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ABSTRACT

Predicting protein binding affinities across large combinatorial mutation spaces
remains a critical challenge in molecular biology, particularly for understanding
viral evolution and antibody interactions. While combinatorial mutagenesis ex-
periments provide valuable data for training predictive models, they are typically
limited due to experimental constraints. This creates a significant gap in our abil-
ity to predict the effects of more extensive mutation combinations, such as those
observed in emerging SARS-CoV-2 variants. We present PROXICLUST, which
strategically combines smaller combinatorial mutagenesis experiments to enable
accurate predictions across larger combinatorial spaces. Our approach leverages
the spatial proximity of amino acid residues to identify potential epistatic interac-
tions, using these relationships to optimize the design of manageable-sized com-
binatorial experiments. By combining just two small combinatorial datasets, we
achieve accurate binding affinity predictions across substantially larger mutation
spaces (R2 ≈ 0.8), with performance strongly correlated with capture of high-
order epistatic effects. We validated our method in five different protein-protein
interaction datasets, including binding of SARS-CoV-2 receptor binding domain
(RBD) to various antibodies and cellular receptors, as well as influenza RBD-
antibody interactions. This work provides a practical framework for extending
the predictive power of combinatorial mutagenesis beyond current experimental
constraints, offering applications in viral surveillance and antibody engineering.

1 INTRODUCTION

Predicting the dissociation constant (KD) between viral proteins and monoclonal antibodies, as
well as the cellular receptor Angiotensin-converting enzyme 2 (ACE2), is critical for assessing viral
infectivity for viruses like SARS-CoV-2, as demonstrated in these works Wang et al. (2024); Cia
et al. (2022); Hie et al. (2021); Huot et al. (2025). These models, whether based on biophysics or
machine learning, utilize the KD of various antibodies and the receptor-binding domain (RBD) to
effectively predict viral fitness.

High-throughput experimental methods provide a means to acquire KD data across extensive se-
quence spaces. A prominent technique is Combinatorial Mutagenesis Moulana et al. (2023; 2022).
In these experiments, researchers select L specific loci within the Receptor Binding Domain (RBD),
testing every possible combination of amino acid mutations at each locus. This method generates
a comprehensive dataset comprising 2L combinations, capturing a broad spectrum of mutational
impacts. This methodology is particularly crucial in the context of viral evolution, where early in
a pandemic, variants of concern (VoCs) with specific mutations are observed Deng et al. (2021);
Leung et al. (2021). It is vital to predict the phenotypic or fitness outcomes of variants combining
these mutations, as illustrated in Figure 1. However, currently, the capabilities of these methods are
restricted to experiments where L ≤ 16, due to the exponential growth in the number of combina-
tions with larger values of L. VoCs such as BA.2 BA.3 and XBB variants Tamura et al. (2024), often
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exhibit more than 16 mutations Carabelli et al. (2023), underscoring a gap between current experi-
mental capabilities and the need to effectively predict infectivity of VOCs with more mutations.

Figure 1 illustrates how a combinatorial set of Variants of Concern (VOCs) can be derived from
mutations observed in circulating viral strains. Accurate predictions across this combinatorial space
are essential for reconstructing viral fitness landscapes, as these sets encompass all possible inter-
mediary variants between wildtype and observed mutants. The mutations included in these sets
are particularly significant because they originate from viruses that have demonstrated successful
transmission and survival in natural populations. Consequently, new variants combining these in-
dividually beneficial mutations have an increased likelihood of being both infectious and viable.
While the combinatorial space of 2L variants represents only a small fraction of the total possible
sequence space (20K , where K is the total number of residues in the viral protein), it is enriched
for potentially concerning variants due to this selective sampling of successful mutations. The abil-
ity to accurately predict KD and fitness across this space is therefore crucial for proactive vaccine
development, therapeutic adaptation, and evidence-based public health policy decisions.

Figure 1: A more infectious Variant of Concern (VoC) may incorporate mutations from existing
VoCs. Consequently, it is crucial to predict the biophysical properties of the entire combination of
existing VoCs to better understand and anticipate their evolutionary trajectories.

During the early stages of a pandemic, when experimental capacity is often limited relative to the
urgent need for data, traditional experimental methods alone may not be sufficient to characterize all
emerging viral variants. In these scenarios, machine learning approaches trained on limited available
experimental data have proven to be valuable tools for estimating KD of novel variantsWang et al.
(2024); Han et al. (2023); Loux et al. (2024). This computational approach helps bridge the gap
between experimental capabilities and the pressing need for rapid viral surveillance.

