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ABSTRACT

Class-Incremental Learning (CIL) aims to learn deep models on sequential tasks
continually, where each new task includes a batch of new classes and deep models
do not have access to task-ID information at the inference time. Recent vast pre-
trained models (PTMs) have achieved outstanding performance by prompt tech-
nique in practical CIL without the old samples (rehearsal-free) and with a memory
constraint (memory-constrained): Prompt-extending and Prompt-fixed methods.
However, prompt-extending methods need a large memory buffer to maintain an
ever-expanding prompt pool and meet an extra challenging prompt selection prob-
lem. Prompt-fixed methods only learn a fixed number of prompts on one of the
incremental tasks and can not handle all the incremental tasks effectively. To
achieve a good balance between the memory cost and the performance on all the
tasks, we propose a Parameter-Efficient Cross-Task Prompt (PECTP) framework
with a prompt retention module (PRM). To make the final learned prompts effec-
tive on the whole incremental tasks, PRM constrains the evolution of cross-task
prompts’ parameters from Outer Prompt Granularity and Inner Prompt Granular-
ity. Extensive experiments show the effectiveness of our method.

1 INTRODUCTION

Deep models have achieved outstanding performance when tackling a wide variety of individual
machine learning tasks. However, learning deep models on sequential tasks continually (Incre-
mental Learning) remains a formidable challenge (Gomes et al., 2017). Incremental Learning (IL)
dynamically learn deep models across different tasks, and often suffers from the performance degra-
dation on previous learned tasks (i.e., catastrophic forgetting) (McCloskey & Cohen, 1989). Class-
Incremental Learning (CIL) is usually regarded as a challenging setup in IL, where each new task
includes a batch of new classes and deep models do not have access to task-ID information at the
inference time. Recently, rehearsal-based methods can effectively mitigate the forgetting in CIL by
keeping few representative samples (exemplars) of old tasks in a fixed memory buffer (Rebuffi et al.,
2017; Hou et al., 2019). However, these approaches fail in cases with rigorous privacy concerns and
severely constrained memory, where the samples of old task are unavailable and the memory buffer
is limited. In this paper, we focus on our scope to strategies for the challenging CIL without the
exemplars (rehearsal-free) and with a memory constraint (memory-constrained).

Latest advances in vast pre-trained models (PTMs) have already made a great success in rehearsal-
free and memory-constrained CIL, because of PTMs’ powerful representation ability. These PTM-
based CIL methods bridge the gap between the pre-trained data and sequentially learned tasks’ data
with parameter-efficient adaptation techniques, e.g., prompt (Jia et al., 2022). With the privacy
concern and the memory constraint in practical CIL, the tunable prompts (Wang et al., 2022c) make
the frozen pre-trained model capable of adaptive on different tasks effectively and efficiently.

Existing PTM-based CIL methods mainly focus on how to utilize the prompts, and can be briefly
separated into two categories: Prompt-extending(Wang et al., 2022b;a; Razdaibiedina et al., 2023;
Smith et al., 2023) and Prompt-fixed methods (Zhou et al., 2023; Yoo et al., 2023). Prompt-
extending methods need to maintain an ever-expanding prompt pool at the training stage and select
suitable prompts from the pool at the inference stage. During training, a novel set of prompts is
learned when a new task arrives, with the aim of instructing the PTM to perform conditionally on
this current incremental task. After that, these task-specific prompts are stored in a prompt pool that
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continually expands as the incremental tasks add sequentially. During inference, a prompt selection
strategy is employed to select the suitable prompts for each sample. However, continually expanding
the prompt pool can result in the increase of the memory cost, which is not feasible in practical
memory-constrained CIL. Besides, the prompt selection strategy not only adds extra computational
cost but also encounters a dilemma in modeling the relationship of prompts for different incremental
tasks. Another line of work, Prompt-fixed methods learn a fixed number of prompts solely on one
of the whole incremental tasks (consider the learned task as a key-task), and incorporate a feature
fusion module to make the key-task prompts generalized on all the tasks. Although Prompt-fixed
methods can efficiently save the memory cost, due to the limited knowledge of the single key-task,
it is difficult for these fixed number of prompts to instruct PTM to perform well on the remaining
incremental tasks. Motivated by the above analysis, in order to achieve an efficient and effective
PTM-based method in rehearsal-free and memory-constrained CIL, the key point is to learn a fixed
number of effective prompts that can instruct the PTM to perform conditionally on all the tasks.

