of removal, and focus on tasks other than graph prediction.
Here, we explore relevant sparsification studies that specifically address supervised problems, as they
are the main topic of our paper. We categorize these works into two categories: those employing soft
removal of information, wherein the sparse graph retains information of the complete graph; and
those utilizing hard removal, which closely aligns with our approach.

Soft removal of information. Several architectures Javaloy et al. (2022); Velickovic et al. (2017);
Brody et al. (2021) assign varying importance to network edges, simulating soft edge removal whilst
maintaining information flow across nodes. DiffPool Ying et al. (2018) hierarchically removes parts
of the original graph, distilling the graph’s representation into a single vector used for prediction.
TopK Gao & Ji (2019), uses a GNN to update node features and subsequently selects the top k most
relevant nodes based on their features. It is worth noting that even though part of the network is
dropped, the remaining subgraph contains information from the entire network. In contrast, in our
framework, the graph predictor does not have access to the dropped information.

Hard removal of information. TopK Gao & Ji (2019) can also be used to select the k nodes based
solely on their own information. However, the number of nodes is fixed and cannot dynamically
change for different graphs. SUGAR Sun et al. (2021) takes a different approach by identifying
discriminative subgraphs. It introduces a reinforcement pooling module trained with Q-learning
Mnih et al. (2015) to adaptively select a pooling ratio when recombining subgraphs for classification.
Unlike our work, SUGAR does not prioritize sparsity and focuses on finding the most discriminative
subgraph that maximizes performance. In contrast, our approach takes a different perspective, as
we design the reinforcement learning framework to provide a way to control the trade-off between
interpretability and performance. We utilize policy gradient methods to capture uncertainty in the
sparsity process and allow for different modes of removal.
Finally, there is extensive literature that aims to understand which subgraph of the input graph is
most relevant for making predictions in GNNs Ying et al. (2019); Luo et al. (2020); Yuan et al.
(2020); Numeroso & Bacciu (2021); Yuan et al. (2021); Yu & Gao (2022); Schlichtkrull et al. (2021).
However, these methods focus on explaining a GNN predictor trained using the original graphs, while
our goal is to obtain a GNN that already utilizes a minimal part of the original subgraph. These
methods could be used in a subsequent step to further interpret the predictions.

4 INTRODUCING THE GCIP FRAMEWORK

In this section, we present a novel framework designed to achieve interpretable predictions in graphs
by effectively controlling the trade-off between interpretability and performance, which we refer
to as GCIP. Our framework consists of various components, each carefully designed to address
this objective. Firstly, we introduce the bi-level optimization procedure, which has been utilized
in prior research Sun et al. (2021); Wickman et al. (2021), and enables the simultaneous pursuit of
sparsity and performance. Next, we provide a detailed explanation of the sparsity seeker component,
which is based on reinforcement learning (RL) and constitutes one of the main contributions of this
paper. In contrast to previous work Sun et al. (2021); Wickman et al. (2021), our approach allows for
fine-grained control over the trade-off between performance and sparsity at the node/edge removal
level.

3

Under review as a conference paper at ICLR 2024

4.1 OPTIMIZING FOR SPARSITY AND PERFORMANCE

Performing graph classification tasks with minimal input graphs poses a challenge that involves
two interconnected objectives: maximizing performance and maximizing sparsity. To address this
challenge, we propose a two-level iterative optimization approach inspired by previous work Sun
et al. (2021); Wickman et al. (2021):

�⇤
= argmin

�
Lspa

�
✓?(�),�,Dval

�
(3)

s.t. ✓?(�) = argmin
✓

Lperf
�
✓,�,Dtr

�
(4)

This optimization procedure aims to simultaneously maximize predictive performance (Equation (4))
and ensure graph sparsity (Equation (3)). The nested structure of the problem implies that achieving
an optimally sparse graph requires a high-performing predictive model. We employ gradient descent
for both optimizations, with a larger learning rate for the inner optimization Zheng et al. (2021).
Appendix B presents an algoirthm summarizing the training procedure.