Significant advances have been made in computational methods for predicting KD to address limi-
tations in experimental throughput. These approaches span a broad methodological spectrum, from
transformer-based architectures Wang et al. (2023) and physics-informed deep learning models Chen
et al. (2021) to free energy perturbation calculations Sergeeva et al. (2023). Complementing these
modeling advances, active learning (AL) strategies have emerged as powerful tools for optimizing
experimental data collection. AL enable strategic sampling from the vast space of possible variants,
prioritizing measurements that maximize information gain for model improvement. This could sig-
nificantly reduce the amount of training data required while maintaining high model accuracy Hie
et al. (2020). However, a key limitation of active learning is its inherently sequential nature - ex-
periments must be conducted one after another based on model feedback. This sequential constraint
makes AL incompatible with high-throughput experimental methods that require upfront design of
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mutation libraries. The benchmark of AL and other low-throughput sampling methods could be-
found in SI.

To overcome this fundamental limitation, we investigate optimal methods for combining smaller,
experimentally feasible combinatorial datasets to enable accurate predictions across larger combi-
natorial spaces. To this end, we introduce ”PROXICLUST”, which leverages structural information
from protein-protein binding poses to systematically determine which mutations should be grouped
together in combinatorial experiments.

2 METHODS

PROXICLUST

We introduce PROXICLUST, a method based on the principle that combinatorial experiments reveal
high-order epistatic interactions among mutations. Our key insight is that mutations with potential
interactions should be tested together in experimental designs. These interacting mutations typi-
cally form ”epistasis clusters” - groups of residues that functionally influence each other. While
precise epistatic maps of viruses are rarely available, we leverage the observation that spatial prox-
imity between amino acids serves as a reliable predictor of epistatic interactions Wang et al. (2024).
PROXICLUST requires only structural information from the antibody-antigen binding pose, typically
available through Protein Data bank Format files of wildtype variants, and proceeds in two steps:

Our method proceeds in two steps. First, we identify interface residues between the antibody-antigen
complex by analyzing spatial coordinates in the binding pose. These interface residues can be deter-
mined either computationally using protein structure prediction methods like AlphaFold Multimer
Jumper et al. (2021), or experimentally through cryo-electron microscopy. Following standard prac-
tice in protein-protein interaction studies, we define interface residues as those within a 10Å distance
threshold of the binding partner.

Second, we apply a two-stage clustering approach to these interface residues (Figure 2b). We first
employ M-means clustering to establish well-distributed centroids across the binding interface, fol-
lowed by an L-Nearest Neighbors algorithm initiated from these centroids. This hierarchical ap-
proach, implemented using scikit-learn’s KMeans and KNeighborsClassifier Pedregosa et al. (2011),
creates partially overlapping clusters that capture local structural relationships while maintaining di-
versity across the interface. The overlap between clusters is carefully controlled through centroid
initialization to maximize coverage of potential epistatic interactions while minimizing redundant
measurements, as validated by our epistasis analysis (Figure 4).

The algorithm ultimately organizes interface residues into M groups of L residues each, where L
represents the maximum number of mutations that can be included in a single combinatorial experi-
ment (determined by experimental constraints), and M is the desired number of parallel experiments.
Throughout this study, we demonstrate results for M = 2, showing that just two well-designed com-
binatorial experiments can effectively capture the key epistatic interactions in the system.

DATASETS

In this study, we analyzed five datasets, including the combinatorial datasets of SARS-CoV2 RBD
binding with ACE2 Moulana et al. (2022), LY-CoV016, LY-CoV555, REGN10987, and S309
Moulana et al. (2023), as well as the anti-influenza receptor binding site (RBS), CH65 binding
to H1 Phillips et al. (2023).

The SARS-CoV-2 datasets Moulana et al. (2022; 2023) explore the combinations of 15 mutations
on the RBD corresponding to the 15 mutations observed on Omicron BA.1 variant compared to the
Wuhan wildtype: G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A,
Q493R, G496S, Q498R, N501Y, Y505H. The influenza dataset Phillips et al. (2023) contains all
possible evolutionary intermediates between the unmutated common ancestor and the mature so-
matic sequence of the CH65 antibody, which binds to diverse H1 strains. The dataset contains all
combinations of 16 mutations located on both the heavy and light chain of the CH65 antibody.