In this paper, we present a Parameter-Efficient Cross-task Prompt (PECTP) framework, a PTM-
based approach for practical memory-constrained CIL with a focus on the parameter cost and effec-
tiveness of prompts across different incremental tasks. Our PECTP framework dynamically learns
a few number of cross-task prompts, and we propose a Prompt Retention Module (PRM) to make
these prompts effective on the learned incremental tasks. The PRM module restricts the evolution
of cross-task prompts’ parameters from two granularity: Outer Prompt Granularity (OPG) and
Inner Prompt Granularity (IPG). Specifically, OPG restricts parameter evolution of prompts by
regularizing the output feature of prompt-based PTM. IPG constrains prompt parameter variation
by regularizing prompts’ parameters themselves. With another classification layer updating scheme
about the current task, the final learned cross-task prompts can perform well on the whole incremen-
tal tasks. Furthermore, we explore the influence of classification layer updating scheme to the fixed
number of cross-task prompts.

To sum up, the main contributions of this paper are: (1) We summarize the prompt-extending and
prompt-fixed CIL methods with PTM and propose a PECTP framework for memory-constrained
and rehearsal-free CIL, which learns a fixed number of cross-task prompts on the whole incremental
tasks. (2) We design a novel PRM to restrict the evolution of cross-task prompts from OPG and IPG,
which ingeniously makes the updated cross-task prompts effective on the learned incremental tasks.
and (3) Extensive experiments over benchmark datasets demonstrate the effectiveness of our PECTP
method in performance and memory cost against the existing prompt-fixed and prompt-extending
PTM-based CIL methods.

2 RELATED WORK

Incremental Learning Numerous methods have been explored to address catastrophic forgetting
(Masana et al., 2022; Mai et al., 2022), and they can be roughly categorized into three main cate-
gories: (i) architecture-based, (ii) rehearsal-based, and (iii) regularization-based (Kirkpatrick et al.,
2017; Zenke et al., 2017). Architecture-based methods (Rusu et al., 2016; Yoon et al., 2017; Li et al.,
2019; Loo et al., 2020; Mallya & Lazebnik, 2018; Serra et al., 2018; Ke et al., 2020) segregate com-
ponents within the deep model for each task by expanding the network or constraining the learning
rate of important parameters towards previous tasks. However, most of these methods require a task
ID for inference (Wortsman et al., 2020), which is not suitable for challenging CIL. Rehearsal-based
methods (Buzzega et al., 2020; Cha et al., 2021; Rebuffi et al., 2017; Wu et al., 2019; Ebrahimi et al.,
2020; Pham et al., 2021; Zhao et al., 2021; De Lange et al., 2021; Van de Ven & Tolias, 2019; Wang
et al., 2018) mitigate forgetting by replaying real samples or generated samples of previous tasks.
However, these methods are unsuitable in rehearsal-free and memory-constrained CIL. In contrast,
our method, PECTP, not only conducts inference without relying on the task ID but also introduces
a negligible number of additional parameters.

Prompt Learning Prompt is introduced to enable a small set of trainable parameters to instruct a
fixed pre-trained model to perform conditionally (Liu et al., 2023; Li & Liang, 2021; Lester et al.,
2021; Huang et al., 2022; Zhou et al., 2022b;a). Prompt has been utilized in a wide range of tasks
(incremental learning) with the pre-trained model. Incremental learning with prompt-based PTM
typically fall into two main categories: Prompt-fixed and Prompt-extending. Prompt-fixed methods
employ a fixed number of prompts for deliberate learning a single incremental task and keep these
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Figure 1: The different piplines of the PTM-based CIL methods. (a) Joint Training: prompts are
learned on the entire data, (b) Prompt-fixed methods: prompts are learned on a key-task from all
the incremental tasks, (c) Prompt-extending methods: novel sets of prompts are learned on each
incremental task, and (d) our PECTP.