Sparsity optimization Equation (3). This objective is particularly complex due to the combina-
torial nature of node/edge removal possibilities, i.e., v 2 V and (u, v) 2 E . Inspired by SparRL
Wickman et al. (2021), we formulate the sparsification task as a Markov Decision Process (MDP)
and address it using graph reinforcement learning Nie et al. (2022), namely parameterizing ⇡ using
GNNs. In contrast to previous work that uses value-based methods, such as Deep Q-Learning Mnih
et al. (2015), we employ the policy gradient method Proximal Policy Optimization (PPO) Schulman
et al. (2017a) to capture the inherent uncertainty in the sparsification process. We denote the objective
of the sparsity optimization by Lspa, which corresponds to maximizing Equation (1). The output of
this task is a policy ⇡� that allows getting a sparser graph Gs, which is used as input for the graph
classification task, i.e. the solution to the outer optimization problem is thus a policy, ⇡� : G 7! Gs,
where Gs is a subgraph of G.

Performance optimization Equation (4). This objective corresponds to a standard graph-
supervised problem, where the objective is to minimize a loss function Lperf, e.g., the cross-entropy
loss. Thus the goal is to learn a function f✓ : Gs ! ŷ with parameters ✓ that minimizes the prediction
loss.

4.2 CONTROLLING THE INTERPRETABILITY-SPARSITY TRADE-OFF

In this subsection, we provide a detailed description of the components of the PPO instantiation
within GCIP. This instantiation gives practitioners control over the trade-off between sparsity and
performance. In traditional RL problems, an agent takes a sequence of actions over multiple time
steps, and the reward it receives at any time step may depend on all its previous actions. This ”delayed
reward” problem Sutton (1992) is one of the main challenges in RL.
Our formulation considers a simplified and well-known scenario known as the Multi-Armed Bandit
Problem Kuleshov & Precup (2014). In this problem, each agent’s decision or action is independent,
and the reward is immediate. Then, our goal is to find the sparser graph in a single step rather than
considering a trajectory as in traditional RL. As a result, our objective simplifies finding a strategy
that maximizes the total reward over the graphs in our dataset. As we empirically demonstrate in our
experiments in Section 5, this simplified scenario can achieve a good sparsity-performance trade-off.
Henceforth, we only need to describe two components: the policy that controls the type of sparsity
(on the number of nodes or edges) and the design of the reward function that allows us to control the
sparsity level.

4.2.1 POLICY FORMULATION FOR GRAPH SPARSIFICATION VIA NODE OR EDGE REMOVAL

In real-world applications, we typically determine the necessity of creating a sparser input graph by
removing nodes or edges a priori, as it depends on the specific use-case. Accordingly, we propose a
policy ⇡ (a|G;�) =

Q
i Ber (ai|G;�) modeled with a GNN with parameters �, which can operate in

both modes of removal, i.e., removing nodes or edges.
This policy accepts as input graph G and outputs an action a, in which each element indicates whether
to retain (ai = 0) or eliminate (ai = 1) a specific node or edge in V and E , respectively. Hence, the

4

Under review as a conference paper at ICLR 2024

primary role of the policy ⇡ is to orchestrate the decision-making process for information retention
or removal. Recognizing that real-world scenarios are seldom binary, the policy is constructed as
a distribution to encapsulate the inherent uncertainty. Depending on the objective of either node or
edge removal, we define two operational modes:

• Node removal policy: ⇡n (a|G;�), where a 2 {0, 1}|V|. In this scenario, the sparser
graph Gs that we use as input for the downstream task has Vs = {v 2 V|av = 0} and
Es = {(u, v) 2 E|au = 0 ^ av = 0}

• Edge removal policy: ⇡e (a|G;�) where a 2 {0, 1}|E|. Here, the sparser graph Gs that we
use as input for the downstream task has Vs = V and Es = {(u, v) 2 E|av = 0 ^ av = 0}.

Two key observations about the above policies. First, the removal of a node implicitly leads to the
exclusion of all edges connected to it. Second, the edge removal policy, in contrast, preserves all
nodes, thereby facilitating the potential use of this policy for node classification tasks, which is a
direction for future work. We would like to highlight that in either case, finding Gs is an NP-hard
problem for both modes of removal given that the number of possible subgraphs grows exponentially
with the number of nodes/edges in the original graph, i.e., the number of possible actions for ⇡n isP|V|�1

i=1

�|V|
i

�
and for ⇡e is

P|E|
i=1

�|E|
i

�
.