These datasets are comprehensive combinatorial mutagenesis scans that measure binding affinity
values for all possible combinations of selected mutations. Each mutant variant is represented us-
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Figure 2: (a) Illustration of using two smaller combinatorial experiments to predict the outcomes of
a larger experiment that is out of current capabilities (b) PROXICLUST employs M-means clustering
and L-nearest neighbors algorithms to determine which amino acids should be grouped together in
the same experiment.

ing a binary one-hot encoding scheme, where ’1’ indicates the presence of a mutation at a specific
position and ’0’ represents the wild-type residue, as illustrated in Table 1. For a set of L selected mu-
tation sites, this generates a complete combinatorial space of 2L variants, systematically exploring
all possible mutational combinations.

3 RESULTS

In this section, we address the challenge of assembling multiple smaller combinatorial scans into a
training set to predict a larger combinatorial dataset. We benchmark PROXICLUST against random
assembly strategies of the same dimensionality. Here, a random assembly strategy refers to selecting
mutations for each scan independently as a random subset from the pool of possible mutations.

Figure 3 compares the performance of a random forest machine learning model using two distinct
strategies for assembling combinatorial datasets:

• The boxplots on the left display the distribution of R2 scores for strategies that assem-
ble two combinatorial scans, each targeting mutations specifically at the interface of the
antigen-antibody binding pose.

• The boxplots on the right show the distribution of R2 scores for strategies that assemble
two combinatorial scans, but with no constraints on the mutations included.

Comparing the medians in Figure 3, indicated by the orange horizontal lines, we observe that strate-
gies targeting the interface consistently achieve higher scores. This finding aligns with our current
understanding of protein-protein interactions - residues at binding interfaces are known to make the
most significant contributions to binding affinity through direct physical contacts Moulana et al.
(2022); Vangone & Bonvin (2015). The superior performance of interface-focused strategies can
thus be attributed to their ability to capture these critical first-order effects in the training data. By
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concentrating on interface residues, these approaches naturally prioritize the most functionally rele-
vant mutations, leading to more accurate predictions of binding affinity changes.

Our analysis reveals that PROXICLUST consistently outperforms both the median combinatorial scan
assembly and the median interface assembly strategy (Figure 3). A detailed performance breakdown
across all five tested datasets is presented in SI Table 2, where quantile rankings demonstrate how
our method compares against a comprehensive pool of randomized residue selection strategies. Fur-
ther detailed comparisons within interface assembly strategies are visualized in SI Figure 6. The
performance advantage of PROXICLUST varies notably across different systems. For REGN10987
and LY-CoV555 antibodies, where the R2 score distributions peak around 0.8, the improvement
over median performance is modest (≤ 0.3). However, for the Influenza virus and S309 antibody
systems, PROXICLUST demonstrates a more substantial advantage, achieving R2 scores of approx-
imately 0.8 compared to random strategies’ scores of around 0.4. This variable performance across
different systems suggests that the effectiveness of our method may depend on the underlying struc-
tural and biochemical properties of the protein-protein interaction being studied.

Note that the assembling strategies being compared are always of the same ”dimension” , meaning
they consist of an equal number of combinatorial scans, each of the same size. This uniformity is
crucial as, aside from the assembly strategy, the size of the training set is a key determinant in the
performance of the predictive model. Therefore, it is essential to compare strategies that provide
training sets of comparable sizes to ensure valid conclusions about their efficacy.

It is important to note that while strategies of the same dimension incur identical experimental costs
(requiring the same number and type of laboratory experiments), they can yield different numbers
of unique binding affinity measurements. To illustrate this concept, consider two contrasting sce-
narios: In the first case, a strategy using two scans with completely distinct sets of 5 mutations each
generates 25 + 25 = 64 unique measurements. In contrast, a strategy of identical dimension but
with 4 overlapping mutations between scans yields fewer unique measurements - 25 measurements
from the first scan plus only 25 − 24 = 16 additional unique measurements from the second scan,
totaling 48 unique mutants in the training set. This difference in measurement efficiency arises from
the redundancy introduced by overlapping mutations, despite equivalent experimental effort.

EPISTASIS ANALYSIS

We have developed a method to quantify the epistasis captured by a training set derived from any
given assembly strategy. This method leverages the Walsh-Hadamard transform.