prompts fixed throughout subsequent tasks (Zhou et al., 2023). However, these methods often suffer
from limited representative capabilities, which results in inadequate guidance for the PTM. In con-
trast, prompt-extending methods continually learn novel prompts for each novel incremental task,
accumulating them in an expanding prompt pool (Smith et al., 2023; Wang et al., 2022c;b;a; Douil-
lard et al., 2022). Nevertheless, continually growing the prompt pool can lead to increased memory
cost, making it unsuitable in memory-constrained CIL. Conversely, PECTP effectively instructs the
PTM across the all incremental tasks with only a small number of prompts.

3 PREREQUISITE

3.1 MEMORY-CONSTRAINED AND REHEARSAL-FREE CLASS-INCREMENTAL LEARNING

Formally, Class-Incremental Learning (CIL) aims to learn a deep model on sequential tasks with
novel classes. We denote the sequence of tasks as

{
T 1, T 2, . . .

}
, where Dk =

{(
xk
i , y

k
i

)}nk

i=1
is the

training data corresponding to task k with nk training samples. Here, each input sample xk
i ∈ Rn

belongs to class yki ∈ Yk, where Yk is the label space of task k. There are no overlapping classes
between tasks (i.e., Yk ∩ Yk′ = ⊘ if k ̸= k′). CIL suffers the forgetting problem because the model
is trained only on the current task and evaluated over all the learned tasks (all encountered classes
are denoted as Yk = Y1∪, . . . , Yk). In memory-constrained and rehearsal-free CIL, the memory
buffer is limited and samples of previous tasks can not be replayed when learning the current task.
A deep image classification model is denoted as ϕθ,w(x) = gw(fθ(x)), where fθ(x) : R|Dk| → Rd

is a feature extractor with weights θ, and gw(·) : Rd → R|Yk| is a classification layer with weights
w. After learning the task k, the goal is to learn a ϕθ,w(·) that can performs well on Yk with a
memory constraint. Recent PTM-based CIL methods (Wang et al., 2022c) usually utilize a pre-
trained model (PTM) with powerful representation capability, such as Vision Transformer (ViT), as
the initialization for fθ(x).

3.2 PRE-TRAINED MODEL-BASED CIL WITH PROMPTS

Pre-trained models encounter domain gap problem between pre-trained data and the downstream
data. Parameter-efficient adaptation techniques, e.g., prompts, are proposed to address this issue,
with the purpose to instruct the PTM to perform conditionally, e.g., Visual Prompt Tuning (VPT)
(Jia et al., 2022). Based on VPT, there are two kinds of PTM-based CIL methods with prompts:
Prompt-extending and Prompt-fixed CIL methods (shown in Figure 1).
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VPT Given a frozen pre-trained ViT model f and a set of learnable parameters P =
{pl, l = 1, 2, . . .}, namely prompts. We denote the ViT model with tunable prompts: f + P , as
VPT (ϕ) and D as the entire data of the downstream task. The objective function is a classification
loss on the downstream task and defined as follows:

Lcls =
∑

(x,y)∈D

L (gw (f ([x;P])) , y) , (1)

where L is a binary-cross entropy loss, w stands for the parameters of classification layer and [·; ·]
indicates concatenation on the sequence length dimension.

Prompt-extending CIL methods Given the sequential of tasks
{
T k, k = 1, 2, . . .

}
, prompt-

extending CIL methods maintain a prompt pool C =
{
Pk, k = 1, 2, . . .

}
during training. For the

task k, Pk =
{
pkl , l = 1, 2, . . .