4.2.2 REWARD FORMULATION

The reward function R fundamentally shapes the policy’s behavior. In numerous real-world graph
classification tasks Jiang & Luo (2021); Guo et al. (2021), discerning the extent of the graph’s
information that is useful to the classification a priori is hard and costly to achieve, e.g., manual
labeling Buhrmester et al. (2011). However, it is easy for practitioners to target a minimum sparsity
level, enhancing interpretability. To reflect such intent, we design a reward function as a linear
combination of a component that seeks performance Rp and a component that encourages sparsity
Rs:

R =

8
<

:

�Rp(ŷs) + (1� �)Rs(Gs) if ŷs = y,
��Rp(ŷs)� (1� �)Rs(Gs) if ŷs 6= y ^ ŷ = y,
0 if ŷs 6= y ^ ŷ 6= y.

(5)

The parameter � 2 [0, 1] empowers the practitioner to emphasize either performance (� = 1)
or sparsity (� = 0). This reward value differs depending on the prediction of the sparse graph
ŷs = f✓(Gs) and the original graph ŷ = f✓(G). The top scenario corresponds to ŷs = y when the
prediction based on the subgraph Gs is correct. In this case, we offer a positive reward R 2 [0, 1]. The
middle scenario refers to instances where employing a subgraph Gs as the classifier’s input changes
the prediction from correct to incorrect. As this behavior is undesirable, we assign a negative reward
R 2 [�1, 0]. Intuitively, we aim to increase uncertainty in the prediction and discourage removal.
The bottom scenario arises when both the original and sparse graph predictions are incorrect, a
middle-ground situation that yields a neutral reward R = 0. In the following, we describe how we
design both components to achieve the desired trade-off of sparsity and performance.

Performance Reward. Our goal is to find policies that enhance performance. To do so, we
can employ the cross-entropy loss, usually applied in classification tasks. Yet, this approach is
undesirable due to its unbounded nature, making it non-comparable with the sparsity component
of the reward. More interestingly, performance can be improved via the entropy of the predictions:
H(ŷ) = �

PK
k=1

ŷk log ŷk. Higher entropy indicates higher uncertainty and vice versa. Given that
entropy is a bounded metric for a discrete variable, with Hmax(ŷ) = logK, we propose its inclusion
in the reward function in a normalized fashion, as Rp(ŷ) = 1 � H(ŷ)

Hmax(ŷ)
such that Rp 2 [0, 1]. In

Equation (5), we can observe this component appears as a negative or positive term depending
on whether we want to reward (reduce entropy, thus improve performance) or penalize behavior
(introduce entropy, trying to change prediction thus improve performance.)

5

Under review as a conference paper at ICLR 2024

Dataset BZR DD PTC Policy edge node

0 200 400 600 800

Epoch

0.25

0.50

0.75
A

cc
ur

ac
y

0 200 400 600 800

Epoch

0.25

0.50

0.75

R
ew

ar
ds

0 200 400 600 800

Epoch

0.25

0.50

0.75

1.00

N
od

e
R

at
io

0 200 400 600 800

Epoch

0.25

0.50

0.75

Ed
ge

R
at

io

Figure 2: The plots above depict the evolution of different metrics over training epochs, with the shaded area
indicating the standard deviation across all validation sets. In the Node Ratio figure we can observe a horizontal
line at 1.0 for the model trained on edge policy (GCIPE) as we use all nodes for predicting, even if all the edges
of a node have been removed.

maximum desired nodes/edges ratio (d)
0.05 0.25 0.5 0.75 0.95

0.0 0.2 0.4 0.6 0.8 1.0

Nodes/Edges Ratio (PR)

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ar

si
ty

R
ew

ar
d

(R
s

)

Figure 1: Evolution of the sparsity reward
Rs over the node/edge ratio for different
values of the maximum desired nodes/edges
ratio d.

Sparsity Reward. We also aspire to achieve maximal
sparsity, facilitating easier identification of the infor-
mation for classification prediction. To incentivize this,
depending on the policy mode, we propose a reward
that penalizes the nodes ratio PRn =

|Vs|
|V| or edges

ratio PRe =
|Es|
|E| kept,

that is, the proportion of nodes or edges we keep from
the original graph. To control the sparsity level, we
introduce a parameter d 2 [0, 1] representing the max-
imum desired nodes/edges ratio we would like to keep.