Walsh-Hadamard transform Poelwijk et al. (2016) is a method adapted from signal processing to
study high-order epistasis(non-linearity) Faure et al. (2024). This approach is particularly advan-
tageous when working with complete combinatorial datasets, as it provides exhaustive information
about the interactions between residues Weinreich et al. (2013). Given that our binding affinity
datasets are combinatorial in nature (of size 2L), we can derive the effect of any order of epistasis by
applying the Walsh-Hadamard transform to the vector of experimentally measured binding affinities.

In the matrix form, this could be written as:

1

2L
HE = W

where H is the Hadamard matrix with size 2L × 2L, and E is the Kd vector with size 2L × 1. W is
the Walsh coefficients vector with size 2L×1, where each component Wg represents the importance
(or weight) of a specific genotype gWeinreich et al. (2013).

A data acquisition strategy composed of multiple combinatorial scans can be presented as
[l1, . . . , lM ], representing the assembly of M individual combinatorial scans. Each lk is a subset
of {1, . . . , L} that specifies the positions (or loci) in a genotype where mutations (represented by
1s) can occur. A genotype g in {0, 1}L is a sequence of binary values, where a 1 indicates the
presence of a mutation at a given position, and a 0 indicates no mutation.

We define Gk as the set of all genotypes g in the combinatorial mutagenesis scan on the loci of lk.
Formally:

Gk =⇒
{
g ∈ {0, 1}L | ∀i, gi = 1 =⇒ i ∈ lk

}
5
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(a) (b)

(c) (d)

Figure 3: Comparison of R2 scores of models trained using data acquisition strategies focused on
the antibody-antigen interface (left boxplots) versus unconstrained strategies (right boxplots). Red
line shows the R2 score achieved by PROXICLUST. (a) Comparison for RBD and ACE2 binding.
The accompanying protein illustrations represent possible clustering of the dataset’s residues shown
with yellow spheres. On the left, the clustering is done among the yellow spheres close to the
interface whereas on the right, all residues can be included in the clusters. (b)-(d) Similar analyses
were conducted for RBD binding with antibodies LY-CoV555, S309, and REGN10987, respectively.
(e) Same experiment run on another combinatorial dataset for binding affinity predictions between
Influenza variant SI06 and variants of antibody CH65
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Example: Suppose L = 5 and lk = {2, 3}. Here, Gk would include genotypes g in {0, 1}5
with the following conditions:

• g2 = 1 if and only if 2 ∈ lk

• g3 = 1 if and only if 3 ∈ lk

• For any other position i, gi = 0 if i /∈ lk

Thus, the valid genotypes in Gk would be {01000, 00100, 01100, 00000}.

We can then define G as the union of all such sets:

G =

M⋃
k=1

Gk

The epistatic score for the strategy is given by:

epistatic score =
∑
g∈G

|Wg|

We demonstrate the epistatic score of the strategy correlates with its predictive power. This epistatic
score quantifies the extent to which large interaction effects between residues are represented in
the dataset produced by a specific strategy. PROXICLUST, designed to identify and utilize epistasis
clusters within the protein’s binding interface, is expected to perform favorably in terms of epistatic
score. Figure 4a presents the epistatic scores for 100 randomly selected assembly strategies, demon-
strating a positive correlation between this metric and the R² score of the machine learning models
trained using these strategies, with a Spearman correlation coefficient of 0.74. Notably, PROX-
ICLUST achieves superior performance in both R² and epistatic scores compared to the random
benchmarks. Results for other datatsets are in SI Figure 7.

Further analysis shown in Figure 4b extends these findings in all five data sets, with PROXICLUST
consistently ranking within the top 11% of strategies in terms of epistatic score. The relationship be-
tween R² and epistatic score remains robust across these datasets, evidenced by an average Spearman
correlation of 0.822 (refer to SI Figure 7).

This comprehensive analysis demonstrates that PROXICLUST’s superior performance arises directly
from its systematic ability to identify and capture functionally significant epistatic interactions at
the protein binding interface, validating our hypothesis that spatial proximity serves as an effective
proxy for mutational interdependence.