}
is the task-specific prompts and deliberately learned on task k by

the following loss function:

Lcls =
∑

(x,y)∈Dk

L
(
gwk

(
f
([
x;Pk

]))
, y
)
, (2)

where f + Pk is a VPT model ϕk for k-th incremental task and Dk is the corresponding training
data. During inference, a selection strategy F(·|x) is employed to select the suitable prompts P∗ for
each sample x:

P∗ = F (C|x) . (3)

Prompt-extending CIL methods raise concerns from two perspectives: (1) increasingly expanding
the capacity of C leads to failure in practical memory-constrained CIL, and (2) the design of the
prompt selection strategy F(·|x) has a significant impact on the final performance.

Prompt-fixed CIL methods Prompt-fixed CIL methods only learn a fixed number of prompts
P = {pl, l = 1, 2, . . .} on one of the whole incremental tasks (i.e., key-task D∗) with a classification
loss and freeze them in the remaining tasks:

Lcls =
∑

(x,y)∈D∗

L (gw (f ([x;P])) , y) . (4)

During inference, they incorporate a feature fusion module G(f (x;P) , f (x)) to enhance the
prompts’ generalization ability on all tasks. Nevertheless, the fixed number of prompts learned
on the key-task still suffer the degradation in other tasks. It is necessary to develop an efficient and
effective PTM-based method in rehearsal-free and memory-constrained CIL.

4 PTM-BASED CIL WITH PARAMETER-EFFICIENT CROSS-TASK PROMPT

In this section, we introduce our PECTP method in detail, which can enable a fixed number of
prompts to efficiently instruct the PTM to perform effectively on the whole incremental tasks (as
shown in Figure 2). Due to the memory-constraint in CIL, PECTP utilizes a fixed number of
prompts, instead of adopting a continuously expanding prompt pool. To make these prompts gener-
alized on the whole incremental tasks, PECTP updates the prompts on each incremental task, rather
than solely on the key-task. Then, the classification loss on the current task k is defined as follows:

Lcls =
∑

(x,y)∈Dk

L (gw (f ([x;P])) , y) . (5)

Lcls makes the fixed number of prompts effective on the current task. To make these prompts
effective on the previous learned tasks, we propose a prompt retention module (PRM). Our PRM
restricts the evolution of cross-task prompts’ parameters from IPG (Section 4.1) and OPG (Section
4.2). The training and inference procedure of our PECTP are described in Section 4.3.
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Figure 2: An architecture of the PECTP framework.

4.1 PRM FROM INNER PROMPT GRANULARITY

Our PRM constrains prompt parameter variation from Inner Prompt Granularity. Specifically, while
learning the k-th incremental task, we approximate the prompts’ parameters in ϕk to that in ϕk−1.
We denote each transformer block in ϕk as fk

i , i = 1, 2, . . . , N and the input feature of the i-th
transformer block as dki . The output of i-th transformer block can be formulated as follows:[

cki+1; e
k
i+1; _

]
= fk

i

(
dki

)
, i = 1, 2, ..., N (6)

ŷ = gkw(c
k
N+1), (7)

where dki =
[
cki ; e

k
i ; p

k
i

]
is the input feature, cki ∈ RD denotes the [CLS], eki ∈ RLg×D denotes the

embedding of the input image with sequence length Lg and embedding dimension D, pki ∈ RLp×D

denotes the prompts with prompts’ length Lp.

Simultaneously, the classification layer gkw(·) is used to map the final transformer block’s [CLS] em-
bedding, ckN+1, into a predicted class probability distribution ŷ. When learning the k-th incremental
task, the prompts in ϕk should keep the knowledge of the learned prompts in ϕk−1 and obtain the
knowledge of current task k. By stacking over the transformer block axis, the total prompts can be
formulated as Pk =

[
pk1 , p

k
2 , . . . , p

k
N

]
∈ RN×Lp×D. In order to make Pk effective on task k − 1,

we impose a Inner Prompt Granularity Loss LIPG between Pk and Pk−1:

LIPG
(
Pk−1,Pk

)
=

N∑
n=1

Lp∑
w=1

D∑
h=1

∥∥∥pk−1
n,w,h − pkn,w,h

∥∥∥2 . (8)

4.2 PRM FROM OUTER PROMPT GRANULARITY

Our PRM restricts parameter evolution of prompts from Outer Prompt Granularity, which regularizes
the output feature of prompt-based PTM. Previous Convolution Neural Network (CNN) based CIL
methods employ regularization on the output feature of CNN (Douillard et al., 2022; 2020). Our
Outer Prompt Granularity PRM introduces a set of prompt constraints, not only over the final output
feature but also over the intermediate output feature of each transformer block.