Then, we define the reward as Rs(Gs) = 1 � PR
d̃

where d̃ is a transformation of d such that Rs = 0.95
when PR = d. The inline figure depicts the variation of
Rs with respect to PR for distinct d values. Each verti-
cal line represents a unique d value, extending upwards
until Rs = 0.95 for all instances. We can observe that
to seek sparsity; one should prefer a smaller d value
(e.g., blue or yellow curves). This results in a slower increase in Rs with node/edge removal, allocat-
ing higher rewards only for substantial removal. Conversely, when d approaches 1 (e.g., pink curve),
Rs close to 1 are awarded even for retaining most nodes/edges.
The design of reward functions poses a profound challenge in reinforcement learning, and more
sophisticated designs could be employed to tackle tasks beyond classification. In the following
section, we present empirical evidence supporting that even this basic choice effectively serves the
objective of providing a hyperparameter controlling sparsity and performance.

5 EXPERIMENTS

This section presents a thorough ablation study of GCIP and a comparison with baselines. We
structure the section into the following subsections. Firstly, we provide insights into the training
procedure of GCIP by analyzing the evolution of rewards, performance, and sparsity. Then, we
conduct an ablation study to elucidate the effects of choosing different values of � and different
desired ratios d on performance. Finally, we provide a comparison of our model with relevant
baselines.

Proposed approaches. We evaluate the two information removal modes of the proposed framework,
described in Section 4.2.1. We denote the model with the policy that eliminates nodes as GCIPN and
the model with the policy exclusively removing edges as GCIPE.

Datasets. In this study we used seven BioInformatics datasets, including MUTAG Debnath et al.
(1991) , DD Dobson & Doig (2003), ENZYMES Borgwardt et al. (2005), NCI1 Wale et al. (2006),
NCI109 Wale et al. (2006), PTC Toivonen et al. (2003) and PROTEINS Borgwardt et al. (2005).

6

Under review as a conference paper at ICLR 2024

(a) BZR GCIPN (b) BZR GCIPE

Figure 3: Ablation study on the maximum de-
sired ratio d for 5 different runs. The brown solid
rectangle on the accuracy axis represents the GIN
(baseline) accuracy.

(a) BZR GCIPN (b) BZR GCIPE

Figure 4: Ablation study on � (for 5 different
runs), which controls the importance given to per-
formance or sparsity. The brown solid rectangle
on the accuracy axis represents the baseline GIN
(baseline) accuracy.

Additionally, we incorporated two chemical compound datasets(BZR Fey & Lenssen (2019a) and
COX2 Fey & Lenssen (2019a)) in our study.

Experimental setup. Aiming for computational efficiency, we cross-validate the hyperparameters
(e.g., learning rate, number of layers) of the GNN graph-level classifier on GIN. We select the optimal
configuration on the validation set and utilize it to train the remaining models. This procedure partially
explains GIN’s superior performance. We do 5-fold cross-validation to report standard deviation
values of the test set on the last epoch. All experiments have been executed on a single CPU with
10GB RAM. For each dataset, we plotted the progress on the validation sets on the above-mentioned
four metrics. We use the Torch Geometric Fey & Lenssen (2019b) package for the implementation
of the baselines (whenever available), and we provide the implementation of GCIP as well as the
necessary scripts to reproduce the experiments at https://github.com/XXXX/XXXX. For
comprehensive details, refer to Appendix A.

5.1 ABLATION STUDY

In this section, we provide an ablation study on the proposed framework. We explore training stability
and we analyze the effects of key hyperparameters. Furthermore, in Appendix C.2, we show that our
approach outperforms a naive baseline based on random node/edge removal. In Appendix C.3, we
confirm the reproducibility of results with various base GNN architectures.

Training Figure 2 shows the evolution of accuracies, PPO rewards, node ratio, and edge ratio on
the validation set of several datasets. We can observe all the metrics show a stable evolution over the
epochs, and they converge by the 800th epoch, which indicates the bi-level optimization is working.
Results for the remaining dataset can be found in Appendix A.