(a)

Antibody Percentile Rank (%)

ACE2 96.4
S309 94.9
REGN10987 89.96
CoV555 96.34
SI06 (Flu) 98.58

(b)

Figure 4: (a) Correlation between model performance (R2) and epistasis score across 100 random
strategies, with PROXICLUST highlighted in red (Spearman: 0.74). (b) PROXICLUST consistently
ranks in the top percentiles for epistasis capture across all tested strategies.
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4 DISCUSSION

This study has demonstrated the potential of using smaller, targeted combinatorial datasets to pre-
dict larger, more complex combinatorial datasets with high accuracy at the beginning of a pandemic.
PROXICLUST utilizes spatial proximity to infer epistatic interactions, has shown promising results
and consistently outperformed random strategies across various datasets.This research demonstrates
that just two well-designed combinatorial scans can effectively approximate the entire binding affin-
ity landscape. By strategically leveraging spatial proximity between residues, we focus on mutations
with the strongest contributions to binding affinity while avoiding the collection of less significant
epistatic effects between residues that are distant in space.

A key implication of our work is its potential application in pandemic preparedness. Early in a
pandemic, when new viral variants emerge, our method could guide the strategic design of combi-
natorial libraries to maximize predictive power. By strategically selecting smaller, experimentally
feasible combinatorial sets, researchers could more efficiently predict the effects of larger mutation
combinations that might appear in future variants. While existing approaches like the BO-EVO
algorithm by Hu et al. (2023) use active learning to guide limited experimental efforts during pan-
demic response, our method is unique in leveraging a priori structural and biophysical intuition to
optimize experimental design before any measurements are taken.

Our findings also raise interesting insights about the fundamental nature of protein-protein interac-
tions. The success of proximity-based clustering in capturing epistatic effects suggests that local
structural environment, especially on the binding surface, plays a dominant role in determining
binding affinity. This is also demonstrated in several recent publications using local environment to
predict protein binding, including the HERMES method which showed that holographic encoding
of local atomic environments within 10Å of a focal residue can effectively predict binding affinity
and stability effects Visani et al. (2024).

The correlation between epistatic scores and predictive performance provides valuable insights into
the mechanistic basis of our method’s success. This relationship suggests that spatial proximity and
epistasis are a reliable proxy for functional interactions between residues. While epistatic scores
cannot be calculated a priori without experimental data, the consistent correlation between spatial
clustering and epistatic effects suggests that our proximity-based approach effectively captures func-
tionally important interactions. Furthermore, this correlation offers a potential metric for evaluating
future dataset assembly strategies without requiring extensive experimental validation.

However, several limitations and opportunities for future research should be noted. First, while
our method has been successfully validated on datasets containing up to 16 mutations - currently
the largest available combinatorial datasets - many real-world scenarios involve substantially larger
mutation spaces.Kaku et al. (2024) The correlation between spatial proximity and epistatic effects
can become more complex with increasing numbers of mutations, and optimal clustering parameters
may need to be adjusted. Nevertheless, the consistent success across our diverse test cases and
the strong theoretical foundation linking spatial proximity to epistatic interactions suggest that our
approach provides a promising framework for tackling larger mutation spaces.

Second, our method currently relies on structural information about the binding interface. While
such information is increasingly available through methods like AlphaFold2 Abramson et al. (2024);
Bryant et al. (2022), there are still cases where accurate protein complex structures are unavailable.
In particular, antibody-antigen complexes and other adaptive immune system interactions remain
challenging to AlphaFold modelYin et al. (2022). Developing alternative data assembling strategies
for cases without reliable structural information, perhaps based on sequence conservation or other
features, could expand the method’s applicability.
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MEANINGFULNESS STATEMENT

A meaningful representation of life should capture the complex interdependencies and multi-scale
relationships that govern biological systems. In protein-protein interactions, this means understand-
ing how spatial relationships between amino acids translate into mutational and functional effects
of proteins. Our work demonstrates that structural information can guide the assembly of smaller
experimental datasets to accurately predict broader protein-protein binding effects, bridging the gap
between local molecular structure and system-level protein behavior. By connecting physical struc-
ture to functional outcomes, our method helps build predictive models that capture biologically
meaningful relationships across different scales of protein function.

CODE AVAILABILITY

The code used in this study is made publicly available at https://github.com/mbasse0/
ProxiClust
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A APPENDIX

REPRESENTATION OF MUTANTS WITH ONEHOT FORMAT

Position 339 371 373 375 417 440 446 477 478 484 493 496 498 501 505
Wildtype G S S S K N G S T E Q G Q N Y
Mutant G S P F K K S N K E Q G R Y H

Onehot rep-
resentation 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1

Table 1: Example of onehot representation of one mutant among the 215 in the dataset.