While learning the k-th incremental task, we denote the output feature of each transformer block in
the model ϕk as hk

i =
[
cti+1, e

k
i+1, _

]
, i = 1, 2, . . . , N . Simultaneously, the model ϕk−1 can also

extract features from each transformer block and the corresponding output features are denoted as
hk−1
i , i = 1, 2, . . . , N . By stacking over the transformer block axis, the total output feature can be

formulated as hk =
[
hk
1 ,h

k
2 , ...,h

k
N

]
∈ RN×(1+Lg+Lp)×D. Each element of hk can be denoted as

hk
n,w,h, where n represents the block, and w, h stands for patch and dimension axis, respectively.
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To approximate the prompts’ parameters in ϕk to that in ϕk−1, we aim to make the output features
generated by ϕk similar as the features generated by ϕk−1. A simple implementation is to ensure
that the output features generated by both models are identical at every feature dimension (point by
point). We refer to the corresponding loss as LOPG-Point-Wise:

LOPG-Point-Wise
(
hk−1,hk

)
=

N∑
n=1

1+Lg+Lp∑
w=1

D∑
h=1

∥∥∥hk−1
n,w,h − hk

n,w,h

∥∥∥2 . (9)

However, part of features generated by each transformer block are weakly important or even not
related to the final prediction (Chen et al., 2023; Rao et al., 2021). LOPG-Point-Wise can make ϕk hard
to fetch the truely important features, which results in degradation in the learned tasks. Additionally,
extreme constraint can disrupt the flexibility to gain novel knowledge from the current task. To
address this issue, we propose a set of soft constraints on the statistic distribution of the original
output features hk. hk includes the block, patch, and dimension axis. Then we propose to obtain
the distribution knowledge of hk from these three axes by average pooling operation. Specifically,
(1) pooling over the block axis calculates the output feature distribution from different blocks:

LOPG-Block-Wise
(
ht−1,ht

)
=

1+Lg+Lp∑
w=1

D∑
h=1

∥∥∥∥∥
N∑

n=1

ht−1
n,w,h −

N∑
n=1

ht
n,w,h

∥∥∥∥∥
2

, (10)

(2) pooling over the patch axis calculates the output feature distribution from different locations:

LOPG-Patch-Wise
(
ht−1,ht

)
=

N∑
n=1

D∑
h=1

∥∥∥∥∥∥
1+Lg+Lp∑

w=1

ht−1
n,w,h −

1+Lg+Lp∑
w=1

ht
n,w,h

∥∥∥∥∥∥
2

, (11)

and (3) pooling over the dimension axis can calculate the output feature distribution from both the
blocks and locations:

LOPG-Dimension-Wise
(
ht−1,ht

)
=

N∑
n=1

1+Lg+Lp∑
w=1

∥∥∥∥∥
D∑

h=1

ht−1
n,w,h −

D∑
h=1

ht
n,w,h

∥∥∥∥∥
2

. (12)

After obtaining the distribution of the original output features hk, we make the distribution informa-
tion of ϕk approximated to that of ϕk−1. Such distribution-level constraints can be considered as a
form of soft constraints, effectively mitigating hard constraints that prevent the model from learning
new knowledge from the current incremental task. With these OPG soft constraints, it is feasible to
strike an optimal balance between learning new task knowledge and preserving old task knowledge.