Analysis of the impact of � and d. The reward function, presented in Equation (5), leverages
two hyperparameters—� and the maximum desired nodes/edges ratio d—to balance performance
and sparsity. The effect of these parameters is illustrated for both GCIPN (dashed lines) and GCIPE
(solid lines) in Figure 3 and Figure 4. Each line denotes a distinct run, with the solid brown rectangle
showing the GIN (baseline) accuracy. Refer to Appendix C for corresponding analyses on the rest
of the datasets. Our approach’s design efficacy is confirmed by Figure 3, which demonstrates d’s
impact across its range {0.05, 0.5, 0.95}. Lower d values induce greater node/edge deletion and
sparser graphs. For instance, at d = 0.05 (blue line), only around 5% of original nodes/edges
remain, indicating that d provides an intuitive mechanism for manipulating solution sparsity. Figure 4
conveys the influence of � 2 {0.0, 0.5, 1.0}, the parameter responsible for prioritizing sparsity or
performance. Here, we also achieve sparsity with lower values of � (see blue line), albeit less
extreme than with d. Even for � = 0.0, around 15 � 20% of nodes and edges persist, as seen in
Figure 4a and Figure 4b, respectively. As depicted in Figure 3a and Figure 4b, lower d and � values
(blue lines) often correspond to decreased accuracy. Conversely, higher values (green line) tend
to promote accuracy, although fold variability complicates drawing conclusions. In light of these
findings, we recommend practitioners to utilize d to fine-tune sparsity levels and opt for � = 1.0
when performance is the primary objective and sparsity is inconsequential.

7

https://github.com/XXXX/XXXX

Under review as a conference paper at ICLR 2024

Table 1: Test set accuracy results. We show the mean over 5 independent runs and the standard
deviation as the subindex. The last row includes the average ranking of the model across datasets.
Best performing models on average are indicated in bold.

Dataset Full Models Sparse Models
GIN TopKsoft DiffPool SUGAR TopKhard GCIPN GCIPE

BZR 81.95 2.78 79.51 3.70 70.24 5.95 - 76.10 6.31 79.90 4.29 82.39 5.07
COX2 84.58 4.56 80.42 5.02 65.83 6.65 - 71.67 12.02 75.49 6.33 83.59 2.82

DD 73.11 2.45 76.64 4.54 - - 77.65 2.42 75.51 1.86 74.40 2.12

ENZYMES 72.33 4.35 68.67 6.50 31.00 6.66 16.67 23.57 71.67 4.86 63.70 3.89 49.53 5.29

MUTAG 86.00 4.18 82.00 6.75 69.00 12.21 76.34 3.80 76.00 4.18 74.63 2.12 74.32 6.34

NCI1 82.04 1.26 80.78 0.24 69.93 3.24 49.95 35.58 74.37 1.62 73.66 2.74 73.51 1.02

NCI109 81.59 1.91 78.26 1.02 67.49 2.60 49.65 35.71 74.09 5.99 71.88 3.94 72.48 2.78

PROTEINS 72.86 4.22 71.96 5.74 66.42 7.19 59.57 43.01 72.14 3.54 73.49 7.27 73.50 5.03
PTC 59.44 8.91 56.75 7.32 54.44 11.10 56.14 8.95 61.11 8.56 52.92 8.67 66.06 4.31

Accuracy rank 2.0 3.0 6.12 6.0 3.22 4.11 3.22

5.2 PERFORMANCE COMPARISON

In this section, we thoroughly evaluate GCIP by comparing our approach to baselines and competing
methods on nine datasets. We assess our model’s performance over the test set on three metrics:
accuracy and node and (edge) ratio measured in % of nodes (edges) kept in the graph). Reducing the
node and edge ratio percentages increases graph sparsity, making the models more interpretable.

Baselines. We divided the baselines into two categories: Full model and Sparse model approaches.
As Full model approaches, which use the full graph information, we compare with GINXu et al.
(2018) (as the vanilla approach), DiffPool Ying et al. (2018), and TopKsoft—an implementation of
TopK Cangea et al. (2018) that utilizes node embeddings coming from a GNN to select the top k
nodes, thus incorporating global information. As Sparse models, we compare with SUGAR Sun
et al. (2021) 1 and TopKhard—the implementation of TopK Cangea et al. (2018) where the node
embeddings used to select the top k comes from a multi-layer perceptron, hence the sparse graph
does not contain global information.

Accuracy results. We use test accuracy to compare all models on the nine datasets. Table 1
summarizes the results. It can be observed that although GIN has the best accuracy on almost all
the datasets, it is worth noting that GCIP gives competitive performance. Among the Sparse models,
we observe that SUGAR underperforms the other models and, remarkably, GCIPE achieves the best
ranking (shared with TopKhard) while using a considerably sparser representation, as illustrated in
Table 2.