LOW-THROUGHPUT ACQUISITION METHODS

RANDOM ACQUISITION

Random acquisition is the default data acquisition method for most machine learning pipelines Hie
et al. (2020), where the training set is a subset of the whole dataset, with an equal probability of
selecting any element of the set.

DIVERSE ACQUISITION ON ONE-HOT SEQUENCE SPACE

Given a set of labelled mutants S, the diverse acquisition scheme samples the unlabelled mutant the
furthest from the labelled set at each step, to obtain a new labelled set S′ with one additional mutant.
More precisely, we studied three possible implementations of that idea:

Min-linkage S′ = S ∪ {x} where x = argmaxy/∈S minz∈S H(y, z)

Max-linkage S′ = S ∪ {x} where x = argmaxy/∈S maxz∈S H(y, z)

Mean-linkage S′ = S ∪ {x} where x = argmaxy/∈S
1
|S|

∑
z∈S H(y, z)

Where H is the Hamming distance, H(x, y) =
∑n

i=1 1xi ̸=yi
, x and y are two strings of equal

length, and xi and yi are the i-th elements of x and y, respectively.

DIVERSE ACQUISITION ON PROTEIN LANGUAGE MODEL EMBEDDINGS

The Diverse acquisition on embeddings sampling method is the same as above but the distance H is
defined as the L2 norm on the embedding space of the protein language model ESM-1v Rives et al.
(2019), instead of the sequence space. Such a concept of distance in embedding space is similar to
”semanticity” of the protein by Hie et al. in Hie et al. (2021), which serves as a indicator of changes
in biophysical properties such as KD.

SPARSE ACQUISITION ON ESM EMBEDDINGS

The Sparse Acquisition sampling consists in selecting variants in the less dense areas of the ESM
embeddings space. A kernel density estimator Pedregosa et al. (2011) is trained on the labeled
mutants to obtain a density map of the already explored parts of the 1280-dimensional embedding
space. Each new variant added to the training set is chosen to have the embedding with the smallest
Kernel Density Estimation value.

COMPARING DIVERSE ACQUISITION WITH RANDOM ACQUISITION

Figure 5b is obtained from plot 8. This plot is created by measuring the R² prediction performance of
random forest models trained on a series of 60 training sets of sizes ranging from 10 to 500 samples.
The measurements are repeated 112 times for different initializations of the 10 initial samples in
the training set, chosen at random. The transparent areas surrounding the R² curves represent the
standard deviation of the scores, computed over the 112 repetitions. To generate Figure 5b, an
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equally spaced range of 50 R² values are chosen and the corresponding size of training set are
obtained on plot 8 by joining the successive points with straight lines junctions. Linear regression
analysis, using the scipy linregress package, was performed to calculate the linear fit with a slope of
1.31.

UNCONSTRAINED DATA ACQUISITION VIA LOW-THROUGHPUT ACQUISITION METHODS

Computing the distribution of R² scores for interface and non-interface strategies

Inter-residue distances are calculated using PDB files that provide the precise three-dimensional
positions of every atom in the antibody-antigen binding poses for our datasets. The specific files
used are 6M0J Lan et al. (2020) for RBD-ACE2 binding, 8J26 Rahman et al. (2023) for RBD-
REGN10987 binding, 7XCK Zhao et al. (2022) for RBD-S309 binding, 7KMG Jones et al. (2021)
for RBD-CoV555 binding, 7C01 Shi et al. (2020) for RBD-CB6 binding, 5UGY Whittle et al.
(2011) for SI06-CH65. Positions of the residues are then approximated by the coordinates of each
Cα atom.

The boxplots on the left of the figures in 3 are made from an exhaustive scan of all the assembly
strategies of interface residues into two combinatorial scans. The number of loci contained in the
combinatorial scans was set to L = 6 for the Covid datasets and L = 8 for the Influenza dataset
to account for higher level epistasis effects. The size of the interface is set to 10 for covid datasets
and 12 for the Influenza dataset. Thus, the boxplots on the left in subfigures of Figure 3 summarize
the distribution of

((106 )
2

)
= 21945 assembly strategies. Note that PROXICLUST is one of those

21945 strategies since it also uses interface residues. Similarly, the left boxplot on 3d summarizes
the distribution of

((128 )
2

)
= 122265 assembly strategies.