4.3 TRAINING AND INFERENCE

Training Our model is trained with three parts of losses: (1) the classification loss Lcls, a binary-
cross entropy to learn on the current incremental task, (2) an Inner Prompt Granularity loss LIPG
in PRM to regularize the prompts’ parameter themselves, and (3) an Outer Prompt Granularity
loss LOPG in PRM to restrict parameter evolution of prompts by regularizing the output feature of
prompt-based PTM. The total loss is:

L{P,w} = Lcls + αLIPG + βLOPG, (13)
where α and β are two hyperparameters to maintain the balance between learning new task knowl-
edge and preserving old task knowledge.

The performance of ϕk can be influenced by both classification layer parameters w and the prompts’
parameters P and the initialization of the classification layer can influence the learning process of
ϕk and P. Therefore, we explore the impact of initializing the classification layer during training.

In previous studies, prompt-extending methods typically involve training a new set of prompts and
independently reinitializing the classification layer for the current incremental task during training.
Prompt-fixed methods only train the prompts on a key-task, avoiding the issue of the classification
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Method CIFAR Inc10 CUB Inc10 IN-R Inc10 IN-A Inc10 ObjNet Inc10 Omni Inc30 VTAB Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

L2P 88.34 84.57 69.69 56.01 73.82 67.13 47.16 38.48 63.78 52.19 73.36 64.69 77.11 77.10
DualPrompt 89.69 84.14 74.84 60.84 70.32 64.80 52.56 42.68 59.27 49.33 73.92 65.52 83.36 81.23
ADAM-Finetune 87.12 81.23 90.98 85.58 71.29 63.35 61.57 50.76 61.41 48.34 73.02 65.03 87.47 80.44
ADAM-VPT-Shallow 90.25 85.04 90.70 85.54 70.19 62.75 57.72 46.15 64.54 52.53 79.63 73.68 87.15 85.36
ADAM-SSF 90.61 85.14 90.67 85.37 73.07 65.00 62.81 51.48 69.15 56.64 80.53 74.00 85.66 81.92
ADAM-Adapter 92.24 87.49 90.96 85.11 75.08 67.20 60.53 49.57 67.18 55.24 80.75 74.37 85.95 84.35
ADAM-VPT-Deep 90.40 84.62 89.48 83.42 74.46 66.47 60.59 48.72 67.83 54.65 81.05 74.47 86.59 83.06
PECTP(Ours) 92.53 87.73 91.01 85.11 77.42 70.01 66.21 55.43 70.18 58.43 81.08 74.54 87.14 86.32

Table 1: Average performance and the performance after the last task comparison on seven datasets.

layer continuously expanding. In this paper, we introduce PECTP, which dynamically learns for
each new incremental task, enabling the ultimately learned cross-task prompts to be effective for all
the tasks. Consequently, the classification layer needs to continuously expand based on the number
of the learned tasks. Therefore, we propose to initialize the new classification layer with parameters
from a previously learned classification layer, instead of using a simple initialization method (e.g.,
initializing with 0). Experimental results are in A.4 which demonstrate that our proposed initializa-
tion method further keep the prompts’ parameters Pk not far away from Pk−1 while learning the
current task.

Inference Considering that continually training the prompts for each new incremental task in a
prompt-based PTM can force the PTM to become more specialized on the incremental tasks, po-
tentially overwriting the general knowledge acquired during pre-training. Therefore, we also utilize
a feature fusion module G(f (x;P) , f (x)) to enhance the generalization ability of the cross-task
prompts. Additionally, we explore the impact of the feature fusion module and other implementa-
tions that could lead to further improvements (A.3).

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL DETAILS

Datasets We follow (Zhou et al., 2023) and conduct the experiments on seven datasets: CIFAR100
(Krizhevsky et al., 2009) (CIFAR), CUB200 (Wah et al., 2011) (CUB), ImageNet-R (Hendrycks
et al., 2021a) (IN-R), ImageNet-A (Hendrycks et al., 2021b) (IN-A), ObjectNet (Barbu et al., 2019)
(ObjNet), Omnibenchmark (Zhang et al., 2022) (Omni) and VTAB (Zhai et al., 2019). As described
in (Zhou et al., 2023), the last four datasets have a large domain gap with the pre-trained dataset
ImageNet. ImageNet-A and ObjectNet include the challenging samples that PTMs with ImageNet
can merely handle, while Omnibenchmark and VTAB contain diverse classes from multiple complex
realms. To construct the CIL setting, 200 classes are sampled from ObjectNet and ImageNet-A (300
classes from Omnibenchmark, 50 classes from VTAB). Different CIL settings are represented as
Incn: each CIL setting includes several tasks and each incremental task consists of n new classes.