Interpretability results. We perform a node and edge ratio analysis on the three best-performing
Sparse models in terms of accuracy: TopKhard, GCIPN, and GCIPE. The results are summarized
in Table 2. It is important to note that GCIPE consistently maintains a node ratio of 100%, owing
to its edge removal strategy that preserves all nodes irrespective of their connectivity. Among the
models, GCIPN consistently exhibits the highest rank in both node and edge ratios, indicating that
it eliminates a larger number of nodes and edges from the original graph. Consequently, the graph
classifier operates on a reduced, and thus more interpretable, subgraph. This might account for the
slight performance reduction observed for GCIPN in Table 1 compared to GCIPE. Ultimately, the
selection between these models depends on the specific objectives of the practitioner.

Time complexity. Training and inference are significantly faster in methods using a simple forward
pass than in RL-based methods like SUGAR and GCIP. Notably, our observations reveal that GCIP is
at least as fast as SUGAR in training, and up to 10 times faster in inference. Refer to Appendix D for
complete quantitative results on all datasets.

1We use the official implementation of SUGAR to extract the results on the above datasets. We believe our
evaluation of a held-out test set may explain the disparity between the results we report and those in Sun et al.
(2021). Instead, the available implementation of SUGAR evaluates on the same validation set used to select the
best model.

8

Under review as a conference paper at ICLR 2024

Table 2: Node/Edge ratio (shown in %) for the graphs in the test set for Sparse models on 9 different
datasets. Numbers in parentheses indicate the ranking of the model for each dataset. The last two
rows indicate the average ranking of the models across datasets in terms of node and edge sparsity,
respectively. Best performing models on average are indicated in bold.

Dataset Nodes/Edges % Sparse Models
TopKhard GCIPN GCIPE

BZR Node Ratio (%) 31.28 ± 0.04 (2) 18.87 ± 1.67 (1) 100.0 ± 0.0
Edge Ratio (%) 22.09 ± 1.86 (2) 12.80 ± 1.37 (1) 29.07 ± 2.89 (3)

COX2 Node Ratio (%) 50.63 ± 0.10 (2) 17.48 ± 1.72 (1) 100.0 ± 0.0
Edge Ratio (%) 44.50 ± 3.68 (3) 11.52 ± 2.82 (1) 20.41 ± 1.33 (2)

DD Node Ratio (%) 90.25 ± 0.02 (2) 66.64 ± 2.73 (1) 100.0 ± 0.0
Edge Ratio (%) 81.19 ± 0.34 (3) 44.20 ± 3.40 (1) 58.14 ± 0.77 (2)

ENZYMES Node Ratio (%) 91.74 ± 0.08 (2) 81.84 ± 1.76 (1) 100.0 ± 0.0
Edge Ratio (%) 84.25 ± 0.63 (3) 67.16 ± 2.88 (2) 47.16 ± 12.87 (1)

MUTAG Node Ratio (%) 73.04 ± 0.89 (2) 66.00 ± 9.87 (1) 100.0 ± 0.0
Edge Ratio (%) 55.00 ± 1.65 (1) 62.15 ± 14.50 (2) 95.42 ± 6.27 (3)

NCI1 Node Ratio (%) 71.78 ± 0.05 (2) 32.08 ± 2.77 (1) 100.0 ± 0.0
Edge Ratio (%) 48.82 ± 0.52 (3) 19.89 ± 5.17 (1) 25.69 ± 2.02 (2)

NCI109 Node Ratio (%) 91.74 ± 0.06 (2) 53.88 ± 2.06 (1) 100.0 ± 0.0
Edge Ratio (%) 89.27 ± 0.33 (3) 41.71 ± 4.09 (2) 40.65 ± 5.76 (1)

PROTEINS Node Ratio (%) 92.27 ± 0.24 (2) 85.69 ± 14.06 (1) 100.0 ± 0.0
Edge Ratio (%) 85.76 ± 0.41 (3) 75.63 ± 22.91 (2) 47.60 ± 8.10 (1)

PTC Node Ratio (%) 94.90 ± 1.08 (2) 39.16 ± 7.52 (1) 100.0 ± 0.0
Edge Ratio (%) 89.94 ± 1.95 (3) 18.06 ± 8.06 (1) 52.30 ± 1.68 (2)

Average Rank Node Rank 2.00 1.00 -

Edge Rank 2.67 1.44 1.89

6 CONCLUSIONS

Graph Neural Networks (GNNs) excel in graph-level tasks but suffer from interpretability issues due
to their complexity. Past endeavors to enhance interpretability, focusing on post-hoc explanations or
sparsity during training, were limited by reliance on complete graph information and lack of control
over the performance-sparsity trade-off.