Boxplots on the right of subplots in Figure 3 result from a sampling of a part of all assembly strate-
gies. Indeed, results for the exhaustive scan of either

((156 )
2

)
or

((168 )
2

)
assembly strategies was too

computationally heavy. 105 strategies are sampled which account for 0.8% of the total number of
assembly strategies for the SARS-CoV-2 datasets and 0.12% of the total number of strategies for the
Influenza dataset.

RESULTS OF LOW-THROUGHPUT ACQUISITION

UNCONSTRAINED DATA ACQUISITION VIA LOW-THROUGHPUT ACQUISITION METHODS

We aimed to establish how effectively we could predict larger datasets using any smaller subsets
and quantify the accuracy of these predictions in terms of the R2 score. Therefore we evaluated
various sampling methods to determine the most effective strategy for constructing the training set.
In Figure 5a, we see that only the Diverse data acquisition (see methods) consistently outperforms
Random Acquisition across all tested training set sizes. Figure 5b shows Diverse Acquisition uses
31% less training samples compared to the Random Acquisition to achieve same R² scores.

Finally, we determined the number of data points required to achieve a satisfactory R2 score using
this strategy. Figure 5d shows the training set sizes necessary to attain high R2 values for combi-
natorial datasets of various sizes. For a dataset with L loci, which contains 2L samples, the number
of points needed to effectively predict the entire dataset grows exponentially. This exponential in-
crease highlights a critical point in protein function prediction: the trade-off between the size of the
training set and the model’s performance, compounded by the high costs of acquiring experimental
data. Notably, while these results are illustrated using RBD-ACE2 data, this trend holds consistently
across all datasets we evaluated.

Figure 5d demonstrates that employing unconstrained data acquisition methods, such as Random
Acquisition and Diverse Acquisition, is feasible only for combinatorial datasets with a limited num-
ber of loci. Given that VoCs sometimes exhibits a lot more mutations than this, and conducting
combinatorial experiments on 220 combinations or generating random mutations for model training
is not experimentally viable. Consequently, to predict much larger combinatorial datasets, we must
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construct training sets using high-throughput experimental methods, which allow highly scalable
ways to generate measurements.

(a) (b)

(c) (d)

Figure 5: Data acquisition methods comparison (RBD-ACE2 binding affinity prediction). (a) R²
score for varying training set size, compared between four acquisition methods. Only Diverse beats
Random. Results are averaged across 112 runs where the initial 10 samples in the training set are
initialized differently for each run. (b) Training set sizes required to achieve specific R² values
for Random versus Diverse acquisition method Diverse acquisition saves around 31% of data to
achieve similar performance than Random acquisition. (c) R² scores achieved with random forest
models across different training set sizes for datasets of varying complexity (number of loci). (d)
Exponential relationship between dataset complexity and required training set size, demonstrating
that achieving predictive performance requires exponentially more training data as the number of
loci increases.
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ADDITIONAL TABLES AND FIGURES

Dataset Median R2 of all strate-
gies scan

Median R2 of interface strategies
scan

R2 score of PROXI-
CLUST

Quantile of PROXICLUST’s R2

score

ACE2 0.27 0.64 0.78 0.995
REGN10987 -0.04 0.77 0.80 0.994
CoV555 -0.05 0.68 0.73 0.897
S309 -0.53 0.41 0.73 0.986
SI06 0.05 0.5 0.86 0.9997

Table 2: Results of PROXICLUST for 5 different antigen-antibody complexes
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(a) (b)

(c) (d)

Figure 6: Histograms of R2 scores for models trained from strategies restrained to the antibody-
antigen interface. Red line shows that the R2 score achieved by PROXICLUST beats both mean and
median values of R2 for strategies sampled at the interface.
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(a) (b)

(c) (d)

Figure 7: Correlation between model performance and epistasis score across different antibody-
antigen binding systems. Each panel shows 100 random mutation selection strategies (blue dots)
compared to the ProxiClust strategy (red dot) for: (a) RBD-CoV555, (b) RBD-S309, (c) RBD-
REGN10987, and (d) RBD-ACE2 binding. The consistently high Pearson and Spearman correlation
coefficients (0.70-0.87) demonstrate that strategies capturing more significant epistatic interactions
yield better predictive performance. ProxiClust consistently ranks in the top percentiles for both
metrics across all tested systems, validating that spatially-informed clustering effectively identifies
functionally important mutational interactions

Figure 8: Performance comparison between Random Acquisition and Diverse Acquisition (min
linkage) data sampling strategies for RBD-ACE2 binding affinity prediction.
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