Training Details Our PECTP method is implemented based on the classical prompt-fixed CIL
method ADAM-VPT-deep (Zhou et al., 2023). We utilize the PTM ViT-B/16-IN21K, which is
pre-trained on ImageNet21K. On each incremental task, we train PECTP with the same hyper-
parameters in (Zhou et al., 2023) (e.g., learning rate, epoch, weight decay, the number of prompts).
As for the hyper-parameter α and β of our PRM module, we utilize 1/3.5e5 and 1/4e2 as the default
setting on CIFAR100. More details are included in the supplemental material.

Evaluation Protocol We evaluate the performance on all seen classes after learning each new
incremental task. Ab denotes the accuracy after the b-th task. We report the performance after the
last incremental task (AB) and the average performance across all tasks (Ā = 1

B

∑B
b=1 Ab).

5.2 COMPARISON TO PREVIOUS METHODS

In this section, we compare our method with recent PTM-based CIL methods: L2P (Wang et al.,
2022c), DualPrompt (Wang et al., 2022c), CODA-Prompt (Smith et al., 2023), SimpleCIL (Zhou
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Method CIFAR Inc10 (10 tasks) IN-R Inc10 (20 tasks)
AB Prompt Num AB Prompt Num

Prompt-extending
L2P 83.36 50 69.33 100
DualPrompt 81.27 205 68.64 405
CODA-Prompt 84.59 205 73.93 405

Prompt-fixed ADAM-VPT-Deep 83.26 12 70.07 12
PECTP(Ours) 86.27 12 73.20 12

Table 2: Performance and memory cost (Prompt Num) comparison on CIFAR100 and ImageNet-R.

Method CIFAR Inc10 IN-A Inc10
Ā AB Ā AB

Baseline 90.19 84.66 62.19 50.03

Baseline+OPG 92.43 87.66 65.48 53.92

Baseline+IPG 91.70 87.60 61.41 49.11

Baseline+IPG+OPG 92.59 87.94 66.21 55.43

(a)

Method CIFAR Inc10 IN-A Inc10
Ā AB Ā AB

Baseline 90.19 84.66 62.19 50.03
OPG-L 91.88 87.02 61.01 51.61
OPG-B 92.43 87.69 65.23 53.98
OPG-P 90.99 86.02 63.00 51.94
OPG-D 90.84 87.02 60.33 50.16
OPG-B+D 92.43 87.66 65.48 53.92
OPG-L+D+P 90.92 85.94 60.87 51.22

(b)

Table 3: Results of ablating components of PRM (i.e., OPG, IPG) and results of ablating variants of
OPG (i.e., blcok, patch and dimension) on CIFAR100 and ImageNet-A.

et al., 2023), and ADAM (Zhou et al., 2023). ADAM has different variants with various adaptation
techniques (i.e., ADAM-Finetune, ADAM-VPT-Shallow, ADAM-VPT-Deep, ADAM-SSF, ADAM-
Adapter). L2P, DualPrompt, and CODA-Prompt are Prompt-extending methods. ADAM-VPT-
Deep, ADAM-VPT-shallow and Our proposed PECTP are Prompt-fixed methods.

We show the performance of these methods on seven datasets in Table 1. On typical CIL datasets
CIFAR100, CUB and ImageNet-R, our method achieves 92.53%, 91.01% and 77.42% on Ā, outper-
forming the baseline ADAM-VPT-Deep by 2.13%, 1.53% and 2.96%, respectively. On the challeng-
ing ImageNet-A and ObjectNet datasets, our method achieves 66.21% and 70.18% on Ā, surpassing
Adam-Adapter by 5.68% and 2.35%, respectively. On Omnibenchmark and VTAB datasets, the Ā
of our method is 7.16% and 3.78% higher than that of DualPrompt respectively.