Addressing these, we proposed GCIP, a novel framework that relies on a bi-level optimization to
target both performance and sparsity. The latter is achieved by employing reinforcement learning
and offers direct control over the performance-interpretability trade-off via two hyperparameters,
allowing to select two modes of information removal: at node or edge level. Our empirical evaluation
conducted on nine different graph classification datasets provides evidence that our approach not
only competes in performance with the baselines that use the entire graph information, but also
relies on significantly sparser subgraphs. The resulting GNN-based predictions, therefore, are more
interpretable, addressing the primary motivation of our work.

The main limitation of the proposed approach lies in the increased training and inference time intro-
duced by the reinforcement learning component. Therefore, future research could focus on enhancing
its efficiency. Other interesting future works could be applying GCIPE to node classification tasks and
the modification of the current reward function to penalize specific types of errors. Similarly, adapting
the reinforcement learning pipeline for metric learning scenarios could further boost performance.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ting Bai, Youjie Zhang, Bin Wu, and Jian-Yun Nie. Temporal graph neural networks for social
recommendation. 2020 IEEE International Conference on Big Data (Big Data), pp. 898–903,
2020.

Wendong Bi, Bingbing Xu, Xiaoqian Sun, Zidong Wang, Huawei Shen, and Xueqi Cheng. Company-
as-tribe: Company financial risk assessment on tribe-style graph with hierarchical graph neural
networks. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2022.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21 Suppl 1:
i47–56, 2005.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? ArXiv,
abs/2105.14491, 2021.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur D. Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34:
18–42, 2016.

Michael D. Buhrmester, Tracy Nai Kwang, and Samuel D. Gosling. Amazon’s mechanical turk.
Perspectives on Psychological Science, 6:3 – 5, 2011.

Cătălina Cangea, Petar Velickovic, Nikola Jovanovic, Thomas Kipf, and Pietro Lio’. Towards sparse
hierarchical graph classifiers. ArXiv, abs/1811.01287, 2018.

Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. Coupled graph neural networks
for predicting the popularity of online content. ArXiv, abs/1906.09032, 2019a.

Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. Popularity prediction on social
platforms with coupled graph neural networks. Proceedings of the 13th International Conference
on Web Search and Data Mining, 2019b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, 2020.

Martina Contisciani, Eleanor A. Power, and Caterina De Bacco. Community detection with node
attributes in multilayer networks. Scientific Reports, 10, 2020.

Gabriele Corso, Luca Cavalleri, D. Beaini, Pietro Lio’, and Petar Velickovic. Principal neighbourhood
aggregation for graph nets. ArXiv, abs/2004.05718, 2020.

Asim Kumar Debnath, R L Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Corwin
Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34
2:786–97, 1991.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330 4:771–83, 2003.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv: Machine Learning, 2017.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. The World Wide Web Conference, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019a.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019b.

10

Under review as a conference paper at ICLR 2024

Hongyang Gao and Shuiwang Ji. Graph u-nets. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44:4948–4960, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. ArXiv, abs/1704.01212, 2017.

Zhichun Guo, Chuxu Zhang, W. Yu, John E. Herr, O. Wiest, Meng Jiang, and N. Chawla. Few-shot
graph learning for molecular property prediction. Proceedings of the Web Conference 2021, 2021.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection sampling.
In International conference on machine learning, pp. 4094–4104. PMLR, 2020.

Adrián Javaloy, Pablo Sánchez-Martı́n, Amit Levi, and Isabel Valera. Learnable graph convolutional
attention networks. ArXiv, abs/2211.11853, 2022.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert Syst.
Appl., 207:117921, 2021.

Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit problems. arXiv preprint
arXiv:1402.6028, 2014.

Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Zafarani. Sgcn: A
graph sparsifier based on graph convolutional networks. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 275–287. Springer, 2020.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.
Learning to drop: Robust graph neural network via topological denoising. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining, pp. 779–787, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

Mingshuo Nie, Dongming Chen, and Dongqi Wang. Reinforcement learning on graph: A survey.
ArXiv, abs/2204.06127, 2022.

Danilo Numeroso and Davide Bacciu. Meg: Generating molecular counterfactual explanations for
deep graph networks. arXiv preprint arXiv:2104.08060, 2021.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Ricardo Ramirez, Yu-Chiao Chiu, Allen Hererra, Milad Mostavi, Joshua Ramirez, Yidong Chen,
Yufei Huang, and Yu-Fang Jin. Classification of cancer types using graph convolutional neural
networks. In Frontiers of Physics, 2020.

Yu Rong, Wen bing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-
lutional networks on node classification. In International Conference on Learning Representations,
2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20:61–80, 2009.

11

Under review as a conference paper at ICLR 2024

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for
{nlp} with differentiable edge masking. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=WznmQa42ZAx.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Oleksandr Shchur and Stephan Günnemann. Overlapping community detection with graph neural
networks. ArXiv, abs/1909.12201, 2018.

Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Yuanxing Ning, Philip S. Yu, and Lifang He. Sugar:
Subgraph neural network with reinforcement pooling and self-supervised mutual information
mechanism. In Proceedings of the Web Conference 2021, WWW ’21, pp. 2081–2091, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383127. doi:
10.1145/3442381.3449822. URL https://doi.org/10.1145/3442381.3449822.

Richard S Sutton. Introduction: The challenge of reinforcement learning. Reinforcement learning,
pp. 1–3, 1992.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE Transactions
on Neural Networks, 16:285–286, 2005.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In NIPS, 1999.

Hannu (TT) Toivonen, Ashwin Srinivasan, Ross D. King, Stefan Kramer, and Christoph Helma.
Statistical evaluation of the predictive toxicology challenge 2000-2001. Bioinformatics, 19 10:
1183–93, 2003.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio’, and Yoshua
Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2017.

Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2006.

Runzhong Wang, Zhigang Hua, Gan Liu, Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang, Jun Zhou,
and Xiaokang Yang. A bi-level framework for learning to solve combinatorial optimization on
graphs. arXiv preprint arXiv:2106.04927, 2021.

Ryan Wickman, Xiaofei Zhang, and Weizi Li. Sparrl: Graph sparsification via deep reinforcement
learning. arXiv preprint arXiv:2112.01565, 2021.

Shiwen Wu, Wentao Zhang, Fei Sun, and Bin Cui. Graph neural networks in recommender systems:
A survey. ACM Computing Surveys, 55:1 – 37, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32:4–24, 2019.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun
Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Pushing the boundaries of
molecular representation for drug discovery with graph attention mechanism. Journal of medicinal
chemistry, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ArXiv, abs/1810.00826, 2018.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Neural Information
Processing Systems, 2018.

12

https://openreview.net/forum?id=WznmQa42ZAx
https://doi.org/10.1145/3442381.3449822

Under review as a conference paper at ICLR 2024

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Zhaoning Yu and Hongyang Gao. Motifexplainer: a motif-based graph neural network explainer.
arXiv preprint arXiv:2202.00519, 2022.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 430–438, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In Proceedings of the 38th International Conference on
Machine Learning (ICML), pp. 12241–12252, 2021.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Liyuan Zheng, Tanner Fiez, Zane Alumbaugh, Benjamin J. Chasnov, and Lillian J. Ratliff. Stackelberg
actor-critic: Game-theoretic reinforcement learning algorithms. ArXiv, abs/2109.12286, 2021.

13

	Introduction
	Preliminaries
	Reinforcement learning
	Graph neural networks

	Related work
	Introducing the framework
	Optimizing for sparsity and performance
	Controlling the interpretability-sparsity trade-off
	Policy formulation for graph sparsification via node or edge removal
	Reward formulation

	Experiments
	Ablation study
	Performance comparison

	Conclusions
	Training details
	Evolution over epochs

	 training procedure
	Complete results on ablation study
	Ablation study on
	Ablation study on maximum desired ratio d
	Comparison with different base architecture
	Comparison with random sparser graphs

	Time complexity