We also make a detailed comparison about the memory cost between our method and other prompt-
based PTM CIL methods. The memory cost of these methods are utilized to keep the PTM and
prompts, and the difference of these methods mainly comes from the number of prompts (denoted
by Prompt Num). The experimental results datasets are shown in Table 2. On CIFAR100 including
10 tasks, We can observe that our PECTP method achieves highest performance and lowest Prompt
Num after learning the last incremental task. On ImageNet-R which consists of 20 tasks, our method
has comparable performance than CODA-Prompt while the prompt number of our method is only
around 3% of CODA-Prompt. All of the results illustrate that our PECTP method can make a good
balance between CIL performance and the memory cost.

5.3 ABLATION EXPERIMENTS

Effect of PRM module As described Section 5.1, we select the ADAM-VPT-Deep (Zhou et al.,
2023) as the Baseline of our PECTP method. We have conducted the experiments to validate the
effectiveness of our PRM (OPG and IPG). As shown in Table 3a, both OPG and IPG can improve
the performance of Baseline on CIFAR100 and ImageNet-A datasets. While utilizing OPG and IPG
simultaneously, our method achieves the highest performance, illustrating that these two granularity
are necessary and complementary for keeping the old task knowledge of prompts.

Different OPG Implementation Our OPG method can be implemented with different strategies
and we have conducted experiments to validate the influence of different OPG implementations.
We have several OPG variants: (1) OPG-logit (OPG-L): using a logit-based loss. (2) OPG-block
(OPG-B): LOPG-Block-Wise. (3) OPG-patch (OPG-P): LOPG-Pacth-Wise. (4) OPG-dimension (OPG-D):
LOPG-Dimension-Wise. The experimental results are shown in Table 3b. The performance of OPG-
L is lower than other OPG variants, especially on ImageNet-A, which aligns with the findings in
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Figure 3: The accuracy of AB between L-XP and PECTP on CIFAR100 (a) and ImageNet-A (b).
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Figure 4: T-SNE visualization of features obtained by L-0P and PECTP on each incremental task in CIFAR100.

the study conducted by (Yang et al., 2022). The performance of OPG-B+D achieve the highest
performance, thus our PECTP utilize this variant as the default setting.

Our Cross-Task Prompt vs. Key-Task Prompt Our PECTP method utilizes the cross-task
prompts and the prompt-fixed methods employ the key-task prompts. To further validate the ef-
fectiveness of our method, we conduct the experiments to compare the cross-task prompts and
the key-task prompts on CIFAR100 and ImageNet-A. Supposing there are 10 tasks (denoted as{
D0, D1, ..., D9

}
), we select different task as the key-task to obtain the key-task prompts. For sim-

plicity, the key-task prompts learned on the DX task are denoted as L-XP. The accuracy of our
PECTP and different key-task prompts is shown in Figure 3a and 3b. The accuracy of PECTP con-
sistently surpasses that of L-XP on both datasets. Additionally, we observe that the selection of the
key-task significantly influences prompts’ learning. Furthermore, we visualize the extracted features
using T-SNE. As shown in Figure 4, features are insufficiently extracted with L-0P, resulting in a
fuzzy classification boundary. In contrast, PECTP maintains a clear classification boundary on each
incremental task. Further results are in A.2

6 CONCLUSION

In this paper, we make a detailed analysis about the prompt-extending and prompt-fixed PTM-based
CIL methods, and design a memory-efficient CIL framework with parameter-efficient cross-task
prompts. Our PECTP method utilizes a prompt retention module to restrict parameter evolution
of cross-task prompts from the outer prompt granularity and inner prompt granularity, which can
effectively keep the learned knowledge of the prompts after learning the new incremental task. We
perform intensive evaluations of our method and other PTM-based methods with prompts, showing
the effectiveness of our method.
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